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Abstract

Let {pn} denote the orthonormal polynomials associated with a measure pu with compact support on
the real line. In a recent paper, we showed there is a close relationship between the spacing of zeros
of successive orthogonal polynomials p;,, p,,_1, and uniform bounds on the orthogonal polynomials in
subintervals of the support. In this paper, we show there is also a relationship between asymptotics for
the spacing of zeros of p,,_1, pn, and pointwise asymptotics for the orthogonal polynomials.
© 2022 Elsevier Inc. All rights reserved.
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1. Results

Let 1 be a finite positive Borel measure with compact support, which we denote by supp[u].
Then we may define orthonormal polynomials

Pn @) =X+, % >0,

n=20,1,2,... satisfying the orthonormality conditions

/pnpmduv — 8mn-
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The zeros {x jn} of p, are real and simple. We list them in decreasing order:
Xin = Xopn = > Xp—1.n = Xnn-

We shall make substantial use of the fact that the zeros of p, and p,_; interlace. Thus for
I<j<n-1,

Xjn—1 € (xj-‘,-l,n’ xjn) .
The three term recurrence relation has the form

(x = by) pp (X) = @ny1Ppt1 (X) + @ pu—1 (x),
where for n > 1,
_ VYn—1

Vn
In a recent paper [7], we analyzed the relationship between the spacing of zeros of
successive orthogonal polynomials p,_i, p,, namely x;, — x;,—1 and uniform bounds on
orthogonal polynomials in subintervals of the support. Spacing of zeros for the same orthogonal
polynomial, namely x;_; , —x;,, has been intensively studied for decades [6,11,15,16]. Bounds
on orthogonal polynomials is also a classic topic in orthogonal polynomials [1,2,4,5,9].
The results from [7] require more terminology: we let dist (a, Z) denote the distance from

a real number a to the integers. We say that u is regular (in the sense of Stahl, Totik, and
Ullmann) if

an

= f XPn—1 (X) pu () dp (x)5 by = f xp2 (x)dp (x).

1
lim y)!/" =

n—o0 cap (supp [])’
where cap denotes logarithmic capacity. If the support consists of finitely many intervals, and
u' > 0 a.e. in each subinterval, then u is regular, though much less is required [13].
Recall that the equilibrium measure for the compact set supp[u] is the probability measure
that minimizes the energy integral

/flog ! dv (x)dv (y)
lx — yl

amongst all probability measures v supported on supp[u]. If 7 is an interval contained in
supp[u], then the equilibrium measure is absolutely continuous in 7/, and moreover its density,
which we denote throughout by w, is positive and continuous in the interior 7 of I [10, p.216,
Thm. IV.2.5]. Given sequences {x,}, {y,} of non-0 real numbers, we write

Xn ™~ Yn
if there exists C > 1 such that for n > 1,
c! < Xu/yn <C.

Similar notation is used for functions and sequences of functions.
In [7, Theorem 1.1], we proved:

Theorem A. Let y be a regular measure on R with compact support. Let I be a closed
subinterval of the support and assume that in some open interval containing I, | is absolutely
continuous, while 1 is positive and continuous. Let w be the density of the equilibrium measure
for the support of . Let A > 0. The following are equivalent:

2
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(a) There exists C > 0 such that for n > 1 and xj, € I,
dist (nw (x;,) (xjn — xju-1),2Z) = C. (1.1)
(b) There exists C > 0 such that forn > 1 and x € 1,

”pn—l ”Loo[)f—%,x‘i‘%] ”pn ”Loo[X—%,X-i-%] <C. (1.2)
Moreover, under either (a) or (b), we have

sup sup ||x — by |'? DPn (x)‘ < 0. (1.3)
n>1 xel

Under additional assumptions on the spacing of the zeros of p,_, and p,, the factor
|x — b,|'"? in (1.3) was removed.

