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Abstract. We determine the asymptotics for the variance of the number of
zeros of random linear combinations of orthogonal polynomials of degree ≤ n

associated with varying weights. We deduce asymptotics of the variance for
exponential weights. In particular, we show that very generally, the variance
is asymptotic to Cn, where the constant C involves a universal constant and
an equilibrium density associated with the weight.

1. Introduction and main results

Consider random linear combinations of polynomials of the form

(1.1) Gn(x) =
n∑
j=0

ajpn,j(x), n ≥ 0,

where {aj}∞j=0 are standard Gaussian N (0, 1) i.i.d. random variables, and {pn,j}
are orthogonal polynomials with respect to some measure µn that depends on n.

The study of real zeros for random orthogonal polynomials of the form (1.1) is
motivated to a large extent by classical results on random trigonometric polyno-
mials. Random cosine polynomials

∑n
j=0 aj cos(jx), x ∈ [0, 2π], with N (0, 1) i.i.d.

coeffi cients were considered by Dunnage [9], who showed that the expected number
of zeros in [0, 2π], denoted by ENn([0, 2π]), is asymptotically equal to 2n/

√
3. Qualls

[20] studied trigonometric polynomials
∑n
j=0 ξj1 cos(jx) + ξj2 sin(jx), x ∈ [0, 2π],

and showed that ENn([0, 2π]) for this ensemble is also asymptotically equal to
2n/
√

3.
The first result on random orthogonal polynomials is due to Das [5], who proved

for random Legendre polynomials that ENn([−1, 1]) is asymptotically equal to
n/
√

3. Wilkins [22], [23] estimated the error term in this asymptotic relation.
For more general random Jacobi polynomials, Das and Bhatt [6] established that
ENn([−1, 1]) is asymptotically equal to n/

√
3 too. The same asymptotic for the

expected number of real zeros was shown to hold for very wide classes of random
orthogonal polynomials by Lubinsky, Pritsker and Xie [16], [17]. Their work in-
cludes random orthogonal polynomials with i.i.d. normal coeffi cients spanned by
orthonormal polynomials with respect to general measures supported compactly or
on the whole real line. Do, O. Nguyen and Vu [8] recently extended the asymp-
totics ENn(R) to the random orthogonal polynomials with general coeffi cients that
possess finite moments of the order (2 + ε) via universality methods.

The asymptotics for the variance of real zeros are much more diffi cult to establish
due to complexity of the corresponding Kac-Rice formula and numerous technical
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diffi culties associated with analysis. Bogomolny, Bohigas and Leboeuf [4] conjec-
tured that V ar(Nn([0, 2π])) is asymptotically equal to cn for random trigonometric
polynomials, which was first verified by Granville and Wigman [12] for Qualls’en-
semble, with an explicit formula for c (see also Azaïs and León [2]). The asymptotic
variance for the trigonometric model of Dunnage was computed by Azaïs, Dalmao
and León in [1].

In [18], the authors analyzed the variance for random linear combinations of
orthogonal polynomials formed from a fixed measure with compact support. Sim-
ilar techniques have recently been used by Gass to study the variance for random
trigonometric polynomials, and to develop a general framework for finding the as-
ymptotic variance results [11]. In this paper, we present analogous results for
varying weights and consequently exponential weights on the real line. For any
interval [a, b] ⊂ R, let Nn([a, b]) denote the number of zeros of Gn lying in [a, b].
Our results involve some functions of the sinc kernel

(1.2) S (u) =
sinπu

πu
.

Let

(1.3) F (u) = det


1 S (u) 0 S′ (u)

S (u) 1 −S′ (u) 0
0 −S′ (u) −S′′ (0) −S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

 ;

(1.4) G (u) = det

 1 S (u) −S′ (u)
S (u) 1 0
−S′ (u) 0 −S′′ (0)

 ;

(1.5) H (u) = det

 1 S (u) 0
S (u) 1 −S′ (u)
S′ (u) 0 −S′′ (u)

 ;

(1.6) Ξ (u) =
1

π2


√
F (u)

1− S (u)
2 +

1(
1− S (u)

2
)3/2

H (u) arcsin

(
H (u)

G (u)

)− 1

3
.

In [18], we proved that for fixed measures µ with support [−1, 1] and (a, b) ⊂
(−1, 1) ,

lim
n→∞

1

n
Var [Nn ([a, b])] =

(∫ b

a

ω (x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)
,

where ω is the equilibrium density, in the sense of potential theory, for the support
of µ. The hypotheses on µ primarily involved assumptions on the orthonormal
polynomials for µ, such as uniform boundedness in subintervals of the support. In
this paper, our main hypotheses are:

Hypotheses on the Measures
For n ≥ 1, let µn be a measure supported on In, where In is an interval that may
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be unbounded or unbounded, but contains [−1, 1]. We assume that µn is absolutely
continuous in [−1, 1], and in that interval

µ′n (x) = e−2nQn(x),

and Q′n (x) exists there. We assume that for each n ≥ 1, there are orthonormal
polynomials {pn,m (µn, x)}∞m=0 so that pn,j (x) = γn,jx+ ..., γn,j > 0, and∫

In

pn,jpn,kdµn = δjk.

We let

Kn+1 (x, y) = Kn+1 (µn, x, y) =
n∑
j=0

pn,j (x) pn,k (y)

denote the (n+ 1)st reproducing kernel for µn. More generally, for non-negative
integers r, s, we define the differentiated kernels

(1.7) K
(r,s)
n+1 (x, y) =

n∑
j=0

p
(r)
n,j (x) p

(s)
n,k (y)

and their normalized forms,

(1.8) K̃
(r,s)
n+1 (x, y) = K

(r,s)
n+1 (x, y)µ′n (x)

1/2
µ′n (y)

1/2
.

We need a number of implicit hypotheses:
(I) Uniform Bounds on Orthogonal Polynomials and their Derivatives
For each 0 < ε < 1, there exists C > 0 such that for n ≥ 1, k = n, n + 1, j = 0, 1,
and |x| ≤ 1− ε,

(1.9)
∣∣∣p(j)
n,k (x)

∣∣∣√µ′n (x) ≤ Cnj .

(II) Bounds on the Ratio of Leading Coeffi cients
There exists C1 > 1 such that for n ≥ 1,

(1.10) C−1
1 ≤

γn,n
γn,n+1

≤ C1.

(III) Bounds on the Reproducing Kernel
For each 0 < ε < 1, there exists C2 > 1 such that for n ≥ 1 and |x| ≤ 1− ε,
(1.11) C−1

2 ≤ Kn+1 (x, x)µ′n (x) /n ≤ C2.

(IV) Universality Limit
For each 0 < ε < 1, we have uniformly for |x| ≤ 1− ε, and u, v in compact subsets
of the plane,

(1.12) lim
n→∞

Kn+1

(
x+ u

K̃n+1(x,x)
, x+ v

K̃n+1(x,x)

)
Kn+1 (x, x)

e
− nQ′n(x)

K̃n+1(x,x)
(u+v)

= S (v − u) .

(V) Bounds on {Q′n}
For each 0 < ε < 1, there exists C3 > 0 such that for n ≥ 1 and |x| ≤ 1 − ε, we
have

(1.13) |Q′n (x)| ≤ C3.

Moreover, given r > 0, we assume that

(1.14) sup
|x|≤1−ε

sup
|a|≤r

∣∣∣Q′n (x)−Q′n
(
x+

a

n

)∣∣∣ = o (1) .
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We prove:

Theorem 1.1
Assume the hypotheses (I) - (V) above. If [a, b] ⊂ (−1, 1), then
(1.15)

lim
n→∞

{
1

n
Var [Nn ([a, b])]−

(∫ b

a

1

n
K̃n (x, x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)}
= 0.

Since the orthogonality measures µn are not necessarily related to one another
for different values of n, one should not expect

{
1
nV arNn ([a, b])

}
n≥1

to converge
in general. Indeed, one can construct examples of sequences of measures for which
different subsequence have different limits. However, (1.11) and (1.15) show that{

1
nV arNn ([a, b])

}
n≥1

is a bounded sequence.
In Section 2, we give two examples to which this theorem may be applied: varying

exponential weights and fixed exponential weights on the real line. In both these
cases, 1

nK̃n (x, x) may be replaced by a more explicit term. The methods of proof
follow those in [18]. However, there are substantial additional technical diffi culties
due to the varying weights.

This paper is organised as follows: In Section 3, we outline the proof of Theorem
1.1, deferring technical details to later. In Section 4, we present some auxiliary
technical results. In Section 5, we handle the tail term. In Section 6, we handle the
central term. In Section 7, we prove Theorem 2.1. In Section 8, we prove Theorem
2.3 and Corollary 2.4.

In the sequel, C,C1, C2, ... denote constants independent of n, x, y. The same
symbol may be different in different occurrences. We shall frequently need two
versions of formulae that involve the reproducing kernels Kn or their normalized
version K̃n. If J is an expression involving terms such as K(r,s)

n , we let J̃ denote
the analogous expression where every K(r,s)

n is replaced by its normalization K̃(r,s)
n .

Thus, for example, if

∆(x, y) := Kn+1(x, x)Kn+1(y, y)−K2
n+1(x, y)

then

∆̃(x, y) := K̃n+1(x, x)K̃n+1(y, y)− K̃2
n+1(x, y).

If {αn} , {βn} are sequences of non-0 real numbers, then we write

αn ∼ βn
if there exists C > 1 such that for n ≥ 1,

C−1 ≤ αn/βn ≤ C.
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2. Exponential Weights

We begin with varying exponential weights, as studied in [15]. The statement of
the result involves equilibrium measures for external fields. We shall discuss that
in more detail in section 7.

Theorem 2.1
For n ≥ 1, let In = (cn, dn), where −∞ ≤ cn < dn ≤ ∞. Assume that for some
r∗ > 1, [−r∗, r∗] ⊂ In, for all n ≥ 1. Assume that

(2.1) µ′n (x) = e−2nQn(x), x ∈ In,

where
(i) Qn (x) / log (2 + |x|) has limit ∞ as x→ cn+ and x→ dn − .
(ii) Q′n is strictly increasing and continuous in In.
(iii) There exists α ∈ (0, 1), C > 0 such that for n ≥ 1 and x, y ∈ [−r∗, r∗] ,

(2.2) |Q′n (x)−Q′n (y)| ≤ C |x− y|α .

(iv) There exists α1 ∈
(

1
2 , 1
)
, C1 > 0, and an open neighborhood I0 of 1 and −1,

such that for n ≥ 1 and x, y ∈ In ∩ I0,

(2.3) |Q′n (x)−Q′n (y)| ≤ C1 |x− y|α1 .

