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Abstract—Accurate energy consumption prediction is critical
for proper resource allocation, meeting energy demand, and
energy supply security. This work aims at developing a methodol-
ogy for accurately modeling and predicting electricity consump-
tion during abnormal long-lasting events, such as COVID-19
pandemic, which considerably affect consumption patterns in
different types of premises. The proposed methodology involves
three steps: (A) selects among multiple models the most accurate
one in energy consumption prediction under normal conditions,
(B) uses the selected model to analyze the impact of a specific
abnormal event on energy consumption for various classes of
premises, and (C) investigates which features contribute most
to energy consumption prediction for abnormal conditions and
which features can be added to improve such predictions.

We use COVID-19 as a case study with datasets obtained from
Fort Collins Utilities, which contain energy consumption data
for residential and different sizes of commercial and industrial
premises in the city of Fort Collins, Colorado, USA. We also use
temperature records from NOAA and COVID-19 public orders
from Larimer County.

We validate the methodology by demonstrating that the
methodology can help design a model suited for the pandemic
situation using representative features, and as a result, accurately
predict the energy consumption. Our results show that the MLP
model selected by our methodology performs better than the

types of premises [2], [3]. Moreover, they have been used
to predict the energy consumption for a given time period
assuming a stable environment. Such approaches may be
inadequate during uncertain situations, such as the COVID-
19 pandemic because of changes in human behavior and
consumption patterns.

The objective of this paper is to present a methodology
with three steps to analyze, understand, and predict energy
consumption in abnormal situations. Step A is to compare
machine learning-based models on the task of energy con-
sumption prediction in a stable situation. Step B is to use the
best model to analyze the effect of a long duration abnormal
event on the energy consumption patterns. Finally, step C is
to create a model that is able to make accurate predictions of
energy consumption during that event.

We use the COVID-19 pandemic in the city of Fort Collins,
Colorado, as a case study. The research questions that this
paper aims to answer for this case study in each class of
premises are listed below.

RQI1. What is the most effective machine learning algorithm
for predicting energy consumption before the COVID-19

other models even when they all use the COVID-related features. pandemic?
We also demonstrate that the methodology can help measure the RQ2. What is the impact of COVID-19 on energy consump-
impacts of the pandemic on the energy consumption. tion?

I. INTRODUCTION

Accurate energy consumption prediction is becoming in-
creasingly important for efficient energy management. Rapidly
changing consumption patterns can be damaging to the en-
ergy provider. Accurate prediction is possible by taking into
account the features that affect consumption while modeling
the consumption behavior. COVID-19 has affected our normal
energy consumption patterns as several changes took place
when the rate of infections grew. Students attended remote
classes from home, several small businesses closed down, and
working from home became the norm in several companies.
According to a study by Bartik et al. [1], out of 5,800 samples
of small businesses surveyed in 7 days (March 28, 2020, to
April 4, 2020), 43% were temporarily closed during the period
because of COVID-19.

Machine learning-based models have gained widespread
usage for predicting energy demand because of their effec-
tiveness and efficiency but these studies focused on specific

RQ3. What pandemic-related features can be added to improve
the energy consumption prediction during the COVID-
19 period? Which features affect energy consumption
the most?

To answer RQ1, we use temporal and non-temporal machine
learning models that have been demonstrated to be effective
in energy consumption prediction in a stable environment [2]-
[6]. The temporal models include Long Short Term Memory
(LSTM) [7] and the non-temporal ones include Support Vector
Regression (SVR) [8] and Multi-Layer Perceptron (MLP) [9].
We use Jan 2017—Feb 2020 data (before the COVID-19
pandemic) for training and evaluating the models.

To answer RQ2, we analyze how the expected energy
consumption differs from the actual consumption during the
COVID-19 era (Mar 2020—Dec 2021). We used the best
model from RQ1 to make the predictions for RQ2. We show
how the energy consumption by different types of premises
was affected, and identify those that were the most and least
affected by the pandemic.
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To answer RQ3, we introduce COVID-19-related features,
which describe various characteristics of the pandemic. These
characteristics include the number of cases, number of hos-
pitalization, and public orders on closures. We measure how
the prediction of the best model of RQ1 improves with this
addition. We also run a feature importance analysis on the
whole dataset to determine which features had the highest
impact on the prediction.

The methodology helped select the best model to predict
energy consumption, use that model to effectively measure the
impact of an abnormal event on the energy consumption, and
adapt it to accurately model the energy consumption during
the event. Our findings show that the best model to predict
energy consumption is the MLP. Our data shows that across
all classes of premises, air temperature and time of the day
are the strongest predictors of energy consumption. Among
COVID-19 related features we added to improve the model,
the strongest predictors of energy consumption are number of
cases and number of hospitalizations.

