BOUNDS ON ORTHOGONAL POLYNOMIALS AND
SEPARATION OF THEIR ZEROS

'ELI LEVIN AND 2D. S. LUBINSKY

ABSTRACT. Let {p,} denote the orthonormal polynomials associ-
ated with a measure p with compact support on the real line. Let
1 be regular in the sense of Stahl, Totik, and Ullmann, and I be
a subinterval of the support in which p is absolutely continuous,
while p/ is positive and continuous there. We show that bounded-
ness of the {p, } in that subinterval is closely related to the spacing
of zeros of p,, and p,_1 in that interval. One ingredient is proving
that "local limits" imply universality limits.
Research supported by NSF grant DMS1800251

1. RESULTS

Let 1 be a finite positive Borel measure with compact support, which
we denote by supp|y]. Then we may define orthonormal polynomials

pn () =7,2" + ..., >0,

n =0,1,2, ... satisfying the orthonormality conditions

The zeros of p,, are real and simple. We list them in decreasing order:

Tin > Top > oo > Tp—1n > Tpn-
They interlace the zeros y;, of pl, :
Pn (Yn) = 0 and yjn € (Tji10,jn) , 1 S j<n—1

It is a classic result that the zeros of p, and p,_; also interlace. The
three term recurrence relation has the form

('CB - bn) Pn (33) = Ap+1Pn+1 (z) + GnPrn-1 (l‘) )

where for n > 1,

ap = 2271 = / P (2) po () dia (z); by = / w2 (2) dp ().

Tn
1
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Uniform boundedness of orthonormal polynomials is a long studied
topic. For example, given an interval /, one asks whether

sup [|pall ;1) < o0
n>1

There is an extensive literature on this fundamental question - see for
example [1], [2], [3], [4], [12]. In this paper, we establish a connection
to the distance between zeros of p,, and p,,_1.

The results require more terminology: we let dist (a,Z) denote the
distance from a real number a to the integers. We say that p is reqular
(in the sense of Stahl, Totik, and Ullmann) if for every sequence of
non-zero polynomials { P,} with degree P, at most n,

1/n
lim sup < !PnQ(-l")\ 1/2) <1
oo \ ([ [Pal” dpe)

for quasi-every = €supp[u] (that is except in a set of logarithmic ca-
pacity 0). If the support consists of finitely many intervals, and u/ > 0
a.e. in each subinterval, then p is regular, though much less is required
[15]. An equivalent formulation involves the leading coefficients {~,,}
of the orthonormal polynomials for p :

1
lim YY" = ——
n—oc0 cap (supp [1])
where cap denotes logarithmic capacity.
Recall that the equilibrium measure for the compact set supp|pu] is

the probability measure that minimizes the energy integral

//log - ! v (x) dv 1)

amongst all probability measures v supported on supp|u|. If I is an in-
terval contained in supp|u|, then the equilibrium measure is absolutely
continuous in /, and moreover its density, which we denote throughout
by w, is positive and continuous in the interior I° of I [13, p.216, Thm.
IV.2.5]. Given sequences {z,},{y,} of non-0 real numbers, we write

Tn ~ Yn
if there exists C' > 1 such that for n > 1,
Ct < an/yn < C.

Similar notation is used for functions and sequences of functions.
Our main result is
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Theorem 1.1
Let 1 be a regular measure on R with compact support. Let I be a
closed subinterval of the support and assume that in some open inter-
val containing I, i is absolutely continuous, while 1’ is positive and
continuous. Let w be the density of the equilibrium measure for the
support of . Let A > 0. The following are equivalent:
(a) There exists C > 0 such that for n > 1 and x;, € 1,

(1.1) dist (nw (Tjn) (Tjn — Tjn-1),2Z) > C.
(b) There exists C' > 0 such that for n > 1 and y;, € I,
(1.2) dist (nw (Yjn) Yin = Yjn-1),2) = C.