(v) [−1, 1] is the support of the equilibrium distribution for the external field Qn.
Let [a, b] ⊂ (−1, 1). Then

(2.4) lim
n→∞

{
1

n
Var [Nn ([a, b])]−

(∫ b

a

σQn (x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)}
= 0,

where for x ∈ (−1, 1) ,

(2.5) σQn (x) =

√
1− x2

π2

∫ 1

−1

Q′n (s)−Q′n (x)

s− x
ds√

1− s2
.

Note that σQn is the Radon-Nikodym derivative of the equilibrium measure for
the external field Qn. We shall prove Theorem 2.1 in Section 7. Next we turn to
fixed exponential weights. First we define a subclass of the weights presented in
[13, Definition 1.1, p. 7]:

Definition 2.2
Let W = e−Q, where Q : R→ [0,∞) satisfies the following conditions:
(a) Q′ is continuous in R and Q (0) = 0.
(b) Q′′ exists and is positive in R\ {0};
(c)

lim
|t|→∞

Q (t) =∞.

(d) The function

T (t) =
tQ′ (t)

Q (t)
, t 6= 0,

is quasi-increasing in (0,∞), in the sense that for some C > 0,

0 < x < y ⇒ T (x) ≤ CT (y) .
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We assume, with an analogous definition, that T is quasi-decreasing in (−∞, 0).
In addition, we assume that for some Λ > 1,

T (t) ≥ Λ in R\ {0} .
(e) There exists C1 > 0 such that

Q′′ (x)

|Q′ (x)| ≤ C1
Q′ (x)

Q (x)
a.e. x ∈ R\ {0} .

Then we write W ∈ F
(
C2
)
. We also let

µ (x) = e−2Q(x), x ∈ R.

Remarks
Examples of weights in this class are W = exp (−Q), where

Q (x) =

{
Axα, x ∈ [0,∞)

B |x|β , x ∈ (−∞, 0)
,

where α, β > 1 and A,B > 0. More generally, if expk = exp (exp (... exp ())) denotes
the kth iterated exponential, we may take

Q (x) =

{
expk (Axα)− expk (0) , x ∈ [0,∞),

exp`

(
B |x|β

)
− exp` (0) , x ∈ (−∞, 0) ,

where k, ` ≥ 1, α, β > 1.
We shall need the Mhaskar-Rakhmanov-Saff numbers a−n < 0 < an. These are

defined for n ≥ 1 by the equations

(2.6) n =
1

π

∫ an

a−n

xQ′ (x)√
(x− a−n) (an − x)

dx; 0 =
1

π

∫ an

a−n

Q′ (x)√
(x− a−n) (an − x)

dx.

In the case where Q is even, a−n = −an. We also define

(2.7) βn =
1

2
(an + a−n) and δn =

1

2
(an + |a−n|) ,

which are respectively the center, and half-length of the Mhaskar-Rakhmanov-Saff
interval

(2.8) ∆n = [a−n, an] .

The linear transformation

(2.9) Ln (x) =
x− βn
δn

maps ∆n onto [−1, 1]. Its inverse L[−1]
n (u) = βn + uδn maps [−1, 1] onto ∆n. For

0 < ε < 1, we let

(2.10) Jn (ε) = L[−1]
n [−1 + ε, 1− ε] = [a−n + εδn, an − εδn] .

The equilibrium density on [a−n, an] is

(2.11) σn (x) =

√
(x− a−n) (an − x)

π2

∫ an

a−n

Q′ (x)−Q′ (s)
s− x

ds√
(s− a−n) (an − s)

.

We also need the scaled density

(2.12) σ∗n (t) =
δn
n
σn

(
L[−1]
n (t)

)
, t ∈ (−1, 1) ,
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that satisfies

(2.13)
∫ 1

−1

σ∗n = 1.

Let {pj} denote the orthonormal polynomials associated with the weight W 2, so
that ∫ ∞

−∞
pjpkW

2 = δjk.

Random linear combinations of these have the form

Gn (x) =
n∑
j=0

ajpj (x) ,

where the {aj}nj=0 are standard Gaussian N (0, 1) i.i.d. random variables. One
expects that most zeros of these will lie in the Mhaskar-Rakhmanov-Saff interval,
see [17]. It is hence convenient to scale this interval to [−1, 1]. Accordingly, we
consider

G∗n (t) = Gn

(
L[−1]
n (t)

)
.

In particular, when Q is even,

G∗n (t) = Gn (ant) .

We let N∗n [a, b] denote the number of zeros of G∗n in [a, b], or equivalently of Gn in
L

[−1]
n ([a, b]). We prove:

Theorem 2.3
Let W ∈ F

(
C2
)
. Then for [a, b] ⊂ (−1, 1),

(2.14) lim
n→∞

{
1

n
Var [N∗n ([a, b])]−

(∫ b

a

σ∗n (x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)}
= 0.

Under additional conditions, we can replace σ∗n by a limiting distribution. For
α > 0, define the Nevai-Ullmann density

(2.15) σα (x) =
2
√

1− x2

π2Bα

∫ 1

0

tα − xα
t2 − x2

dt√
1− t2

, t ∈ (−1, 1) ,

where

Bα =
2

π

∫ 1

0

tα√
1− t2

dt.

This is the equilibrium density for the Freud weight exp (−C |x|α) for appropriate
C [21, Theorem 5.1, p. 240]. When α→∞, this becomes the arcsine distribution

σ∞ (x) =
1

π
√

1− x2
, x ∈ (−1, 1) .

Corollary 2.4
Let W ∈ F

(
C2
)
and assume in addition that W is even and for some α ∈ (1,∞],

(2.16) lim
x→∞

T (x) = α.
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Then for [a, b] ⊂ (−1, 1),

(2.17) lim
n→∞

1

n
Var [N∗n ([a, b])] =

(∫ b

a

σα (x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)
.

3. The Proof of Theorem 1.1

We begin with the Kac-Rice formulas for the expectation and variance. These
involve the reproducing kernels defined in (1.7).

Lemma 3.1
Let [a, b] ⊂ R. Then the expected number of real zeros for Gn is

(3.1) E [Nn ([a, b])] =
1

π

∫ b

a

ρ1 (x) dx,

where

(3.2) ρ1 (x) =
1

π

√√√√K
(1,1)
n+1 (x, x)

Kn+1 (x, x)
−
(
K

(0,1)
n+1 (x, x)

Kn+1 (x, x)

)2

.

Moreover,

(3.3) ρ1 (x) = ρ̃1 (x) .

Proof
See [16]. Note that

K̃
(1,1)
n+1 (x,x)

K̃n+1(x,x)
=

K
(1,1)
n+1 (x,x)

Kn+1(x,x) and so on. �
Recall that ρ̃1 is the expression defined by the same formula as ρ1 but with every

occurrence of K(r,s)
n replaced by K̃(r,s)

n . Note that ρ1 depends on n, but we omit
this dependence to simplify the notation. The same applies to ρ2 below. We also
need

(3.4) Σ =


Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

Kn+1 (x, y) Kn+1 (y, y) K
(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(0,1)
n+1 (x, y) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

 .
The variance of real zeros of Gn is found from the following formula, which was
derived in [24] by using the method of [12].

Lemma 3.2
Let [a, b] ⊂ R, and let Gn be defined by (1.1).

(3.5) Var [Nn ([a, b])] =

∫ b

a

∫ b

a

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dxdy +

∫ b

a

ρ1 (x) dx,

where

(3.6) ρ2(x, y) =
1

π2
√

∆

(√
Ω11Ω22 − Ω2

12 + Ω12 arcsin

(
Ω12√

Ω11Ω22

))
= ρ̃2 (x, y)

Here

(3.7) ∆(x, y) = Kn+1(x, x)Kn+1(y, y)−K2
n+1(x, y);
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(3.8) ∆Ω11 = det

 Kn+1 (y, y) Kn+1 (y, x) K
(0,1)
n+1 (y, x)

Kn+1 (x, y) Kn+1 (x, x) K
(0,1)
n+1 (x, x)

K
(1,0)
n+1 (x, y) K

(0,1)
n+1 (x, x) K

(1,1)
n+1 (x, x)

 ;

(3.9) ∆Ω22 = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, y)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, y)

K
(1,0)
n+1 (y, x) K

(1,0)
n+1 (y, y) K

(1,1)
n+1 (y, y)

 ;

(3.10) ∆Ω12 = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, x)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)

 .
Moreover,

(3.11) det (Σ) = ∆
(
Ω22Ω11 − Ω2

12

)
.

The formulae avove also hold for ∆̃, Ω̃11, Ω̃12, Ω̃22 when every K
(r,s)
n term is re-

placed by K̃(r,s)
n .

Proof
See Lemma 2.2 and 3.1 in [18]. For those involving ρ̃2, ∆̃, Ω̃11, Ω̃12, Ω̃22, one can
check that the requisite powers of µ′n (x) and µ′n (y) on both sides match. �

To prove Theorem 1.1, we split the first integral in (3.5) into a central term that
provides the main contribution, and a tail term: for some large enough Λ, write∫ b

a

∫ b

a

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dx dy

=

[∫ ∫
{(x,y):x,y∈[a,b],|x−y|≥Λ/K̃n(x,x)}

+

∫ ∫
{(x,y):x,y∈[a,b],|x−y|<Λ/K̃n(x,x)}

]
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dx dy

= Tail + Central.

We handle the tail term by proving the following estimate and a simple consequence:

Lemma 3.3
(a) There exist C1, n0, and Λ0 such that for n ≥ n0 and |x− y| ≥ Λ0

n ,

(3.12) |ρ2 (x, y)− ρ1 (x) ρ1 (y)| ≤ C1

|x− y|2
.

(b) There exist C2, n0, and Λ0 such that for n ≥ n0 and Λ ≥ Λ0,

(3.13)
∫ ∫

{(x,y):x,y∈[a,b],|x−y|≥Λ/n}
|ρ2 (x, y)− ρ1 (x) ρ1 (y)| dx dy ≤ C2

n

Λ
.

Proof
See Section 5. �

Recall that Ξ is defined by (1.6). For the central term we will prove:

Lemma 3.4
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(a) Uniformly for u in compact subsets of C\ {0}, for |x| ≤ 1 − ε, and y =
x+ u

K̃n(x,x)
,

(3.14)
1

K̃n (x, x)
2 {ρ2 (x, y)− ρ1 (x) ρ1 (y)} = Ξ (u) + o (1) .

(b) Let η > 0. There exists C such that for |x| ≤ 1 − ε and y = x + u
K̃n(x,x)

,

u ∈ [−η, η] ,

|ρ2 (x, y)− ρ1 (x) ρ1 (y)| ≤ Cn2.