The paper is organized as follows. Section II describes
the datasets used in this paper. Section III summarizes the
temporal and non-temporal machine learning models used
in the work. Section IV presents the proposed methodology.
Section IV-A compares these approaches on the task of pre-
dicting energy consumption before the COVID-19 pandemic.
Section IV-B uses the best model of section IV-A and an-
alyzes the impact of COVID-19 on the energy consumption.
Section IV-C studies feature importance and improves the best
model of section IV-A to predict energy consumption during
the COVID-19 pandemic. Section V discusses the related
work. Finally, Section VI concludes the paper and outlines
directions for future work.

II. DATASETS

The work in this paper uses several features that have an
impact on energy consumption. Some of these features are
known to have an impact on energy consumption (e.g. air
temperature) and some are novel features that we have decided
to include to help the models and improve the prediction (e.g.
number of COVID-19 cases).

We use the readings of energy consumption from the city of
Fort Collins. We analyze the consumption of energy for five
classes of premises:

o Residential: The main use is a place of residence.

o General Service (GS): The yearly average peak-power

demand is below 25 kW.

o General Service-25 (GS-25): The yearly average peak-

power demand is between 25 and 50 kW.

o General Service-50 (GS-50): The yearly average peak-

power consumption is between 50 and 750 kW.

o General Service-750 (GS-750): The yearly average peak-

power demand is above 750 kW.
Colorado State University Energy Institute and Fort Collins
Utilities use these five classes of premises to categorize the
data. Particularly, Fort Collins Utilities uses these classes to
set different rates to different types of premises. We have

access to the data collected from January 1, 2017, to December
31, 2021, in 15 minute intervals. We aggregate the data into
12-hour intervals: from midnight to noon and from noon to
midnight. The datasets have a total number of 76,927 unique
premises with a distribution shown in Figure 1. There are
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Fig. 1: Distribution of records by premise type: Residential,
GS (small-size commercial), GS-25 (medium-size commer-
cial), GS-50 (large-size commercial), and GS-750 (Industrial).

different consumption patterns in these five classes because
they are different types of premises (e.g. single family homes,
retail shops, restaurants, offices, and industrial premises). We
expect different changes in consumption patterns as a result
of the COVID-19 pandemic, because it impacted residential,
commercial and industrial premises differently.

We use the air temperature data from the National Oceanic
and Atmospheric Administration (NOAA) [10]. Air temper-
ature data is necessary because we expect that energy con-
sumption is correlated with temperature. People use more air-
conditioning in the summer and more heating during winter.
NOAA records the average daily temperature, the minimum
daily temperature and the maximum daily temperature for
multiple stations in the United States. We choose one station
in the geographical center of the city of Fort Collins. We
associate the minimum recorded temperature in a particular
day with the 12 hour interval from midnight to noon, because
that is when the minimum temperature generally occurs during
a day. Similarly, we associate the maximum recorded temper-
ature in a particular day with the 12 hour interval from noon
to midnight, because that is when the maximum temperature
generally occurs during a day.

To answer RQ3 we want to improve the model by adding
COVID-19 related features that can influence energy consump-
tion patterns. We then use these features to make predictions
of the energy consumption during the COVID-19 pandemic.
We use official COVID-19 data from the Larimer County [11]
of Colorado. Specifically, we use the datasets: 7-day average
number of cases, 7-day average number of hospitalizations,
and daily confirmed deaths. We also track school closures and
restaurant and bar closures due to the COVID-19 lockdown
according to the public health orders and executive orders
of the State of Colorado [12]. For schools we also track
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summer and winter closures following the Poudre School
District calendar [13]. Finally we have added a feature called
post_pandemic that is equal to one on March 10, 2020 and
thereafter, and is equal to zero before that date. This feature
is meant to represent any long term change in our society that
started with the COVID-19 pandemic and influences energy
consumption patterns. Machine learning models can use the
post_pandemic feature to better model changed patterns in
energy consumption caused by the COVID-19 pandemic. An
example is the fact that many companies today allow workers
to work from home one or more days per week indefinitely
(i.e., regardless of the status of the COVID-19 pandemic),
thus changing energy consumption patterns. It is the task of
the models to understand the usefulness of the post_pandemic
feature in the prediction of energy consumption during the
unsupervised learning.

TABLE I: Features of energy data

Feature name Data type  Description

delivered_kwh Float Energy consumed in 12-hour pe-
riod

temperature Float Air temperature

time_of_year Float Time of the year, where January 1
equals one, July 1 equals zero, and
other days of the year are interpo-
lated between zero and one

weekend Boolean 1 during the weekend, 0 otherwise

am Boolean 1 from midnight to noon, O other-
wise

holiday Boolean 1 during federal holidays, O other-
wise

cases Float 7-day average of COVID-19 cases
in Larimer County

hospitalizations Float 7-day average of COVID-19 hospi-
talization in Larimer County

deaths Float confirmed COVID-19  related
deaths in Larimer County

school_closure Boolean 1 during school closure, 0 other-
wise

bar_restaurant_closure | Boolean 1 during bar and restaurants clo-
sure, 0 otherwise

post_pandemic Boolean 1 after March 10, 2020, 0 otherwise

Table I summarizes all the features used in this study. The
first six features are not COVID-19 related and are used to
answer all three research questions. The last six features are
COVID-19 related and are used only to answer RQ3.

