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DORON S. LUBINSKY 1, IGOR E. PRITSKER 2

ABSTRACT. We determine the asymptotics for the variance of the number of
zeros of random linear combinations of orthogonal polynomials of degree < n
associated with varying weights. We deduce asymptotics of the variance for
exponential weights. In particular, we show that very generally, the variance
is asymptotic to Cn, where the constant C involves a universal constant and
an equilibrium density associated with the weight.

1. INTRODUCTION AND MAIN RESULTS

Consider random linear combinations of polynomials of the form
n
(1'1) Gn(x) = Zajp’ﬂ,j(m)a n >0,
j=0

where {a;}72, are standard Gaussian N (0, 1) i.i.d. random variables, and {p, ;}
are orthogonal polynomials with respect to some measure y,, that depends on 7.

The study of real zeros for random orthogonal polynomials of the form (1.1) is
motivated to a large extent by classical results on random trigonometric polyno-
mials. Random cosine polynomials °7_ a; cos(jz), z € [0, 27], with A/(0,1) i.i.d.
coefficients were considered by Dunnage [9], who showed that the expected number
of zeros in [0, 2], denoted by EN,, ([0, 27]), is asymptotically equal to 2n/v/3. Qualls
[20] studied trigonometric polynomials Z?:o &1 co8(jx) + & o sin(jz), € (0,27,
and showed that EN,([0,2x]) for this ensemble is also asymptotically equal to
2n//3.

The first result on random orthogonal polynomials is due to Das [5], who proved
for random Legendre polynomials that EN,([—1,1]) is asymptotically equal to
n/v/3. Wilkins [22], [23] estimated the error term in this asymptotic relation.
For more general random Jacobi polynomials, Das and Bhatt [6] established that
EN,([-1,1]) is asymptotically equal to n/v/3 too. The same asymptotic for the
expected number of real zeros was shown to hold for very wide classes of random
orthogonal polynomials by Lubinsky, Pritsker and Xie [16], [17]. Their work in-
cludes random orthogonal polynomials with i.i.d. normal coefficients spanned by
orthonormal polynomials with respect to general measures supported compactly or
on the whole real line. Do, O. Nguyen and Vu [8] recently extended the asymp-
totics BN, (R) to the random orthogonal polynomials with general coefficients that
possess finite moments of the order (2 4 €) via universality methods.

The asymptotics for the variance of real zeros are much more difficult to establish
due to complexity of the corresponding Kac-Rice formula and numerous technical
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difficulties associated with analysis. Bogomolny, Bohigas and Leboeuf [4] conjec-
tured that Var(N,([0,27])) is asymptotically equal to ¢n for random trigonometric
polynomials, which was first verified by Granville and Wigman [12] for Qualls’ en-
semble, with an explicit formula for ¢ (see also Azais and Leén [2]). The asymptotic
variance for the trigonometric model of Dunnage was computed by Azais, Dalmao
and Leén in [1].

In [18], the authors analyzed the variance for random linear combinations of
orthogonal polynomials formed from a fixed measure with compact support. Sim-
ilar techniques have recently been used by Gass to study the variance for random
trigonometric polynomials, and to develop a general framework for finding the as-
ymptotic variance results [11]. In this paper, we present analogous results for
varying weights and consequently exponential weights on the real line. For any
interval [a,b] C R, let Ny ([a,b]) denote the number of zeros of G,, lying in [a, b].
Our results involve some functions of the sinc kernel

(1.2) S (u) = Si‘;;m.
Let
1 S (u) 0 S (u)
_ S (u) 1 =5 (u) 0
(1'3) F (u) = det 0 < (u) _5" (0) S (u) )
S’ (u) 0 -8"(u) —=8"(0)

(1.5) H(u)=det| S 1 -8 |;

[1]

1 F (u) 1 . (H(u) 1
(1.6) (u) = 231_ S (u)? + (1 - S(u)2>3/2H(u) arcsin <G(u)) -3

In [18], we proved that for fixed measures p with support [—1,1] and (a,b) C

(-1,1),
nhlr;o %Var [N, ([a,b])] = (/abw(x) dx) (/_O;E(u) du + \}?:) )

where w is the equilibrium density, in the sense of potential theory, for the support
of p. The hypotheses on p primarily involved assumptions on the orthonormal
polynomials for p, such as uniform boundedness in subintervals of the support. In
this paper, our main hypotheses are:

Hypotheses on the Measures
For n > 1, let p,, be a measure supported on I,,, where I,, is an interval that may
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be unbounded or unbounded, but contains [—1,1]. We assume that pu,, is absolutely
continuous in [—1,1], and in that interval

pl (z) = e_QRQn(I),

and @), (z) exists there. We assume that for each n > 1, there are orthonormal
polynomials {pp,m (th,, ) }re_, S0 that pp j () =, ;& + ..., ¥, ; > 0, and

/ pn,jpn,kd:u*n = 6]k

In

We let
Kn—i—l (x7y) = Kn+1 o s Ty y an,] pn k )

denote the (n + 1)st reproducing kernel for pu,,. More generally, for non-negative
integers r, s, we define the differentiated kernels

(1.7) KU (@ Zp )

and their normalized forms,

(18) K (ayy) = K35 (@) ey (02 0, ()2

We need a number of implicit hypotheses:

(I) Uniform Bounds on Orthogonal Polynomials and their Derivatives
For each 0 < € < 1, there exists C > 0 such that forn > 1, k=n,n+1, j = 0,1,
and |z] <1 —¢,

(1.9)

pnk ‘ Vlun <an

(IT) Bounds on the Ratio of Leading Coefficients

There exists C; > 1 such that for n > 1,
(1.10) ort< I <oy
FYn ,n+1

(ITI) Bounds on the Reproducing Kernel
For each 0 < € < 1, there exists Cy > 1 such that for n > 1 and |z| < 1 —¢,

(L11) Oyt < Ko (w,2) pl (2) /n < Co.

(IV) Universality Limit
For each 0 < € < 1, we have uniformly for || <1 — ¢, and u,v in compact subsets
of the plane,

K, (a:Jr ~— , T+ —2 ) nQy, ()

(1.12)  lim i Kn1 () Kni1(@2)) "Ry
n—00 Kpi1 (z,2)

(V) Bounds on {Q)}

For each 0 < e < 1, there exists C3 > 0 such that for n > 1 and |z| < 1 —¢, we

have

(u+v)

=Sv—u).

(1.13) Q, (@)] < Cs.

Moreover, given r > 0, we assume that

(1.14) sup sup |@), (z)— Q) (a: + ﬂ)‘ =o0(1).
lz|<1—e¢ |a|<r n
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‘We prove:

Theorem 1.1
Assume the hypotheses (I) - (V) above. If [a,b] C (—1,1), then
(1.15)

nlLH;C {iVar [N, ([a, b])] — (/ab %f{n (z,7) dx) (/_O; = (u) du + %)} =0.

Since the orthogonality measures p,, are not necessarily related to one another
for different values of 7, one should not expect {*VarN, ([a,b])} _, to converge
in general. Indeed, one can construct examples of sequences of measures for which
different subsequence have different limits. However, (1.11) and (1.15) show that
{LVarN, ([a, b])}n21 is a bounded sequence.

In Section 2, we give two examples to which this theorem may be applied: varying
exponential weights and fixed exponential weights on the real line. In both these
cases, %f(n (z, ) may be replaced by a more explicit term. The methods of proof
follow those in [18]. However, there are substantial additional technical difficulties
due to the varying weights.

This paper is organised as follows: In Section 3, we outline the proof of Theorem
1.1, deferring technical details to later. In Section 4, we present some auxiliary
technical results. In Section 5, we handle the tail term. In Section 6, we handle the
central term. In Section 7, we prove Theorem 2.1. In Section 8, we prove Theorem
2.3 and Corollary 2.4.

In the sequel, C,C4,Cy, ... denote constants independent of n,z,y. The same
symbol may be different in different occurrences. We shall frequently need two
versions of formulae that involve the reproducing kernels K, or their normalized
version K,. If J is an expression involving terms such as K,(f’s), we let J denote
the analogous expression where every Ky(f’s) is replaced by its normalization [N(Y(LT’S).
Thus, for example, if

A(z,y) = K1 (2, 2) Kns1(y, y) — K54 ()
then
A(x,y) = K’nH(x,x)K'nH(y,y) - KELH(%?/)-
If {a,,},{B,,} are sequences of non-0 real numbers, then we write
an ~ B3,
if there exists C' > 1 such that for n > 1,

C'<an/B, <C.
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2. EXPONENTIAL WEIGHTS

We begin with varying exponential weights, as studied in [15]. The statement of
the result involves equilibrium measures for external fields. We shall discuss that
in more detail in section 7.

