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Abstract—Accurate energy consumption prediction is critical
for proper resource allocation, meeting energy demand, and
energy supply security. This work aims at developing a methodol-
ogy for accurately modeling and predicting electricity consump-
tion during abnormal long-lasting events, such as COVID-19
pandemic, which considerably affect consumption patterns in
different types of premises. The proposed methodology involves
three steps: (A) selects among multiple models the most accurate
one in energy consumption prediction under normal conditions,
(B) uses the selected model to analyze the impact of a specific
abnormal event on energy consumption for various classes of
premises, and (C) investigates which features contribute most
to energy consumption prediction for abnormal conditions and
which features can be added to improve such predictions.

We use COVID-19 as a case study with datasets obtained from
Fort Collins Utilities, which contain energy consumption data
for residential and different sizes of commercial and industrial
premises in the city of Fort Collins, Colorado, USA. We also use
temperature records from NOAA and COVID-19 public orders
from Larimer County.

We validate the methodology by demonstrating that the
methodology can help design a model suited for the pandemic
situation using representative features, and as a result, accurately
predict the energy consumption. Our results show that the MLP
model selected by our methodology performs better than the
other models even when they all use the COVID-related features.
We also demonstrate that the methodology can help measure the
impacts of the pandemic on the energy consumption.

I. INTRODUCTION

Accurate energy consumption prediction is becoming in-

creasingly important for efficient energy management. Rapidly

changing consumption patterns can be damaging to the en-

ergy provider. Accurate prediction is possible by taking into

account the features that affect consumption while modeling

the consumption behavior. COVID-19 has affected our normal

energy consumption patterns as several changes took place

when the rate of infections grew. Students attended remote

classes from home, several small businesses closed down, and

working from home became the norm in several companies.

According to a study by Bartik et al. [1], out of 5,800 samples

of small businesses surveyed in 7 days (March 28, 2020, to

April 4, 2020), 43% were temporarily closed during the period

because of COVID-19.

Machine learning-based models have gained widespread

usage for predicting energy demand because of their effec-

tiveness and efficiency but these studies focused on specific

types of premises [2], [3]. Moreover, they have been used

to predict the energy consumption for a given time period

assuming a stable environment. Such approaches may be

inadequate during uncertain situations, such as the COVID-

19 pandemic because of changes in human behavior and

consumption patterns.
The objective of this paper is to present a methodology

with three steps to analyze, understand, and predict energy

consumption in abnormal situations. Step A is to compare

machine learning-based models on the task of energy con-

sumption prediction in a stable situation. Step B is to use the

best model to analyze the effect of a long duration abnormal

event on the energy consumption patterns. Finally, step C is

to create a model that is able to make accurate predictions of

energy consumption during that event.
We use the COVID-19 pandemic in the city of Fort Collins,

Colorado, as a case study. The research questions that this

paper aims to answer for this case study in each class of

premises are listed below.

RQ1. What is the most effective machine learning algorithm

for predicting energy consumption before the COVID-19

pandemic?

RQ2. What is the impact of COVID-19 on energy consump-

tion?

RQ3. What pandemic-related features can be added to improve

the energy consumption prediction during the COVID-

19 period? Which features affect energy consumption

the most?

To answer RQ1, we use temporal and non-temporal machine

learning models that have been demonstrated to be effective

in energy consumption prediction in a stable environment [2]–

[6]. The temporal models include Long Short Term Memory

(LSTM) [7] and the non-temporal ones include Support Vector

Regression (SVR) [8] and Multi-Layer Perceptron (MLP) [9].

We use Jan 2017—Feb 2020 data (before the COVID-19

pandemic) for training and evaluating the models.
To answer RQ2, we analyze how the expected energy

consumption differs from the actual consumption during the

COVID-19 era (Mar 2020—Dec 2021). We used the best

model from RQ1 to make the predictions for RQ2. We show

how the energy consumption by different types of premises

was affected, and identify those that were the most and least

affected by the pandemic.
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To answer RQ3, we introduce COVID-19-related features,

which describe various characteristics of the pandemic. These

characteristics include the number of cases, number of hos-

pitalization, and public orders on closures. We measure how

the prediction of the best model of RQ1 improves with this

addition. We also run a feature importance analysis on the

whole dataset to determine which features had the highest

impact on the prediction.