(c) For any [a, b] ⊂ [−1 + ε, 1− ε] ,

(3.15)
1

n

∫ b

a

ρ1 (x) dx− 1√
3

∫ b

a

1

n
K̃n (x, x) dx = o (1) .

Proof
See Section 6. �

Proof of Theorem 1.1
We fix Λ > η > 0 and split∫ b

a

∫ b

a

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx

=

∫ b

a

[∫
I

+

∫
J

+

∫
K

]
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx,(3.16)

where for a given x,

I =
{
y ∈ [a, b] : |y − x| ≥ Λ/K̃n (x, x)

}
;

J =
{
y ∈ [a, b] : η/K̃n (x, x) ≤ |y − x| < Λ/K̃n (x, x)

}
;

K =
{
y ∈ [a, b] : |y − x| < η/K̃n (x, x)

}
.

Recall from (1.11) that K̃n (x, x) ∼ n uniformly for n ≥ 1 and |x| ≤ 1 − ε. If A is
a uniform upper bound for 1

nK̃n (x, x) in [a, b] for n ≥ 1,∣∣∣∣∣
∫ b

a

∫
I

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx
∣∣∣∣∣

≤
∫ ∫

{(x,y):x,y∈[a,b],|x−y|≥Λ/(nA)}
|ρ2 (x, y)− ρ1 (x) ρ1 (y)| dy dx

≤ C1
nA

Λ
,

(3.17)
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by Lemma 3.3(b), provided Λ/A ≥ Λ0. Next,

1

n

∫ b

a

∫
J

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx

=

∫ b

a

K̃n (x, x)

n

∫
η≤|u|≤Λ,

x+ u
K̃n(x,x)

∈[a,b]

{
ρ2

(
x, x+

u

K̃n (x, x)

)
− ρ1 (x) ρ1

(
x+

u

K̃n (x, x)

)}
1

K̃n (x, x)
2 du dx.

Note that if η ≤ |u| ≤ Λ and x ∈ [a, b] but x + u
K̃n(x,x)

/∈ [a, b], then x is at a

distance of O
(

Λ
n

)
to a or b, and in view of Lemma 3.4(b) and (1.11), the integral

over such (x, u) is O
(

1
n

)
. Using Lemma 3.4(a) and (1.11), we deduce that∫ b

a

K̃n (x, x)

n

∫
J

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dydx

=

(∫ b

a

K̃n (x, x)

n
dx

) (∫
η≤|u|≤Λ

Ξ (u) du

)
+ o (1) .(3.18)

Finally, from Lemma 3.4(b) and (1.11), (but with a different fixed η there),

(3.19)
1

n

∣∣∣∣∣
∫ b

a

∫
K

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dydx
∣∣∣∣∣ ≤ Cη,

where C is independent of n, η. Combining the three estimates (3.17)-(3.19), over
I, J,K with (3.5), (3.15) and (3.16), we obtain

lim sup
n→∞

∣∣∣∣∣ 1nV ar [Nn (a, b)]−
(∫ b

a

K̃n (x, x)

n
dx

) (∫
η≤|u|≤Λ

Ξ (u) du+
1√
3

)∣∣∣∣∣
≤ C

(
1

Λ
+ η

)
.

Here C is independent of Λ and η. In [18, Proof of Theorem 1.2] it was shown that∫∞
−∞ Ξ (u) du converges. We can let Λ→∞ and η → 0 to deduce the result. �

4. Auxiliary Results

We first record some universality limits. Recall that S is defined by (1.2). We
also introduce some auxiliary parameters that will simplify notation and will be
used throughout the sequel. For a given n and x, we set

(4.1) κ = K̃n+1 (x, x)

and

(4.2) τ =
nQ′n (x)

K̃n+1 (x, x)
.

We do not display this dependence on n and x. From (1.11) and (1.13), uniformly
in [−1 + ε, 1− ε] , n ≥ 1,

(4.3) |τ | ≤ C.
We use both κ and Kn+1 (x, x) in the same formulae where convenient.
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Lemma 4.1
Let ε ∈ (0, 1). Let r, s be non-negative integers. Then
(a) Uniformly for |x| ≤ 1− ε and u, v in compact subsets of C,

(4.4) lim
n→∞

{
K

(1,0)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ
− τS (v − u)

}
= −S′ (v − u) .

(4.5) lim
n→∞

{
K

(0,1)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ
− τS (v − u)

}
= S′ (v − u) .

(b)

(4.6) lim
n→∞

{
K

(1,1)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ2
− τ2S (v − u)

}
= −S′′ (v − u.)

(c) In particular, uniformly for |x| ≤ 1− ε,

(4.7) lim
n→∞

{
K

(1,0)
n+1 (x, x)

Kn+1 (x, x)κ
− τ
}

= 0.

and

(4.8) lim
n→∞

{
K

(1,1)
n+1 (x, x)

Kn+1 (x, x)κ2
− τ2

}
=
π2

3
.

(d) Uniformly for |x| ≤ 1− ε,

(4.9) lim
n→∞

K̃
(1,1)
n+1 (x, x) K̃n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2

κ4
=
π2

3
.

(e) Uniformly for |x| ≤ 1− ε, and r = 0, 1,

(4.10) K̃(r,r)
n (x) ∼ n2r+1.

Proof
(a) We start with our hypothesis (1.12) that uniformly for x ∈ [a, b] and u, v in
compact subsets of C,

lim
n→∞

Kn+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v) = S (v − u) .

Because this holds uniformly for u, v in compact subsets of the plane, we can dif-
ferentiate this relation w.r.t. u, v. Differentiating once w.r.t. u gives

lim
n→∞

{
K

(1,0)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ
− τ

Kn+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

}
= −S′ (v − u) .

Hence

lim
n→∞

{
K

(1,0)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ
− τS (v − u)

}
= −S′ (v − u) .
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So we obtain (4.4). Similarly we obtain (4.5).
(b) Differentiating (4.4) w.r.t. v gives

lim
n→∞

{
K

(1,1)
n+1 (x+u

κ ,x+ v
κ )

Kn+1(x,x)
e−τ(u+v)

κ2 − K
(1,0)
n+1 (x+u

κ ,x+ v
κ )

Kn+1(x,x)
e−τ(u+v)τ

κ

−τS′ (v − u)

}
= −S′′ (v − u) .

and then

lim
n→∞

{
K

(1,1)
n+1 (x+u

κ ,x+ v
κ )

Kn+1(x,x)
e−τ(u+v)

κ2 − τ [τS (v − u)− S′ (v − u)]

−τS′ (v − u)

}
= −S′′ (v − u) .

−τS′ (v − u)} = −S′′ (v − u) .

This simplifies to (4.6).
(c) Since S (0) = 1; S′ (0) = 0 and S′′ (0) = −π2

3 [18, p. 13, (3.15)] we obtain also
the results for u = v = 0.
(d) From (c),

K̃
(1,1)
n+1 (x, x) K̃n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2

κ4

=
K

(1,1)
n+1 (x, x)

Kn+1 (x, x)κ2
−
(
K

(0,1)
n+1 (x, x)

κKn+1 (x, x)

)2

=

(
τ2 +

π2

3
+ o (1)

)
− (τ + o (1))

2

=
π2

3
+ o (τ) + o (1) =

π2

3
+ o (1) ,

recall (4.3).
(e) For r = 0, this is our hypothesis (1.11). For r = 1, from (4.8) and (4.3),
uniformly for |x| ≤ 1− ε,

K̃
(1,1)
n+1 (x, x)

κ3
= τ2 +

π2

3
+ o (1) ∼ 1.

Since κ ∼ n as follows from (1.11), we obtain the result for r = 1. �

Lemma 4.2
Let ε ∈ (0, 1). Then for r, s = 0, 1, and for all n ≥ 1 and x, y ∈ [−1 + ε, 1− ε] ,

(4.11)
∣∣∣K̃(r,s)

n+1 (x, y)
∣∣∣ ≤ C4n

r+s

|x− y|+ 1
n

.

Proof
The Christoffel-Darboux formula asserts that

Kn+1 (x, y) =
γn,n
γn,n+1

pn,n+1 (x) pn,n (y)− pn,n (x) pn,n+1 (y)

x− y
so that using our bounds (1.9), (1.10),∣∣∣K̃n+1 (x, y)

∣∣∣ ≤ 2C1C
2

|x− y| .
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Moreover, by Cauchy-Schwartz, and our bound (1.11) on K̃n,∣∣∣K̃n+1 (x, y)
∣∣∣ ≤ K̃n+1 (x, x)

1/2
K̃n+1 (y, y)

1/2 ≤ C2
2n.

Combining the last two inequalities yields∣∣∣K̃n+1 (x, y)
∣∣∣ ≤ C3 min

{
1

|x− y| , n
}
,

giving (4.11) for r = s = 0. Next,

K
(1,0)
n+1 (x, y)

=
γn,n
γn,n+1

(
p′n,n+1 (x) pn,n (y)− p′n,n (x) pn,n+1 (y)

x− y +
pn,n+1 (x) pn,n (y)− pn,n (y) pn,n+1 (x)

(x− y)
2

)
.

(4.12)

Using our bounds on the orthogonal polynomials and their derivatives,∣∣∣K̃(1,0)
n+1 (x, y)

∣∣∣ ≤ C5

{
n

|x− y| +
1

|x− y|2

}
.

Next, by Cauchy-Schwartz, and the bound (4.10) on K̃(1,1)
n∣∣∣K̃(1,0)

n+1 (x, y)
∣∣∣ ≤ K̃(1,1)

n+1 (x, x)
1/2

K̃n+1 (x, x)
1/2 ≤ C6n

2.

Thus ∣∣∣K̃(1,0)
n+1 (x, y)

∣∣∣ ≤ C7 min

{
n

|x− y| +
1

|x− y|2
, n2

}
.

This yields (4.11) for r = 1, s = 0. Of course r = 0, s = 1 follows by symmetry.
Finally,

K
(1,1)
n+1 (x, y) =

γn,n
γn,n+1

(
p′n,n+1 (x) p′n,n (y)− p′n,n (x) p′n,n+1 (y)

x− y

+
p′n,n+1 (x) pn,n (y)− p′n,n (x) pn,n+1 (y)

(x− y)
2

+
pn,n (x) p′n,n+1 (y)− p′n,n (y) pn,n+1 (x)

(x− y)
2

+2
pn,n (x) pn,n+1 (y)− pn,n (y) pn.n+1 (x)

(x− y)
3 ).