Theorem 2.1
For n > 1, let I, = (¢n,dy), where —oco < ¢, < d,, < 00. Assume that for some
r* > 1, [-r*,r*] C I, for all n > 1. Assume that

(2.1) iy (@) = e~ g € 1,

where

(i) Qn (z) /log (2 + |x|) has limit co as © — ¢,+ and v — d,, — .

(ii) Q. is strictly increasing and continuous in I,.

(iii) There exists o € (0,1), C' > 0 such that for n > 1 and z,y € [—r*,1%],

(2.2) @ () = Q (W) < Clz —y[”.

(iv) There exists ay € (%, 1), C1 > 0, and an open neighborhood Iy of 1 and —1,
such that for n > 1 and z,y € I,, N Iy,

(2.3) |Q (2) = @, (W) < Crlw —y[™".

(v) [=1,1] is the support of the equilibrium distribution for the external field Q.
Let [a,b] C (—1,1). Then

(24) lim {iVar [N, ([a,b])] — (/b v, (@) da:) (/Z = (u) du + \%)} =0,

where for © € (—1,1),

(2.5) 0q, () = \/17:27332 /_1 Q(s)—Q (x) ds

s—x V1—gs2
Note that oq, is the Radon-Nikodym derivative of the equilibrium measure for
the external field @,,. We shall prove Theorem 2.1 in Section 7. Next we turn to

fixed exponential weights. First we define a subclass of the weights presented in
[13, Definition 1.1, p. 7]:

Definition 2.2

Let W = e 9, where Q : R — [0,00) satisfies the following conditions:
(a) Q' is continuous in R and Q (0) = 0.

(b) Q" exists and is positive in R\ {0};

(c)

‘tllim Q (t) = oo.
(d) The function
_ ()

is quasi-increasing in (0,00), in the sense that for some C > 0,

O<z<y=T(z)<CT(y).
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We assume, with an analogous definition, that T is quasi-decreasing in (—00,0).
In addition, we assume that for some A > 1,

T(t) > A in R\ {0} .
(e) There exists Cy > 0 such that
Q" (z) Q' (z)
<C
Q@) = " Qx)
Then we write W € F (02). We also let

p(z) =e 2@ 2 cR.

a.e. ¢ € R\ {0}.

Remarks
Examples of weights in this class are W = exp (—Q), where
Az®,  x€]0,00)

@(z) = { B|a:|ﬁ7 z € (—00,0) ’
where a, f > 1 and A, B > 0. More generally, if exp,, = exp (exp (...exp ())) denotes
the kth iterated exponential, we may take

€XPg (Axoz) — €XPg (0) ’ T e [07 00)7
QW= exp, (Blal”) —exp (0), w e (~00,0),

where k,£ > 1, o, 8 > 1.

We shall need the Mhaskar-Rakhmanov-Saff numbers a_,, < 0 < a,,. These are
defined for n > 1 by the equations

1o / 1 [ /
(2.6) n=— Q' (@) dx; 0= — @ (@) dx.
T Jan \/(37 —a_p) (an - x) T Ja_p \/(33 - a,n) (an — )
In the case where @ is even, a_,, = —a,,. We also define
1 1
(2.7) B, = 3 (an +a—y) and 6, = 5 (an + |a—n|),

which are respectively the center, and half-length of the Mhaskar-Rakhmanov-Saff
interval

(2.8) A, =[a—pn,an).
The linear transformation
(2.9) Ln(z) =2 ; Bn

maps A,, onto [—1,1]. Its inverse ! (u) = B,, + ud,, maps [—1,1] onto A,,. For

0<e<1, welet

(2.10) Jo(e) =L 1461 —¢] = [a_p + 0, an — 0, .
The equilibrium density on [a_,, a,] is
— — an / _ /
0 a—n s—T \/(5 —a_p) (a, —s)
We also need the scaled density

(2.12) ok (t) = ‘%"on (LL;H (t)) e (=1,1),
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that satisfies
1
(2.13) / oy =1.
1

Let {p;} denote the orthonormal polynomials associated with the weight W2, so
that

/ pipkW? = ..

— 00

Random linear combinations of these have the form
n
x) =Y a;p; ()
§=0

where the {aj}?:o are standard Gaussian A/(0,1) i.i.d. random variables. One
expects that most zeros of these will lie in the Mhaskar-Rakhmanov-Saff interval,
see [17]. Tt is hence convenient to scale this interval to [—1,1]. Accordingly, we
consider

G () = G (L7 1))
In particular, when (@ is even,
G}, (t) = Gy (ant) .
We let N [a,b] denote the number of zeros of G in [a, b], or equivalently of G, in
(—1] .
Ly, 7 ([a,b]). We prove:

Theorem 2.3
Let W € F (C?). Then for [a,b] C (—1,1),

(2.14) nlirr;o{ —Var [N} ([a,b])] — </ab o (x) dx) </_ZE(U) du + %)} =0.

Under additional conditions, we can replace o}, by a limiting distribution. For
a > 0, define the Nevai-Ullmann density

2\/1—962/ t* —x®  dt

2 — 2 t27

(2.15) o (7) = te(-1,1),
where
1 ta
B, =— dt
™ /0 V1—1¢2
This is the equilibrium density for the Freud weight exp (—C'|z|*) for appropriate
C' [21, Theorem 5.1, p. 240]. When o — oo, this becomes the arcsine distribution
1

[ (Z‘) = ﬁ,m S (—1,1)

Corollary 2.4
Let W € F (C’Q) and assume in addition that W is even and for some o € (1, ],

(2.16) lim T (z) =«

T— 00
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Then for [a,b] C (—1,1),

(2.17) nIer;O %Var [N ([a,b])] = (/ab 0o (2) dx) (/_O:O = (u) du+ %) .

3. THE PrROOF OF THEOREM 1.1

We begin with the Kac-Rice formulas for the expectation and variance. These
involve the reproducing kernels defined in (1.7).

Lemma 3.1
Let [a,b] C R. Then the expected number of real zeros for G, is

b
(31) BV, (0.t =+ [ 51 (@) do

where

1,1 0,1 2

(32) P (x) — l K7(l+1) (.73,.73) KT(H-l) ( €, ) )
1 T Kn+1 (JJ,J}) KnJrl ( )
Moreover,
(3.3) p1 (@) =Py (2).
Proof
)(:E z) K& 11)(1,1)

See [16]. Note that Ryl = =t and so on. W

Kni1(z,z) Kny1(z,2)

Recall that p; is the expression defined by the same formula as p; but with every

occurrence of K,(f’s) replaced by I~(,(L7"s). Note that p; depends on n, but we omit

this dependence to simplify the notation. The same applies to p, below. We also
need

K (,2)  Knai(zy) K5 (@2) K2 (2,y)
(3.4) . f({(oﬁl)( z,y) K’Bﬁl)(y’y) K{l ﬁi(y,x) K{f}g (¥,9)
nit (@) Koy (y,2) K0y (v,2) K,y (2,9)
ESY (2y) KE5Y ) K8 (@y) K5 (0y)

The variance of real zeros of G, is found from the following formula, which was
derived in [24] by using the method of [12].

Lemma 3.2
Let [a,b] C R, and let G, be defined by (1.1).

(35)  Var[N, ([a,B)] = / / {02 (2,) — py (2) p1 ()} dady + / oy (@) de,

where

1 9 . Q12 -
(3~6) Pz(% y) = 7T2\/Z \/ Q118290 — Q) + Q2 arcsin \/ﬁ = P2 (x, y)
Here

(37) A(xay) = Kn+1(w7x)Kn+l(yay) - K1%+1(xay);
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Kn1 (1,y) Koy (y,2) K%Y (y,2) ]
(3.8) AQu=det | Ko (2,y) Knai (zz) KOG (@2) |
ESY (@y) KO (2,2) KUY (2,2)
Koy (z,2)  Kpgr(2,9) K’r(L(ill) (z,y |
(3.9) AQgy =det | K1 (y,2) Ko (wy) K (wy) |
1,0 1,0 1,1
K,(LH) (y, ) K5L+1) (y,y) K5L+1)( Y) |
Kn+1 (LL',SL‘) Kn+1 ($7y) K’r(z(zf’—ll) (',1"7'%‘ ]
(3.10)  AQup=det | K, (y,2) Kupi(vy) K%V (g2
K8 (y2) K9 () KLY (y,2) |
Moreover,
(311) det (E) =A (922911 - Q%Q) .

The formulae avove also hold for A,Qll,ﬁlz,flgg when every Kff’s) term is re-
placed by Ky 7.

