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Abstract—Distributed energy resources (DERs), such as solar
panels, are growing rapidly and reshaping power systems. To pro-
mote DERs, utility companies usually adopt feed-in-tariff (FIT)
to pay DER owners (aka prosumers) fixed rates for supplying
energy to the grid. As an alternative to FIT, consumers and
prosumers can trade energy in a peer-to-peer (P2P) fashion. In
this paper, we focus on a P2P market using double auctions,
in which the payoffs of energy consumers/prosumers are deter-
mined by their bids and auction mechanisms. Special features
of a P2P energy auction, however, including zero marginal cost
and publicly-known reserve prices, may invalidate many the-
ories on auction design and hinder market development. We
discuss the impacts of such features on four specific clearing
mechanisms: k-double, Vickrey, McAfee and maximum vol-
ume matching (MVM). Furthermore, we propose an automated
bidding framework based on multi-agent, multi-armed bandit
learning, in which each agent only needs to utilize their own
bidding history to determine how to bid in the next round
through certain regret-minimizing algorithms. Numerical results
show that the k-double and McAfee auction appear to perform
better in terms of bidders’ surplus. However, if the auctioneer
also requires compensation, MVM can yield the most profit for
the auctioneer.

Index Terms—DPeer-to-peer market, double auction, multi-
agent systems, bandit learning.

1. INTRODUCTION

ISTRIBUTED energy resources (DERs) are a vital part
D of a smart grid, as such resources can improve system
reliability and resilience with their proximity to load, and
promote sustainability, with the majority of DERs being
renewable energy. To incentivize investments in DERs, two
general approaches exist: non-market-based versus market-
based. A widely used policy in a non-market-based approach
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is feed-in-tariff (FIT) (including net-metering). While effective
in promoting DERs, it may create equity issues as consumers
without DERs would face increased electricity rates to pay
for distribution systems’ maintenance costs. In a market-based
approach, DERs can choose to participate wholesale electricity
markets, as specified in the recent FERC Order 2222. To do
so, however, an aggregator is needed to pool DER resources
and bid into a wholesale market on behalf of DER owners, as
energy output from an individual owner (such as a household)
is too small; nor do the owners have the required expertise. In
addition, sending electricity from widely dispersed locations
over long distance to a bulk transmission system will incur sig-
nificant energy losses. An alternative market-based approach
is to have a local marketplace for consumers and DER owners,
also referred to as prosumers, to directly trade energy, hence
the so-called peer-to-peer (P2P) market. The actual rates that
market participants pay or receive will fluctuate over time,
reflecting the dynamic supply and demand conditions.

There are two prevailing mechanisms to match supply and
demand in a P2P market: bilateral matching and double-
auction. In a bilateral matching market, as described in [1],
buyers and sellers can continuously post their demand bids
and supply offers at a marketplace, and a clearing mecha-
nism similar to a stock exchange can be used to match the
supply and demand. A specific implementation of such an
approach within a distribution network can be found in [2].
In a double-auction approach, buyers and sellers submit their
price and/or quantity bids and offers to an auctioneer within a
bidding time window for a certain operation period. In addi-
tion to the two matching-based approaches, there have been
numerous works that use distributed optimization algorithms
to integrate DERs, such as using the well-known alternat-
ing direction method of multipliers (ADMM). All the three
approaches have been extensively surveyed in several litera-
ture reviews, including [3], [4]. In this work, we focus on the
double-auction approach. Note that this is not an endorsement
of the double-auction over other approaches, as each of the
three approaches described above has their merits and disad-
vantages. Our goal here is to highlight several unique features
of a P2P energy auction market, if the auction approach is
chosen. We identify the impacts of such features to the market
outcomes under different auction designs and propose a sim-
ulation framework, based on multi-agent, multi-armed bandit
games, that can be used to compare the auction designs with
repeated interactions among agents with bounded rationality.
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Game theory has been a predominant tool in analyzing P2P
trading, both for bilateral matching and double auctions. The
theoretical works of matching can be dated back to [5], and
a more recent account is in [6]. As stated in [6], all the the-
oretical works for matching-based P2P trading requires the
acyclicity assumption; that is, no agent can be both a seller and
a buyer. This is easily violated in a P2P energy market with
prosumers. For double-auction-based P2P trading, games of
incomplete information are the prevailing approach, as stated
in [7] and surveyed in [8]. Since an auction-based energy
market inherently involves repeated auctions and exogenous
uncertainties (e.g., wind/solar availability), the most fitting
equilibrium concept is the Perfect Bayesian Nash equilibrium
(PBNE) [9] for dynamic games of incomplete information.

A PBNE consists of the collection of each player’s strat-
egy profile, which is a function that maps the entire history
of the game to each player’s feasible set of actions. The
requirements for PBNE are too strong to be practical: each
player needs to choose a strategy profile that yields the best
expected payoff (given that other players choose their cor-
responding PBNE strategies) over all possible histories of
the game; then all players need to update their beliefs’ of
other players’ (unknown) payoff functions by the Bayes’ rule
through their own observations in each time period. Not only
such strategy profiles are not computable (as it would require
to find the best mapping over the functional space of all pos-
sible mappings, leading to an infinite-dimension optimization
problem), nor are electricity consumers/prosumers in reality
such sophisticated, which leads to the prevalent bounded ratio-
nality of market participants, such as no information of other
players in the game. In fact, they may not even know their
own valuation of energy production and consumption. This is
especially true for renewable-based DERs, such as wind and
solar, since they have significant investment costs but zero
marginal costs. It is not clear how such resources should bid
in a double auction. Furthermore, the participants’ valuations
are likely dependent, such as in a hot summer day, all buyers
would value high of energy consumption for air conditioning.
This feature would nullify the assumptions of many results
in auction theory, which require independent valuation among
bidders [10]. Last but certainly not the least, when buyers or
sellers’ bids are not cleared in an auction, the buyers have to
buy energy from a utility at a utility rate; while the sellers
have to sell to a utility at a fixed rate (such as the FIT). Such
rates essentially become the reserve prices for buyers and sell-
ers in the P2P auction, respectively, and such reserve prices
are public information. Such information may lead the sellers
to aggressively offer high prices, close to the utility rate, and
the buyers to aggressively bid low, close to the sell-back rate.
This may cause frequent unclearing of bids and offers and
extreme clearing prices, either close to the utility rate or to
the sell-back rate, depending on the supply and demand ratio.

There have been an increasing amount of works to study
double auctions in a P2P energy market, as surveyed in
[3], [4]. Here we focus on the works that are directly related
to ours. In [11], a double auction is proposed for residential
users, with the focus on biding with HVAC. It uses a pre-
determined demand curve (based on desirable temperature) to
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determine price and quantity bids for buyers; for sellers, they
all just bid a flat curve at some prevailing market price. This
model is further extended in [12], which propose a mechanism
to implement a social choice function. However, these works
focus on demand bids only, and the theoretical results require
the knowledge of consumers’ utility functions. Reference [13]
considers explicitly a double-auction, but only uses an aver-
aging mechanism to determine clearing prices; that is, add all
buyers and sellers bid/ask prices and then divide by the total
number of bidders. Such a mechanism would make every bid-
der possible to manipulate clearing prices. [14] implements a
variant of the McAfee auction, which will also be discussed
in this paper, and proposes an approximate dynamic program-
ming (ADP) approach to help bidders bid. The reward function
in the ADP is set to be the economic cost of prosumers, which
can be ambiguous for zero-marginal cost resources. This is
the view shared in [15], which is the closest to our works.
Reference [15] recognizes several issues that are also empha-
sized in this paper, including the zero-marginal-cost issue,
and numerically compares three auction mechanisms: uniform-
pricing, Vickrey and pay-as-bid, all of which will be analyzed
in this paper as well. However, [15] only lets sellers bid lev-
elized investment costs of the resources they own. This neither
is a strategy nor does it have theoretical justifications, as fixed
costs should not be factored into operation/bidding decisions.