(¢) Uniformly for n > 1 and x € I,

(13) Hpn71‘|Loo[x7%,I+%] HanLoo[x,%@Jr%] ~ 1.
(d) There exists C' > 0 such that for n > 1 and x € I,

(1.4) Pn-1llz o2 o) 1Pl et o2y < C

Moreover, under any of (a), (b), (¢), (d), we have

(1.5) supsup ||z — b,|"? p,, ()] < 0.
n>1 xel
Remarks
(a) The main idea behind the proof is that universality limits and
"local" limits give

[Pr1 (Ysn-1) Pn ()| [$i0 [700 (Y1) (Yin = Ysim-1)] + 0 (D] ~ 1,
uniformly in j,n, while p,, has a local extremum at y;,,.
(b) We could replace x;,_1 — j, in (1.1) by 2j,_1 — &jntk, for any
fixed integer k (see Lemma 4.1).
(b) Under additional assumptions, involving the spacing of zeros of p,
and p,_s, we can remove the factor |z — b,|"/* in (1.5):

Theorem 1.2

Let 1 be a regular measure on R with compact support. Let I be a
closed subinterval of the support and assume that in some open inter-
val containing I, i is absolutely continuous, while 1’ is positive and
continuous. Let w be the density of the equilibrium measure for the
support of p. Let A > 0. Assume that (1.1) holds in 1. The following
are equivalent:

(a) There exist Cy; > 0 such that for n > 1 and x;, € I,

(1.6) In(Tjn — Tj—10-2)| 2 C1 |Tjn — bua].
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(b) Uniformly for x € I and n > 1,

(1.7) ||anLoo[x—%7x+%] ~ 1.
(c)

(1.8) i‘g 120l o) < 00
Remark

We note that because of the interlacing, both z, and z;_1,_2 belong
to the interval (2,1, %;-1n—1)-

Two important ingredients in our proofs are universality and local
limits. The so-called universality limit involves the reproducing kernel

Ka(won) = oo @) ) = 22 201 )~ ot 220 ),

(1.9)

For z in the interior of supp[u] (the "bulk" of the support), at least
when 4/ (z) is finite and positive, the universality limit typically takes
the form [6], [8], [14], [17]

a b
Ko (x T @ Eaa) L T u’(x)Kn(w:x))

1.10 I =S(a—b
10) R (,7) (@=8),
uniformly for a, b in compact subsets of C. Here S is the sinc kernel,

sin ra
S(a) = :
(a) = —

Universality limits holds far more generally than pointwise asymptot-
ics for orthonormal polynomials, that at one stage were used to prove
them. In a series of recent papers [7], [9], [10], [11], it was shown that
one can go in the other direction, namely from universality limits, to
"local ratio limits" for orthogonal polynomials.

Under fairly general conditions on p, the Christoffel function K, (x, z)
admits the asymptotic [16]

1
lim =K, (z,2) i (z) = w ()
n—oo M,

for z in the interior of the support of p. This allows us to reformulate
the universality limit (1.10) as

Ko (24 o+ iy ) o (@)
(1.11) lim

n—00 nw ()

:S((I—b),
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uniformly for a, b in compact subsets of C.
Using this universality limit, we proved in [10]:

Theorem A
Assume that p is a reqular measure with compact support. Let I be a
closed subinterval of the support in which p is absolutely continuous,

and ' is positive and continuous. Let J be a compact subset of the
intertor 1° of I. Then

Pn (yjn + ﬁ)
(1.12) lim W) _ cosmz
n=oo P (Yjn)

uniformly for y;, € J and z in compact subsets of C.

A secondary goal of this paper is to prove a converse of Theorem
A, namely to show that local limits such as (1.12) imply a universality
limit like (1.11). For measures on the unit circle this was undertaken
in [11] - however the results necessarily take a quite different form.