In this paper, we investigate the relationship between pointwise asymptotics of orthogonal
polynomials, and the spacing x;, —x; ,_1. As a pointer to what might be possible, let us recall
the form of the classical pointwise asymptotic for orthogonal polynomials inside supp[u]. Let
us suppose our support is [—1, 1], that u satisfies Szeg6’s condition, and in some subinterval
I C (—1,1), u is absolutely continuous, w’ is continuous, while the local modulus of continuity
of 1 satisfies a suitable Dini condition. Badkov [3] generalized many earlier results, proving
that as n — oo, uniformly in closed subintervals of 7°,

2
po ) (02 (1= x2) " = = cos (n6 + h (©) + 0 (1), (1.4)
b1
where x = cos6, and h is a continuous function. See [3] for a precise statement of the

hypotheses. It is straightforward to prove:

Proposition 1.1. Assume the asymptotic (1.4) holds uniformly for x in I C (—1,1). Fix
k>0,¢ eZ. Let J be a closed subinterval of 1°. Then uniformly for x;, in J,

n(Xjn — Xjeni) = /1 —x3, [karccos (x;,) — €x] +o(1). (1.5)

We shall prove this in Section 2. One can compare this to the much studied asymptotic for
spacing of successive zeros of p, when the support is [—1, 1], namely

n(Xjn = Xjg1n) =74/1 —sz-n +o(l),

or for more general supports with equilibrium density w, [6,12,15]
( )= to)
n\Xjn = Xj+in) = —F—~ o .
@ (%)n)

We prove the following partial converse. In its formulation, we need the zeros of p;, which
are denoted by y;,, ordered so that

yjl’l S (xj+1,n»xjn)a 1 S J S n— 1-

Theorem 1.2. Let p be a regular measure on R with compact support. Let I be a closed
subinterval of the support in which  is absolutely continuous, while ' is positive and
continuous. Let w be the density of the equilibrium measure for the support of . Let S be an
infinite sequence of positive integers. Assume that uniformly forn € S, m = n,n + 1, and
Xin € 1,

mo (xjm) (xjm — xj,m_l) =g (xjm) +o(1), (1.6)
3
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where g : I — (0, 1) is continuous. Let

fo ) = (xjn) (x = yju) — % x € [Xjq1m Xjn) N 1. (1.7)

Let J be a compact subinterval of 1°. Then uniformly for x in J, asn — oo,n € S,
2
u-—bﬂ”zpnu)u%xﬂ”::V@;hxnngcmﬂﬂ[amnnﬁAx)+o<D]. (1.8)

Corollary 1.3. If J is a compact subinterval of I, as n — oo, n € S,

2
sup | pa () 1/ (0)"? |x — b2 =/ = sup [cot g (x)|'* + 0 (1). (1.9)
xelJ T xeJ
Remarks.

@Ifgx) = % arccos x, as is the case in Proposition 1.1, while b,, = 0, Theorem 1.2 simplifies
to

pnu>u%m”20—<*f”::/gﬁammw;u>+o<nL (1.10)

uniformly in compact subsets of I\ {0}.
(b) Note that nf, is “asymptotically continuous” in some sense. Indeed, as shown by
Lemma 3.1(c),

: : .
Jm, M w00 =5 = = limn ()

(c) Lemma 3.4 below shows that we can recast the asymptotic as

Ix — b, |2 py (x) 1 (x)'/?

= /= 2an_ [cosnm f, (x) + o (1)] (L.11)

and hence that

() (55

1 1/4
[cosnrf, (x) +o0(1)].
a,m

X — bn—l

x —b,

except close to zeros of cos g (x).
(d) One may replace y;, in the definition (1.7) of f, by % (x jin+Xx j+1’n), since these differ by
0 (). See (3.3).

We prove Proposition 1.1 in the next section and Theorem 1.2 and Corollary 1.3 in Section 3.
We close this section with some notation. In the sequel C, Ci, C,,... denote constants
independent of n, x, 8. The same symbol does not necessarily denote the same constant in
different occurrences. The nth reproducing kernel for p is

n—1

Ky (e, 3) =Y pe (0 pr ().

k=0
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2. Proof of Proposition 1.1

We turn to

Proof of Proposition 1.1. Write for x;, € J,
Xjp = COS (6]-,,) , 0in€(0,m).

Note that {Qj,,} lie in a closed subinterval of (0, 7) as J is a closed subinterval of (—1, 1).
Then from (1.4),

cos (n0, + h (0j,)) =0 (1).
This gives for some integer j; = j; (j, n) that may depend on both j and n,

T
7’1‘9]',1 +h (‘9]',1) = ——+ j17T +0(1)

2
SO
0; =%<—%—|—j1n—h(6jn))+o<%). @.1)
We claim that for fixed k, £ > 0,
Ot = (=T Gi = 07 = (6y00s)) +o0 (1) . 22)
’ n—k 2 T n