Thus using our bounds on
{
p

(j)
k

}
, j = 0, 1, 2, k = n, n+ 1, gives for x, y ∈ [a, b] ,

∣∣∣K̃(1,1)
n+1 (x, y)

∣∣∣ ≤ C8

{
n2

|x− y| +
n

|x− y|2
+

1

|x− y|3

}
and again Cauchy-Schwartz gives∣∣∣K̃(1,1)

n (x, y)
∣∣∣ ≤ K̃(1,1)

n+1 (x, x)
1/2

K̃
(1,1)
n+1 (y, y)

1/2 ≤ C9n
3.

This and the previous inequality give (4.11) for r = s = 1. �
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5. The Tail Term - Lemma 3.3

Recall that ρ1, ρ2 are defined by (3.3) and (3.6). We shall consistently use the
∼ versions of expressions and formulae in this section. First write

(5.1) ρ̃1 (x) =
1

πK̃n+1 (x, x)

√
Ψ̃ (x)

where

(5.2) Ψ̃ (x) = K̃
(1,1)
n+1 (x, x) K̃n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2
.

Next, recall ρj = ρ̃j for j = 1, 2 and write

(5.3) ρ̃2 (x, y)− ρ̃1 (x) ρ̃1 (y) = T̃1 + T̃2 + T̃3,

where

T̃1 =
1

π2∆̃

(√(
Ω̃11Ω̃22 − Ω̃2

12

)
∆̃−

√
Ψ̃ (x) Ψ̃ (y)

)
;

T̃2 =
1

π2
√

∆̃

∣∣∣Ω̃12

∣∣∣ arcsin


∣∣∣Ω̃12

∣∣∣√
Ω̃11Ω̃22

 ;

T̃3 =
1

π2

(
1

∆̃
− 1

K̃n+1 (x, x) K̃n+1 (y, y)

)√
Ψ̃ (x) Ψ̃ (y).(5.4)

We estimate each T̃ term separately.

Lemma 5.1
There exists Λ0 > 0 such that for all x, y ∈ [−1 + ε, 1− ε] , with |x− y| ≥ Λ0/n,

(5.5)
∣∣∣T̃1

∣∣∣ ≤ C(
|x− y|+ 1

n

)2 .
Proof
Write

T̃1 =

(
Ω̃11Ω̃22 − Ω̃2

12

)
∆̃− Ψ̃ (x) Ψ̃ (y)

π2∆̃

[√(
Ω̃11Ω̃22 − Ω̃2

12

)
∆̃ +

√
Ψ̃ (x) Ψ̃ (y)

] =
Num
Denom

.

The numerator is (recall (3.11))

Num =
(

Ω̃11Ω̃22 − Ω̃2
12

)
∆̃− Ψ̃ (x) Ψ̃ (y)

= det
(

Σ̃
)
− Ψ̃ (x) Ψ̃ (y)

= det


K̃n+1 (x, x) K̃n+1 (x, y) K̃

(0,1)
n+1 (x, x) K̃

(0,1)
n+1 (x, y)

K̃n+1 (x, y) K̃n+1 (y, y) K̃
(0,1)
n+1 (y, x) K̃

(0,1)
n+1 (y, y)

K̃
(0,1)
n+1 (x, x) K̃

(0,1)
n+1 (y, x) K̃

(1,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, y)

K̃
(0,1)
n+1 (x, y) K̃

(0,1)
n+1 (y, y) K̃

(1,1)
n+1 (x, y) K̃

(1,1)
n+1 (y, y)


− det

[
K̃n+1 (x, x) K̃

(0,1)
n+1 (x, x)

K̃
(0,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, x)

]
det

[
K̃n+1 (y, y) K̃

(0,1)
n+1 (y, y)

K̃
(0,1)
n+1 (y, y) K̃

(1,1)
n+1 (y, y)

]
.
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Using Laplace’s determinant expansion exactly as in the proof of Lemma 4.1 in
[18], we continue this as

= − det

[
K̃n+1 (x, x) K̃n+1 (x, y)

K̃
(0,1)
n+1 (x, x) K̃

(0,1)
n+1 (y, x)

]
det

[
K̃

(0,1)
n+1 (y, x) K̃

(0,1)
n+1 (y, y)

K̃
(1,1)
n+1 (x, y) K̃

(1,1)
n+1 (y, y)

]

− det

[
K̃n+1 (x, x) K̃

(0,1)
n+1 (x, y)

K̃
(0,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, y)

]
det

[
K̃n+1 (y, y) K̃

(0,1)
n+1 (y, x)

K̃
(0,1)
n+1 (y, y) K̃

(1,1)
n+1 (x, y)

]

− det

[
K̃n+1 (x, y) K̃

(0,1)
n+1 (x, x)

K̃
(0,1)
n+1 (y, x) K̃

(1,1)
n+1 (x, x)

]
det

[
K̃n+1 (x, y) K̃

(0,1)
n+1 (y, y)

K̃
(0,1)
n+1 (x, y) K̃

(1,1)
n+1 (y, y)

]

+ det

[
K̃n+1 (x, y) K̃

(0,1)
n+1 (x, y)

K̃
(0,1)
n+1 (y, x) K̃

(1,1)
n+1 (x, y)

]
det

[
K̃n+1 (x, y) K̃

(0,1)
n+1 (y, x)

K̃
(0,1)
n+1 (x, y) K̃

(1,1)
n+1 (x, y)

]

− det

[
K̃

(0,1)
n+1 (x, x) K̃

(0,1)
n+1 (x, y)

K̃
(1,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, y)

]
det

[
K̃n+1 (x, y) K̃n+1 (y, y)

K̃
(0,1)
n+1 (x, y) K̃

(0,1)
n+1 (y, y)

]
.

We now use the estimate (4.11) and that
(
|x− y|+ 1

n

)−1 ≤ n, on each of the terms
in these deteminants. We obtain, exactly as in the proof of Lemma 4.1 in [18] that

this is O
(

n6

(|x−y|+ 1
n )

2

)
. Thus

(5.6) Num = O

(
n6(

|x− y|+ 1
n

)2
)
.

Also

Denom = π2∆̃

[√(
Ω̃11Ω̃22 − Ω̃2

12

)
∆̃ +

√
Ψ̃ (x) Ψ̃ (y)

]

≥ π2∆̃

√
Ψ̃ (x) Ψ̃ (y).

Here from Lemma 4.1(d) and (1.11),

Ψ̃ (x) = K̃
(1,1)
n+1 (x, x) K̃n+1 (x, x)−K̃(0,1)

n+1 (x, x)
2 ≥ π2

3
K̃n+1 (x, x)

4
(1 + o (1)) ≥ Cn4.

Also from (1.11) and (4.11),

1− ∆̃

K̃n+1 (x, x) K̃n+1 (x, x)
=

K̃2
n+1 (x, y)

K̃n+1 (x, x) K̃n+1 (y, y)

≤ C

(n |x− y|+ 1)
2 ≤

1

2
,

if |x− y| ≥ Λ0/n with Λ0 large enough. Then

(5.7) ∆̃ ≥ 1

2
K̃n+1 (x, x) K̃n+1 (y, y) ≥ Cn2

and

(5.8) Denom ≥ Cn6.
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Combined with (5.6), this yields∣∣∣T̃1

∣∣∣ =

∣∣∣∣ Num
Denom

∣∣∣∣ ≤ C(
|x− y|+ 1

n

)2 .
�

Next, let us deal with T2 :

Lemma 5.2
There exist Λ0 such that for all x, y ∈ [−1 + ε, 1− ε] , with |x− y| ≥ Λ0/n,

(5.9)
∣∣∣T̃2

∣∣∣ ≤ C(
|x− y|+ 1

n

)2 .
Proof
Recall that ∣∣∣T̃2

∣∣∣ = T̃2 =
1

π2
√

∆̃

∣∣∣Ω̃12

∣∣∣ arcsin


∣∣∣Ω̃12

∣∣∣√
Ω̃11Ω̃22

 .

Using |arcsin v| ≤ π
2 |v| , |v| ≤ 1, we obtain

(5.10)
∣∣∣T̃2

∣∣∣ ≤ 1

2π∆̃3/2

∣∣∣Ω̃12∆̃
∣∣∣2√

Ω̃11Ω̃22∆̃2
.

Here from (3.10) and (4.11), and expanding by the first row,

Ω̃12∆̃ = det

 K̃n+1 (x, x) K̃n+1 (x, y) K̃
(0,1)
n+1 (x, x)

K̃n+1 (y, x) K̃n+1 (y, y) K̃
(0,1)
n+1 (y, x)

K̃
(1,0)
n+1 (y, x) K̃

(0,1)
n+1 (y, y) K̃

(1,1)
n+1 (y, x)

 = O

(
n4

|x− y|+ 1
n

)
.

(5.11)

Next, we examine Ω̃11 and Ω̃22. From (3.8) and (4.11), and expanding by the first
row,

Ω̃11∆̃ = det

 K̃n+1 (y, y) K̃n+1 (y, x) K̃
(0,1)
n+1 (y, x)

K̃n+1 (x, y) K̃n+1 (x, x) K̃
(0,1)
n+1 (x, x)

K̃
(1,0)
n+1 (x, y) K̃

(0,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, x)


= K̃n+1 (y, y)

{
K̃n+1 (x, x) K̃

(1,1)
n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2
}

+O

(
n3(

|x− y|+ 1
n

)2
)

so if |x− y| ≥ Λ0/n, and Λ0 ≥ 1,

Ω̃11∆̃ = K̃n+1 (y, y)
{
K̃n+1 (x, x) K̃

(1,1)
n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2
}

+O

(
n5

Λ2
0

)
≥ Cn5 +O

(
n5

Λ2
0

)
≥ C1n

5,

(5.12)
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by (4.9), if Λ0 and n are large enough. In much the same way,

Ω̃22∆̃ = det

 K̃n+1 (x, x) K̃n+1 (x, y) K̃
(0,1)
n+1 (x, y)

K̃n+1 (y, x) K̃n+1 (y, y) K̃
(0,1)
n+1 (y, y)

K̃
(1,0)
n+1 (y, x) K̃

(1,0)
n+1 (y, y) K̃

(1,1)
n+1 (y, y)


= K̃n+1 (x, x)

{
K̃n+1 (y, y) K̃

(1,1)
n+1 (y, y)− K̃(0,1)

n+1 (y, y)
2
}

+O

(
n5

Λ2
0

)
≥ C1n

5.

(5.13)

Then combining (5.10-5.13), followed by (5.7),

T̃2 ≤ C
(

n4

|x− y|+ 1
n

)2
1

∆3/2

1

n5
≤ C

(
1

|x− y|+ 1
n

)2

.