Theorem 1.3
Let 11 be a measure with compact support. Assume that we are given a
bounded sequence of real numbers {£,} such that

(113) sup n |€n - En71| < 00,
n>1

and a sequence {T,} of positive numbers with T, ~ 1 such that

Tn

(1.14) lim

n—o0 Tp_1

=1

and uniformly for z in compact subsets of C,

(1.15) lim M = COS T 2.

n—0o0 Pn <€n)

Let A > 0. Then uniformly for a,b in compact subsets of C, and x,
such that

A
. —& <=
(1.16) on =€l < 5

we have
(1.17)

K, (xn + Tna, 2, + %”b) B 7::” ‘pn—l (fnq) DPn (fn)|
Ko (2 20) Sla=brro ( K, (anran) '
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Moreover,

(1.18) okl (x”}; (Z: Z; ) =S(a—b)+o0(1),
provided either

(1.19) liminf dist (Tﬁ (&0 —&nr) ,Z) >0

or '

(1.20) sup 77_’:171 a1 (82) P (60| < 00.

n>1 Kn (ZEn,LE’n)

We prove Theorem 1.3 in the next section and Theorem 1.1 in Section
3. Theorem 1.2 is proved in Section 4. In the sequel C, C, Cs, ... denote
constants independent of n, x, #. The same symbol does not necessarily
denote the same constant in different occurences.

2. PROOF OF THEOREM 1.3

Throughout this section, we assume the hypotheses of Theorem 1.3.
Write for n > 1 and m =n — 1, n,

(2.1) T =&, + Dy
m

and

22 w= () (755):

Recall from (1.14) that x,, — 1 as n — oco. Note too that in view of
(1.13), (1.14), (1.16), {A, .} and {A,,,,_1 } are bounded sequences. We
start with:

Lemma 2.1
(a) Uniformly for z in compact subsets of C,

/ Tn
(2.3) T O ) P,

n—co n pp (&)
(b) Uniformly for a,b in compact subsets of C,

(o (T2 o4 20)) )

_ —w/ sin T (An+ 1) dt+o(ja—b).
b
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(c) Moreover,

(pn—l (% + %Cl> — Dn—1 (ﬂﬁn + %b>) /Pn—1 (fn—l)
= —7 /a sin (A1 +1t) dt+o(la—0b|).
b

Proof

(a) As the asymptotic (1.15) holds uniformly for z in compact subsets
of the plane, we can differentiate it to obtain (2.3).

(b) Now

o+ ) o+ )
= [0 (o ) el ).

Note that this is meaningful even for complex a, b, with the integral
being taken over the directed line segment from b to a. Using (2.1) and
(2.3), we continue this as

/“ P (€ + 22 (A + 1)) T2

_ / (—msing (Apn + 1) + o0 (1)) dt

dt

= —W/basinw (Apn+1t) dt+o(la—b|).
(c) Using (2.2),
(pnfl (xn + T—;a> — DPn—1 (xn =+ %b>> /Pn—1 ('fn—l)

a Tn T
= /b p;L_l <$n + Wt) Wdt/pnfl (éﬁnfl)

/~a p;’t—l (gnfl + :Ln__ll (An,n—l + Xnt)) Tn—1
X, dt
b Prn-1 (gnfl) n—1

— /ba (—msin (7 (Apn-1 + X,t)) +0o(1))dt

= —7T/ sinm (A1 +1t) dt+o(Jla—0b|).
b
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Proof of Theorem 1.3
We apply (1.15) and (b), (c) of Lemma 2.1. Now if a # b,

Tn
NPn—1 (é-n—l) pn (§,)
Ynt [P (Tn + 5a) — po (20 + 520) | Poos (20 + 520)
Tn (@—0)pn (&) a1 (€net)
Vo1 Pn (T + 22b) [pao1 (20 + =2b) — pp1 (20 + =2a) ]
Tn (@ —=0)pn (§) a1 (§mt)