To see this first note that for k = 0 and ¢ > 0, this follows from the asymptotics (1.4) and our
ordering of the zeros. Next let us prove this for kK = 1 and £ > 0. Assume the notation (2.2)
for k = 0, and for a given £ > 0, write from (2.1),

1 b4 1
Oj—tn—1 = — (—5 +mm —h (Qj—z,n—1)> +o (;) : (2.3)

Here m = m (j,n — 1, £) is an integer. We must show that for large enough n, m = j; — £.
We use the interlacing

Xj—en—1 € (Xj—£+1,n» xj—&n) :

Since h is continuous and 6;_y ,_1 —0j_¢, = 0(1),0j_¢ n—1 —0j_r41,» = 0 (1), the interlacing
gives, after dropping the 4 terms, and taking account that cos is decreasing,

1 b4 . 1 b4 1
L R A T
n 2 n—1 2 n

We multiply this relation by 2 and cancel a factor of —%, giving

jl—e+1>L1m+o(1)>jl—z+o(1)
n_

:>1>m—(j1—€)+an1+0(1)>0(1).

Since our zeros are confined to a closed subinterval of (—1, 1), there exists ¢ > 0 such that
- € [¢, 1 — ¢]. The left-hand inequality then shows that we cannot have m — (j; —£) > 1.
But then the right-hand inequality shows we cannot have m — (j; —¢) < —1. Som = j; — ¢

5
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as desired. This establishes (2.2) for k = 1. By repeating this argument, we can establish it for
any fixed k.

Now that we have (2.2), we turn to the proof of (1.5). Fix £, k. We have then
1 1
5 (ej—(,n—k + ejn) = ejn + 0 ;

and hence also, as sinf;, is bounded away from 0,

sin (% (0j—t—k + ej,,)) = (sin6;,) (1 +0 <%)) .

Also
1
2 (@j-tn—k = Ojn)
om0 1 i 1(h(0n) h(Oj—en) 1
~(-5+im)5(=e2) “1os +5( ) o (1)
(Tt
- 2 J 2n(n—k) 2n n
k h(0) | tn 1
= m[@'"* " ]—z“(;)
_ KO tr (1
T 2n o \u )
Then
Xjn — Xj—t.n—k
= c08 (0,) — €08 (0j—¢.u—k)
1 1
= —25sin (5 (Qj—li,n—k —+ an)> sin (E (an — Qj—li,n—k))
_ 258, Dsin (Kt (1
_2(sm0ﬂl)(1+0<n))sm< > > +0<n)>
. 1 kOj, Lm 1
=(sm¢9jn) 1+0| - ——4+ol|l-1]1,
n n n n
so that

n(Xjn = Xj—en)
= (sin0,) [kOjn — € +0 (D] + 0 (1)

=,/1 —x]zn [karccos (xj,,) — En] +o(l). N

3. The converse

We begin with some established asymptotics and bounds for orthogonal polynomials:

Lemma 3.1. Assume that p is a regular measure with compact support. Let I be a closed
subinterval of the support in which u is absolutely continuous, and p' is positive and
continuous. Let J be a compact subset of the interior 1° of 1. Let w denote the equilibrium
density for the support of .
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(a) Then

Pn <yjn + %)
lim @ (jn)
n— 00 DPn (yjn)
uniformly for y;, € J and z in compact subsets of C. Here w is the equilibrium density for

the support of L.
(b) Uniformly for x € J,

=COosSTz 3.1

lirglo%Kn . x)pu (x) =w(x). (3.2)
(c) Uniformly for yj, € J,
1 1
no () (¥jn = yjn) = 5 +0 (D300 (%n) (yin = xjs10) = 5 +0 (1) (3.3)

(d) Uniformly for y;, € J,
nw (xjn) (Xjn = Xj410) = 1+ 0 (1) ;10 (xj0) (Viu = Yjs1a) = 1+ o0(1). 3.4

Proof. (a) See [8, Theorem 1.1].
(b) See [14].
(c), (d) See [7, Lemma 3.1]. W

Lemma 3.2. Assume that u is a regular measure with compact support. Let I be a closed
subinterval of the support in which w is absolutely continuous, and p' is positive and
continuous. Let J be a compact subset of the interior 1° of 1. Let w denote the equilibrium
density for the support of . Assume in addition the hypothesis (1.6).