�
Next, we handle T̃3 :

Lemma 5.3
There exists Λ0 such that for all x, y ∈ [−1 + ε, 1− ε] , with |x− y| ≥ Λ0/n,

(5.14)
∣∣∣T̃3

∣∣∣ ≤ C(
|x− y|+ 1

n

)2 .
Proof
From (5.4), with Ψ given by (5.2),

T̃3 =
1

π2

K̃2
n+1 (x, y)

∆̃K̃n+1 (x, x) K̃n+1 (y, y)

√
Ψ̃ (x) Ψ̃ (y).

Here from (4.9) and (1.11), ∣∣∣Ψ̃ (x)
∣∣∣ , ∣∣∣Ψ̃ (y)

∣∣∣ ≤ Cn4.

Then

T̃3 ≤
C(

|x− y|+ 1
n

)2 ,
by (4.11) and (5.7). Note too that T̃3 ≥ 0. �

Proof of Lemma 3.3(a)
Just combine the estimates for T̃1, T̃2, T̃3 from Lemmas 5.1, 5.2, 5.3 and recall (5.3).
�

Proof of Lemma 3.3(b)
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From Lemma 3.3(a), for y ∈ [−1 + ε, 1− ε] ,∫
{x∈[a,b],|x−y|≥Λ/n}

|ρ̃2 (x, y)− ρ̃1 (x) ρ̃1 (y)| dx

≤
∫
{x∈[a,b],|x−y|≥Λ/n}

C

|x− y|2
dx

≤
∫
{x∈[a,b],|x−y|≥Λ/n}

2C

|x− y|2 +
(

Λ
n

)2 dx
≤

∫ ∞
−∞

2C

|x− y|2 +
(

Λ
n

)2 dx.
We make the substitution x− y = Λ

n t in the latter integral:

=
n

Λ

∫
R\[−1,1]

2C

t2 + 1
dt.

Then (3.13) follows. �

6. The Central Term - Lemma 3.4

Recall that ∆,Ω11,Ω22,Ω12 were defined in (3.7-3.10), while S, F,G,H were
defined in (1.2-1.5). In this section, we use the non-normalized versions of our for-
mulae. Recall that we defined κ and τ by (4.1) and (4.2) respectively.

Lemma 6.1
Uniformly for u in compact subsets of the plane, and uniformly for x ∈ [−1 + ε, 1− ε]
and y = x+ u

K̃n+1(x,x)
,

(a)

(6.1)

(
Ω11Ω22 − Ω2

12

)
∆

Kn+1 (x, x)
4

(
e−τu

κ

)4

= F (u) + o (1) ;

(b)

(6.2)
∆

Kn+1 (x, x)
2 e
−2τu = 1− S (u)

2
+ o (1) ;

(c)

(6.3)
∆Ω11

Kn+1 (x, x)
3

e−2τu

κ2
= G (u) + o (1) ;

(d)

(6.4)
∆Ω22

Kn+1 (x, x)
3

e−4τu

κ2
= G (u) + o (1) ;

(e)

(6.5)
Ω12∆

Kn+1 (x, x)
3

e−3τu

κ2
= H (u) + o (1) .
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Proof
From (1.12) and the limits in Lemma 4.1, uniformly for u in compact subsets of
the plane,

lim
n→∞

Kn+1 (x, y)

Kn+1 (x, x)
e−τu = S (u) ;

lim
n→∞

{
K

(1,0)
n+1 (x, y)

Kn+1 (x, x)

e−τu

κ
− τS (u)

}
= −S′ (u) ;

lim
n→∞

{
K

(0,1)
n+1 (x, y)

Kn+1 (x, x)

e−τu

κ
− τS (u)

}
= S′ (u) ;

lim
n→∞

{
K

(1,1)
n+1 (x, y)

Kn+1 (x, x)

e−τu

κ2
− τ2S (u)

}
= −S′′ (u) ;

lim
n→∞

Kn+1 (y, y)

Kn+1 (x, x)
e−2τu = 1;

lim
n→∞

{
K

(1,0)
n+1 (y, y)

Kn+1 (x, x)

e−2τu

κ
− τ
}

= 0;

(6.6) lim
n→∞

{
K

(1,1)
n+1 (y, y)

Kn+1 (x, x)

e−2τu

κ2
− τ2

}
= −S′′ (0) =

π2

3
.

We shall repeatedly refer to these limits using this single equation number.
(a) Recall that Σ was defined by (3.4). Then (3.11) gives[(

Ω11Ω22 − Ω2
12

)
∆
]

Kn+1 (x, x)
4

(
e−τu

κ

)4

=
det Σ

Kn+1 (x, x)
4

(
e−τu

κ

)4

= det


1 Kn+1(x,y)

Kn+1(x,x)e
−τu K

(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

K
(0,1)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ

Kn+1(x,y)
Kn+1(x,x)e

−τu Kn+1(y,y)
Kn+1(x,x)e

−2τu K
(0,1)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

K
(0,1)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(1,1)
n+1 (x,x)

Kn+1(x,x)
1
κ2

K
(1,1)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ2

K
(0,1)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(1,1)
n+1 (x,y)e−τu

Kn+1(x,x)
1
κ2

K
(1,1)
n+1 (y,y)

Kn+1(x,x)

(
e−τu

κ

)2

 .

Here we have factored in 1
κ into the 3rd and 4th rows and columns. In addition,

we have factored in e−τu into the second and fourth rows and columns. Using the
limits in (6.6) and that S (0) = 1, S′ (0) = 0, while S (−u) = S (u), we continue this
as

= det


1 S (u) τ τS (u) + S′ (u)

S (u) 1 τS (u)− S′ (u) τ
τ τS (u)− S′ (u) τ2 − S′′ (0) τ2S (u)− S′′ (u)

τS (u) + S′ (u) τ τ2S (u)− S′′ (u) τ2 − S′′ (0)

+o (1)

Now subtract τ×Row 2 from Row 4:

= det


1 S (u) τ τS (u) + S′ (u)

S (u) 1 τS (u)− S′ (u) τ
τ τS (u)− S′ (u) τ2 − S′′ (0) τ2S (u)− S′′ (u)

S′ (u) 0 τS′ (u)− S′′ (u) −S′′ (0)

+ o (1)
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Next, subtract τ×Column 1 from Column 3

= det


1 S (u) 0 τS (u) + S′ (u)

S (u) 1 −S′ (u) τ
τ τS (u)− S′ (u) −S′′ (0) τ2S (u)− S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

+ o (1)

Next subtract τ×Row 1 from Row 3

= det


1 S (u) 0 τS (u) + S′ (u)

S (u) 1 −S′ (u) τ
0 −S′ (u) −S′′ (0) −τS′ (u)− S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

+ o (1)

Finally subtract τ×Column 2 from Column 4

= det


1 S (u) 0 S′ (u)

S (u) 1 −S′ (u) 0
0 −S′ (u) −S′′ (0) −S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

+ o (1) = F (u) + o (1) .

(b) From (3.7) and (6.6),

∆

Kn+1 (x, x)
2 e
−2τu = det

[
1 Kn+1(x,y)

Kn+1(x,x)e
−τu

Kn+1(x,y)
Kn+1(x,x)e

−τu Kn+1(y,y)
Kn+1(x,x)e

−2τu

]

= det

[
1 S (u)

S (u) 1

]
+ o (1) .

(c) From (3.8), and then factoring e−τu into the first row and first column and 1
κ into

the third row and third column, and then using (6.6) as well as S (0) = 1, S′ (0) = 0,

∆Ω11

Kn+1 (x, x)
3

(
e−τu

κ

)2

= det


Kn+1(y,y)
Kn+1(x,x)e

−2τu Kn+1(y,x)
Kn+1(x,x)e

−τu K
(0,1)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

Kn+1(x,y)
Kn+1(x,x)e

−τu 1
K

(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

K
(1,0)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ

K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

K
(1,1)
n+1 (x,x)

Kn+1(x,x)
1
κ2


= det

 1 S (u) τS (u)− S′ (u)
S (u) 1 τ

τS (u)− S′ (u) τ τ2 − S′′ (0)

+ o (1)

Subtract τ×Row2 from Row 3

= det

 1 S (u) τS (u)− S′ (u)
S (u) 1 τ
S′ (−u) 0 −S′′ (0)


Subtract τ×Column 2 from Column 3:

= det

 1 S (u) −S′ (u)
S (u) 1 0
−S′ (u) 0 −S′′ (0)

+ o (1) = G (u) + o (1) ,
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recall (1.4).
(d) From (3.9), and factoring e−τu into the 2nd and 3rd rows and columns and 1

κ
into the 3rd row and column,

∆Ω22

Kn+1 (x, x)
3

e−4τu

κ2

= det


1 Kn+1(x,y)

Kn+1(x,x)e
−τu K

(0,1)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ

Kn+1(y,x)
Kn+1(x,x)e

−τu Kn+1(y,y)
Kn+1(x,x)e

−2τu K
(0,1)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(1,0)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(1,0)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(1,1)
n+1 (y,y)

Kn+1(x,x)

(
e−2τu

κ

)2


= det

 1 S (−u) τS (u) + S′ (u)
S (u) 1 τ

τS (u) + S′ (u) τ τ2 − S′′ (0)

+ o (1) .

Subtract τ×Row 2 from Row 3:

= det

 1 S (−u) τS (u) + S′ (u)
S (u) 1 τ
S′ (u) 0 −S′′ (0)

+ o (1)

Subtract τ×Column 2 from Column 3:

= det

 1 S (u) S′ (u)
S (u) 1 0
S′ (u) 0 −S′′ (0)

+ o (1) = G(u) + o(1).

Here we have multiplied the 3rd row and 3rd column in G in (1.4) by −1.
(e) From (3.10), and factoring e−τu into the 2nd and 3rd rows and the 2nd column,
and 1

κ into the 3rd row and 3rd column,

Ω12∆

Kn+1 (x, x)
3

e3τu

κ2

= det


1 Kn+1(x,y)

Kn+1(x,x)e
−τu K

(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

Kn+1(y,x)
Kn+1(x,x)e

−τu Kn+1(y,y)
Kn+1(x,x)e

−2τu K
(0,1)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(1,0)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(1,1)
n+1 (y,x)

Kn+1(x,x) e
−τu 1

κ2


= det

 1 S (−u) τ
S (u) 1 τS (u)− S′ (u)

τS (u) + S′ (u) τ τ2S (u)− S′′ (u)

+ o (1) .

Subtract τ×Row 2 from Row 3:

= det

 1 S (−u) τ
S (u) 1 τS (u)− S′ (u)
S′ (u) 0 τS′ (u)− S′′ (u)

+ o (1) .