Despite the existing works, significant knowledge gaps
remain before actual implementing a P2P market. Most impor-
tantly, few studies have focused on the repeated nature of local
energy trading, and the potential of market participants to learn
to overcome their bounded rationality. A notable exception
is [16]. In [16], the authors consider repeated double auctions
in a P2P energy market, very similar to the settings in this
paper, through multi-agent reinforcement learning (MARL).
The paper uses a centralized learning, decentralized imple-
mentation approach (named the multi-agent deep deterministic
policy gradient (MADDPG) algorithm, as developed in [17])
to let the central auctioneer run the reinforcement learning
(RL) algorithm on behalf of all the bidders and train a pol-
icy jointly for all the bidders, and then pass the agent-specific
value function information to each bidder to implement their
own strategies. In this sense, the MADDPG algorithm is still
a centralized alg.'.rorithm,l which is likely to encounter practi-
cal hurdles, such as the lack of a such sophisticated central
entity and the lack of transparency of the central algorithm
from the bidders’ perspective. There have been recent works
on consensus-based decentralized MARL algorithms, such
as [19], [20]. However, whether such algorithms can be applied
to repeated double auctions (or to any P2P energy trading
setting) needs further exploration. Regardless, all the MARL-
based approaches mentioned above suffer the drawback of
scalability, as the maximum number of agents presented in
numerical examples in the papers of [16], [17], [19], [20] is
20, which already takes a significant number of episodes to
train a policy. In addition, it is unclear if any of the MARL

Ut is well-known that a naive decentralized MARL algorithm by simply
letting each agent run their own RL does not work (see [18]) in the sense
that the multi-agent system will not exhibit any stable outcomes in general.
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algorithm can handle a dynamic agent pool; that is, the number
of agents may change over time.

Inspired by the work in [21], we propose an alterna-
tive framework to model multi-agent repeated interactions
in double auctions. Instead of having each agent solving a
reinforcement learning problem, we discretize the decisions
and have each agent solve a multi-armed bandit problem.
Specifically, each agent uses an algorithm to choose an action
(referred to as an arm) from a finite number of available actions
at each round of an auction. The collective actions of the
agents determine the reward for each agent, who can com-
pare it with the best-possible reward in hindsight, with the
difference defined as regret. Each agent then seeks to find
an algorithm to minimize their own cumulative regret. While
regret-minimizing algorithms have been well-established for
single-agent multi-armed bandit (MAB) problems, such as the
famed Upper Confidence Bound (UCB) algorithm [22], multi-
agent MAB games have only received attention recently, which
is considered a special case of a MARL game, as surveyed
in [23]. The multi-agent MAB game framework is a com-
pletely decentralized approach, as agents only need to use
their own past bidding and reward information to make deci-
sions, without needing to exchange information with any other
agents; nor does it need any entity to run a centralized algo-
rithm (other than, of course, an auctioneer to clear the market;
though the clearing can be automated as well through a ledger-
based system, such as blockchain). In addition, the MAB game
framework is highly scalable, as it is built upon the mean-field
concept; that is, each agent believes that the system is stabi-
lized at a steady state such that their individual actions will
not affect the steady state. It can also easily accommodate a
dynamic agent pool.

In this paper, we demonstrate the applicability of the
MAB-game approach in repeated games with incomplete
information and bounded rationality, and use it to compare
four specific double-auction mechanisms: k-double auction,
Vikrey, McAfee, and maximum volume matching (MVM). Our
contributions in this paper are threefold.

e On the modeling side, we present the detailed exten-
sion of a multi-agent MAB game from its general setting
in [21] to the specific setting of a double-auction in an
energy market.

« On the theoretical side (independent of the MAB game
framework), we establish theoretical properties of the four
auctions under the unique features of a P2P energy mar-
ket. We show that the k-double auction and the MVM
mechanism are not truth-revealing; while the specific
setup of the Vikrey and McAfee auctions in our setting
preserve their truthfulness property.

s On the simulation results and their market design impli-
cations, we show that while truthfulness is a desired
theoretical result in general, when bidders have bounded
rationality and do not know their own valuation, the best
they could do is to be truthful with respect to the reserve
prices, which would lead to bang-bang type of clearing
prices. The clearing prices are also sensitive to the supply
and demand ratio in a particular round of an auction. Such
results may not be obtainable without the MAB-game

framework, and we believe that these results are important
for policy makers/market designers to know, as other-
wise the outcomes of a double-auction-based P2P market
may not bring the desired results to either consumers or
prosumers.

The rest of the paper is structured as follows. Section II lays
out the details of the MAB-game framework to study repeated
double-auctions in a P2P energy market. Section III introduces
four specific auction mechanisms. Their theoretical properties
are discussed in Section I'V. Numerical results are presented in
Section V; while limitations of the current work and possible
future research are discussed in Section VI.

II. LEARNING IN DOUBLE AUCTIONS

Consider an electricity distribution network. Without a mar-
ketplace, prosumers can only sell their generated energy to a
utility or a DSO at some pre-defined FIT, denoted as Pgyr;
similarly, consumers can only buy energy from a utility at the
utility rate (UR), denoted as Pyg. Throughout this paper, it is
assumed that Prrr < Pyg.

A. Agents and Types

We consider three kinds of market participants: pure buyers,
pure sellers, and prosumers. For the last group, their role is
not fixed; namely, a prosumer can be either a buyer or a seller
at any particular round of an auction, just not at the same time.
More specifically, let .Ag denote the set of buyers at round h
of an auction (such as at a particular hour A in a particular
day), and A" be the set of sellers in the same round. Then
AN A" = @. Furthermore, let A" := A U A%, Not only the
sets .Ag and A" may change over A, so is the joint set A". The
changing agent sets are both to account for prosumers’ altering
positions and to reflect situations where some agents may leave
the auctions (such as moving out of the local network) and
new agents may join. We want to highlight this capability
and flexibility of dealing with dynamic agents as a particular
benefit of the learning-based approach.

In a double auction, both buyers and sellers need to decide
their bid/ask prices and quantities of energy. As a start-
ing point, we do not consider storage options in this work
(and will discuss the challenges of considering storage and
potential solutions in the conclusion section). Without stor-
age, the energy quantities produced by DERs are likely
not controllable, and hence we assume that any quantities
minus self-consumption will be sold to the local market.”
Consequently, agents only bid/ask energy prices. While the
agents do not control quantities, their demand and output quan-
tities from DERs are still stochastic, reflecting the generation
variations from renewable resources. To account for agent het-
erogeneity, we use a generic variable y:‘ to denote the type of
agent i € A" in a particular round hk, which specifies what
kind of market participant i is, as well as the distributions of
their energy consumption and generation quantity at A. The
set of all possible types for an agent i is denoted by Y;.