Proof S

See Lemma 2.2 and 3.1 in [18]. For those involving py, A, 71, Q12,Q99, one can
check that the requisite powers of u!, () and p, (y) on both sides match. W

To prove Theorem 1.1, we split the first integral in (3.5) into a central term that
provides the main contribution, and a tail term: for some large enough A, write

[ [ e = o100 ) ey

//wwwye[a ble—y|>A/ K, (z.2)} //{u,y)w,ye[a,b],zy|<A/f<n<w,z>}

{p2 (z,y) — p1 (z) p1 (y)} dz dy
= Tail + Central.

We handle the tail term by proving the following estimate and a simple consequence:

Lemma 3.3
(a) There exist C1,ng, and Ao such that for n > ng and |x —y| > %,

m@w—mummmsmiﬂ

(b) There exist Ca,mg, and Ay such that for n > ng and A > Ao,

n
(3.13) // 102 (2.9) — 1 () ()| d dy < C
{(z,y):z,y€[a,b],|Jx—y|>A/n}

Proof
See Section 5. W

(3.12)

Recall that = is defined by (1.6). For the central term we will prove:

Lemma 3.4
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(a) Uniformly for w in compact subsets of C\ {0}, for |z|] < 1 —¢, and y =
T+ —4
K

n(z,x)’

(3.14) m {p2 (T, y) = p1 (%) p1 (y)} = E(u) +0(1).

(b) Let n > 0. There exists C such that for |x| < 1—¢ and y = x + m,
u € [_77777} )

lp2 (@, y) — p1 (2) p1 (Y)] < Cn’.

(¢) For any [a,b] C [-1+4+¢,1 —¢],

b b
(3.15) %/ py (2) dz — i/ Lk, @ o) de=o0(1).

Proof
See Section 6. W

Proof of Theorem 1.1
We fix A > n > 0 and split

b b
/ / (02 (@) — py () py (4)} dy d

(3.16) -/ b [+ [+ [ osten = p@ro ) ay s

where for a given z,

I = {ye[a,b]:|y—x|21\/f(n(l‘,3?>}§
J = {y €la,b]: /K, (z,2) < |y —z| < AJK,, (x,w)};
K = {ye[a,b]:|y—m|<17/f(n(z,x)}.

Recall from (1.11) that K, (z,z) ~ n uniformly for n > 1 and |z| <1 —e. If A is

a uniform upper bound for % n (z,2) in [a,b] for n > 1,

/ab /1 {02 (2.y) = py () p1 (y)} dy d

/] 2 (5,) = 1 () py ()] dy
{(@y):x,y€la.bl,lz—y|2A/(nA)}

IN

IA
Q

(3.17)
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by Lemma 3.3(b), provided A/A > Ag. Next,

//{p2 2,9) — py (@) pr ()} dy do

o et PR CICEES ~ ) CEI G =)

o
1

———du dx.
K, (z,z)

Note that if n < |u[ < A and x € [a,b] but z + = E‘xm) ¢ la,b], then x is at a

distance of O (£) to a or b, and in view of Lemma 3.4(b) and (1.11), the integral
over such (z,u) is O (£). Using Lemma 3.4(a) and (1.11), we deduce that

/K — /{ngy —p1 (%) py (v)} dydz

(3.18) (/ Ky (,7) ) </n§|u§AE(u)du>+o(1).

Finally, from Lemma 3.4(b) and (1.11), (but with a different fixed 7 there),

b
(319) [ e @) = o1 ) o1 () duda| < o,

where C is independent of n,n. Combining the three estimates (3.17)-(3.19), over
1, J, K with (3.5), (3.15) and (3.16), we obtain

%Var [N, (a,b)] — </ab de> (/ngugAE(U) du + \}g) ‘
()

Here C’ is independent of A and 7. In [18, Proof of Theorem 1.2] it was shown that
f_ u) du converges. We can let A — oo and n — 0 to deduce the result. B

lim sup

n—oo

4. AUXILIARY RESULTS

We first record some universality limits. Recall that S is defined by (1.2). We
also introduce some auxiliary parameters that will simplify notation and will be
used throughout the sequel. For a given n and z, we set

(4.1) k= Kpyi (z,)
and

_n@, (z)
4. T =
(+2) Kn+1 (@, x)

We do not display this dependence on n and z. From (1.11) and (1.13), uniformly
n[-l4¢el—¢],n>1,

(4.3) 7| < C.

We use both x and K, 11 (z,x) in the same formulae where convenient.
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Lemma 4.1
Let € € (0,1). Let r,s be non-negative integers. Then
(a) Uniformly for |z| <1 —¢€ and u,v in compact subsets of C,

K(LO) 4 g, + 2 —7(u+v)

(4.4) ”1LH;O{ ”“K(il E ;”) K e —— S =8 (v-u).
K(O’l) + g7 + 2z —7(u+tv)

(4.5) nlLII;O{ n—HK(il (; j) R e - —1tS(w—u)p =58 w-u).

(b)

(4.6)  lim

n—oo

K& (o4 204 2) o)
Kn+1 (.’IJ,.’E) K2

— 728 (v — u)} =-5"(v—u.)
(¢) In particular, uniformly for |z| <1 —e,

(L0)
K
(4.7) lim {”H(m - T} —0.

n—oo | Kni1(2,2) K

and

K(lvl) , 2
(4.8) lim { o @2 o
A2 | Kos (2,2) 52

(d) Uniformly for |z| <1 —¢,

(4 9) lim }7{7(5;11) (ﬂ?,l’) Rn+l (x,x) — f{r(:lll) (37,113)2 _ ﬂj

n—o0 K4 3

(e) Uniformly for |x| <1—¢, and r = 0,1,

(4.10) K (z) ~ n? L,

Proof
(a) We start with our hypothesis (1.12) that uniformly for = € [a,b] and u,v in
compact subsets of C,

hm Kn+1 (LE + %,J? + %)

—r(utv) _ gy —
e = v u).
n—oe K (3,2) =2

Because this holds uniformly for u,v in compact subsets of the plane, we can dif-
ferentiate this relation w.r.t. u,v. Differentiating once w.r.t. u gives

(1,0) u v —r(utv u v
lim Kn+1 (x—|—;,x+;)e (utv) 77_Kn+1 ($+E7$+E)677(u+u) :—Sl(v*u).
n— oo KnJrl (ZC,J}) K KTL+1 (JJ,J))
Hence

K(170) +27 + 2 —7(utv)
lim{ wh (B o 4 ) e —7S(w—u)p=—-5(v—u).

BT Ko (1) .
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So we obtain (4.4). Similarly we obtain (4.5).
(b) Differentiating (4.4) w.r.t. v gives
{ Ky (at ot ) emrtotn) KU (et ot ) emruto), }

Kpt1(z,x) K2 Kpt1(z,r) K
75 (v —u)

lim
n—oo

= —5"(v—u).
and then

lim

n—oo

AD (e u o v (g
Bafp LBt i) e S (0 — ) = 8 (0 — w)]
75 (v —u)
= —5"(v—u).
78" (v—u)}=-5"(v—u).
This simplifies to (4.6).
(c) Since S (0) =1; S’ (0) =0 and S” (0) = —%2 [18, p. 13, (3.15)] we obtain also
the results for v = v = 0.
(d) From (c),
KXY (0) Koy (2,2) — K (2,2)°

1

K
2
K5 @) (K ()
Ky (z,2) K2 kKt (z,2)
7T2 2
(72 t3 +0(1)> —(t+0(1))
2 2

= oM +ol)=—5+o(l),

recall (4.3).
(e) For r = 0, this is our hypothesis (1.11). For r = 1, from (4.8) and (4.3),
uniformly for |z| <1 — ¢,
KLY (z,x) 2
%:T2+§+0(1)~1.
Since k ~ n as follows from (1.11), we obtain the result for r =1. B

Lemma 4.2
Let € € (0,1). Then for r,s =0,1, and for all n > 1 and z,y € [-1+¢,1 —¢],
- C4nr+s

411 ‘K,(f’s) zy)| < A
@) D s
Proof
The Christoffel-Darboux formula asserts that

ryn,n Pn,n+1 (Z‘) DPn,n (y) — Pnn ($) Pn,n+1 (Z/)
’Yn,nJrl -y

so that using our bounds (1.9), (1.10),

K’ﬂ-i-l (.Z‘, y) =

. 2C,C?
‘Kn+1 (z,y)| < =1
|z -y
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Moreover, by Cauchy-Schwartz, and our bound (1.11) on K,,,

‘f{nJrl (:an)’ é KnJrl (xvx)l/Q Kn+1 (yvy)l/z S 0227’L

Combining the last two inequalities yields

~ 1
)KnJrl (337 y)‘ < Cd min {v n} )
[z -yl
giving (4.11) for r = s = 0. Next,
K1 (o)
o ’Yn,n (p{n,nJrl ((E) Pnn (y) - p;L,n (.’L‘) Pn,n+1 (y) Pn,n+1 (:17) Pn,n (y) — Pn,n (y) Pn,n+1 ($)>

+

Yn,n+1 r—Yy (1’ - y)2

(4.12)

Using our bounds on the orthogonal polynomials and their derivatives,

e <o 2y )

lz -yl |z — vyl

Next, by Cauchy-Schwartz, and the bound (4.10) on KMV

KLY )| < BEY (@.0)? R (2.2)"2 < Con?.