The time_of year feature represents the day of the year
of a record. It repeats every year (i.e., a particular day of
the year will have the same value every year) and it is
used to understand the seasonality of energy consumption.
It tells the models which period of the year it is (e.g.,
Summer or Winter). This is important because temperature
is correlated with energy consumption. For this reason, days
that on average have similar temperatures, should have similar
values. Not only May 1 and May 2 should have similar
values, but also November 1 and March 1 should have sim-
ilar values. It is particularly necessary to help non-temporal
models understand the cyclic nature of energy consumption.
The values of the time_of year feature span from one to
zero, with one on January 1, zero on July 2, and all other
days with an interpolated value between one and zero. The
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formula is |(day_of_year — half_year)/hal f_year|, where
day_of_year goes from O to 364 (365 on a leap year) and
half_year is equal to 182 (183 on a leap year). This feature
is created in this fashion because neural networks work best
with normalized input values (generally between -1 and 1 or
between O and 1). The date as a string could definitely not be
given to a network as input, nor could the day of the year as
an integer between 1 and 365 (366 on leap years). In the first
case because a neural network cannot handle a string as input
and in the second case because the value is not normalized and
the first and the last day of the year would have values at the
opposite ends of the spectrum despite being part of the same
season and have similar weather. Figure 2 shows the value of
the feature time_of year over the course of three years.
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Fig. 2: Value of the time_of year feature over the course of
five years

The holiday feature indicates whether or not a specific date
is a federal holiday or not. Its value is equal to one during a
federal holiday and it is equal to zero all other days.

Before feeding the data to the machine learning models,
all features are normalized using min-max normalization. This
improves the optimization of neural networks during training.

III. BACKGROUND ON ML MODELS

We use three machine learning models based on temporal
and non-temporal features that are known to be effective in
energy prediction tasks [2]-[6], [14]. Energy consumption
patterns appear to be temporally dependent [15]. For example,
the energy consumed by a residential user depends upon the
time of the day, the day of the week, and the season. As a
result, we use temporal models based on Long Short Term
Memory (LSTM) networks, which preserve long-term tempo-
ral dependencies among data records in their predictions [7].
On the other hand, the energy consumed by any premise
is highly dependent on the daily temperature [2]. Thus, we
also use non-temporal techniques (Support Vector Regression
(SVR) and Multi-Layer Perceptron (MLP)), which base the
prediction of energy consumed on a specific date primarily on
the temperature on the same day.

Our objective is to determine whether a non-temporal
model can effectively predict the energy consumption without
involving the past record values in the prediction. We use
these features to help the non-temporal models: time_of _year,
weekend, am. These features allow the non-temporal models to
understand the different patterns of energy consumption based
on time of the year, day of the week and time of the day.
However, we do use these feature with the temporal models
as well, this is because adding new features could improve,
but not worsen, the model prediction.
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We describe the temporal and non-temporal models in
Sections III-A and III-B respectively.

A. Temporal Machine Learning Model

Our LSTM model is based on a Recurrent Neural Network
(RNN) [16] that contains loops in its structure to allow
information to persist and make networks learn sequential
dependencies among data records [7]. The original RNNs
can only learn short-term dependencies among data records
by using the recurrent feedback connections [17]. LSTMs
extend RNNs by using specialized gates and memory cells
in their neuron structure to learn long-term dependencies. The
computational units (neurons) of an LSTM are called memory
cells. An LSTM has the ability to remove or add information
to the memory cell state by using gates. The gates are defined
as weighted functions that govern information flow in the
memory cells. The gates are composed of a sigmoid layer and
a point-wise operation to optionally let information through.
The sigmoid layer outputs a number between zero (to let
nothing through) and one (to let everything through). There
are three types of gates, namely, forget, input, and output.

e Forget gate: Decides what information to discard from

the memory cell.

o Input gate: Decides which values to use from the network

input to update the memory state.

o Output gate: Decides what to output based on the input

and the memory state.

In our experiment, we use two LSTM networks. The first
network is an original LSTM model that takes a sequence of
past records (R;—;, (i =1,...,p)) as input to predict a single
record (R;_;) as output. The second network is an LSTM-
autoencoder model as a sequence-to-sequence predictor, which
takes a sub-sequence of records (R;—;, (i = 1,...,p)) as
input to predict a one-step-ahead sub-sequence of records
(R¢—(i4+1), (1 =1,...,p)) as output. The LSTM-autoencoder
model is capable of extracting and encoding significant fea-
tures of the input sub-sequence into a new representation,
resulting in accuracy improvements and reducing overfitting
risk in comparison with the original LSTMs [18].

B. Non-Temporal Machine Learning Models

We use two models, which are Support Vector Regression
(SVR) and Multilayer Perceptron (MLP). The SVR is a
support-vector machine that is generally used to compute a
linear function of its inputs (however, we are going to use non-
linear kernels), whereas the MLP is a feedforward artificial
neural network that computes a non-linear function of its
inputs.