_ _7;—1 [a_”b/ Sin 7 (Ap + ) dt+0(1)] [cos 7 (An -1+ bx,) + 0 (1)]
n - b

K, (xn + T—na,xn + T—”b)
n n

+

4 In=t [cos T (Ap,n +0) + 0 (1)] [

n

T /sinw(An,n_1+t) dt +o0(1)
a/—b b

by (1.15) and (b), (c) of Lemma 2.1. Note that because of the unifor-
mity of the limits, this holds in a confluent form even if a = b. We
continue this, using x,, =1+ o0 (1), as

b
= ML{) / [sinm (A, +t)cosm (Ap o1 +b) —cosT (A +b)sinm (A, 1 +t)] dt

Tn @ —
+o (r)/n—l) )
Tn
(2.4)

Next, we expand the integrand using double angle formulae, in a straight-
forward but tedious fashion:

sinm (A, + 1) cosm (Ap o1 +b) —cosm (App +b)sinm (A m1 + 1)
= [sinTA,, cosmt + cos mA,, , sin7t] [cos TA,, ,,—1 cos b — sin TA,, ,,_; sin 7w
—[cos A, ,, cos b — sin A, , sin wh] [sin TA,, ,,—1 cos Tt + cos TA,, 1 Sin 7]
= cosmtcosmhsinm (A, — Ay 1) Fsinatsinmbsinm (A, — A1)
= cos(m(t—"0))sinm (Apn — Appo1).

We can then continue (2.4) as

Tno1_T /: [cos (m (t = b)) sinm (A — Auor)] di + 0 <M>

Yn @— b Tn
1
- Fy;—nl sinm (Ap — Apn—1) p— (—sinm(a—0b))+o0 (7;—711>

— _WM sin (Apn — App—1)S(a—b)+o <7n_1) )
Tn Tn
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In summary, uniformly for a, b in compact subsets of the plane,

T T T
- Kn Ty + _na, Tn + —nb
NPn—1 (gnfl) Pn (Sn) ( n n >
(2.5) - —7-‘-’)17;—1 Sinﬂ' (An,n - An’nfl) S (a — b) + o0 (%) .

Next observe from (2.1), (1.13), and (1.14), that

Tn Tn 1
Tpn = é.n + An,n_ = é.n—l + An,n—l_ +o0 (—)
n n n

Tn

1
n n

As 7, is bounded below, this allows us to reformulate (2.5) as
EKn (xn + T—na, T, + T—”b)
n n n

= _WV;—lpnl (&n1) Pu (&) {Sin {WTE (&n1 — fn)} S(a—=1b)+o <1)} :

n n

(2.6)
In particular, setting a = b = 0,

-
E"Kn (20, T,)

n n

(2.7)

so that (2.6) can be recast as

—K, (mn + —a,x, + —b)
n n n

n

= %Kn (l’n, l’n) S (CL — b) +o0 <7§1 |pn—1 (gn—l) Pn (571)‘) )

giving (1.17). If (1.19) holds, then sin |:7T% (S £n)] is bounded
away from 0, so we can reformulate (2.6) as

ﬁKn (xn + T—"a, T, + 7——nb)

n n n

771—1

n

= -7

DPn—1 (gnfl) pn (§,) sin {”TE

n

(601 - m] {S(a—b)+o(1)}
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and (2.7) as

Tn

WKn (l’n, xn)

— _plnzt sin |72 - 0 :
= T (6 (€ 7 (60 - 6)| (L 0(1)

n n

Together these give (1.18). Finally if (1.20) holds, then we see from
(2.6) that necessarily sin [71'% (&1 — §n)] is bounded away from 0
and again (1.18) follows. H

3. PROOF OF THEOREM 1.1

Recall that y;, is the zero of p, in (2410, ;). We begin with:

Lemma 3.1

Let 1 be a regular measure on R with compact support. Let I be a
closed subinterval of the support and assume that in some open inter-
val containing I, i is absolutely continuous, while 1’ is positive and
continuous.