Thus

- 1
’K&? (a:,y)‘ < C7 min n + 2,n2 )
lz—yl |z -y

This yields (4.11) for » = 1,s = 0. Of course r = 0,s = 1 follows by symmetry.
Finally,

Kr(L1+11) (.’E, y) _ ,Yn,n (p;z,n—i-l (Jf) p;L,n (y) - p{n,n (33) pfn,n—i—l (y)

’Yn,n+1 =y
+p2,n+1 () P () = Pp () Pt (V)
2
(z—y)
P (T) Ppn1 (Y) = Prn (Y) Prn1 ()
(z—y)°
+2pn n ( )pn n+1 (y) — Pn,n (y) Pn.n+1 (1‘) )
(z—y)°

Thus using our bounds on { (J)} i=0,1,2, k=n,n+ 1, gives for =,y € [a,b],

n? n 1
=yl |z —yl* |z -y

and again Cauchy-Schwartz gives

< K5 (,2) P K5 ()7 < Con.

‘K(l 2 JI y) n+1

This and the previous inequality give (4.11) forr=s=1. B
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5. THE TAIL TERM - LEMMA 3.3

Recall that p;, p, are defined by (3.3) and (3.6). We shall consistently use the

~ versions of expressions and formulae in this section. First write

5.1 p1(x) = ———/ VY (x
(5.1 )= B )
where
(5.2) U (z) = f(,(Ll_s_ll) (z,2) Kniy (z,2) — f(,f&ll) (z,3)°.
Next, recall p; = p; for j = 1,2 and write
(5.3) pa (,y) = Py (2) py (y) = Ta + To + T,
where

. 1 - N = =

T A - B '
T1 = (Qllﬂgg 912) A v ($) v (y)
. 1 Q12‘

T = ‘ng‘ arcsin

7T2\/Z

~ 1 1 1 - .
(Ga) Ty = H(A‘m@c,x) — )) ¥ (@) 0 ()

51
S
<

We estimate each T term separately.

Lemma 5.1
There exists Ao > 0 such that for all z,y € [-1+¢,1 —¢], with |z —y| > Ao/n,

- C
(5.5) hs———3
7 (lz =yl +1)°
Proof
Write
T (QllQQQ - Q%Q) AN (.’E) v (y) Num
= _

- -~ ~ - [~ = ~ Denom’
A [\/(911922 — Q%Q A + v (I) ) (y):|
The numerator is (recall (3.11))
Num = (911@22 - Q%Q) A - \iJ (.’L’) if (y)

= det (z) ~ 0 () T (y)

Ko (2,2) Ko (2yy) K23 (20) K (a,y)
~ et {f&)+11)(m,y) {(ﬁ)ﬁl)(y’y) ffﬁiig(y,w) {fﬁf’g(y,y)
o @) KO ) K (@a) K (a,)
K @) K2 ) K5 (@y) KLY ()
_det[ Ry (@,0) Kyl (5.2) ] dor | Ba 00) K2 00
nat (T,7) K7y (@) nit (Wy) K7y (5,9)

15
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Using Laplace’s determinant expansion exactly as in the proof of Lemma 4.1 in
[18], we continue this as

f(n+1 (I, I) Kn—&-l (m,y) ~7(10’1 i
=—det| s Faoh det | -7 ('
n+1 ( ) ) n+1 (y,.l?) n+1 ( ’ ) Kn+1 (y7 )
[ = ~(0,1 ] [ 7 (01
B Ko (w2) K (2,y) w1 () KDY (y,2)
det |~ (01) ~(L1) det | = (0.1) =~ (11)
L Kn+1 x, T KnJrl ( 7y) L n+1 (y7y) Kn+1 ( ’ )
[ = 0,1 T [~ = (0, T
. {(n-i-l (l‘, y) [f'r(z-l—l) (.13, €T ntl ( ’y) {(”(L‘f‘ll) ( ?
det (0,1) (1,1) det (0,1) (1,1)
L Kn+71 y,a:) KnJél (1’,53) L nJ;1 (l'7y KnJél ( ’ )
[ 7 7(0,1) [ 7 ~(0,1) )
+det K&Tll) ($7y) K7(L1-|,-11) (.’13, det o &Tll) (CL‘, y) I“(T(Ll—tll) (y,x)
L K0y (v @) Kply (z,y) | Antl (z,y) Kpiy (z,y) i

We now use the estimate (4.11) and that (|z —y| + 1) < n, on each of the terms
in these deteminants. We obtain, exactly as in the proof of Lemma 4.1 in [18] that
6

this is O <W> . Thus

(5.6 Num = O ”—62 .
| (=)

Denom = mw2A

> A (2) T (y).

Here from Lemma 4.1(d) and (1.11),

2
~ ~ ~ ~ T ~
¥ (2) = K5 (0.2) Ko (2,2) KLY (0.0)" 2 T Ko (2,2)" (14 0(1)) 2 O
Also from (1.11) and (4.11),
1 — A~ _ _ k’?ﬂrl (fca y)
Kyt (z,2) Knga (2, 2) Kyt (2, 2) Kot (¥, 9)
C 1
2 S ia
(nlz—y|+1)
if |x — y| > Ap/n with Ay large enough. Then
o1 .
(5.7) A2 5 Knt1 (2,2) Kny1 (,9) 2 Cn?

(5.8) Denom > Cn®.
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Combined with (5.6), this yields
c
(o=l + )’

Num

T’: <
‘ ! ’Denom‘_

Next, let us deal with T5 :

Lemma 5.2
There exist Ao such that for all z,y € [-1+¢,1—¢], with |z —y| > Ao/n,

~ C
(5.9) 5 s ————.
(lz—yl+ 1)
Proof
Recall that
e e (2
2| =12 = = 12farcsm | ————
VA 011 Qa2

Using |arcsinv| < 7 ||, [v| < 1, we obtain

QAL
(5.10) ‘T2‘< ! ‘ - ‘

T 2rA3/2 vV 91192252‘

Here from (3.10) and (4.11), and expanding by the first row,

- - - - on TL4
hal =det | Knj (y,2) Ko (1:9) ffﬁ?’? (y,2) | = (|x 0 1> :
$ ) K%Y () KLY (o) "
(5.11)

Next, we examine Q1; and Qyy. From (3.8) and (4.11), and expanding by the first
row,

L 1
QIIA = det KnJrl ($7y) Kn+1 (l’, CC) K’r(ﬁii) (x,x)
(

~ ~ ~ n3
<—nH@wwKMuLmK&WamKﬁ?mm%+0<uf>
.

so if |z —y| > Ag/n, and Ag > 1,

~(1,1) ~(0,1) 2 n®
B = Ko (10) { Rt (00) K1Y 0.0 - K @'} 40 (s )

V
Q
3
o
+
Q
7N
| =,
N—
vV
Q
3
o

(5.12)
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by (4.9), if Ag and n are large enough. In much the same way,

o Ko (@) K (a,y) K5 (@,
QoA = det | Kppq(y,2)  Kupa(y,y ffr(gﬁ)(y

- K 5 ~(1,1) ~(0,1) 2 n®
= Kn,n (:c,x){ nt1 (U, Y) Koy (0, y) — Koy (0, 9) }+0 A2

(5.13)

Then combining (5.10-5.13), followed by (5.7),
. n 21 1 :
T, <C —<C|——F .
t <|x—y+;) A2 n? = (|x—y|+;>

Next, we handle Ty :

Lemma 5.3
There exists Ao such that for oll z,y € [-1+¢,1 — €], with |z — y| > Ao/n,

~ C
(5.14) (Tg‘ S
(le =yl +3)
Proof
From (5.4), with ¥ given by (5.2),
~ 1 f(% T,y ~ ~
f=t  Fan(y W ()0 (y)
T AKny1 (2, 2) Kni1 (y,9)

Here from (4.9) and (1.11),

¥ (@) ¥ () < on’
Then
Ty < %,
(lz =yl +3)

by (4.11) and (5.7). Note too that 75 > 0. W

Proof of Lemma 3.3(a) o

Just combine the estimates for Ty, T, T3 from Lemmas 5.1, 5.2, 5.3 and recall (5.3).
|

Proof of Lemma 3.3(b)
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From Lemma 3.3(a), for y € [-1+¢,1 —¢],

/ P2 (,9) — 1 (2) Py (3)] de
{z€la,b],|lz—y|>A/n}

C
{welabl le—y|>A/n} |7 — Y]
2C
< e
{z€la.b]lo—y|>A/n} |x — y|” + (Z)
<

o 2C
Q—Z\Qdm.
oo |z =y + (3)
We make the substitution x —y = %t in the latter integral:

n 2C

= — dt~
A R\[fl,l} t2 + ].