Support Vector Regression (SVR). Support Vector Machine
(SVM) is a machine-learning method based on structural risk
minimization technique, which balances fitting the training
data against model complexity [19]. An SVM sets one or
more hyperplanes in a high-dimensional space to perform
classification by finding the hyperplane that maximizes the
margin between the two data classes [20], [21]. The version

of SVM for regression estimation is known as Support Vector
Regression (SVR) [8]. SVR fits errors within a certain thresh-
old while minimizing the error rate. Research has shown that
SVR performs better than traditional regression methods [22]—
[24].

The performance of SVR relies on a kernel, which is a
function that helps find a hyperplane in a high-dimensional
space with low computational cost [6], [25]. There are four
types of kernel functions, namely, linear, polynomial, Radial
Basis Function (RBF), and sigmoid. Polynomial kernel shapes
a curved line, and RBF kernel creates complex regions. In
this work, we test all three non-linear kernels, to make a
comparison with the non-linear MLP. It has been shown
that polynomial, RBF and sigmoid kernels are effective in
modeling non-linear patterns in data [2].

Multi Layer Perceptron (MLP). An MLP is an Artificial
Neural Network [26] with an extremely popular usage in
energy consumption prediction because of its capability in esti-
mating continuous non-linear functions [27]. Tosun et al. [28]
studied the difference in prediction using regression models
and neural networks, which shows that the usage of complex
non-linear networks can result in great effectiveness for the
prediction tasks. An MLP consists of an interconnection of
a number of neurons. The input layer receives the input
data. The intermediate layers, called hidden layers, perform
computations on the input data. An MLP uses a supervised
technique called backpropagation [29] for training.

IV. PROPOSED METHODOLOGY

Figure 3 shows an overview of the proposed methodology
with three steps. Step A identifies the best model to predict
energy consumption in a normal period (i.e. a period in which
there are no abnormal events that impact energy consumption,
such as pandemics, flooding, and hurricanes). Step B measures
the impact of the phenomenon that causes the abnormal
situation on energy consumption. The impact is measured as
the difference between the expected energy consumed and the
actual energy consumed. Step C creates a new model that is
able to predict energy consumption during the event. This step
is conducted by using the best performing model (previously
selected in section IV-A) and adding new features that
describe the evolution of the situation. These features provide
the model with more information that can be used to learn
changing energy consumption patterns and to improve energy
consumption prediction. Sections I'V-A to IV-C describe these
steps using the COVID-19 pandemic case study.

A. Model Comparison

We compare the six (MLP, SVR-poly, SVR-rbf, SVR-sig,
LSTM, and LSTM-autoencoder) machine learning models
presented in Section III on the task of predicting energy
consumption for the period Jan 2017—Feb 2020. The goal
is to find the most effective model (i.e., the model with the
lowest prediction error). The models take the temperature,
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time_of _year, weekend, am and holiday features of an individ-
ual record ¢ as input and predict the value of delivered_kwh;
for the same record.

Many hyperparameters need to be tuned in order for the
models to make the best predictions. We use grid search to find
the best combination for each model. The loss function [26]
for the neural networks used in this work is the Mean Squared
Error (MSE), which is the most commonly used regression
loss function and is defined as the sum of squared distances
between the target and predicted values. For the MLP, we use
two hidden layers of size 20 and the Adam optimizer with
a learning rate of 0.001. For the LSTM models we use the
LSTM layers followed by one dense layer of size 20 and the
Adam optimizer with a learning rate of 0.001.

The following hyperparameters of the SVR models need to
be tuned: regularization, gamma, and epsilon. Values of 100,
0.1, and 0.1 for the hyperparameters respectively give the best
results. Finally, for the polynomial kernel of the SVR we use
a degree of 3.

To compare the models we use the MSE computed on
the validation set of each model for each premise class on
12-hour intervals. We use MSE during training because it
can amplify larger error and because it is widely used in
regression problems. Table II contains the MSE for all models
and all classes of premises. All models achieve a low (less than
1%) MSE on the validation set of residential and commercial
premises (GS, GS-25, and GS-50). MLP has a 0.1% MSE on
residential and commercial premises, which is the lowest of all
the models. SVR-poly and SVR-rbf average around 0.2% MSE
for residential and commercial premises. Temporal networks
perform worst on residential and commercial premises, with
an average MSE of around 04% and 0.6% for LSTM-
autoencoder and LSTM respectively. SVR-sigmoid also has
an average of 0.6%.

Industrial premises (GS-750) result in higher MSEs of no
more than 3.7%. On industrial premises temporal networks
performed best with a MSE of 2.1% and 2.4% for LSTM-
autoencoder and LSTM respectively. Of the non-temporal
networks, MLP has the lowest MSE on industrial premises

(2.8%). SVR models have a slightly higher MSE of 3.0%,
3.2%, and 3.7% for SVR-poly, SVR-rbf, and SVR-sigmoid
respectively.