(a) Uniformly for y;, € I,

) 1 )
(3.1)  lim n(zj, — yjm)w(xj,) = 5= Im n (Yjn — Tjt1.0) W (Tjn) ;

n—oo n—oo

(3.2) lim n (zj, — Tjp10) w (75,) = 1;
(3.3) T}LH(}O” (Yin — Yj1n) w (Tjn) = L.
(b) Uniformly for y;, € I,
(3.4)

n—1

1Pn—1 (Yjn—1) P (Yjn)| [8I0 [100 (Yjn) (Yjin—1 — Yju)] + 0 (1)] ~ 1.

n

(c) Fix A > 0. Uniformly for n > 1 and x € I,
(35) ||pn||Loo[1'7%,m+%:| ~ |pn (yjn)| s

where y;, € [m — é, x4+ é] or is the closest zero of pl, to this interval.
Proof

(a) First note that uniformly for y;, € I and z in compact subsets of
C,

Pn (yjn + ﬁ)
(3.6) lim Wi/ _ cosma.

n—00 Pn (Yjn)
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This was proved in [10] and is Theorem A above. Next, Theorem 2.1
in [17] shows that (3.2) holds uniformly for z;, € I. In particular
Tjp — Tjy1n = O (%) uniformly for x;, € I. Write

Zn
x.n — yn + —_—,
’ ’ nw (y]n)
so that z, > 0 and z, = O (1). From (3.6), we have
0= Do (%jn) = cosmz, +0(1)

Pr (Yjn)
so necessarily for some non-negative integer j,,
If j, > 1 for infinitely many n, then Hurwitz’ Theorem shows that there
would be other zeros of p,, between x,, and y;,,, which contradicts that
Yjn € (Tjt1,n,Tjn). S0 j, = 0 for n large enough, which gives the first
limit in (3.1). Note too that w (z;,) /w (y;n) = 1 + 0(1) by continuity
of w. The second is similar. Both (3.2) and (3.3) follow from (3.1),
though as noted, (3.2) appears in [17].
(b) Because of (3.6), we can apply Theorem 1.3 and results from its
proof. In that theorem, we set x,, = yjn, 7, = m; &, = Yjn; so that

£n1 = Yjn—1. Note that (1.13), (1.14), (1.16) are satisfied because of
the spacing estimates in Lemma 3.1, and the continuity of w. From
(2.7),

1
nw (y]n) ( J J )

Tn—1

n

= —T——Pn-1 (Yjn-1) Pn Yjn) {sI0 [T00 (Yjn) (Yjin—1 — Yjn)] + 0 (1)}

(3.7)
Next, Theorem 2.2 in [17] establishes that uniformly for ¢ € I,
1
lim —K, (t,t) i’ (t) = w (t).
n—oo N

Since w is positive and continuous in I as is p’, we then obtain (3.4)
from (3.7).

(c) This follows directly from the limit in (3.6) and the fact that
|Pn (Yjn)| is the maximum of |p,| in 2410, 2;,]. B

Proof that Theorem 1.1(a)<(b)
This follows directly from Lemma 3.1(a). H
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Proof that Theorem 1.1(b)=(c).
First note that as supp[u] is compact [5, p. 41],

(3.8) Tnt <
T

Our hypothesis (1.2), as well as (3.4) give that uniformly for y;, € I,
(3.9) g

n

Then (3.5) gives uniformly for = € I,
(3.10) Tnt

n

|pn—1 (yj,n—l) Pn (y]n)| ~ 1.

HpanHLoo [1,_%793_’_%] ||anLoo [I—%@—&-%] ~ 1.