Then (3.13) follows. W

6. THE CENTRAL TERM - LEMMA 3.4

Recall that A, Qq1, Q29,212 were defined in (3.7-3.10), while S, F,G, H were
defined in (1.2-1.5). In this section, we use the non-normalized versions of our for-
mulae. Recall that we defined x and 7 by (4.1) and (4.2) respectively.

Lemma 6.1
Uniformly for u in compact subsets of the plane, and uniformly for x € [-1+¢,1 — €]
and y=x + 7 u

nt1(z,z)’
(a)
(0 —0h) A (e _p ),

(6.1) Kors (2.2)° < - ) =F(u)+o(1);
(b)

A
6.2 — = e —=1-Sw)’+0o(1);
(6.2) Koo (2.2)? (u)” +o(1)
(c)

A e 2Tu .
(6.3) K (x,x)3 K2 =G ) +o(l);
(d)

AQQQ 6—47—u _
(6.4) K (x,x)?’ pe =G (u)+o(1);
(e)

6737'71

(6.5) 2124 — H ) +o(1)
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Proof
From (1.12) and the limits in Lemma 4.1, uniformly for « in compact subsets of
the plane,

(1,0) _
K TU
lim { nit (@Y e TS (u)} =-5"(u);

n—oo | Kpi1(z,2) &K

(0,1) _
K TU
lim { wer (@y) e TS (u)} =9 (u);

n—0o0 n+1 (-T7 JJ) K
K(l,l) (.’Z? y) e~ TU
. nt1l (T 2 _ _qn
- { Ranilae) @ 1o = st
Kn y —
lim 2t v y)e e,
A s (3,7)
1,0 —27u
i K5 (y,y) e s
im -7 =0;
n—oo | Kpiq (377 1‘) K
(6 6) 1 K7(L1-i)-11) (yay) 6727—” 2 _ S// O _ 7T2
' 0o Ky (z,z) K2 B G )73

We shall repeatedly refer to these limits using this single equation number.
(a) Recall that ¥ was defined by (3.4). Then (3.11) gives

(211922 — OF5) A] (e‘”‘)“: det ¥ ) <e—w)4
Ky,

4 4
Kn+1 (iC,{E) k +1 (m,x k
(0,1) (0,1)

1 Kni1(2y) —7u Ky (@2) 1 K, i1 (®,y) =7

Kyi1(z,x) (ng;rl(w’m) K K(gJE%(:v,m) K
Knyi1(zy) —71u Kni1(y,y) 672Tu Kn+=1 (y,z) g=7v Kn+11 (y,y) ¢—27u

— det Kn_*(_é(lz),m) K,zg_ll)(z,m) Kn_ﬁll(m,m) K Kr,f_%(r,:c) K
KV @e) 1 K& (we) v KLY () 1 K& (@y) g—ru

(Io(qul(w,x) K K(3+1§($7w) K ({({1)+1(w,a:) K2 ({{ln)Jrl(:v,m) K2 )

Kol @y) e=mv K07 (Yy) e=2mw Ko7y (@y)e” ™ 1 K07 (Wy) (emv

Kny1(z,x) k Kpi1(z,x) K Kpi1(z,x) K2 Kpi1(z,x) K

Here we have factored in % into the 3rd and 4th rows and columns. In addition,
we have factored in e into the second and fourth rows and columns. Using the
limits in (6.6) and that S (0) = 1,.5" (0) = 0, while S (—u) = S (u), we continue this
as

50 o slsw Uyt
= det r rS(u) -8 (u)  r2-87(0) 25w -8 @) | T°W
78 (u) + 5" (u) T 728 (u) — 5" (u) 72— 8" (0)
Now subtract 7xRow 2 from Row 4:
1 S () T 75 (u) + 5" (u)
—det | S ! 7S (u) — 5 (u) T +o(1)

T 75 (u) — 5" (u) L (1)) 728 (u) — S (u)
S’ (u) 0 75" (u) — 5" (u) —5"(0)
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Next, subtract 7xColumn 1 from Column 3
78 (u) + 5" (u)

1 S (u) 0
_ S (u) 1 =5 (u) T
=det) T S-S (w) —87(0) 728 (w) -5 (w) | TOW
S (u) 0 -5 (u) -5 (0)
Next subtract 7xRow 1 from Row 3
1 S (u) 0 7S (u) + 5" (u)
_ S (u) 1 -5 (u) T
=det | 0T g w) —S7(0) S () -5 (w) | TOW
S’ (u) 0 -5 (u) -5 (0)
Finally subtract 7xColumn 2 from Column 4
1 S (u) 0 S’ (w)
_ S (u) 1 —5" (u) 0 _
= det 0 S (u) =8"(0) —S"(u) +0(1) = F(u) +0(1)‘
S’ (u) 0 —S"(u) —=5"(0)
(b) From (3.7) and (6.6),
Knii(z, —Tu
= ge M = det l Koi1 (@) z}f"i?gw’%;e 2r 1
K1 (2,2) B Knten®
_ 1 S
= det{S(u) 1 ]+0(1).

7% into the first row and first column and % into

(c) From (3.8), and then factoring e~
the third row and third column, and then using (6.6) as well as S (0) = 1,.5" (0) =0

AQll e Y 2
AN

Ky (-777 z
[ Kng1(y,y) —271u Kni1(y,x) —1u Kr(boﬁ—ll)(yz) e ™Y
Kpyi(z,x) Kpt1(z,x) KT,,_,(_Ol(la):,z) K
= det Knt1(z,y) —7u Ky (zz) 1
¢ K?ﬁol)(w’z) © 1)1 K(iw{)l(a:,w) K
K@y o Koy KD @) o
L Kpti(z,z) kK Kny1(z,x) K Kpii(z,x) k2
[ 1 S(u) 75(u)—5" (u)
= det S (u) 1 T +o(1)
| 7S (u) — S’ (u) T 72— 8" (0)

Subtract 7xRow?2 from Row 3
1 S(u) 78 (u)— 5" (u)
=det | S(u) 1 T
S (—u) 0 —5"(0)

Subtract 7xColumn 2 from Column 3:
1 S(u) =5 (u)

= det { S (u) 1 0
-S"(w) 0 —=8"(0)

+0(1)=G(u)+o0(1),
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recall (1.4).

TSKER 2

(d) From (3.9), and factoring "™ into the 2nd and 3rd rows and columns and 1

into the 3rd row and column,

AQQQ 6747'1/,
Knpi (2,2)° K7
[ 1 Kni1(z,y) —7u Ki(i;_ll)(z,y) e ¥
Knyi(zx) K(g%(w@) K
— Kn 71') —TU Kn 5 —27TUu Kn ; (yvy) 6727—’“
= det | prebireTTv prlEMesire e
Kv(zlﬁlq) (y,w) efru Ki:ﬁ) (y,y) 6727'14 K7(11+11) (y7y) (6727-“ ) 2
L Kpti(zz) kK Kpt1(z,z) K K1 (z,x) K
1 S(—u) 75 (u)+ 5 (u)
= det S (u) 1 T +o(l).
| 7S (u) + 5" (u) T 72— 8" (0)
Subtract 7xRow 2 from Row 3:
1 S(—u) 75 (u)+ 95 (u)
=det | S(u) 1 T +o0(1)
S’ (u) 0 —5"(0)
Subtract 7xColumn 2 from Column 3:
1 S(u) S (u)
=det | S(u) 1 0 +0(1) =G(u) + o(1).
S’ (u) 0 —5"(0)

Here we have multiplied the 3rd row and 3rd column
(e) From (3.10), and factoring e~ ™"
and % into the 3rd row and 3rd column,

in Gin (1.4) by —1.

into the 2nd and 3rd rows and the 2nd column,

912A 637’u
KTL+1 (xaz)s K2
B K K(O’l)(r x)
1 n+1(z,y) e~ Tu nt1 \t) 1
Knt1(z,) (Ig,ﬁ(l(x,)m) K
— K ( ;‘T) —TUu K ( 57 ) —2Tu Kn ; Y,x) g= T
det Kniié,x)e Kniié,i) ? K,:l(x,w) "
KNV @) gmre KOV ) em2re KOGV ) 1
L Knyi(z,z) =k Kpti(z,xz) & Kpt1(z,z) K2
[ 1 S (—u) T
= det S (u) 1 7S (u) =S (u) | +o(1).
| 7S5 (u) + 5" (u) T 725 (u) — S (u)
Subtract 7xRow 2 from Row 3:
1 S (—u) T
=det | S(u) 1 7S (u) =8 (u) | +o(1).
S’ (u) 0 758" (u) = 8" (u)
Subtract 7xColumn 1 from Column 3:
1 S (—u) 0
=det | S(u) 1 =S"(u) | +0(1)=H(u)+o(1),
S’ (u) 0 —5" (u)

recall (1.5). W
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Now we can obtain the asymptotics for py (z,y) — p; (z) py (y) stated in (3.14):