Temporal models perform better on industrial premises
and non-temporal models perform better on residential and
commercial premises. A possible explanation could be that
the class GS-750 only contains 15 premises, making the
data more erratic and unpredictable, and in turn making the
next value easier to predict by knowing the previous. This
is supported by the fact that the MSE on the class GS-750
is higher than the MSE on all other classes of premises for
all models. The fact that the class GS-750 only contains 15
premises does not entail that the dataset used to train the
models is smaller. The dataset contains the same number of
datapoints (i.e. the same number of 12-hour interval energy
cunsumption readings). The difference with the other classes
is that those readings are from a smaller (only 15) set of
premises. Figures 4 shows the different energy consumption
pattern for GS and GS-750 premises in the year 2019. Indeed
the measured consumption for GS-750 premises appears more
random and less predictable.

Overall, all models achieve a low MSE on all classes of
premises on the task of predicting energy consumption before
the COVID-19 pandemic. MLP is overall the best performing
model, closely followed SVR-poly and SVR-rbf.

TABLE II: MSE (%) of models with pre-COVID-19 data

Model Res GS GS-25 GS-50  GS-750 | Avg
0.1 0.1 0.1 2.8 0.6

. 02 0.1 0.2 3.0 0.8

SVR-rbf . 02 02 0.1 32 0.8
. 0.8 05 0.3 3.7 1.3

LSTM 1.0 0.6 0.6 0.4 24 1.0
LSTM-autoencoder | 0.6 03 03 0.3 2.1 0.7

The answer to RQ1 is MLP, because it has a prediction
MSE % of 0.1 in all but one premise class, and has the
lowest average MSE among all models (0.6%). MLPs have
also been confirmed by researchers to be well suited for
various prediction tasks [30], [31]. MLPs outperform SVMs
in predicting features of big data as SVMs might become
overwhelmed by the curse of dimensionality, and as a result,
have poor generalization properties when dealing with high-
dimensional data [32], [33]. Moreover, MLPs are capable of
learning the relevant features from the data as a result of using
a multi-layer architecture with several layers of non-linearity.
Although LSTMs are known to be superior to MLPs in case
of sequential data [34], the complex architecture of the LSTM
model requires more training data points than the MLP model
to achieve a higher prediction accuracy. Moreover, the LSTM
model requires more cycles of annual data for its training to
capture changing factors, such as effects of global warming
and technology developments on the energy consumption.

Figure 5 shows the measured and predicted energy con-
sumption for residential premises for the year 2019 for
the models MLP, SVR-poly, SVR-rbf, SVR-sig, LSTM, and
LSTM-autoencoder, respectively. The blue line in the plots
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Fig. 5: Predicted energy consumption (KWh) for residential premises in the year 2019

represents the measured energy consumed by residential
premises. There is a clear section in the summer period with
higher spikes in measured consumption probably caused by
the use of air conditioning. This section repeats with similar
intensity every summer in the data that we analyzed (2017-
2021). The measured consumption also appear to be slightly
higher in Winter than in Spring or Fall, with some spikes
around February. This finding is consistent in every year that
we analyzed (2017-2021). This could be caused by the use
of electric heating in some premises. Overall there is great
variation in the measured energy consumption from one day
to another. This is clearly visible in the plots, as the gray line is
not smooth at all. Furthermore, a sawtooth pattern appears to
be present both in the measured and in the predicted energy
consumption. A sawtooth pattern is sequence that alternates
high and low points regularly (i.e. like a sawtooth wave). This
is explained by the fact that we analyze and predict energy
consumption on 12-hour intervals. So, if the consumption is
generally higher in the afternoons compared to the mornings,
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then the plot will appear to go up and down within a period
of 24 hours.

The first plot in figure 5 shows the prediction made by
the MLP model (in green) compared to the actual measured
consumption (in blue). It is clearly visible in the plots that the
MLP prediction closely follows the actual measured energy
consumption, as expected by the results shown in Table II.

The second and third plots in figures 5 show the prediction
of SVR-poly (in magenta) and SVR-rbf (in cyan) respectively.
The predictions closely follow the measured energy consump-
tion and the models are overall slightly less accurate then the
MLP. This could be caused by the lower capacity of the two
models to understand high dimensional data when compared
to a MLP.

The fourth plot in figure 5 shows the prediction of the
SVR-sig model (in brown). The plot clearly indicates that the
prediction is not accurate and most of what the model is doing
is following the sawtooth pattern.

The fifth and sixth plots in figures 5 show the predic-
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tion of the temporal models LSTM (in yellow) and LSTM-
autoencoder (in orange) respectively. It is visible in the picture
that these two models hardly predict the energy consumption.
They mostly follow the sawtooth pattern that repeats every 24
hours. It is possible that by analyzing 12-hour intervals, the 24
hour cycle of the energy consumption overpowers any other
possible temporal pattern (e.g. seasons and weekends), that
could be learnt by the LSTM model, thus making it harder to
make accurate predictions.