Let I;n, = [Yj+1m,Yjn] for all j,n. We similarly obtain from (3.6) and
(3.9) and our spacing that

1/2 1/2 o

Tn—
1(/ pi_ldu> (/ pfﬂu) > —.
fyn I]’,n—l Ijn n

Here we are also using that y' is positive and continuous in /. Adding
over y;, € I, and using that there are necessarily > Cn such y;,,
because of the spacing, we obtain

1/2 1/2
Tuct 32 / pa_1dp / padp|  >C.
Tyt \in Lin

J J

Cauchy-Schwarz’ inequality gives

~ 1/2
7 ( / P2 dp / pidu) >C

so that
In—1 > (.
Tn

Together with (3.8), this gives

Yn—1
(3.11) an = — 1.

Tn

So from (3.10), uniformly in x € I,
(3.12) 1Pnrll o[ oy 2] 1Pnll o[ oy 2] ~ 1
|

Proof that Theorem 1.1(c)=-(d).
This is immediate. W
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Proof that Theorem 1.1(d)=(b).
From (3.4), (3.11), and our assumed bound (1.4),
[sin [mnw (Yjn) (Yjn—1 = Yin)] + 0 (1) = C.
This yields
dist (nw (yjn) (Yjn = Yjm-1),Z) = C.
|

Proof of the bound (1.5)

From the recurrence relation and (3.11),

IN

< C,
by (1.4). Then also uniformly in z € I,
1@ =ba) il ot o) <€

and we obtain (1.5). W

4. PROOF OF THEOREM 1.2

We begin with:

Lemma 4.1

Let 1 be a reqular measure on R with compact support. Let I be a
closed subinterval of the support and assume that in some open inter-
val containing I, p is absolutely continuous, while u' is positive and
continuous. Assume (1.1). Let A > 0.

(a) Let L > 1. There exists ng such that uniformly for n > ng, for
xjn €1 and |k — j| < L,

(4.1) dist (nw () (Tgp-1 — Tjn), Z) > C.

(b) Let

(4.2) Ojn 1= 1w (Tjn) (Tjn — Tj—1n—2) -

There exist ng,ny, > 0 such that uniformly for n > ng, and for z;, € I,
(43 630 <1y

(c) There exist ng,C; > 0 such that uniformly for n > ny and for
Zjn € I, we have

2
(44) |$]n — bn—1| ~ ||pn—2||Loo [ﬁjn*%ﬁjn‘l*%] |5j7’b| .

O (Ipnsally oot s a] 1Pl ot vt + IPntlly oot ) WPall oot )
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Here if x;n, —by—1 = 0, both sides are 0.
Proof
(a) Using the spacing (3.2),
dist (nw () (Tpm—1 — Tjn) , L)
= dist (nw (xn) (Tjn-1 — Tjn),Z) + 0 (1)
so (1.1) gives the result.
(b) The interlacing of the zeros of successive orthogonal polynomials

shows that both z;, and z;_;,_2 lie in the interval (;,_1,2;-1,-1)-
Even more, the bounds given in (a) show that for n large enough, both

Tjn and Tj—1,n—2 lie in the interval (Ij,n—l + %, Tj-1n—1 — %)
jn in
for some C; > 0. Then
0] = [nw (2)n) (Tjn — Tj-1,0-2)]|
S nw (Zlfjn) (xj,n—l - xj—l—l,n—l) - 201 =1- 201 “+ o0 (1) 5
by (3.2).
(c) From the recurrence relation,
(45) (xjn - bn—l)pn—l (xjn) = Up—1Pn—2 (J;jn) .

We now examine the behavior of the left and right-hand side as n —
o0o. By (3.1) to (3.3), the local asymptotic (3.6), and the fact that
1

Tjn — Yjn—1 = @) (; )
Prn—1 (x]n)

—= = cosT (nw (Yjn—1) (Tjn — Yjn-1)) +o(1
Pn-1 (Yjn-1) (nw (gj,n-1) (2; jn—1)) (1)

= cosT (W (Yjn-1) (Tjn — Tjn-1+ Tjn-1— Yjn-1)) +0(1)

1
= CoST <nw (Yjn—1) (Tjn — Tjn-1) + 5) +o0(1)

= —sin7 (nw (Yjn-1) (Tjn — Tjn-1)) +0(1)

so using our original condition (1.1), we obtain for some threshold ng
that is independent of j, and for n > ny,

(4.6) [Pt ()| ~ [Pn-1 (Yjn-1)|-

Next, in analyzing the term on the right in (4.5), we use the differenti-
ated form of (3.6): uniformly for y;, € I and z in compact subsets of

C,

= —rwsinmz.