Proof of Lemma 3.4(a)
Recall as in (5.3), that

(6.7) p2 (2,y) = py (@) py (y) =Ty + To + T5.
We handle the terms T}, j = 1,2, 3 one by one:
Step 1: T}
Firstly from Lemma 4.1(d), and (5.2),
] 2

Kpy1 (z,2)" k2 3

Then
U(y) et U (y) 1

|:Kn+1 (ya y) €2Tu:| 2 Rn—i—l (y, y) i
Kt (2, 2) Kt (2, )

Kt (z,2)° K K1 (1,9)? K1 (. y)°
2

= [T o] nromin+o) =T 4o,

(6.9)

Here we are using (6.6) and also that

Hn (y) _ £2nlQn (@) =Qn (y)]

¢~21Q) (@) (y—a)+o(n(y=2)) _ o~2ruto(l)

pi ()
by (1.14). Then using (6.2),
1 1
ZA v (x) ‘I’(y)?
1| Kaga (w,2)° U(r) 1 W(y) i
71'2 A672'ru KnJrl (SL’,Z‘)2 I€2 Kn+1 (.’L’,$>2 I<.32

- 7321—;(u)2 (7§+0(1)>'

Then from (6.1) and (6.8), and recalling the definition of T} at (5.4),

T
K2
1 Kn+1 (1’, £C)2 (911922 — 9%2) A e Tu 4 1 1 7'('2
S v ; o T G REl
™ Ae—27u K1 (z,2) K 21— S (u) 3

— 772(1_15’(11,)2)( F(u)—7§>+o(1),

by (6.1) and (6.2).
Step 2: T5
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From (5.4),
T
K2

1 Q1A 1
= |Q212A] arcsin ('12)

T2A3/2 VIO A[[Q2A] ) w2

573/2
1 Kn+1 (CL’, ZL') Q1A g3 . |912A‘
T Ae Kyt (z,2)" K |Q11A] [Q222A|

1 _(H (u)
- 573 H (u) arcsin | ——= ) +o0(1),
w2 (1 -8 (u)g) " <G (u)>
by (6.2) - (6.5).
Step 3: T3
From (5.4),
E
12
o Koir (2,y)°
T2 K2 AKnJr] (l’,m) KnJrl (y7y)

—ruq2 -
1 [Kppi(my)e Kny1 (y,v) o—2ru '
w2 Kni1 (z,2) Kni1 (2,2)

1 S (u)? w2
- S =) o,
2 (1—S(u)2 3 oW
by (1.12), (6.2), (6.8), and (6.9). Substituting the asymptotics for Tj,j = 1,2,3
into (6.7) gives

) U (z) ¥ (y)

Kn—i—l (*Ta z)z
Aef27’u

\/wz)wy) |
Ko (x,$)4 K

1
— {p2 (@) = pr (@) o ()}
1 2 H H

= ————— F(u)—ﬂ(l—S(uf)—i-(u)arcsin( (u)) +o0(1)
7 (15 (u)?) 3 1— S (u)? G

= E()+o(1),

recall (1.6). W
We next deal with u near 0, which turns out to be challenging. First, we prove

Lemma 6.2

(a) A (z,az + %) has a double zero at uw = 0, and there is p > 0 such that for all
x € [a,b] and n large enough, A (:r,x + %) has no other zeros in |u| < p. Moreover,
uniformly for u in compact subsets of C, and |z| <1 —¢,

Az, 2+ 2 1 2
(6.10) i BT ) e 1=S)
n—oo K11 (x,2)° u? U

The right-hand side is interpreted as its limiting value at v = 0.
(b) [(Q11922 — Q%) A] (z,2+ %) has a zero of even order at least 4 at u = 0.
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Moreover, uniformly for u in compact subsets of C, and |z| <1 —¢,

F (u)
2\%
(1 ) )
The right-hand side is interpreted as its limiting value at u = 0.

Proof
(a) First,

02
s (208208

1
K

A(m,aj—i—E)
K
U U u\ 2
= Kn ’ Kn ( ) 7)_Kn (7 7)
11 (2, 2) Ky m—i—Hx—i—H +1 acas—i—l{

is a polynomial in u, and by Cauchy-Schwarz is non-negative for real u, with a zero
at u = 0. This then must be a zero of even multiplicity. But since

A(m,x—i—%)

—2Tu 2
n—00 n+1 (:Ij,.’E)ge ! S(U) ’

uniformly in compact sets by Lemma 6.1(b), and the right-hand side has an isolated
double zero at 0, it follows from Hurwitz’” Theorem and the considerations above,
that necessarily for large enough n, A (a:, T+ %) has a double zero at 0, and no
other zeros in some neighborhood of 0 that is independent of n. Since the conver-
gence is uniform in z, the neighborhood may also be taken independent of x. But

Alz,xz+32 _ . . . .
then (72)26 2ru is a sequence of entire functions in u that converges
Kn+1(w7w) u >1
n

uniformly in compact subsets of C\ {0} and hence also in compact subsets of C.
(b) Recall (3.11). Here det(X) is also a polynomial in u when y = x4 %. As in the
proof of Lemma 2.2 in the Appendix in [18], ¥ is a positive definite matrix when
x # y, so is nonegative definite for all z,y. Then det(X) > 0 for real x,y while
det (X) = 0 when u = 0. Thus as a polynomial in u, det(X) can only have an even
multiplicity zero at v = 0. We need to show that it has a zero of multiplicity at
least 4 when u = 0. By a classical inequality for determinants of positive definite
matrices and their leading submatrices [3, p. 63, Thm. 7], when y is real,

(1,1) (1,1)
0 < det (%) < A(x,y)det Kf(Lil-ll) (z,7) K?lﬂ) (z,y)
Kn—i—l (l',y) K7L+1 (yvy)

We already know that A has a double zero at u = 0 for y = = + #(x) But
the second determinant also vanishes when y = x, that is v = 0. It follows that
necessarily as a polynomial in u, det (X) has a zero of multiplicity at least 4 at

u = 0. Then
911922 — Q%Q - det (E)
A A2

has a removable singularity at 0, since the zero of multiplicity 4 in the denominator
is cancelled by the zero of multiplicity > 4 in the numerator. Then from (6.1),
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(6.2), uniformly for z € [-1 +¢£,1 — €] and u in some neighborhood of 0,

01109 - 0% 1

A K4
2
_ (911922 — 9%2) A (6_7—”)4 KnJrl (CC,!E)2
Kn+1 (ZE,(,C)4 K A672TU
F
(w) 5 +o(l).

(1 - S(U)Q)

Moreover, since S (u) = 1 only at w = 0, this limit actually holds uniformly for u
in compact subsets of C. B
Next, we deal with the most difficult term Q5 :

Lemma 6.3
There exist C,ng, p > 0 such that uniformly for n > ng, |u| < p, and |z] <1 —¢,

Qo] _

VARK2 T

Moreover, uniformly for |u| < p,

. 912 1 H(u)
lim ——— = —F.
n—oo /A K2 (1- u2)3/2

Proof

We note that this proof is simpler than the corresponding one in [18]. First, from
the previous lemma, there exists p > 0 and ng such that for n > ng and |u| < p,
Az,y) = A (m,x + %) has a double zero at 0 and no other zeros in the disk

|u| < p. Then we may choose a branch of /A (:E, T+ %) in u that is single valued

and analytic in |u| < p, with a simple zero at v = 0. Then inasmuch as Q12A is a
polynomial in u, by (3.10),

Q1 0ud 1
\/ZK?*(\/Z)B‘K?

is for n > ng analytic in the deleted disc 0 < |u| < p with at worst a pole of order
at most 3 at 0. We now show that Q15A has a zero of order at least 3 at u = 0, so
that in fact %% has a removable singularity at 0, and thus after redefinition at
0, is analytic in the disc |u| < p. First recall that

Kn+1 (x,x) Kn+1 (:c,y) Kr(L(ill) (I‘,x)
AQyp =det | Kpp1(y,2)  Knt1 (y,v) KO (y, )

KXY (y,2) K%Y (wy) KLY (y,2)
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We subtract the first column from the second and 3 xthe third column from the
second. We use that as u — 0,

Koor (@,9) ~ [ () + SKSD )] = 2 (B) K2 0) +0 ()
(%) KL (.2) + 0 () :

2
(2) &8 2) +0 ()

Kni (5:9) = [Kuia (n,0) + 2K (.2)] =

K wy) - [ o) + 2K )| =
Using symmetry of K, we then obtain as u — 0,
0,1
Lonee | Kosi(@o) ?“ (@) Kyl (s,9) 3
Ay =3 (3) det | Ko (r0) KD (2) K () | 40 ()
KnJrl ( ,LIZ) Kn+1 ( ) K “+1 (y, )
Next we subtract the first row from the second and see that each of the resulting

terms in the second row is O (u). So indeed, AQys = O (u?) as u — 0. As A has

a double zero at u = 0, Q—X% = (?}2)23

Next, from Lemma 6.1(e), (perhaps with a smaller p)

—3/2
AQ1o =37 A 6727-“ /
Kn+1 (xax)s K2 Kn-‘rl (xax)Z

H (u)
(1- u2)3/27

N = DN DN =

% is analytic and single valued in |u| < p.