2This is exactly the case of a grid-tied solar system, where the grid
essentially serves as a battery.
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B. Discrete Price Arms

Since the majority of DERs are solar and wind resources, we
assume that the sellers’ marginal costs are all 0.> Hence, any
rate higher than Pgyr would be attractive to sellers; similarly,
buyers would want rates lower than Pyg. In another words, any
rate in the range of (Pgrr, Pyg) would be preferred by both the
buyers and sellers. To implement a learning-based algorithm,
we discretize the interval [Pgrr, Pyr] into M elements, such as
by a quarter or a dollar increment, and refer to each element
pm) € [Pgr.Pypl, m = 1,..., M, a price arm. At each
round of an auction, each buyer/seller chooses a price arm to
bid/ask. Since the zero marginal-cost of energy production is
common-knowledge to all agents, as well as the de facto price
ceiling (Pyg) and price floor (Ppyr), the agents (both buyers
and sellers) try to learn how to choose the price arms in the
repeated auction to maximize their rewards, with the rewards
being explicitly defined in the next subsection.

C. Rewards

Conceptually, the (marginal) rewards for buyers in one-
round of the auction is the difference between the prices they
pay for one unit of energy and Pyp; similarly, the (marginal)
rewards for sellers is the difference between the prices they are
paid and Pgyr. To aid model development, it is more conve-
nient to scale the agents’ rewards between 0 and 1. To do so,
we first define two benchmarking payoffs; that is, the lower
and upper bound of an agent’s payoff. (Note that for buyers,
payoffs should be understood as payments to purchase energy.
They are negative numbers in our modeling setup and hence,
it is still that the bigger the payoff, the better for a buyer.)

Let qf‘ denote agent i’s demand or generation at a round A
of an auction. To ease the arguments, we drop the round (or
time) superscript in the notation within this subsection, and it
is understood that all discussions are within one round of the
repeated auction. The quantity g; is negative for a buyer and
positive for a seller. For a buyer, the lower bound of the payoff
is naturally to pay all of g; at Pyg; for the upper bound, we
define it to be g;-Ppyr, as no sellers would be willing to supply
energy at a rate lower than Pprr. (Note that g; is negative
for a buyer; hence q;Ppir > q;Pyg with the assumption that
Prir < Pyg). For sellers, the lower and upper bounds are
exactly reversed. To avoid discussing the buyers and sellers
separately, we use the indicator function 1y to define the lower
and upper bound of payoff for any agent i € A as follows:

Ai = gi - [Pur - Liiea,) + Prir - LiieAy)]: )
Ai = gi - [Pri - Lijea,) + Pur - Lijieay]: @

where 1y 4,) = 1 if agent i is a buyer and is zero otherwise.
The definition for 1j;c 4,; is the same.

Now let A; denote the actual payoff of agent 7 in a round
of the auction. Throughout this paper, we assume that for the
uncleared bid or ask quantities in an auction, they will be
purchased by a utility company at Pyg or sold to a utility at

3Note that we actually do not need any assumptions on marginal costs.
Assuming zero marginal costs just makes it easier to gain insights from the
numerical results.
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Pryr, respectively. Note that depending on the specific auction
design, there can be partial clearing, meaning that for the same
bidder, only part of their bid/ask quantity may be cleared.
Hence, within any round, an agent’s payoff consists of two
components: the payoff from participating the auction (denoted
as A{"), and the payoff from selling to or buying from the
utility (denoted A¥); that is,

A= AP+ A", 3)

More specifically, let i denote agent i’s cleared quantity in
an auction (¢¢“ = 0 for i € Ay, and ¢ < 0 for i € Ap), and
pi* be the corresponding unit price determined by an auction
for agent i to receive (if a seller) or to pay (if a buyer). Then
A% = pi. g2, Similarly, we have that A¥ = p¥ . g%, where
p¥ = Ppr ifi € Ay, and p¥ = Pyg if i € Ap, and ¢** denotes
the uncleared energy quantity for agent i.

With the above notations, we can now define the normalized
reward as m; ‘= (A; — A,-);‘(K,' — A;). It is straightforward to
see that if agent i’s Ecti?n clea.rinﬁrice piisin [Pgrr, Pygl,
we have A; € [A;, A;] and hence m; [0, 1]. If agent i is not
cleared in an auction at all, then A; = A; and ; = 0.

Note that in our simulation, we do allow sellers to ask above
Pyr, and buyers to bid below Pgyr. This is to represent the
case that either the auction agents have bounded rationality
(in the sense that they do not recognize the practical price
ceilings/floors) or the agents are greedy, as if they want to try
their luck to earn a higher payoff in one round of the auc-
tion. Our numerical results later show that indeed the auction
clearing price can go beyond Pyg or below Ppgyr in certain
rounds. (But such clearing prices cannot be sustained in the
repeated auctions as the counterpart agents can quickly learn
to reverse the course.) To prevent the normalized reward to go
outside the range of [0, 1], we expand the definition of m; for
all i € A as follows:

1 LieA,} +0- Ljiea,), for pi“ < Prr
i = (Af _MKW_Ms for Prr < pi* < Pyr (4)
0- Ngic g,y + 1- Ljica,y, for pi* > Pyg.

D. Policies and Regret Minimization

Once the reward of each agent is defined, each agent learns
from the history of the game to decide what to do in the next
round. The history of the game for agent i is recorded in the
state variables. For agent i at the h-th round of the repeated
auction, the state variable, denoted by zf‘, is a vector of 2M
elements, with M defined earlier as the number of price arms.
The first M elements record the number of times that each arm
m e {1, ..., M} has been chosen by agent i; while the second
M elements denote the average rewards (from the first round
to the current round h) associated with each arm m. Let Zf'
denote the set of all possible states for agent i at round h. A
policy, also referred to as a strategy or simply an algorithm,
is a mapping from Zf’ to a probability distribution over the
arms.

Note that an agent’s reward at each round of the auction
does not only depend on which arm they choose, but also
depends on the collective actions of all agents. The outcomes
of all agents’ actions in a specific round 4 can be represented
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by a quantity referred to as the population profile, which is
the histogram of the arm choices by all the agents at round A.
Let f'Ahl(m) denote the population profile for a specific arm
m, where |A"| denotes the number of total agents at round A.
Then
| A

4% m) = —= 3" 1{oi(2d) =m}, (5)
A" i=1 l
where the function ]l{ar,-('zf) = m} = 1 if agent i chooses the
arm m at round & and is zero otherwise.

A key technical difficulty with a multi-agent MAB game is
that the population profile is both random and does not follow
a stationary distribution. The essence of a mean-field approach
is to assume that each agent believes that the population profile
is in a steady state, denoted as f = {f (m) }‘g:l. Under a station-
ary population profile, we can define the best possible reward
in one round for agent i as :rr,-’"(f) = maXpm=1,._um E[m(f, m)],
where mr;(f, m) denotes the reward of agent i for choosing price
arm m under the population profile f. Let o; be an arbitrary
policy for agent i to choose an arm at each round. Over D
rounds, we use I'y;(D, m) to denote the number of times that
price arm m has been chosen by the policy ;. Then we can
define agent i’s cumulative regret under the policy o; as below:

Ag =7} (f)-D— Z E[mi(f.m) - To(D,m)]. (6)

m=1,...M

The regret A, in Eq. (6) is the expected cumulative
loss due to the fact that the policy o; does not necessarily
always pick up the optimal price arm under the stationary
population profile f, which is unknown to the agent. A pol-
icy o; is called a no-regret policy if the regret in Eq. (6)
satisfies: A, /D < R(D, M), where the function R is o(1) with
respect to D, and M is the total number of arms. Regret-
minimizing policies for a single-agent MAB problem have
been well-studied (under the assumption that the distribution
of the exogenous uncertainty is stationary). One popular pol-
icy is the UCB algorithm [22], whose idea is simple: at the
D-th round of the game, an agent chooses the arm 71, with

where T1;(m) represents the average reward for agent i when
the arm m is chosen up to round D, and I';(D, m), as defined
earlier, is the number of times that the arm m has been chosen
up to round D. The above formulation reflects the trade-off
between exploitation (choosing an arm with the highest payoff)
and exploration (trying as many arms as possible).