B. Impact Measurement

The best performing model (MLP) of section IV-A is used
to measure the impact of the COVID-19 pandemic on energy
consumption for the city of Fort Collins. We use the MLP
model trained on pre COVID-19 data to make a prediction
for the COVID-19 period. We compare the predicted energy
consumption to the actual energy consumption. The difference
is the result of different energy consumption patterns during
COVID-19. This is because the model takes into account all
major factors (e.g., temperature, time_of year, and weekend)
except for the COVID-19 pandemic.

Table III shows the impact of COVID-19 on energy con-
sumption for the period Mar 2020—Dec 2021. The table
shows the Mean Absolute Error (MAE) which is the mean
absolute difference between the measured and the predicted
energy consumption of each 12-hour interval. We use the
MAE because it shows the absolute error, (which is more
understandable by humans in the context of COVID-19 impact
on energy consumption), rather than the squared error in the
case of MSE, or the root squared error in the case of RMSE.
The table also shows the total measured, total predicted and
total difference for the period Mar 2020-Dec 2021.

Energy consumption for residential premises over the period
Mar 2020—Dec 2021 increased by 2.66%. This is explained
by the fact that people stayed at home more (some working
remotely and some attending classes remotely) and thus con-
sumed more energy in their homes than in previous years.
The MAE for residential premises is 4.85%, which is higher
than the overall difference. This entails that in some 12-
hour intervals the consumption was higher than expected and
in some it was lower than expected. This means that the
consumption patterns, not only increased on average, but also
changed w.r.t. when the energy is consumed.

Energy consumption for commercial premises over the
period Mar 2020 - Dec 2021 decreased by on average 11%.
This decrease is much larger in magnitude than the increase
in consumption for residential premises (only 2.66%). This
is explained by the fact that lots of bars, restaurants and
other commercial businesses shutdown completely during the
COVID-19 lockdown, and after that many continued working
for months with a decreased number of customers, thus
consuming less energy overall. The average MAE is 7.25%,
which is higher than the percentage total difference. This,
again, proves that the consumption patterns changed w.r.t.
when the energy is consumed.

Energy consumption for industrial premises over the period
Mar 2020—Dec 2021 decreases by an almost negligible
0.46%. This is explained by the fact that large industrial
premises largely did not shutdown during the COVID-19
lockdown because they were deemed essential. Furthermore,
among all classes of premises, industrial has the fewest
number of premises and is the one with the largest MSE in
Section IV-A. This entails that the prediction for industrial
premises is the least reliable. This is also shown by the higher
MAE of 17.22%, which is unjustified (there is no apparent
reason why the energy consumption patterns in industrial
premises would change so much).

TABLE III: Impact of COVID-19 on energy consumption

Metric | Res GS GS-25  GS-50  GS-750
MAE (%) 4.85 6.07 7.7 7.99 17.22
MAE (MWh) | 66.7 14.5 10.1 25.9 3.8
TotM (GWh) | 7734 1692 933 265.2 9.4
TotP (GWh) 7534 1865 106.3 299.7 9.4
TotD (%) 2.66 925  -122 -11.5 -0.46
TotD (GWh) 20.0 -172 -13.0 -34.5 -0.04

MAE: Mean Absolute Error

TotM: Total energy measured

TotP: Total energy predicted

TotD: Total energy difference (TotM - TotP)

The answer to RQ?2 is: overall the consumption was reduced
by 44.7 GWh or 3.4%. This reduction is plausible because
the difference between the total energy consumed during the
period Mar 2018 - Dec 2019 and the COVID-19 period (i.e.,
Mar 2020 - Dec 2021) is -33.3 GWh or 2.5%, which is very
similar to the difference between the actual and the predicted
energy consumed for the COVID-19 period.

C. Event Model Creation

We add features that describe the COVID-19 pandemic in
order to improve the prediction of energy consumption during
the COVID-19 pandemic. Here, the goal is no longer to use the
best model to measure the impact of the COVID-19 pandemic,
but rather to create a model that understands the COVID-19
pandemic and can predict the energy usage with a lower error.

We add the six features discussed in section I related to
COVID-19: cases, hospitalizations, deaths, school_closure,
bar_restaurant_closure, and post_pandemic. We trained a
MLP model with the same hyperparameters described in
section IV-A, but with the additional six features.

Table IV contains the MSE, computed on the COVID-19
period, of the MLP model for all classes of premises both
with and without COVID-19 features. The table shows a
consistent reduction in the MSE for all classes of premises
for the model that includes the six COVID-19 features. On
average the improvement is 0.9%. Particularly on the classes
GS-25 and GS-50 the improvement is 8 fold and 9 fold re-
spectively. These results show that we can improve the energy
consumption prediction during the COVID-19 pandemic by
adding COVID-19 related features. This model can be used to
predict energy consumption during future pandemics that are
not related to COVID-19. This is because we can use the same
COVID-19-related features: cases, hospitalizations, deaths,
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school_closure, bar_restaurant_closure, and post_pandemic,
but with the data of a different pandemic. This model could
also be adapted to a different pandemic by adding or removing
features, depending on the nature of the pandemic considered.