(a) Uniformly for y;, € J,

1
n (Xjn) (Xjn = Yin1) = & (xjn) + 5 +0 (D)3 3.5)
nw (xjn) (Vjn — ¥jn-1) = & (xjn) + 0 (1). (3.6)
(b) Fix A > 0. Uniformly for n > 1,
sup ||pn||Loo[x_%’x+%] ||pn_1||Loo[x_%’x+%] <C. (3.7)
(c)
| Pn ”LOO(J) =o0 (nl/Z) . (3-8)

Proof. (a) Using continuity of w, our hypothesis (1.6), and (3.3),
no (Xjn) (Xjn = Yjn-1)
= 10 (xjn) (Xjn = Xjn-1) + 10 (Xj0-1) (X1 = Vin-1) + o0 (1)
= g(xj,,)-i-%-i-o(l).
Next, from this last asymptotic and (3.3),

nw (xjn) (yjn - yj,n—l) =nw (xjn) (yjn = Xjn t Xjn — ij"_l) =8 (xj”) +o (D).
7
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(b) See [7, Theorem 1.1]. Note that our hypothesis (1.6) implies the spacing hypotheses required
for Theorem 1.1 there, since g (J) is a compact subset of (0, 1).

(c) This follows from the asymptotic (3.2) for the Christoffel function: as n — oo, uniformly
forx € J,

1 1 1 1
—prp (x) = (1 + —) —— K1 (x, ) (' (x) = =K, (x, x) ' (%)
n n/n+1 n

> wx)—wx)=0. N

Here is the main ingredient for our Theorem 1.2: we assume the hypotheses there.

Lemma 3.3. Uniformly for y;, € J,
. 2
Vin = bal ' pu (i) 1 (330)2 (= 1)) = @cmng (vin)| " + o0 (1). (3.9)

Proof. We multiply the recurrence relation by p, (y jn):

(Yin = ba) Pr (¥in) = @ns1 (Pus1Pn) (Vjn) + an (PaPa—1) (Vjn) - (3.10)

We use the local limit (3.1) and the Christoffel-Darboux formula to simplify the right-hand
side. First, from the confluent form of the Christoffel-Darboux formula,

Ky (Vjn. ¥in) = —anpp_y (Yjn) Pn (Vjn) - G.11)

Since the local limit (3.1) holds uniformly in compact subsets of the plane, we can differentiate
it:

/ . Z
lim Dny <st"_l + (n—l)w(yj,n_1)>
n—oo pn—l ()’j,n—l) (n — 1) w (ijn—l)
Using this and (3.6),

= —msinmz.

Pnoi (yjn) = Pn_i ()’j,n—l + (yfn - )’j»n—l))

, Xin)+o(1)
= Pp_i <yj,n—1 + L)

no (yjn-1)
= —pui1 (Vjin1) @ = Do (yja1) 7 (sinzg (xn) + 0 (D)
= —T Py (y_,;,,_l) nw (y_,;,,_l) (sin g (xj,,))(l +o0 (1)) , (3.12)

recall that sinmg (x j,,) is bounded away from 0. We substitute this in (3.11), multiply by
24/ (jn), and use the asymptotic (3.2):

w (yjn) +o0 (1) = apTtPn—1 (yj,n—l) Pn (yjn) I’L/ (yjn) w (yj,n—l) (Sil’l g (x]n))(l +o0 (1))

and hence

antpu—1 (Yjn=1) Pn (yjn) ' (yjn) (sinmg (x;,)) = A + 0 (1)) . (3.13)
To replace pu—1 (¥j.n—1) by pa—i (¥ju), we again use (3.1) (as in (3.12)):
Pn—1 (yjn) = Pn-1 (yj,n—l) [COS g (xjn) +o0 (1)] . (314)

8
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Thus after multiplying (3.13) by cosmg (x;,) + o (1), it can be recast as
anTt P (Yin) Pu-1 (Vjn) &' (Vjn) sin g (x)
= cosmg (xjn) +o(l)+o (pn (yjn) Pn—1 (YJ',n—l))
=cosmg (xjn) +o(1),
by Lemma 3.2(b). Since sinmg (x j,,) is bounded away from O,
apJT Py (yjn) Pn—1 (yjn) //L/ (yjn) =cotmwg (xjn) +o (1) .
Next, replacing n by n + 1 in (3.15) and using continuity of u’, g gives
an1 7Pt (Yjns1) Pn (Vjns1) ' (jn) = cotmg (x;n) + 0 (1).
Using the local limit (3.1) and the relations (3.3), (3.4) on p, and then p,; gives
Pn+1 (yj,n+1) Pn (yj,n+1) = Pn+l1 (yj,n+1) (COS g (xjn) +o0 (1)) Pn (yjn)
= (pn+1pn (yjn)) +o(1),
by Lemma 3.2(b) again. Thus (3.16) yields
an170 (Pat1Pn (Vjn)) W (Vjn) = cotmg (xja) +o0(1).
We substitute this and (3.15) into the recurrence (3.10):