E. Specific Implementation

In this section, we put things together and describe the
detailed implementation of the MAB-game framework from a
single agent’s perspective, with an agent being broadly defined
as a single household, a smart building or even a microgrid.
Each round of a double-auction is assumed to be organized
for some time ahead; that is, the auction is to determine
the price and quantity of traded energy for a specific time

in the future. For example, this can be day-ahead, which
will be very similar to the wholesale energy market opera-
tion, hour-ahead, or even 15-minute-ahead. At each round,
an agent is to choose a specific price from the discretized
range of [Pprr, Ppr] to bid or ask, where the discretized
price range has M elements. Each agent has a 2M-dimension
vector that is assumed to be saved on their local device
(such as the home energy management system (HEMS)):
[T:(D, ),...,TiD, M), TI(1),..., M) € ®RM. As dis-
cussed in the previous subsection, the first M elements indicate
how many times each price arm has been chosen; while the
second M elements represent the (average) cumulative regret
corresponding to each price arm m. For prosumers, however,
since they can be either sellers or buyers in a particular round
of an auction, depending on their net energy positions, they
have to maintain two sets of the 2M vectors, one set to be used
when the prosumer will be a buyer in the coming round of the
auction, and the other set for the case that they will be sellers.
With the 2M vector, each agent can choose a bandit learn-
ing algorithm, such as using the formula in (7). More bandit
learning algorithms can be found in [24]. As mentioned in
Section II-A, we assume that agents do not choose a quantity
to bid; they simply bid for all their energy demand or offer
all their net energy production. Once all the bid/ask prices
are collected (by either an auctioneer or an open-ledger-based
system) with the corresponding quantities, a clearing mecha-
nism (to be discussed in Section IIT) will match the supply and
demand bids to determine how much each agent will pay or
get paid at what quantity (note that there can be partial clear-
ing of an agent’s bid quantities). Consumers with uncleared
demand will then buy from their utility company, and sellers
with uncleared supply offer will sell to the utility. The auction
then moves to the next round.

We want to emphasize here some key benefits of the
learning-based approach in a repeated game, including mini-
mal information required for each agent, policy heterogeneity,
and policy automation. As seen in (7) (and in other poli-
cies as well), only the vector of state variables is needed to
implement a policy, and all such information is private (that
is, with the agent i/ index). No other agents’ information is
needed; nor does the private information need to be shared
with others. Implementing a specific policy usually requires
very simple calculations, and no sophistic optimization is
required. Bandit learning policies can also be programmed into
electronic devices, such as HEMS, and can be automated. In
addition, the overall framework does not require each agent
to use the same policy. In all of our numerical results, agents
are randomly assigned to use different polices and market out-
comes, based on numerical experiments, are very robust with
respect to policy heterogeneity.

F. Network Constraints

As pointed out in [3], P2P energy trading includes two lay-
ers: virtual layer and physical layer. Our proposed work clearly
focuses on the virtual layer, which is to provide a platform
for energy buyers and sellers to have equal access to create
and execute orders. The physical layer, on the other hand,

Authonzed licensed use limited to: Purdue University. Downloaded on February 10,2023 at 03:30:04 UTC from IEEE Xplore. Restrictions apply.



598

refers to the physical network (such as the location distri-
bution network) to facilitate the actual delivery of electricity
from the cleared sellers to buyers. The physical layer should
no doubt be an integral part of any P2P energy market, as
transactions at the virtual layer may lead to network infea-
sibility and hence are invalid. While we do not consider the
physical layer in this work, we want to point out that it is not
necessarily the limitation of the MAB-game framework. For
example, after collecting the bids/asks, the auctioneer can run
a power flow model to ensure physical feasibility. If the bids
would lead to infeasibility or reliability concerns, the auction-
eer (likely a utility company or a distribution system operator
(DSO)) can just reject all bids/asks and re-solicit them. The
agents can modify their algorithms a bit to assign a big penalty
to the arms they chose in this situation so that jointly the
infeasible situation is much less likely to occur in the future
(although this would work better when agents can bid both
price and quantity than just bidding price only). This is the
idea we used in another line of our work [25], in which we
used the MAB-game approach to model consumers’ response
to real-time prices of wholesale energy markets. There we
explicitly embedded a system operator’s optimal power flow
problem into the MAB-game and the results showed that
agents can even learn to alleviate congestion at different time
and locations to reduce their electric bills. These being said,
incorporating distribution network constraints in a double auc-
tion is not a trivial matter. We refer to this as a future research
direction.

G. Discussion of Convergence

In [21], a mean-field approach is proposed to address the
theoretical issue of an MAB game, which contains a large
number of agents, and each agent believes that the system is
stabilized at a mean field steady state (MFSS) such that their
individual actions will not affect the steady state. Under this
belief and the assumption that each agent’s reward is contin-
uous with respect to the population profile, [21] shows the
existence of the MFSS. In addition, they show that if the
reward function is also Lipschitz continuous with respect to
the population profile, then the MFSS is unique; as the number
of agents grows to infinity, the dynamics of the multi-agent
system will converge to the unique MFSS. These results are
really desirable, as it shows the robustness of the approach
(with a unique MFSS to converge to) and its scalability,
which overcomes the computational issues of other MARL
algorithms as mentioned in the introduction section that may
not scale well with more agents. Unfortunately, the key con-
tinuity assumption does not hold in the auction situation,
as each agent’s reward depends on if they win or lose the
auction, which can change abruptly with a small change in
population profile. Despite the lack of theoretical results, our
numerical experiments do show the emergence of a steady-
state population profile in all the simulations. We also want
to point out that the reward function is usually required to
have a finite support in a single-agent bandit learning algo-
rithm, such as the UCB algorithms [22]. Without the finite
support, the regret-minimization property of the established
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Fig. 1. k-double auction.

bandit learning algorithm may not hold. Consequently, the
numerical outcomes of the multi-agent MAB-game in our
specific setting may not be as good as what we obtained
(in terms of convergence) without the specific approach we
designed to convert agents’ energy bills or payments into
rewards defined on [0, 1], as in (4). Hence, we consider our
framework a non-trivial extension of the multi-agent MAB
game into repeated double-auctions, with such a framework’s
theoretical properties certainly call for further research.

II1. DOUBLE AUCTION DESIGNS

In this section, we lay out four specific auction designs to
realize a multi-unit, double-side auction. While some of the
auction designs are well-known, such as the k-double auction
and the Vickrey auction, we do want to provide the complete
details of the clearing mechanisms (such in the case of over-
supply or over-demand, or there are ties in the bids) in the
specific context of a P2P energy market so that there is no
ambiguity in terms of market clearing.