Subtract τ×Column 1 from Column 3:

= det

 1 S (−u) 0
S (u) 1 −S′ (u)
S′ (u) 0 −S′′ (u)

+ o (1) = H(u) + o(1),

recall (1.5). �
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Now we can obtain the asymptotics for ρ2 (x, y)− ρ1 (x) ρ1 (y) stated in (3.14):

Proof of Lemma 3.4(a)
Recall as in (5.3), that

(6.7) ρ2 (x, y)− ρ1 (x) ρ1 (y) = T1 + T2 + T3.

We handle the terms Tj , j = 1, 2, 3 one by one:
Step 1: T1

Firstly from Lemma 4.1(d), and (5.2),

(6.8)
Ψ (x)

Kn+1 (x, x)
2
κ2

=
π2

3
+ o (1) .

Then

Ψ (y)

Kn+1 (x, x)
2

e−4τu

κ2
=

[
Ψ (y)

Kn+1 (y, y)
2

1

K̃n+1 (y, y)
2

] [
Kn+1 (y, y) e−2τu

Kn+1 (x, x)

]2
[
K̃n+1 (y, y)

K̃n+1 (x, x)

]2

=

[
π2

3
+ o (1)

]
[1 + o (1)] [1 + o (1)] =

π2

3
+ o (1) .

(6.9)

Here we are using (6.6) and also that

µ′n (y)

µ′n (x)
= e2n[Qn(x)−Qn(y)] = e−2nQ′n(x)(y−x)+o(n(y−x)) = e−2τu+o(1),

by (1.14). Then using (6.2),

1

π2∆

√
Ψ (x) Ψ (y)

1

κ2

=
1

π2

[
Kn+1 (x, x)

2

∆e−2τu

]√
Ψ (x)

Kn+1 (x, x)
2

1

κ2

Ψ (y)

Kn+1 (x, x)
2

e−4τu

κ2

=
1

π2

1

1− S (u)
2

(
π2

3
+ o (1)

)
.

Then from (6.1) and (6.8), and recalling the definition of T1 at (5.4),

T1

κ2

=
1

π2

[
Kn+1 (x, x)

2

∆e−2τu

]√
(Ω11Ω22 − Ω2

12) ∆

Kn+1 (x, x)
4

(
e−τu

κ

)4

− 1

π2

1

1− S (u)
2

(
π2

3
+ o (1)

)
=

1

π2
(

1− S (u)
2
) (√F (u)− π2

3

)
+ o (1) ,

by (6.1) and (6.2).
Step 2: T2
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From (5.4),

T2

κ2

=
1

π2∆3/2
|Ω12∆| arcsin

(
|Ω12∆|√

|Ω11∆| |Ω22∆|

)
1

κ2

=
1

π2

[
Kn+1 (x, x)

2

∆e−2τu

]3/2 ∣∣∣∣∣ Ω12∆

Kn+1 (x, x)
3

e−3τu

κ2

∣∣∣∣∣ arcsin

(
|Ω12∆|√

|Ω11∆| |Ω22∆|

)

=
1

π2
(

1− S (u)
2
)3/2

H (u) arcsin

(
H (u)

G (u)

)
+ o (1) ,

by (6.2) - (6.5).
Step 3: T3

From (5.4),

T3

κ2

=
1

π2κ2

(
Kn+1 (x, y)

2

∆Kn+1 (x, x)Kn+1 (y, y)

)√
Ψ (x) Ψ (y)

=
1

π2

[
Kn+1 (x, y) e−τu

Kn+1 (x, x)

]2 [
Kn+1 (y, y)

Kn+1 (x, x)
e−2τu

]−1
[
Kn+1 (x, x)

2

∆e−2τu

][√
Ψ (x) Ψ (y)

Kn+1 (x, x)
4

e−4τu

κ4

]

=
1

π2

(
S (u)

2

1− S (u)
2

)
π2

3
+ o (1) ,

by (1.12), (6.2), (6.8), and (6.9). Substituting the asymptotics for Tj , j = 1, 2, 3
into (6.7) gives

1

κ2
{ρ2 (x, y)− ρ1 (x) ρ1 (y)}

=
1

π2
(

1− S (u)
2
)
√F (u)− π2

3

(
1− S (u)

2
)

+
H (u)√

1− S (u)
2

arcsin

(
H (u)

G (u)

)+ o (1)

= Ξ (u) + o (1) ,

recall (1.6). �
We next deal with u near 0, which turns out to be challenging. First, we prove

Lemma 6.2
(a) ∆

(
x, x+ u

κ

)
has a double zero at u = 0, and there is ρ > 0 such that for all

x ∈ [a, b] and n large enough, ∆
(
x, x+ u

κ

)
has no other zeros in |u| ≤ ρ. Moreover,

uniformly for u in compact subsets of C, and |x| ≤ 1− ε,

(6.10) lim
n→∞

∆
(
x, x+ u

κ

)
Kn+1 (x, x)

2
u2
e−2τu =

1− S (u)
2

u2
.

The right-hand side is interpreted as its limiting value at u = 0.
(b)

[(
Ω11Ω22 − Ω2

12

)
∆
] (
x, x+ u

κ

)
has a zero of even order at least 4 at u = 0.
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Moreover, uniformly for u in compact subsets of C, and |x| ≤ 1− ε,

lim
n→∞

(
Ω11Ω22 − Ω2

12

)
∆

1

κ4
=

F (u)(
1− S (u)

2
)2 .

The right-hand side is interpreted as its limiting value at u = 0.
Proof
(a) First,

∆
(
x, x+

u

κ

)
= Kn+1 (x, x)Kn+1

(
x+

u

κ
, x+

u

κ

)
−Kn+1

(
x, x+

u

κ

)2

is a polynomial in u, and by Cauchy-Schwarz is non-negative for real u, with a zero
at u = 0. This then must be a zero of even multiplicity. But since

lim
n→∞

∆
(
x, x+ u

κ

)
Kn+1 (x, x)

2 e
−2τu = 1− S (u)

2
,

uniformly in compact sets by Lemma 6.1(b), and the right-hand side has an isolated
double zero at 0, it follows from Hurwitz’Theorem and the considerations above,
that necessarily for large enough n, ∆

(
x, x+ u

κ

)
has a double zero at 0, and no

other zeros in some neighborhood of 0 that is independent of n. Since the conver-
gence is uniform in x, the neighborhood may also be taken independent of x. But

then
{

∆(x,x+u
κ )

Kn+1(x,x)2u2 e
−2τu

}
n≥1

is a sequence of entire functions in u that converges

uniformly in compact subsets of C\ {0} and hence also in compact subsets of C.
(b) Recall (3.11). Here det(Σ) is also a polynomial in u when y = x+ u

κ . As in the
proof of Lemma 2.2 in the Appendix in [18], Σ is a positive definite matrix when
x 6= y, so is nonegative definite for all x, y. Then det(Σ) ≥ 0 for real x, y while
det (Σ) = 0 when u = 0. Thus as a polynomial in u, det(Σ) can only have an even
multiplicity zero at u = 0. We need to show that it has a zero of multiplicity at
least 4 when u = 0. By a classical inequality for determinants of positive definite
matrices and their leading submatrices [3, p. 63, Thm. 7], when y is real,

0 ≤ det (Σ) ≤ ∆ (x, y) det

[
K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

]
.

We already know that ∆ has a double zero at u = 0 for y = x + u
nω(x) . But

the second determinant also vanishes when y = x, that is u = 0. It follows that
necessarily as a polynomial in u, det (Σ) has a zero of multiplicity at least 4 at
u = 0. Then

Ω11Ω22 − Ω2
12

∆
=

det (Σ)

∆2

has a removable singularity at 0, since the zero of multiplicity 4 in the denominator
is cancelled by the zero of multiplicity ≥ 4 in the numerator. Then from (6.1),
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(6.2), uniformly for x ∈ [−1 + ε, 1− ε] and u in some neighborhood of 0,

Ω11Ω22 − Ω2
12

∆

1

κ4

=

(
Ω11Ω22 − Ω2

12

)
∆

Kn+1 (x, x)
4

(
e−τu

κ

)4
[
Kn+1 (x, x)

2

∆e−2τu

]2

=
F (u)(

1− S (u)
2
)2 + o (1) .

Moreover, since S (u) = 1 only at u = 0, this limit actually holds uniformly for u
in compact subsets of C. �

Next, we deal with the most diffi cult term Ω12 :

Lemma 6.3
There exist C, n0, ρ > 0 such that uniformly for n ≥ n0, |u| ≤ ρ, and |x| ≤ 1− ε,

|Ω12|√
∆κ2

≤ C.

Moreover, uniformly for |u| ≤ ρ,

lim
n→∞

Ω12√
∆

1

κ2
=

H (u)

(1− u2)
3/2

.

Proof
We note that this proof is simpler than the corresponding one in [18]. First, from
the previous lemma, there exists ρ > 0 and n0 such that for n ≥ n0 and |u| ≤ ρ,
∆ (x, y) = ∆

(
x, x+ u

κ

)
has a double zero at 0 and no other zeros in the disk

|u| ≤ ρ. Then we may choose a branch of
√

∆
(
x, x+ u

κ

)
in u that is single valued

and analytic in |u| ≤ ρ, with a simple zero at u = 0. Then inasmuch as Ω12∆ is a
polynomial in u, by (3.10),

Ω12√
∆

1

κ2
=

Ω12∆(√
∆
)3

1

κ2

is for n ≥ n0 analytic in the deleted disc 0 < |u| ≤ ρ with at worst a pole of order
at most 3 at 0. We now show that Ω12∆ has a zero of order at least 3 at u = 0, so
that in fact Ω12√

∆
1
κ2 has a removable singularity at 0, and thus after redefinition at

0, is analytic in the disc |u| ≤ ρ. First recall that

∆Ω12 = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, x)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)

 .
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We subtract the first column from the second and u
κ×the third column from the

second. We use that as u→ 0,

Kn+1 (x, y)−
[
Kn+1 (x, x) +

u

κ
K

(0,1)
n+1 (x, x)

]
=

1

2

(u
κ

)2

K
(0,2)
n+1 (x, x) +O

(
u3
)

;

Kn+1 (y, y)−
[
Kn+1 (y, x) +

u

κ
K

(0,1)
n+1 (y, x)

]
=

1

2

(u
κ

)2

K
(0,2)
n+1 (y, x) +O

(
u3
)

;

K
(0,1)
n+1 (y, y)−

[
K

(0,1)
n+1 (y, x) +

u

κ
K

(1,1)
n+1 (y, x)

]
=

1

2

(u
κ

)2

K
(1,2)
n+1 (y, x) +O

(
u3
)

Using symmetry of Kn, we then obtain as u→ 0,

∆Ω12 =
1

2

(u
κ

)2

det

 Kn+1 (x, x) K
(0,2)
n+1 (x, x) K

(0,1)
n+1 (x, x)

Kn+1 (y, x) K
(0,2)
n+1 (y, x) K

(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(1,2)
n+1 (y, x) K

(1,1)
n+1 (y, x)

+O
(
u3
)
.