TABLE IV: MSE (%) of models with and without COVID-19
features

\ Res GS GS-25 GS-50 GS-750
without covid features | 0.3 0.6 0.8 0.9 5.0
with covid features 0.1 02 0.1 0.1 2.6

The proposed methodology indicates that the best model
selected in step A, should be used in step C to create the
event model. The rational is that the best model in step A
is also the best model in step C. We have verified this by
training and evaluating all models from section IV-A using
the pandemic-related features. Our results showed that MLP
is still the best model.

The second part of RQ3 asks about the importance of
different features when making a prediction. To answer that
question, we compute two metrics: feature importance and
feature correlation. We define feature importance for a feature f
as the MSE computed on the validation set when shuffling the
values of feature f. The higher the MSE, the more important
feature f is. This is because a higher MSE means a greater
prediction error, which means that by shuffling the feature
(effectively nullifying it, such that the model cannot rely on it
in the prediction) the error is increased. Feature correlation
for a feature f is the Pearson correlation between feature
f and energy consumption. The higher the correlation, the
more important feature f is. This is because a high correlation
(positive or negative) entails that the two variables increase or
decrease at a similar rate. Thus, when one is high, it is easy
to predict that the other one will be high too, and vice versa.

Table V contains the feature importance metric (MSE when
shuffling a feature) of the MLP model for all classes of
premises. Temperature and am are by far the overall most
important features in the prediction, followed by time_of _year.
The most important COVID-19 feature is post_pandemic,
followed by hospitalizations, cases, and deaths. Overall, the
whole GS-750 class has much higher MSE. This is because of
the fact that the MLP model as a higher MSE on the GS-750
class to begin with. For this reason, comparisons cannot be
made across classes, but only within.

For residential premises the most important feature is am,
followed by temperature. The feature am is very important as
shown by the plots in section IV-A, where the sawtooth pattern
is very visible and it is directly related to the am feature.

For commercial premises the most important feature is
temperature. This is explained by the fact that air temperature
determines heating and cooling of buildings, which in turn de-
termines energy consumption. Air temperature is particularly
impactful for commercial premises because they generally
have a much larger size and more open internal layout, which
require a lot more energy to heat or cool.

For industrial premises the most important feature is
time_of _year. This seems inexplicable because large industrial
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premises are not expected to have seasonality in energy
consumption. A factor contributing to this result might again
be that the prediction for industrial premises is overall less
reliable (because of a higher MSE).

TABLE V: Feature importance: MSE (%) of models when
shuffling feature

Feature Res GS GS-25 GS-50 GS-750
temperature 1.1 1.0 13 1.2 55
cases 0.3 03 02 0.2 5.5
hospitalizations 0.5 0.1 02 0.1 3.7
deaths 0.3 0.1 0.1 0.1 34
weekend 0.2 04 03 0.3 33
am 1.4 05 05 0.2 4.5
post_pandemic 0.6 04 04 0.4 5.5
bar_restaurants_closure | 0.2 02 02 0.2 4.6
school_closure 0.2 0.2 0.2 0.2 59
holiday 02 01 0.1 0.1 33
time_of_year 07 04 04 0.3 6.9

Table VI contains the Pearson correlation between features
and energy consumption for all classes of premises. High cor-
relation (positive or negative) is a proxy for feature importance
in the prediction. The two strongest correlations to energy
consumption are temperature and am. In contrast with table V,
in table VI the correlation can be compared between different
classes of premises.

As with the feature importance analysis, the feature am
has the highest correlation for residential premises at -0.6,
followed by the feature temperature at 0.38. Again, as with
the feature importance analysis, the feature temperature has
the highest correlation for commercial premises.

For industrial premises, the feature time_of year has the
highest correlation to energy consumption.

These results show a very high degree of consistency
between feature importance and Pearson correlation.

TABLE VI: Feature correlation to energy consumption

Feature Res GS GS-25  GS-50  GS-750
temperature 0.38 0.54 0.64 0.59 -0.21
cases -0.01  -0.19 -0.26 -0.32 0.04
hospitalizations 0.0 -0.2 -0.28 -0.34 0.05
deaths 0.01 -0.13  -0.19 -0.22 0.0
weekend 0.05 -0.37  -0.27 -0.36 -0.01
am -0.6 -0.54  -0.61 -0.49 -0.2
post_pandemic 0.04 -0.21  -0.29 -0.38 -0.06
bar_restaurants_closure | -0.02 0.13 0.13 0.18 0.21
school_closure -0.16 -0.14 -0.14 -0.1 0.4
holiday 0.05 -0.08  -0.09 -0.08 0.04
time_of_year 0.01 -0.22 -0.28 -0.3 0.44