A. k-Double Auction

To start with, all bids/asks are sorted by their bidding/asking
prices, which result in the stair-wise demand/supply curves as
shown in Fig. 1. At the quantity of the intersection point Q*,
where the aggregate demand and supply meet, the last step of
the cleared bids from buyers are denoted as (pbr, gbr), and
highest cleared asks from sellers are denoted as (psy, gsH).
The k-double auction represents a whole class of auctions
with similar designs, with the market clearing price P* =
kpby + (1 — k)psy, where k < [0, 1]. For the clearing mecha-
nism to work under any supfly.fdemand conditions, we define
two rules. Rule 1 — If 3, gbr > Y gs; (referred to
as over-demand), all the asks with h < H are cleared, and
sell all their quantities at price P*; all the bids with [ < L
are cleared, and the clearing price for all the buyers is also
P*. However, the quantity for each cleared buyer [ is not the
quantity they bid; it is scaled back by the amount of over-
demand. Specifically, for each buyer / < L, their cleared
quantity is gb; — (Z,il gby — > 4_1gsn)/L. As mentioned
earlier, uncleared supply is assumed to sell to a utility at
Prrr; while uncleared demand is to buy at from the utility

Authonzed licensed use limited to: Purdue University. Downloaded on February 10,2023 at 03:30:04 UTC from IEEE Xplore. Restrictions apply.



ZHAO et al.: COMPARISONS OF AUCTION DESIGNS THROUGH MULTIAGENT LEARNING 599

price
(e/KWh)
A

Py

Phr

pEg

il E
| e, gaha) : E
E I ; demand

) i
Pppp PEf-insSnrnrn= S Assamenn "
i

quantity
(KWh)

Fig. 2. A Vickrey-variant double auction market.

at Pyg. This is the same across all the rules and all the auc-
tions below, and hence will not be stated again. Rule 2 —
If ZLI gh < Zf=] gsy, (referred to as over-supply), all the
buyers’ bids with / < L are cleared and buy all their demand
bids gb; at the price P*; all the supply asks with h < H are
cleared and sell at the price P*, but their cleared quantities
are scaled back to gs, — (30, gsi — Yk, gb1)/H. Note that
we add the scaling-back rule here to ensure that no sellers
or buyers are arbitrarily favored by the clearing mechanism.
This is inspired by the rule in [26] and may not be present
in the common uniform-pricing-based auction design in the
literature.

To aid the comparison among different auction designs, we
define the concept of auction surplus as the total surpluses of
buyers and sellers, and denote it as S. We also denote the auc-
tioneer’s surplus by Sg,. In a k-double action, since the market
clearing price P* is the same for both buyers and sellers, the
auctioneer always has zero surplus. For buyers, we define their
surplus as ZieAb(A;—Ai), with A; and A; being defined in (1)
and (3), respectively. The buyers surplus in a k-double auction
is the upper rectangle (of dark pink color) in Fig. 1. For sell-
ers, since we assume that all sellers’ marginal costs are zero,
their surpluses equal price times quantity, with the price being
set by an auction if the supply ask is cleared, or being Py if
the ask is not cleared. In Fig. 1, suppliers surplus is the green
area plus the blue area. With the above definition of buyers and
sellers’ surplus, we can write their surplus in a simple way for
the k-double auction as S¥—4ouble — pyn. 0% + Pprr - (Qs — O%).

B. Vickrey Variant Double Auction

Vickrey auction [27] is one of the most famed auction
designs, mainly due to its truth-revealing property (which we
will discuss in the next section). The original Vickrey auction
has been extended to a double-side version for multiple-units
goods in [26]. Here we refer to it as the Vickerey-variant auc-
tion. Similar to the k-double auction, all bids/asks are sorted
by price as shown in Fig. 2,

The detailed setup of the Vickrey-like auction is documented
in [26] and is omitted here. However, we do want to point out
that the key difference between the Vikrey and the k-double
auction is that the Vikrey auction clears only up to (H — 1)-th
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Fig. 3. McAfee double auction market (Case A).

sellers and (L — 1)-th buyers, and their clearing prices can be
different (such as pb; for cleared buyers and psy for cleared
sellers in Fig. 2.)

Based on the clearing rules, the total cleared quantity
in the Vickrey-like auction (denoted by QY) is @V =
min(3 1= gbr, Y H-! gsi). Regarding to auction surplus, the
auctioneer now has a positive surplus due to the difference
between the cleared buying and selling price (as illustrated
in the yellow shaded area in Fig. 2). Mathematically, SL =
(pbr. — psu) - Q". The total agents’ surplus in a Vickrey-like
auction is: S = [(Pur —pbr) +psul- Q" + Prrr - (Qs — @),
as represented by the light purple area in Fig. 2.

C. McAfee’s Double Auction

This mechanism is a variant of the Vickrey-like auction,
suggested by McAfee [28]. Consider Py := %(pbul +psygat),
as shown in Fig. 3. There are two cases — Cases A: if
Py < [psu, pbi], then the auction is the same as the k-double
auction, with a uniform clearing price of P* = Pg. The first L
buyers and H sellers are cleared. Case B: if Py & [psy, pbLl,
the mechanism becomes the Vickrey-like auction, with up to
the (L — 1)-th buyer and (H — 1)-th seller being cleared.

D. Maximum Volume Matching (MVM) Double Auction

While the above three mechanisms differ in the details of
how market clearing prices and quantities are determined,
they all build upon the same idea of stacking supply and
demand to find the intersection point. With a drastically dif-
ferent idea, [29] proposes a pay-as-bid auction whose sole
purpose is to maximize the cleared volume of the traded goods.
Such an auction is referred to as the MVM auction. The idea
of maximizing traded volume is appealing in our context, as it
could help promote the penetration of renewable energy. The
mechanism of the market clearing process is as follows. We
start with the regular stacked supply asks/demand bids curves
as in Fig. 1. Then the supply stack is flipped horizontally
around the vertical axis, as illustrated in Fig. 4.

The flipped supply stack is then shifted rightward towards
the demand curve until that any part of the two curves touch
the first time. The distance from the origin to the right end
of the flipped supply curve after shifting, denoted by o
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and illustrated in Fig. 4, is exactly the maximum trading vol-
ume that the auction can achieve. Consequently, OMYM amount
of demand quantities of the highest bids are cleared; sim-
ilarly, the same amount of the lowest ask quantities from
suppliers are cleared. The cleared bids/asks are then matched
in an ascending order with respect to bid/ask prices. Let Cp
and C, denote the set of cleared bids and asks, respectively.
The total surplus of all agents can be written as SMVM
2 1ec, PUR —pb1) - qb1+ 3 _4ec. PSh - qSh+ Prr(Qs — MM
as represented by the light purple area in Fig. 4. The auction-
eer’s surplus (represented by the yellow area in Figure 4) can

be written as SMM — 2tec, Pbi- b)) — X e, (PSh - GSh)-

IV. ANALYSIS OF THE AUCTION MECHANISMS

In this section we will analyze the theoretical properties of
the four auction designs, with focuses on strategy-proofness
and budget balance. While the main focus of this paper is
to develop a multi-agent learning framework to implement a
double-side auction, which does not rely on any of the the-
oretical properties, the purpose of the discussions here is to
highlight the special settings of a P2P energy auction and their
consequences. One thing to note is that the theoretical proper-
ties discussed below are only for a single-round auction, which
may not hold in a repeated setting [30]. The task of estab-
lishing theoretical results for repeated double auction is very
daunting, which again makes the multi-agent learning-based
framework a valuable approach.

To make this paper stand-alone, we first present the def-
initions of the various well-established concepts in auction
theory and mechanism design. To ease the presentation, we
let n denote the total number of buyers and sellers, and again
drop the round superscript h.