Next we subtract the first row from the second and see that each of the resulting
terms in the second row is O (u). So indeed, ∆Ω12 = O

(
u3
)
as u → 0. As ∆ has

a double zero at u = 0, Ω12√
∆

1
κ2 = ∆Ω12

(
√

∆)
3

1
κ2 is analytic and single valued in |u| ≤ ρ.

Next, from Lemma 6.1(e), (perhaps with a smaller ρ)

lim
n→∞

Ω12√
∆

1

κ2
= lim

n→∞

[
∆Ω12

Kn+1 (x, x)
3

e−3τu

κ2

][
∆

Kn+1 (x, x)
2 e
−2τu

]−3/2

=
H (u)

(1− u2)
3/2

,

uniformly for u in compact subsets of the deleted disc 0 < |u| ≤ ρ. HereH (u) /
(
1− u2

)3/2
is analytic in |u| ≤ ρ, as is Ω12√

∆
1
κ2 , so the maximum modulus principle shows that

the convergence is uniform in compact subsets of |u| ≤ ρ. Then the result follows.
�

Now we can deduce the desired bound near the diagonal:

Proof of Lemma 3.4(b)
Recall that ρ2 was defined by (3.6). Then for |x| ≤ 1− ε, and u ∈ [−η, η] ,

|ρ2 (x, y)| 1

κ2

≤ 1

π2

(√
Ω11Ω22 − Ω2

12

∆
+
|Ω12|√

∆
arcsin

(
|Ω12|√
Ω11Ω22

))
1

κ2
≤ C,

by Lemmas 6.2 - 6.3. Next, from (5.1), followed by (6.8),

(6.11)
ρ1 (x)

κ
=

1

π

√
Ψ (x)

Kn+1 (x, x)
2
κ2

=
1√
3

+ o (1) ,

and a similar asymptotic holds for ρ1 (y). It follows that

|ρ2 (x, y)− ρ1 (x) ρ1 (y)| 1

κ2
≤ C,

in view of (1.11), which gives the result.
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Proof of Lemma 3.4(c)
This follows directly from (6.11), (1.11), and (4.1). �

7. Proof of Theorem 2.1

We note that the measures in Theorem 2.1 belong to the class Q defined in [15,
p. 6]. We turn to verifying the hypotheses (I) - (V) in Section 1. We first recall
some results from [15]. There we made substantial use of the Christoffel function
λn (µn, x) = Kn (x, x)

−1.

Lemma 7.1
Assume that {Qn} are as in Theorem 2.1. Let L ≥ 0.
(a) For m = n, n+ 1,

(7.1) sup
x∈In

|pn,m (x)| e−nQn(x)
[
|1− |x||+ n−2/3

]1/4
∼ 1.

(b) For |x| ≤ 1,

(7.2) Kn+1 (µn, x, x)µ′n (x) ∼ nmax
{

1− |x| , n−2/3
}1/2

.

(c) There exists c > 0 such that for |x| ≤ 1− n−c,

(7.3)
1

n
Kn (µn, x, x) = σQn (x) + o (1) .

(d) Uniformly for n ≥ 1 and for x ∈ (−1, 1) ,

(7.4) σQn(x) ∼
√

1− x2.

(e) Uniformly for n ≥ 1 and for x, y ∈ (−1, 1) ,

(7.5)
∣∣σQn(x) − σQn(x)

∣∣ ≤ C |x− y|α .
(f) There exists τ > 0 such that for |x| ≤ 1− n−τ and for u, v in compact subsets
of the real line,

(7.6)
K̃n

(
x+ u

κ , x+ v
κ

)
K̃n (x, x)

= S (v − u) +O
(
n−τ

)
.

(g) For polynomials P of degree ≤ n+ L,

(7.7)
∥∥P ′e−nQn∥∥

L∞(In)
≤ Cn

∥∥Pe−nQn∥∥
L∞(In)

.

(h)

(7.8)
γn,n
γn,n+1

=
1

2
+ o (1) .

(i) For polynomials P of degree ≤ n+ L

(7.9)
∥∥Pe−nQn∥∥

L∞(In)
≤ C

∥∥Pe−nQn∥∥
L∞[−1,1]

.

(j)

(7.10) sup
n
‖Q′n‖L∞[−1,1] <∞.

Proof
(a) See Theorem 2.1(a) in [15, p. 9].
(b) See Theorem 2.1(b) in [15, p. 9]. Note that there λn (x) = 1/Kn (x, x).
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(c) See Theorem 2.2(c) in [15, p. 11].
(d) See Theorem 3.1(a) in [15, p. 15] and recall that there an,1 = 1 while a−n,1 =
−1.
(e) See Theorem 3.1(b) in [15, p. 15].
(f) See Theorem 15.1 in [15, p. 155].
(g) See Theorem 8.1(b) in [15, p. 63].
(h) See Theorem 13.4 in [15, p. 124].
(i) Apply Theorem 4.2(a) in [15, p. 30] with T = 1.
(j) It is shown in Lemma 3.2(a) in [15, p. 16] that |Q′n (±1)| ∼ 1. Since Q′n is
increasing, we obtain (7.10). �

We proceed to verify the hypotheses (I) - (V) in Section 1.

Lemma 7.2 - Verification of (I)
Let 0 < ε < 1. Then for |x| ≤ 1− ε, and m = n, n+ 1,

(7.11)
∣∣p′n,m (x)

∣∣ e−nQn(x) ≤ Cn.

Proof
Note that (7.1) implies the bound (1.9) for j = 0. From the restricted range
inequality Lemma 7.1(i),

sup
x∈In

∣∣pn,m (x)
(
1− x2

)∣∣ e−nQn(x)

≤ C1 sup
x∈[−1,1]

∣∣pn,m (x)
(
1− x2

)∣∣ e−nQn(x) ≤ C2,

by (7.1). Then by the Bernstein inequality Lemma 7.1(g),

sup
x∈In

∣∣∣∣ ddx [pn,m (x)
(
1− x2

)]∣∣∣∣ e−nQn(x) ≤ Cn.

Then for |x| ≤ 1− ε, ∣∣p′n,m (x)
(
1− x2

)∣∣ e−nQn(x)

≤ |pn,m (x) 2x| e−nQn(x) + Cn ≤ C1n

and then as 1− x2 ≥ ε, we obtain (7.11) and hence (1.9). �
Next we turn to establishing the universality limit for complex u, v. We use

Theorem 1.2 from [14] with h = 1 there. We continue to use the notation for κ, τ .

Lemma 7.3
For n ≥ 1, let µn be a positive Borel measure on the real line, with at least the
first 2n+ 1 power moments finite. Let I be a compact interval in which each µn is
absolutely continuous. Assume moreover that in I,

(7.12) dµn (x) = e−2nQn(x)dx = W 2n
n (x) dx,

is continuous on I. Let σQn denote the equilibrium measure for the restriction of
Wn to I. Let J be a compact subinterval of Io. Assume that
(a) {σQn}

∞
n=1 are positive and uniformly bounded in some open interval containing

J ;
(b) {Q′n}

∞
n=1 are equicontinuous and uniformly bounded in some open interval con-

taining J ; or
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(b′) more generally, for some open interval J2 containing J , and for each fixed
a > 0,

(7.13) sup
t∈J2,|h|≤a

∣∣∣∣Q′n (t)−Q′n
(
t+

h

n

)∣∣∣∣→ 0 as n→∞.

(c) For some C1, C2 > 0, and for n ≥ 1 and x ∈ I,
(7.14) C1 ≤ Kn (µ, x, x)W 2n

n (x) /n ≤ C2.

(d) Uniformly for x ∈ J and a in compact subsets of the real line,

(7.15) lim
n→∞

Kn

(
µ, x+ a

n , x+ a
n

)
Kn (µ, x, x)

W 2n
n (x)

W 2n
n

(
x+ a

n

) = 1.

Then uniformly for x ∈ J , and u, v in compact subsets of the complex plane, we
have

lim
n→∞

Kn

(
x+ u

κ , x+ v
κ

)
Kn (x, x)

e−τ(u+v) = S (v − u) .

Proof
The result is stated as (1.13) in [14, p. 749]. The weaker condition (b′) is noted in
the remarks on page 749 in [14]. See (1.12) there. �

Lemma 7.4 - Verification of (IV)
Assume that {Qn} are as in Theorem 2.1. Let 0 < ε < 1. Then uniformly for
|x| ≤ 1− ε and u, v in compact subsets of C,

lim
n→∞

Kn

(
x+ u

κ , x+ v
κ

)
Kn (x, x)

e−τ(u+v) = S (v − u) .

Proof
From Lemma 7.1(d),we have the requirements of Lemma 7.3(a). From Lemma
7.1(j), and the assumed smoothness (2.2) of {Q′n}, we have the requirements of
Lemma 7.3(b,b’). From Lemma 7.1(b), we have the requirements of Lemma 7.3(c).
From Lemma 7.1(c), (e), we have the requirements of Lemma 7.3(d). Then we have
the conclusion of Lemma 7.3. �

Lemma 7.5 - Verification of (II), (III), (V)
The estimates (1.10), (1.11), (1.13), (1.14) are valid.
Proof
Firstly, (1.10) follows directly from Lemma 7.1(h). Next, (1.11) follows from Lemma
7.1(c), (d). Next, (1.13) follows from Lemma 7.1(j). Finally, (1.14) follows easily
from the Lipschitz condition (2.2). �

Proof of Theorem 2.1
We have verified all the hypotheses of Theorem 1.1 in Lemmas 7.2, 7.4, 7.5. �

8. Proof of Theorem 2.3 and Corollary 2.4

Recall the notation (2.6) - (2.13). We also need the function ϕn :

(8.1) ϕn (x) =
|x− a−2n| |x− a2n|

n
√[
|x− a−n|+ |a−n| η−n

] [
|x− a−n|+ |a−n| η−n

] , x ∈ [a−n, an]
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while ϕn (x) = ϕn (an) , x > an, and ϕn (x) = ϕn (a−n) , x < a−n. We let
pn
(
W 2, x

)
denote the nth orthonormal polynomial for W 2, so that∫

pn
(
W 2, x

)
pm
(
W 2, x

)
W 2 (x) dx = δmn.