, 2
(Vi = ) o (vjn) ' (vju) = —cotg (xja) +0.(1).
Finally as y;, € (Xj11,, Xju), 8O
(_1)Jpn ())Jn) > 0’ 1 S] =n- 1a

and we obtain the result on taking square roots. W

Proof of Theorem 1.2. Now from (3.1), (3.9), for x € [x11,Xj») N J,

1/2
|Yin = bu| " pu ) ' ()12

= |:(—1)j \/g |cotrg (yjn)|l/2 +o (1)j| [cos (mnw (xjn) (x — yjn)) + 0 (D]

_ \/g|00tﬂg (X)|1/2 CcoS (n’n |:a) (.X') (.x — y]n) — %]) +0(1) )

by continuity of g, w. Next, uniformly for x € J, and with j as above,
1/2 1/2
|x_bn|1/2=|yjn_bn|/ +0<|x_y]n‘/>
1/2 _
= |yjn =l T+ 0 (n717),

SO

Ix — b, |2 p, (x) 11 (x)'/?

(3.15)

(3.16)

(3.17)

(3.18)

= \/g|cotng (x)|'? cos (JTI’Z [w (xX) (x = yjn) — %]) +o)+ 0 (n'?|p, 0))

2 172
= \/; [cotmg (x)|'“cos (wnf, (x)) +o(l),
by Lemma 3.2(c). N
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Proof of Corollary 1.3. This is immediate from Theorem 1.2. W

Lemma 3.4. Uniformly for x in compact subsets of J omitting zeros of cosmg,

(a)
(x —by) (x —b,_1) =4a’cos® (g (x)) +o(1). (3.19)

(b)

|cotmg (x)| = +o()+o0(1). (3.20)

Proof. From the recurrence relation,

(Vin = ba1) (Pa-1Pn) (Vjn) = anpy (¥jn) + @1 (Pa-2Pn) (Vjn) - (3.21)
We now replace the terms on both sides. First we multiply by a, (y jn) and use (3.15):

(yjn — bu=1) [cotmg (xju) + o0 (1)]

= a7 py (vjn) W (¥jn) + @n10n7 (Pu—2pn) (vjn) ' (¥jn) - (3.22)
Next, from (3.13),

a7 (Yjn) Pat (Vjn1) 1 (vjn) sinmg (xj0) = 1+ 0 (1).
Replace n by n — 1:

17 pp—1 (Vjn=1) Pn=2 (Vjn—2) ' (¥jn—1) sinzg (xj,—1) = 1 +0(1).

Dividing the two relations, and using continuity of ', g, and the fact that sinrg is bounded
away from 0, gives

QAn Pn (yjn)
Apn—1Pn-2 (yj,n—Z)
Next, our local limit (3.1) and the spacing (3.6) give
Pn—2 (¥jn) = Pn—2 (yj.n—2) (cos (2 g (x;s)) + o (1)),
and thus (3.23) gives
Ap Pn (an) (COS (an (xjn)) +o (1)) =dp—-1Pn-2 (yjn) (I+o(1)).
Then (3.22) becomes
(yjn = ba—1) [cotmg (xn) + 0 (1]
= ay7p; (yin) 1 (yjn) 11+ c0s (2g (xj)) + 0 (D).
Multiplying by (yjn — b,,) and using Lemma 3.3 gives
(yjn - bn) (yjn - bn—l) [cotng (xjn) +o (1)]
= 4a; {cotng (yjn) + 0 (D)} {cos® (g (x;x)) + o (1)}
so that if cos g (x;,) is bounded away from 0,

(yjn - bn) (yjn - b,,_l) = 4af cos’ (J'rg (xj,,)) +o(l).
10

=1+o0(l). (3.23)
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Then the result follows from the continuity of g, the density of the { y j,,} and the boundedness
of the {b,}.
(b) Away from zeros of cos wg (x), our conclusion in (a) gives

lcos g (x)|
lcotmg (x)| =
V1 —cos2mg (x)
() ()]
_ 2ap 2ay To (1) m
[ () (s)
2ap 2ap
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