Let A denote a set of alternatives. In our setting, A =
{(pi:gi):i = 1,...,n}, where agent i can choose the price p;
to bid or ask while the quantity g; is assumed to be fixed. The
preference of each agent i is modeled by a valuation function
viitA — R, where v; € V;, with V; being the set of possi-
ble valuation functions for player i. We first give the formal
definition of a mechanism.

Definition 1 [31, Definition 9.14]: A mechanism is a social
choice function f : Vi x---xV, — A and a vector of payment
functions p1,...,pn, Where p; : Vi x --- x V,, — R is the
amount that agent i pays or receives.
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Definition 2 [31, Definition 9.15]: Foreach i = 1,...,n.
Letv_; == (vi,...,Vi_1,Vit1,...,Vy) be the vector with the
i-th component removed, and V_; := IT{.,;V; be the Cartesian
product of the sets Vi,...,V, without V;. A mechanism
(f.p1.....pn) is called strategy-proof (also known as incen-
tive compatible or truthful) if for every agent i, every v; € V;
and every V_; € V_j, vi(a) — pi(vi, V') = vi(@) — pi(v;, v_)),
where a == f(v;,V ;) and @’ :==f(v;,V ).

Note that the price p;(v;, V'_;) is positive for buyers and neg-
ative for sellers. The above definition can be understood as
follows: while v; represents agent i’s true valuation, the agent
may claim other (non-truthful) valuations v;. If a mechanism is
strategy-proof, then the social choice f, together with the cor-
responding payment functions, will ensure that an agent will
not be better off in terms of the net utility v;(a’) —p;(v}, V' ,),
if they do not reveal their true valuation.

A big issue with the above definition in our specific con-
text is that consumers (and prosumers) do not really know
their valuations of electricity consumption (and generation
with zero-marginal costs). Such valuations also change over
time. For example, it is more valuable to consume energy in
a hot summer day than in a calm spring night. In addition,
all consumers’ valuation will be higher than Ppp, as other-
wise they would choose not to use electricity at all. However,
if they all truthfully reveal their valuation in an auction, the
auction clearing price will be higher than Pyp, which would
make consumers worse-off and the auction pointless.

While many existing works assume that consumers
maximize their utility functions (valuations minus costs) to
make decisions, we do not believe that such is a reasonable
assumptiorl.4 The learning-based framework, as described in
the previous section, does not use agents’ valuation at all.

Without using agents’ true valuation, the next best goal for
an auction design is strategy-proof with respect to reservation
price, as proposed in [26], which means that each agent will
truthfully report their reservation price. However, while reser-
vation prices are private information in a typical auction (such
as bidding on eBay), they are clearly public information in a
local P2P energy market, with Pyp and Pprr being the buy-
ers and sellers reservation prices, respectively. We will show
below that in certain auction designs, such public information
will result in the bang-bang type of market clearing prices; that
is, the clearing prices will be either Pyg or Pgjr, depending
on the total supply and demand quantities.

To further compare the outcomes of the four auctions, we
introduce an additional concept of budget balance [26], which
states that an auction is strongly budget balanced if the pay-
ments from cleared buyers and sellers always sum to zero
exactly. If the sum is always nonnegative, it is weakly budget
balanced.

In the following, we will analyze the above-defined concepts
for the four auction mechanisms.

4We understand that the valuation also includes consumers’ preference of
comfortable level, such as the temperature level of an air conditioner. We
will address this issue when we discuss the limitations and extensions of the
current work.
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A. k-Double Auction

We first show that the mechanism of k-double auction is not
strategy-proof with respect to reserve prices.
Assumption 1: All buyers and sellers truthfully submit their
quantities to buy or sell.
Assumption 2: The reservation prices of buyers and sellers
Prr and Pypg, respectively, are both public information.
Proposition 1: Consider a single round k-double auction
with k£ € [0, 1], where buyers and sellers only bid prices.
Assume that Assumption 1 and 2 hold. Furthermore, let aj
and @b denote the total supply and demand quantities (not
just cleared bids) in the auction, respectively. If the relationship
between ‘Q: and @, is also public information (that is, @s > ’QE
or Qs < @b), then the k-double auction is not strategy-proof
with respect to reservation prices.
Proof: If all agent bids truthfully with respect to the reser-
vation price, then the market clearing price in the k-double
EuctionAwill be kPyr + (1 — k)Pprr. For the case where
Qs < Oy, consider a seller g: if all other sellers ask Pgyr,
and all buyers bid Pyg, then seller g can ask P&. All Jtpe
agent’s ask quantities will still be cleared, since Q; < Q.
Then the market clearing price would be kPyr + (1 — k)P,,
strictly greater than kPyg + (1 — k)Pgyr, and hence, seller g’s
utility is strictly higher. Similar arguments can be made for
buyers when Qs > Op. |
When &k = 0 or 1, Assumption 2 actually can be dropped,
meaning that even without knowing the actual supply and
demand situation, the agents still do not have incentives to
bid the reserve price. The proof is a simple extension of the
above argument and is omitted here.
The non-strategy-proofness of the k-double auction is not
surprising, as in such a mechanism, the marginal bidders
(namely, the lowest bids and the highest asks that are cleared
in an auction) set the market clearing prices, which gives
agents incentives to manipulate the clearing prices in their
favor.
While Proposition 1 is about the property of the auction
mechanism, in the following we study from the perspective of
the agents, and discuss what bidding strategies can lead to an
ex-post Nash equilibrium, as defined below.
Definition 3 [31, Definition 9.22]: A profile of strategies
S1,..., 5, of n agents is an ex-post Nash equilibrium if for
alli =1,...,n, all types y; € ¥;, and all feasible actions af
of i, we have that m;(yi, 5i(¥i), s—i(y—i)) = mi(Vi, a;, s—i(y—i)),
where m; is i’s utility function.
In essence, an ex-post Nash equilibrium requires that s;(y;)
is the best response to s_;(y_;) for all possible y_;, which is
the collection of other agents’ types.
Proposition 2: Under the same context and assumptions in
Proposition 1, with a given k € [0, 1], we have the following.
(1) If Qs > Qb, all agents bidding/asking Ppyr is an ex-post
Nash equilibrium.

(2) If QS < Qb, all agents bidding/asking Py is an ex-post
Nash equilibrium.

(3) If Qs = Op, and let P be a given price in [Prrr, Pygl.
Then all agents bidding/asking P is an ex-post Nash
equilibrium.

Proof: The proofs for all the three situations are similar;
hence, we only show the proof of case (3) here. In (3), the
strategy for any agent (buyer or seller) is that s;(y;) = P,
for all i € A, and all y; € ¥;. With this strategy, all buy-
ers’ and sellers’ quantities are cleared (since @s = @b). Now
assume that a particular buyer j chooses pb; # P.If pbj > P,
buyer j’s bid will be cleared, but the market clearing price
is still P and buyer j’s utility is the same as bidding P. If
pb; < P, J’s bid will not be cleared, since all sellers ask P.
Then buyer j’s utility is zero, strictly less than bidding P. The
arguments for the seller side are the same. Hence, the strategy
si(yi) = ;5, for all i € A, and all y; € ¥; is an ex-post Nash
equilibrium. |

Note that under situation (1) and (2) in Proposition 2, the
market outcomes are susceptible to the bang-bang type results;
that is, either the buyers or the sellers will reap all the benefits,
depending on the total supply versus total demand, leaving the
other parties of zero benefits. Under situation (3), the result in
Proposition 2 does not appear to be useful, as P can be any-
thing between Pgyr and Pypg, and there is no way for the agents
to agree upon a common point a priori. However, the public
information of the two reserve prices for buyers and sellers,
respectively, provide a focal point in a k-double auction; that
is, P = (Ppr + Pyr)/2. This is indeed what we observe
in our simulations, along with the outcomes as predicted by
Proposition 2 under situation (1) and (2).