The answer to RQ3 is: The following features can be
added to improve the energy consumption prediction dur-
ing the COVID-19 period: cases, hospitalizations, deaths,
school_closure, bar_restaurant_closure, and post_pandemic.
Not all COVID-19 related features contribute the same way
to the improvement of the prediction. The most impor-
tant COVID-19 related features are, in order of impor-
tance, post_pandemic, hospitalizations, cases, and deaths.
school_closure and bar_restaurant_closure have a low impor-
tance. A possible reason is that these two features are very
coarse grained (i.e. they are a boolean, not a float, and they
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change very seldom during the course of the pandemic) and
that makes them less predictive of energy consumption. For the
feature bar_restaurant_closure, another reason is that bars and
restaurants are a small subset of all commercial premises and
their closure impacts mildly the aggregated consumption of all
commercial premises. Overall the average MSE improvement
caused by the COVID-19 related features is 0.9%. The features
that overall affect energy consumption prediction the most are:
temperature, am, time_of_year and school_closure.

V. RELATED WORK

Machine learning models have been widely used in time
series analysis. Empirical research has demonstrated that ma-
chine learning algorithms outperform statistical models in
complicated time series prediction problems [35].

Recently, the prediction of energy consumption using ma-
chine learning models has been highly valued [2], [3], [36].
Seyedzadeh et al. [2] show that Artificial Neural Network
(ANN) and Support Vector Machine (SVM) were the most
adopted machine learning techniques for energy and electricity
prediction. Weather-based features, such as temperature (65%
of studies used this feature), humidity (40%), and solar ra-
diation (25%) were the most common features used in those
studies. In these studies, machine learning-based approaches
have been shown to be effective in energy consumption
prediction for specific premise types [37], [38] with relatively
stable environmental conditions.

Researchers have also modeled energy consumption under
unstable conditions, such as COVID-19 pandemic [39]. Dalcali
et al. [40] proposed a hybrid multiple linear regression-
feedforward artificial neural network (ANFIS) algorithm to
analyze the impact of COVID-19 on the total energy con-
sumption in Bursa, Turkey in 2020. This approach uses
environmental conditions (i.e., daily average temperature, wind
speed, pressure, and humidity), days of the week, and COVID-
19 pandemic precautions (i.e., restrictions governments have
applied to reduce and control the impact of the pandemic) as
inputs to the algorithm. Their results show that environmental
factors had a more pronounced effect on the estimation of
electrical energy consumption than days of the week and
COVID-19 precautions. Lu et al. [14] used a support vector
machine model to predict daily electricity demand of US from
January to May 2020. This approach uses the number of daily
infections, the number of daily deaths, and a GRSI factor (i.e.,
an indicator of the degree of lockdown proposed by the Oxford
University) as the model’s input and demonstrated that using
the daily infections results in the highest prediction accuracy
and stability. As these approaches were trained and evaluated
using only the during-COVID data, they do not measure the
effect of pandemic-related features in the model improvement.

Huang et al. [41] used a rolling mechanism called IMSGM
that identifies the gap between predicted and the actual energy
consumption by industries to analyze the impact of the pan-
demic on electricity in different time periods relating to the
local lockdown policies in China. This approach uses a uni-
variate time-series modeling technique that takes pre-COVID

consumption sequence as input to predict the consumption
during the pandemic and does not involve any COVID-related
features into its modeling. Moreover, none of these approaches
provide distinct prediction analysis for different premises.

VI. CONCLUSIONS

We proposed a three-step methodology to study, understand
and predict energy consumption in abnormal situations. We
used the COVID-19 pandemic in the City of Fort Collins as
case study to demonstrate the effectiveness of the methodol-
ogy. The outputs of the proposed methodology are the mea-
sured impact of the abnormal event on the energy consumption
and a model that can predict energy consumption during
the abnormal event. We compared the effectiveness of six
machine learning models in predicting energy consumption
for five classes of premises before the COVID-19 pandemic.
We demonstrated that an MLP model is more accurate in
predicting energy consumption compared to more structurally
complex models, such as LSTM and SVR. The MLP model
achieved an MSE of 0.1%.

We improved by 0.9% the MSE of an MLP model in
making energy consumption predictions during the COVID-19
pandemic by including features related to the COVID-19 pan-
demic (e.g., cases, hospitalizations, and deaths). This model
can be used to make predictions about energy consumption
during future pandemics, as it contains features that can be
adapted to different pandemics (e.g. cases, hospitalizations,
and deaths). We showed that the most important features when
making an energy consumption prediction are: air temperature,
time of the day and day of the year.

Our results show that the energy consumption in residential
premises was increased. Out results also show that the energy
consumption in small-size (GS), medium-size (GS-25), and
large-size commercial (GS-50) premises was reduced. This can
be explained by the fact that at the start of the pandemic people
mostly stayed at home and bars and restaurants were closed.
Industrial premises show a vary minor reduction in energy
consumption during the COVID-19 pandemic.

The methodology presented in this paper can be applied in
future in case of other pandemics or large scale phenomenons
(e.g. hurricanes, fires, and tornandos) that effect energy con-
sumption pattern. Our future work involves the applicability of
our models in other abrupt changes of the environment, such
as unanticipated weather.
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