. Oy 1 .
lim - = lim
n—oo A K n—oo

uniformly for u in compact subsets of the deleted disc 0 < |u| < p. Here H (u) / (1 — u2)3/2

is analytic in |u] < p, as is Q—\/ﬁ%, so the maximum modulus principle shows that

the convergence is uniform in compact subsets of |u| < p. Then the result follows.
|
Now we can deduce the desired bound near the diagonal:

Proof of Lemma 3.4(b)
Recall that p, was defined by (3.6). Then for |z| <1 —¢, and u € [-n,7],

1
o2 (2 9)]

1 D122 — Q35 Q9] . Q2] 1
— —<C
=) ( A + JA arcsin T 0 2 =0
by Lemmas 6.2 - 6.3. Next, from (5.1), followed by (6.8),

(6.11) L(.’E) = l & i _|_0(1)

K T\ Knpa (z,2) 6% V3
and a similar asymptotic holds for p; (y). It follows that

P2 (z,y) = p1 (x) p ()I*<C

in view of (1.11), which gives the result.
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Proof of Lemma 3.4(c)
This follows directly from (6.11), (1.11), and (4.1). H

7. PROOF OF THEOREM 2.1

We note that the measures in Theorem 2.1 belong to the class Q defined in [15,
p. 6]. We turn to verifying the hypotheses (I) - (V) in Section 1. We first recall
some results from [15]. There we made substantial use of the Christoffel function
Ao () = Ky (2, 2) "

Lemma 7.1
Assume that {Qn} are as in Theorem 2.1. Let L > 0.
(a) For m =n,n+ 1,
/4

1
(7.1) Sup |pr.m ()] €@ (@) [|1 — Ja]| + n*Q/ﬂ ~1.
zel,

(b) For |z| <1,
1/2
(7.2) Kyt (py, z, ) pl, () ~ nmax {1 — |z ,n_2/3} .

(c) There exists ¢ > 0 such that for |z] <1—n"¢,

(7.3) %Kn (1, ,2) = 00, () + 0 (1)

(d) Uniformly for n > 1 and for x € (-1,1),

(7.4) T ~ V1 — 2.

(e) Uniformly for n > 1 and for z,y € (-1,1),

(7.5) 100, (@) = 0Quw| < Clz —y[*.

(f) There exists T > 0 such that for |x| <1 —n"" and for u,v in compact subsets
of the real line,

Ro o+ 22+ 2)

(7.6) %o (r.2) =Sw—u)+0(n7).
(g) For polynomials P of degree <mn + L,
(7.7) ||Pl€7nQ"HLoo(1,,L) <Cn HPQWQ"HLOO(I")'
(h)
non 1
(7.8) ﬁ:§+0(1).
(i) For polynomials P of degree <n+ L
(7.9) ||PeinQ"||Lw(1n) <C ||PeinQ"||Lw[f171]'
(3)
(7.10) sup 1@l L~y < 00
Proof

(a) See Theorem 2.1(a) in [15, p. 9].
(b) See Theorem 2.1(b) in [15, p. 9]. Note that there A, () = 1/K,, (z,z).
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(c
(d

See Theorem 2.2(c) in [15, p. 11].
See Theorem 3.1(a) in [15, p. 15] and recall that there a,; = 1 while a_,, 1 =

See Theorem 15.1 in [15, p. 155].

See Theorem 8.1(b) in [15, p. 63].

See Theorem 13.4 in [15, p. 124].

i) Apply Theorem 4.2(a) in [15, p. 30] with T = 1.

) It is shown in Lemma 3.2(a) in [15, p. 16] that |Q/, (£1)| ~ 1. Since @), is
increasing, we obtain (7.10). W

We proceed to verify the hypotheses (I) - (V) in Section 1.

)
)
—1.
) See Theorem 3.1(b) in [15, p. 15].
)
)
)

(e
(f
(g
(h
(
(i

Lemma 7.2 - Verification of (I)
Let 0 <e < 1. Then for || <1—¢, and m=n,n+1,

(7.11) [ ()] €79 < O,

Proof
Note that (7.1) implies the bound (1.9) for j = 0. From the restricted range
inequality Lemma 7.1(i),

Sup [pu.m (@) (1 - 22)| e "@n(®)
zel

n

< Gy osup ppm (2) (1—2%)|e @@ < Oy,
z€e[—1,1]

by (7.1). Then by the Bernstein inequality Lemma 7.1(g),

i 2 —nQn(x)
5;1}3 . [ n,m (Z) (1 T )] e < Cn.

Then for |z] <1 —¢,

|p/n7m (1') (1 — x2)| e*nQ"(w)
< lpnm (2) 22| e @@ 4 On < Cin

and then as 1 — 2% > ¢, we obtain (7.11) and hence (1.9). B
Next we turn to establishing the universality limit for complex u,v. We use
Theorem 1.2 from [14] with h = 1 there. We continue to use the notation for &, 7.

Lemma 7.3

For n > 1, let p, be a positive Borel measure on the real line, with at least the
first 2n + 1 power moments finite. Let I be a compact interval in which each p,, is
absolutely continuous. Assume moreover that in I,

(7.12) dp,, (z) = e Q@ dy = W2 (1) duz,

is continuous on I. Let og, denote the equilibrium measure for the restriction of
Wy, to I. Let J be a compact subinterval of I°. Assume that

(a) {00, },—, are positive and uniformly bounded in some open interval containing
J:

(b) {Q,}o°, are equicontinuous and uniformly bounded in some open interval con-
taining J; or
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(b') more generally, for some open interval Jy containing J, and for each fixed
a >0,

(7.13) sup
teJa,|h|<a

Q) —Q., (t+Z>'—>Oasn—>oo.

(¢) For some Cy,Cy >0, and for n>1 and x € I,

(7.14) Cy < K, (pyz,2) W2 (2) /n < Cs.
(d) Uniformly for x € J and a in compact subsets of the real line,
K, (po+%c+2) W2 (2)

7.15 li "
(7.15) oo K, (1, z,x) w2 (z+ 2)

=1

Then uniformly for © € J, and w,v in compact subsets of the complex plane, we
have
lim K” (33 + %,Jl—f— %)

—7(u+v) _ -
Jim K, (v, 7) e Sv—u).

Proof
The result is stated as (1.13) in [14, p. 749]. The weaker condition (b’) is noted in
the remarks on page 749 in [14]. See (1.12) there. B

Lemma 7.4 - Verification of (IV)
Assume that {Qn} are as in Theorem 2.1. Let 0 < ¢ < 1. Then uniformly for
|z] <1 —¢ and u,v in compact subsets of C,
K, o .
n—00 K, ((L', x)

7T = § (v —w).

Proof

From Lemma 7.1(d),we have the requirements of Lemma 7.3(a). From Lemma
7.1(j), and the assumed smoothness (2.2) of {Q)}, we have the requirements of
Lemma 7.3(b,b’). From Lemma 7.1(b), we have the requirements of Lemma 7.3(c).
From Lemma 7.1(c), (e), we have the requirements of Lemma 7.3(d). Then we have
the conclusion of Lemma 7.3. W

Lemma 7.5 - Verification of (II), (III), (V)

The estimates (1.10), (1.11), (1.13), (1.14) are valid.

Proof

Firstly, (1.10) follows directly from Lemma 7.1(h). Next, (1.11) follows from Lemma
7.1(c), (d). Next, (1.13) follows from Lemma 7.1(j). Finally, (1.14) follows easily
from the Lipschitz condition (2.2). W

Proof of Theorem 2.1
We have verified all the hypotheses of Theorem 1.1 in Lemmas 7.2, 7.4, 7.5. B

8. PROOF OF THEOREM 2.3 AND COROLLARY 2.4

Recall the notation (2.6) - (2.13). We also need the function ¢,, :

(8.1) ¢, (@) = [z — a-onllw - gzl P

/[l = acnl + lanln_n] [J# = acul +lanln_,]
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while ¢, () = ¢, (an), T > an, and @, (x) = ¢, (a_n), T < a_p.