Regarding the other property, the k-double auction is
strongly budget-balanced because the cleared selling and buy-
ing quantities are equal, and the clearing price is the same for
buyers and sellers. This means that the auctioneer’s surplus is
always zero in a k-double auction, which can be a desirable
outcome in some cases, but can be a downside here. As the role
of an auctioneer in a P2P energy market is likely played by a
utility or a DSO, they may require payments to provide such
service. While a double auction may run on a distributed ledger
system (aka blockchain) without a central auctioneer, physical
delivery of the cleared energy still needs access to distribu-
tion networks, which entail maintenance and repair costs. If
such costs need to be recouped from the auction process, then
a weakly budget-balanced mechanism, such as the Vickrey
variant auction, can be a choice; or some non-market-based
approach must be implemented to cover the additional costs.

B. Vickrey and McAfee Double Auction

The key difference between a k-double auction and a
Vickrey-like auction is that the marginal winners in the later
do not affect clearing prices. Hence, the strategy-proofness of
a Vickrey auction still holds in a multi-unit, double auction
setting, as proved in [26], and it is weakly budget-balanced.
While the truthfulness of an auction is usually a desired prop-
erty, it is actually the opposite in a P2P energy market. This
so because the goal of a local energy trading market is dif-
ferent than a traditional auction. In a traditional auction, the
objective is to allocate resources to people who value them
the most. In a local energy market, everyone needs electricity,
and the goal is not about efficient allocation. Instead, the P2P
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market is to help buyers and sellers achieve more favorable
rates than Pyg and Ppyr, respectively.

While the theorem predicts that in our specific setting, the
outcomes of the Vickrey-variant double auction will be always
Pypr for buyers and Pgyr for sellers, we will see that this is
not always the case in our numerical results. This highlights
the point that all the theoretical results in this section are only
established for a one-shot auction, and may not be true in a
repeated game.

For the McAfee auction, its strategy-proofness for a single-
unit good is provided in [28], and the idea is the same as the
Vickrey auction; that is, the marginal winners do not affect
clearing prices. Note that in Case A of the McAfee auction
as described in Section III-C, even though the clearing mech-
anism is similar to the k-double auction, the clearing price is
determined by the (L + 1)-th buyer and (H + 1)-th seller;
while only up to the L-th buyers and the H-th sellers are
cleared, hence achieving the strategy-proofness. In terms of
budget balance, under Case A, the McAfee auction will result
in the same clearing price for buyers and sellers. Hence, it is
strongly budget-balanced; while under Case B, it is the same as
the Vickrey-variant, which is weakly budget-balanced. Hence,
overall the McAfee auction is weakly budget-balanced.

C. Maximum Volume Matching Double Auction

The MVM double auction is not strategy-proof (with respect
to reservation price). By Definition 2, it suffices to find one
particular instance under which an agent has an incentive to
be not truthful. One such instance is that when all other buyers
bid Pyg except buyer i, and all sellers ask Ppjr. Suppose that
the total supply is greater than total demand. If buyer i bids any
price strictly between Pyg and Ppyr, the quantity allocated to
the agent remains the same and the price buyer i pays is lower
than Pyg, since the MVM is pay-as-bid. As a result, buyer
i will get strictly better utility of not bidding Pygr. Hence,
the MVM double auction is not strategy-proof with respect to
reservation price.

On the other hand, since the buying price is always no lower
than the selling price for each matching (as shown in Fig. 4),
the auctioneer’s payoff is always non-negative, which means
that the MVM double auction is weakly budget-balanced.

V. NUMERICAL SIMULATIONS
A. Input Data

1) Decision Epochs and Temporal Resolution: We consider
daily auctions with an hourly temporal resolution. More specif-
ically, one round of an auction happens in a specific hour, such
as 9 - 10 AM, which is repeated daily. Other hours are con-
sidered as different auctions, and agents will learn different
strategies. In our simulations, we perform seven auctions in a
day, representing the seven hours between 9 AM and 4 PM,
and we run for 365 days.

2) Pyg, Prrr and the Decision Space: Pyg and feed-in tar-
iff Ppyr are fixed throughout the simulation, and are set at
Pyr = 11 ¢/KWh and Pgyr = 5 ¢/KWh. For price bids/asks,
as mentioned in Section II-C, we expand the range of bid-
ding prices to [0, 14 ¢/KWHh], and discretize the range with
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1 ¢/KWh increment. This is to further account for agents’
bounded rationality or aggressive bidding strategies.

3) Energy Consumption, Supply and Types of Agents: We
simulate three groups of agents: 1,000 pure consumers, 1,000
pure suppliers, and 500 prosumers. For the last group, the net
position of their supply and demand in a particular hour deter-
mines their roles in the corresponding round of the auction;
namely, in each round, a prosumer will be a seller if they
have excess energy, and a buyer if their self-produced energy
is not sufficient to meet their own non-flexible demand. For
DER generation, we assume that it is all from rooftop pho-
tovoltaic (PV) panels. The energy demand and generation of
each buyer and seller are all randomly generated based on the
System Advisor Model (SAM) National Renewable Energy
Laboratory (NREL).> The details of how such data are gen-
erated, along with the data we used in our simulation, are
available on Github.® In addition, at each round, each agent
has a 0.005 of being regenerated independently. The learning
history of the agent will be cleared to all-zero vector after
regeneration.

B. Individual Agent’s Bandit Learning Algorithm

In our simulation, each agent has an equal probability of
using one of the three algorithms to choose a specific arm in
each round: UCB1, UCB2, and e-greedy. Once an algorithm is
chosen, the agent will use the same algorithm throughout the
repeated auction till regeneration. A regenerated agent again
will have equal probability to choose from one of the three
algorithms. The detailed codes of the three algorithms for our
simulation are available at the same Github location.

C. Numerical Results

This subsection reports the simulation results of the four
different auction designs. Note that for the k-double auction,
we only consider the case where k = 0.5 and refer it as k05
double auction in this subsection.

In the simulation, for each auction (such as the auction for
9 - 10 AM on each day), we run four times with different
random seeds, with each time consisting of 365 rounds of the
auction. The codes are written in Python and run on a PC with
Windows 10 OS, Intel Core i7-6700K processor, and 16 GB
RAM. The time of one particular run (i.e., one time of the 365
rounds) of the k-double, Vickrey-variant, McAfee and MVM
auction are 281, 285, 293, and 276 seconds, respectively. The
time for the other three runs are similar. We first show results
corresponding to one particular hour, 9 - 10 AM. The observed
trends of the outcomes are exactly the same in the other hours.
The solid lines in Fig. 5, 6, and 7 represent the average of the
four simulation runs; while the shades in the figures represent
the values within one standard deviation of the mean.