Moreover, for non-negative integers r, s, we let

K(r,s)
n

(
W 2, x, t

)
=
n−1∑
j=0

p
(r)
j

(
W 2, x

)
p

(s)
j

(
W 2, t

)
and

K̃(r,s)
n

(
W 2, x, t

)
= W (x)W (t)K(r,s)

n

(
W 2, x, t

)
.

Lemma 8.1
Let 0 < ε < 1. Assume that W = exp (−Q) ∈ F

(
C2
)
.

(i)

(8.2) sup
x∈R
|pn (x)| e−Q(x) [|x− an| |x− a−n|]1/4 ∼ 1

(ii) Uniformly for x ∈ Jn (ε),

(8.3) Kn

(
W 2, x, x

)
W 2 (x) ∼ n

δn
.

(iii) Uniformly for x ∈ Jn (ε),

(8.4) Kn

(
W 2, x, x

)
W 2 (x) = σn (x) + o (1) .

(iv) Uniformly for n ≥ 1 and for x ∈ (−1 + ε, 1− ε) ,
(8.5) σ∗n (x) ∼ 1,

and uniformly for x ∈ Jn (ε) ,

(8.6) σn (x) ∼ n

δn
.

(v) Uniformly for n ≥ 1 and for x, y ∈ (−1 + ε, 1− ε) ,

(8.7) |σ∗n (x)− σ∗n (y)| ≤ C |x− y|1/4 .
(vi) For polynomials P of degree ≤ n,
(8.8)

∥∥(PW )
′
ϕn
∥∥
L∞(R)

≤ C ‖PW‖L∞(R) .

Moreover, given ε ∈ (0, 1), for x ∈ Jn (ε) ,

(8.9) |P ′ (x) |W (x) ≤ C n

δn
‖PW‖L∞(R) .

(vii)

(8.10)
γn
γn+1

=
δn
2

(1 + o (1)) .

(viii) For polynomials P of degree ≤ n,
(8.11) ‖PW‖L∞(R) = ‖PW‖L∞[a−n,an] .

Proof
(i) See Theorem 1.17 in [13, p. 22].
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(ii) This follows from Corollary 1.14(c) in [13, p. 20], where estimates were provided
for λn

(
W 2, x

)
= 1/Kn

(
W 2, x, x

)
. Note that the class of weights above is contained

in the class F
(
lip 1

2

)
mentioned there (cf. [13, p. 12]). More precisely, it was shown

that for x ∈ [a−n, an] ,

Kn

(
W 2, x, x

)
W 2 (x) ∼ ϕn (x)

−1
,

where ϕn (x) is defined by (8.1). Here if x ∈ Jn (ε) = [a−n + εδn, an − εδn], we see
that |x− a±n| ≥ Cδn, so

(8.12) ϕn (x) ∼ δn
n
.

(iii) See Theorem 1.25 in [13, p. 26]. Note that if 0 < α < 1, then for large enough
n, we have Jn (ε) ⊂ [a−αn, aαn] .
(iv) See Theorems 1.10 and 1.11 in [13, pp. 17-18].
(v) See Theorem 6.3 in [13, pp. 147-8] and the discussion on page 149.
(vi) The first assertion is a special case of Theorem 10.1 in [13, p. 293]. For the
second we see that

|P ′W | (x)ϕn (x) ≤ |PW | (x)Q′ (x)ϕn (x) + ‖PW‖L∞(R) .

From Lemma 3.8(a) in [13, p. 77]

(8.13) Q′ (x) ≤ C n

δn
.

Then the second estimate follows from this and (8.12).
(vii) See Theorem 1.23 in [13, p. 26] and note that there An =

γn−1

γn
, while

δn
δn+1

= 1 + o (1) .

(viii) See Theorem 4.1 in [13, p. 95].
�

To apply Theorem 1.1, we introduce a sequence of measures {µn} as follows: for
n ≥ 1, let

Qn (x) =
1

n
Q
(
L[−1]
n (x)

)
;

Wn (x) = e−Qn(x);

dµn (x) = e−2nQn(x)dx.

Note that

(8.14) W 2n
n = W 2 ◦ L[−1]

n ;

and

(8.15) Q′n =
δn
n
Q′ ◦ L[−1]

n .

We denote the orthonormal polynomials for µn by {pn,j}∞j=0 as in Section 1. We
also use the notation for the reproducing kernels and other quantities there. A
substitution shows that

(8.16) pn,j (x) = δ1/2
n pj

(
W 2, L[−1]

n (x)
)

and

(8.17) Kn (µn, x, y) = δnKn

(
W 2, L[−1]

n (x) , L[−1]
n (y)

)
.
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As in Section 1, we use the abbreviation Kn (x, y) = Kn (µn, x, y). Now we turn to
the derivatives.

Lemma 8.2
Let 0 < ε < 1.
(a) For x ∈ Jn (ε) and ` = 0, 1,

(8.18)
∣∣∣p(`)
n (x)

∣∣∣W (x) ≤ C

δ1/2
n

(
n

δn

)`
.

(b) For |t| ≤ 1− ε, ` = 0, 1, and k = n, n+ 1,

(8.19)
∣∣∣p(`)
n,k (t)

∣∣∣Wn
n (t) ≤ Cn`.

Proof
(a) The case ` = 0 follows from (8.2). Now

(x− a−n) (an − x) = δ2
n

(
1− Ln (x)

2
)
,

so we can reformulate part of our bound (8.2) on pn as

δ1/2
n |pn (x)|W (x)

∣∣1− L2
n (x)

∣∣1/4 ≤ C, x ∈ R,

and then also ,

(8.20) δ1/2
n |pn (x)|W (x)

∣∣1− L2
n (x)

∣∣ ≤ C, x ∈ [a−n−2, an+2] .

Here pn (x)
(
1− L2

n (x)
)
is a polynomial of degree n+ 2. Then our restricted range

inequality Lemma 8.1(viii) give that

sup
x∈R

δ1/2
n |pn (x)|W (x)

∣∣1− L2
n (x)

∣∣ ≤ C.
Next, we apply (8.9) to the polynomial pn (x)

(
1− L2

n (x)
)
, of degree n + 2: for

x ∈ Jn+2 (ε) ⊇ Jn (ε),∣∣∣∣ ddx {δ1/2
n pn (x)

(
1− L2

n (x)
)}
W (x)

∣∣∣∣ ≤ C n

δn
.

Then for x ∈ Jn (ε),

δ1/2
n

∣∣p′n (x)
(
1− L2

n (x)
)
W (x)

∣∣ ≤ δ−1/2
n |pn (x) 2Ln (x)|W (x) + C

n

δn
≤ C n

δn
,

by (8.2). Since 1− L2
n (x) ≥ C in Jn (ε), we obtain (8.18) for ` = 1.

(b) This follows from the identity (8.16). �

Next, the universality limits:

Lemma 8.3
Let 0 < ε < 1.
(a) Let W = exp (−Q) ∈ F

(
C2
)
. Then uniformly for u, v in compact subsets of

the complex plane, and x ∈ Jn (ε), we have as n→∞,

lim
n→∞

Kn

(
W 2, x+ u

K̃n(W 2,x,x)
, x+ v

K̃n(W 2,x,x)

)
Kn (W 2, x, x)

e
− Q′(x)
K̃n(W2,x,x)

(u+v)
= S (v − u) .
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(b) For µn defined above, we have uniformly for u, v in compact subsets of the
complex plane, and |ξ| ≤ 1− ε, we have as n→∞,

lim
n→∞

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)
Kn (ξ, ξ)

e
− n

K̃n(ξ,ξ)
Q′n(ξ)(u+v)

= S (v − u) .

Proof
(a), (b) This was established in Theorem 7.4 of [14, p. 771] for a bigger class of
weights. It was stated in Theorem 7.4 for real u, v but as noted in Lemma 7.3
above, it was stated in (1.13) in [14] that we have uniformly for u, v in compact
subsets of C, and Kn = Kn (µn) , and ξ ∈ [−1 + ε, 1− ε]

lim
n→∞

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)
Kn (ξ, ξ)

e
− n

K̃n(ξ,ξ)
Q′n(ξ)(u+v)

= S (v − u) .

Thus we have the conclusion of (b). Here from (8.15), (8.17), if x = L
[−1]
n (ξ) ∈

Jn (ε) ,

n

K̃n (ξ, ξ)
Q′n (ξ) =

Q′ (x)

K̃n (W 2, x, x)

so we also obtain the conclusion of (a), using

ξ +
u

K̃n (ξ, ξ)
= Ln

(
x+

u

K̃n (W 2, x, x)

)
.

�
Finally, we verify the remaining hypotheses (II), (III), (V).

Lemma 8.4
(a) The estimate (1.10) holds true for µn.
(b) The estimate (1.11) holds for |x| ≤ 1− ε.
(c) The estimates (1.13) and (1.14) hold for |x| ≤ 1− ε.
Proof
(a) From (8.16), we have

γn,j = δj+1/2
n γj

so from Lemma 8.1(vii),
γn,n
γn,n+1

=
1

2
+ o (1) .

(b) This follows from Lemma 8.1(ii) and (8.17).
(c) Firstly it is shown in Lemma 7.6(a) in [14, Lemma 7.6, p. 773] that {Q′n} are
uniformly bounded in compact subsets of (−1, 1). In Lemma 7.6(b) there, it is
shown that for fixed a > 0,

sup
|t|≤1−ε,|h|≤a,

∣∣∣∣Q′n (t)−Q′n
(
t+

h

n

)∣∣∣∣→ 0 as n→∞.

�

Proof of Theorem 2.3
We have verified the hypotheses (I) - (V) for the measures {µn} in Lemmas 8.2,
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8.3, 8.4. We can then apply the result of Theorem 1.1 to {µn}. The transformation
formula

G∗n (s) =
n∑
j=0

ajpn,j (s)

=
n∑
j=0

ajpj ◦ L[−1]
n (s) = Gn

(
L[−1]
n (s)

)
then gives the result, recalling the asymptotic from Lemma 8.1(iii):

1

n
K̃n (s, s) =

δn
n
Kn

(
W 2, L[−1]

n (s) , L[−1]
n (s)

)
W 2

(
L[−1]
n (s)

)
=

δn
n
σn ◦ L[−1]

n (s) (1 + o (1))

= σ∗n (s) (1 + o (1)) .

�

Proof of Corollary 2.4
It is shown in [17, Lemma 3.2, p. 55] that for x ∈ (−1, 1) ,

lim
n→∞

σ∗n (x) = σα (x) .

Moreover Lemma 8.1(iv) shows that {σ∗n} are uniformly bounded in [a, b]. �
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