-
(4.7) lim (wr)
n—00 W (Yjn) P (Yjn)



BOUNDS ON ORTHOGONAL POLYNOMIALS 15

Then noting that we can replace n by n £+ 2 in the term involving z,
we see that

pn_2 (xjn) /("Ejn_yj—l,n—Q)nw(yj—l,n—Z) p;rl_Q (yj—l,n—? + nw(yji,n_z)) dt
(

pn—2 (yj—lﬂ’b—?) xj,17n727yj,1,n,2)nw(yj,1_,n,2) nw (yj—l,n—Q)pn—Q (yj—Ln—Q)

(Tjn—Yj—1,n—2)nw(Yj—1,n—2)
= / (—msinnt + o (1)) dt.
(

Tj1n-2=Yj—1n-2)nW(Yj_1n—2)

Here the lower limit of integration is

1
(Tj—1m—2 — Yj—1n—2) W (Yj—1,n—2) = 5 +o0(1),

(by (3.1)), so we can continue the above as

(Zjn—2j—1,n—2)nW(Yj—1,n—2)
P2 (Tjn) / T = ) 1
- - t+=))+o())dt+o0(d;n
P2 (yj—l,n—z) 0 s | T 5 0( ) o( ; )

($jn Tj—1,n 2)nw(yj 1,n 2)
= / (—mcosmt+o0(1))dt+ o (d;n)
0

= —sin Wéjn +o0 (6]77,) .

Here we are also using that w (y;_1,-2) /w(zj,) — 1 as n — oo by
continuity of w in the interior of /. Next, from (b), |d;,] < 1 —¢, so
|sin mdj,| ~ |d;,| and we can continue this as

Pn—2 ('Tjn)
Pn—2 (yjfl,n72>
It is possible here that ¢;, = 0, but in such a case both sides are 0.

Combining this with (4.5), (4.6) and (3.11) gives uniformly in j and n,
for n > ny,

= —(sinmdjn) (14+0(1)).

Zjn = bn—t| [Pa—1 (Ujn—1)] ~ [Pn—2 (Yj—1,n—2)| [SIR T | ~ |Pr—2 (Yj—1,n—2)] [0jn] -
Here by our local limits and (1.3),
|Pn—1 (Yjn—1)| = ||pn—1||Loo[wj+17,k1,mj,n,1] P 2||7 co|@jn— A ejnt 2]
A related assertion holds for p,,_s (yj_1,,—2). We deduce that
2
|Ijn_bn—1| ~ ||pn—2||Loo[ 77x]n+ ] |5Jn|
Again if 2, = by,—1, 0j, = 0. W

Proof that Theorem 1.2(a)<(c)
If first (1.6) holds, then [0;,| > C'|xj, — b,—1| and (4.4) gives

C|5Jn| 2 ||pn—2||ioo[ ] |6]7l|

CL']nff Tjn
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which forces
] < (f,

N R
uniformly in x;, € I, provided no d;, = 0. Since ¢;, = 0 can occur for
at most one j, namely when x;, = b,_; (as follows from the recurrence
relation), that exceptional interval can be covered by others with A
large enough. So we have (1.8).

Conversely, suppose we have (1.8). Then from (4.4),
|Zjn = bna| < C'0nl
so that we have (1.6). W

Proof that Theorem 1.2(b)<(c)
It is immediate that (b)=-(c). For the converse we note that if (c)
holds, then from Theorem 1.1(c),

Hpn—lHLw[x_%,H%] >C
uniformly for x € . This together with (1.8), gives (1.7).
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