Fig. 5 compares the cleared quantities from the four dif-
ferent auction mechanisms. It can be seen that the Vickrey
auction results in lower cleared quantities than k05-double and
McAfee. This is expected as the Vickrey mechanism design

SDetails can be found at https://sam.nrel.gov.
6https:n’ github.com/feng2 19/MAB_Algorithm
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Fig. 6. Agents tofal surplus in the 9 - 10 AM auctions.

sacrifices some traded volume (as it only clears up to the
(L — 1)-th buyer and (H — 1)-th seller) to achieve strategy-
proofness. What is surprising is that the cleared quantity of
the MVM auction, which is designed (and proved in [29]) to
maximize the traded volume, is also lower than k05-double
and McAfee auction. The reason is as follows: in a single-
round auction, with everything being equal, the MVM auction
will be able to reach the theoretical upper bound of the max-
imum cleared quantity. However, in a dynamic setting with
the learning-based approach, agents will learn different things
in different auction designs. Hence, at the beginning of each
round, the assumption that “everything being equal” no longer
holds, which results in the observed outcomes that on average,
the cleared quantity in MVM auction can be less than other
auction designs. The cleared quantities between k05 double
and McAfee auctions are very similar.

Next we compare the total surplus. Fig. 6. It can be seen in
Fig. 6 that the total surplus of the Vickrey auction is notably
less than the k05 double auction, exactly for the same reason
as why the cleared quantity in the Vickrey auction is less.
Since the McAfee auction is a hybrid of the k-double and
the Vickrey auction, agents in the McAfee auction can likely
learn the surplus differences between the k-double and the
Vickrey auction through repeated interactions, and will make
the McAfee auction outcome the same as the k-double auction
most of the time. The total surplus is the lowest in the MVM
auction, which likely is due to the surplus transfer from agents
to the auctioneer, as shown in Figure 7.

Fig. 7 shows the auctioneer’s surplus from the four auc-
tion mechanisms. Clearly the MVM auction results in the
most auctioneer surplus. The Vickrey auction also results in

Auctioneer’s Profit
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Maximizing Matching
McAfee

Profit ($)
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Fig. 7. Auctioneer’s profit ($) in the 9-10 AM auctions.
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positive auctioneer’s payoff as buyers pay more than what sell-
ers receive. The k-double auction, regardless k’s value always
results in zero auctioneer surplus. For McAfee auction, again,
due to its hybrid nature, the auctioneer does have positive sur-
plus over the course of the repeated auction, but the surplus
is significantly less than the Vickrey auction.

Based on the numerical results, it appears that the k-double
auction and the McAfee auction are the better performing
mechanisms, so long as that an auctioneer’s payoff is not a
concern. To have a more complete picture, we present the
clearing prices from the k05 auction in chronological order
over seven days. All the results shown below are taken from
the later rounds of the simulation when the market outcomes
appear to stabilize. Note that the clearing prices are taken from
just one of the four simulation runs, not the average of the four
runs, as all the runs exhibit the same patterns.

The pattern of the auction clearing price closely resembles
that of the demand/supply ratio in the market, as shown in
Fig. 9.
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In our simulations, the demand/supply ratio is close to 1
at 9 AM, as shown in Fig. 9. When it is around noon time,
however, the supply is more than the demand (due to high
PV generation and low demand at residential home, as people
are out at work), and the corresponding clearing price in the
k05 auction gets close to Pgyr. In late afternoons, as the PV
production winds down and residential demand picks up, the
clearing price approaches to Pyg. These two situations are
exactly as what predicted in Proposition 2. To have a closer
look of the market outcomes when the demand/supply ratio is
1, we present the clearing prices for the 9 - 10 AM auction of
the k05 auction over the entire simulated horizon in Fig. 10.

As seen in Fig. 10, the undesirable bang-bang type of clear-
ing prices (that is, either Pyg or Pgyr) did appear at the initial
rounds of the auction. As the learning progresses, the market
clearing prices tend to stabilize at around 8 ¢/kwh, which is
exactly half way between Pyg (11 ¢/kwh) and Pgyr (5 ¢/kwh).
This is consistent to what we speculated when discussing the
results of Proposition 2. We consider this market outcome fair
as it splits the total surplus equally between buyers and sellers.

The outcomes of the McAfee double auction are very sim-
ilar to the k05 auction. The clearing prices of the Vickrey
are shown in Fig. 11. The Vickrey auction outcomes exhibit
similar trends following the demand/supply ratio in a day,
but the clearing prices are more extreme than the k05 auc-
tion when demand and supply are imbalanced. This is so
because the averaging mechanism in determining the clear-
ing price in a k05 auction helps alleviate the extreme prices.
The clearing prices of the MVM auction cannot be shown in a
picture, as every cleared bids/asks pay/receive different prices.
The quantity-averaged clearing prices in the MVM auction do
exhibit similar patterns to the other three auctions.
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VI. CoNCLUSION AND FUTURE RESEARCH

In this work, we proposed a multi-agent MAB-game
approach to help automate the bidding strategies for agents
participating a P2P energy market. This approach also helps
study complicated games, such as repeated games with incom-
plete information, where theoretical results are either scarce
or of little practical use. The approach has shown to be very
useful in numerically comparing market designs, which can
be a handy tool for policy makers to test their market design
before actual implementation. The framework is also flexible
as it does not require agents to know their utility functions, can
easily incorporate heterogeneous agents, and requires minimal
storage and computing power on the agent side.

Independent of the MAB-game, we studied theoretical prop-
erties of four double-auction designs in the context of a P2P
energy market, which presents distinct features of all zero-
marginal-cost supplies and publicly known reserve prices for
both buyers and sellers. We showed that such features can be
undesirable as they may lead to bang-bang type clearing prices,
depending on the demand/supply ratio and auction mechanism.
These results also highlight the needs of sophisticated sim-
ulation framework that can capture the essence of repeated
auctions with a large number of agents with bounded ratio-
nality, as theories need to be tested to see if they can indeed
emerge from agents’ repeated interactions.

The current work only means to be a starting point for
the general topic of decentralized multi-agent games and their
applications in better utilizing DERs in a decentralized fash-
ion. It has several notable limitations and can certainly benefit
from future research. First, the presented work does not con-
sider physical network constraints, which should be essential
for any P2P market design to be implementable in the real-
world. We point out that the auction mechanism can be used
to pre-commit resources some time ahead, such as an hour
ahead, exactly the same way as the day-ahead market in a
wholesale market. After each clearing, a utility or a DSO can
run power flow equations to determine if the cleared bids are
physically feasible. If not, the past round of the auction can be
re-run, and each cleared agent will update their rewards of the
last round to zero. Granted that such an approach still cannot
address real-time feasibility issues, which are likely to be dealt
with in a completely different framework. In addition, specific
rules or mechanisms need to be designed to compensate power
losses and distribution network maintenance costs.

Another notable limitation of the MAB-game approach
is that it cannot easily handle time-linkage decisions, such
as injection/withdraw decisions for energy storage. We are
currently developing a multi-agent reinforcement learning
framework to include energy storage. Along this direction, we
can also consider thermal load (HVAC) and consumers’ pref-
erence of comfort (such as reflected by temperature settings).
Such works will be reported in follow-up papers.

Last, but certainly not the least, privacy and cybersecurity
issues should also be at the center of any local energy market
design. One particular strength of our approach is that only
bids are needed to submit to an auctioneer, while no private
information needs to be shared or communicated. However,
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the central auctioneer can become a single-point failure if it
is compromised by cyber-attacks. In addition, further research
is needed to study the robustness of the MAB game approach
and auction designs in the event of malicious bidders, such
as those consumers/prosumers who are hacked to send out
misleading bids.
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