Dn (Wz, :c) denote the nth orthonormal polynomial for W2, so that

/pn (WQa:E) Pm (WQam) w? (1‘) dr = dmn-

Moreover, for non-negative integers r, s, we let
KT(L’I‘,S Zp(r) 9) (W2 )

and

(W2, t) = W (@) W (8) K (W2, t)

Lemma 8.1
Let 0 < & < 1. Assume that W = exp (—Q) € F (C?).

()

(8.2) sup |pn (2)] e Q@) |z — ap| |z — a_n|]/* ~ 1
TxER

(i1) Uniformly for = € J, (¢),

(8.3) K, (W2, 2,2) W2 (z) ~ %
(i11) Uniformly for x € J, (¢),

(8.4) K, (W% z,2) W? (z) = 0 (2) + 0(1).
(iv) Uniformly for n > 1 and for x € (-1 +¢,1—¢),

(8.5) ot (2) ~ 1,

and uniformly for x € J, (&),

(8.6) o ) ~ 5

(v) Uniformly for n > 1 and for z,y € (-1 +¢,1—¢),
(8.7) 07 (2) = o5, ()] < Cla —y|"".
(vi) For polynomials P of degree <mn,

(8.8) 1(PW) @l ® <CIPWIL @ -

Moreover, given € € (0,1), for x € J, (¢),

n
(8.9) [P/ (2) W (2) < C5= [PWII_ w)
n

(vii)
(8.10) T _On (1+0(1))

. Tn+1 2 '
(viii) For polynomials P of degree < mn,
(8~11) ”PW”LOO(R) = ||PWHLOO[a,n,a"]'
Proof

(i) See Theorem 1.17 in [13, p. 22].

31

We let



32 DORON S. LUBINSKY ! IGOR E. PRITSKER 2

(ii) This follows from Corollary 1.14(c) in [13, p. 20], where estimates were provided
for A, (Wz, x) =1/K, (WZ, z, :c) Note that the class of weights above is contained
in the class F (lip%) mentioned there (cf. [13, p. 12]). More precisely, it was shown
that for € [a_n, an],

l(n(VVQ,x,x)VVQ(m)/\»@n(x)*l,

where ¢,, () is defined by (8.1). Here if 2 € J,, (¢) = [a—n + €0p, apn, — €0,], We see
that |z — ayn| > Cdy, sO

(8.12) o, () ~ %

iii) See Theorem 1.25 in [13, p. 26]. Note that if 0 < o < 1, then for large enough
n, we have J, (€) C [a—an, Gan) -

(iv) See Theorems 1.10 and 1.11 in [13, pp. 17-18].

(v) See Theorem 6.3 in [13, pp. 147-8] and the discussion on page 149.

(vi) The first assertion is a special case of Theorem 10.1 in [13, p. 293]. For the
second we see that

[PW (), (z) < [PW](2) Q" (2) ¢, () + [PWI,_ (g -
From Lemma 3.8(a) in [13, p. 77]
(8.13) Q (z) < 053.
Then the second estimate follows from this and (8.12).
(vii) See Theorem 1.23 in [13, p. 26] and note that there A, = 7;’1, while

da =1+4o0(1).

Ont1

(viii) See Theorem 4.1 in [13, p. 95].

To apply Theorem 1.1, we introduce a sequence of measures {u,, } as follows: for
n>1,let

Qn () = 1@ (17 (@)
Wa (2) = e 9@
dp,, (z) = e 2@ gy,

Note that

(8.14) W2 =w?2o LY,
and

(8.15) QG =mgrorl

We denote the orthonormal polynomials for x,, by {pn,; };’;0 as in Section 1. We
also use the notation for the reproducing kernels and other quantities there. A
substitution shows that

(8.16) P (@) = 01/ %p; (W2 L (@)
and

(8.17) Ky (1, 2,9) = 6Ky, (WQ, L= (z), LI (y)) .

n
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As in Section 1, we use the abbreviation K, (z,y) = K, (t,,, z,y). Now we turn to
the derivatives.

Lemma 8.2
Let 0 <e < 1.
(a) For € J, (¢) and £ = 10,1,

(8.18)

() W < C n ¢
@ W@ < (5 )
(b) For |t| <1—¢,£=0,1, and k=n,n+1,

(8.19) (pff)k (t)‘ W™ (t) < Cnt.

Proof
(a) The case £ = 0 follows from (8.2). Now

(x—a_y) (@, —z) =02 (1 - L, (m)Q) )
so we can reformulate part of our bound (8.2) on p,, as
5 Ipn ()| W @)1 - 12 () < €, 2 e R,
and then also ,
(8.20) 51/ [pn (2)| W (2) |1 = L2 (2)] £ C, @ € [a_n—2,an2].

Here p,, (z) (1 — L2 (z)) is a polynomial of degree n + 2. Then our restricted range
inequality Lemma 8.1(viii) give that

suga,lﬁ [pn (2)| W (2) |1 — L2 (z)| < C.
e

Next, we apply (8.9) to the polynomial p,, (z) (1 - L2 (a:)), of degree n + 2: for
x € Jpta(€) 2 Jy (),

L5 (@) (1~ 12, ) W)

Then for z € J,, (¢),

<C—.

n

5/ b (@) (1= L2 (@) W @)] <8, [pu (@) 2L (2)| W (2) + C5- < O,
by (8.2). Since 1 — L2 (z) > C in J,, (¢), we obtain (8.18) for £ = 1.
(b) This follows from the identity (8.16). W

Next, the universality limits:

Lemma 8.3

Let 0 <e < 1.

(a) Let W = exp (—Q) € F (C?). Then uniformly for u,v in compact subsets of
the complex plane, and = € J, (g), we have as n — oo,

2 u
- Ba (W Pt et
lim

v »
Rn<w2,w,x)) Ty () _

T Kn (W2,

S(v—u).
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(b) For u, defined above, we have uniformly for w,v in compact subsets of the
complez plane, and |£] <1 — e, we have as n — oo,
KTL( U ) 7 ) n

I G AT ()

Q;(&)(u+v) -9 (’U _ ’LL) )

Proof
(a), (b) This was established in Theorem 7.4 of [14, p. 771] for a bigger class of
weights. It was stated in Theorem 7.4 for real u,v but as noted in Lemma 7.3
above, it was stated in (1.13) in [14] that we have uniformly for u,v in compact
subsets of C, and K,, = K, (i1,,), and £ € [-14¢,1 — ¢]

T (+ i+ mis) R T

Thus we have the conclusion of (b). Here from (8.15), (8.17), if z = i &) €
JIn (€),

Q) _ g

v—u).

N gy Q@)
I?n(faf)Qn(g) K, (W2, z,z)

so we also obtain the conclusion of (a), using

L —— <x + u)
K.(&¢ "\ K.(W2aza))
|
Finally, we verify the remaining hypotheses (II), (III), (V).

Lemma 8.4

(a) The estimate (1.10) holds true for p,,.

(b) The estimate (1.11) holds for |z] <1 —e.

(c) The estimates (1.13) and (1.14) hold for |z| <1 —e.
Proof

(a) From (8.16), we have

Tng = B2,

so from Lemma 8.1(vii),
n,n 1

Tnn _ 2 +o(1).

7n,n+1 2
(b) This follows from Lemma 8.1(ii) and (8.17).
(c) Firstly it is shown in Lemma 7.6(a) in [14, Lemma 7.6, p. 773] that {Q),} are
uniformly bounded in compact subsets of (—1,1). In Lemma 7.6(b) there, it is
shown that for fixed a > 0,

sup
[t|<1—e,|h|<a,

Q;(t)Q%(tJrZ)‘HOasnﬂoo.
]

Proof of Theorem 2.3
We have verified the hypotheses (I) - (V) for the measures {y,,} in Lemmas 8.2,
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8.4. We can then apply the result of Theorem 1.1 to {y,,}. The transformation

formula

Gh(s) = D apn(s)
§=0

= En:ajpj o L (s) =G (LL_” (8))
j=0

then gives the result, recalling the asymptotic from Lemma 8.1(iii):

1~ _ 0n 2 7[-1] (—1] 2 (7[-1]
SR(sis) = T (WRLEY ), LY (9) W2 (25 ()
é

= fcnoL;—ll(s)(Ho(l))
= o,(s)(1+0(1)).

Proof of Corollary 2.4
It is shown in [17, Lemma 3.2, p. 55] that for z € (—1,1),

lim o} (z) =04 ().

Moreover Lemma 8.1(iv) shows that {o}} are uniformly bounded in [a,b]. B
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