The methodology helped select the best model to predict

energy consumption, use that model to effectively measure the

impact of an abnormal event on the energy consumption, and

adapt it to accurately model the energy consumption during

the event. Our findings show that the best model to predict

energy consumption is the MLP. Our data shows that across

all classes of premises, air temperature and time of the day

are the strongest predictors of energy consumption. Among

COVID-19 related features we added to improve the model,

the strongest predictors of energy consumption are number of

cases and number of hospitalizations.

The paper is organized as follows. Section II describes

the datasets used in this paper. Section III summarizes the

temporal and non-temporal machine learning models used

in the work. Section IV presents the proposed methodology.

Section IV-A compares these approaches on the task of pre-

dicting energy consumption before the COVID-19 pandemic.

Section IV-B uses the best model of section IV-A and an-

alyzes the impact of COVID-19 on the energy consumption.

Section IV-C studies feature importance and improves the best

model of section IV-A to predict energy consumption during

the COVID-19 pandemic. Section V discusses the related

work. Finally, Section VI concludes the paper and outlines

directions for future work.

II. DATASETS

The work in this paper uses several features that have an

impact on energy consumption. Some of these features are

known to have an impact on energy consumption (e.g. air

temperature) and some are novel features that we have decided

to include to help the models and improve the prediction (e.g.

number of COVID-19 cases).

We use the readings of energy consumption from the city of

Fort Collins. We analyze the consumption of energy for five

classes of premises:

• Residential: The main use is a place of residence.

• General Service (GS): The yearly average peak-power

demand is below 25 kW.

• General Service-25 (GS-25): The yearly average peak-

power demand is between 25 and 50 kW.

• General Service-50 (GS-50): The yearly average peak-

power consumption is between 50 and 750 kW.

• General Service-750 (GS-750): The yearly average peak-

power demand is above 750 kW.

Colorado State University Energy Institute and Fort Collins

Utilities use these five classes of premises to categorize the

data. Particularly, Fort Collins Utilities uses these classes to

set different rates to different types of premises. We have

access to the data collected from January 1, 2017, to December

31, 2021, in 15 minute intervals. We aggregate the data into

12-hour intervals: from midnight to noon and from noon to

midnight. The datasets have a total number of 76,927 unique

premises with a distribution shown in Figure 1. There are

Fig. 1: Distribution of records by premise type: Residential,

GS (small-size commercial), GS-25 (medium-size commer-

cial), GS-50 (large-size commercial), and GS-750 (Industrial).

different consumption patterns in these five classes because

they are different types of premises (e.g. single family homes,

retail shops, restaurants, offices, and industrial premises). We

expect different changes in consumption patterns as a result

of the COVID-19 pandemic, because it impacted residential,

commercial and industrial premises differently.

We use the air temperature data from the National Oceanic

and Atmospheric Administration (NOAA) [10]. Air temper-

ature data is necessary because we expect that energy con-

sumption is correlated with temperature. People use more air-

conditioning in the summer and more heating during winter.

NOAA records the average daily temperature, the minimum

daily temperature and the maximum daily temperature for

multiple stations in the United States. We choose one station

in the geographical center of the city of Fort Collins. We

associate the minimum recorded temperature in a particular

day with the 12 hour interval from midnight to noon, because

that is when the minimum temperature generally occurs during

a day. Similarly, we associate the maximum recorded temper-

ature in a particular day with the 12 hour interval from noon

to midnight, because that is when the maximum temperature

generally occurs during a day.

To answer RQ3 we want to improve the model by adding

COVID-19 related features that can influence energy consump-

tion patterns. We then use these features to make predictions

of the energy consumption during the COVID-19 pandemic.

We use official COVID-19 data from the Larimer County [11]

of Colorado. Specifically, we use the datasets: 7-day average

number of cases, 7-day average number of hospitalizations,

and daily confirmed deaths. We also track school closures and

restaurant and bar closures due to the COVID-19 lockdown

according to the public health orders and executive orders

of the State of Colorado [12]. For schools we also track
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summer and winter closures following the Poudre School

District calendar [13]. Finally we have added a feature called

post pandemic that is equal to one on March 10, 2020 and

thereafter, and is equal to zero before that date. This feature

is meant to represent any long term change in our society that

started with the COVID-19 pandemic and influences energy

consumption patterns. Machine learning models can use the

post pandemic feature to better model changed patterns in

energy consumption caused by the COVID-19 pandemic. An

example is the fact that many companies today allow workers

to work from home one or more days per week indefinitely

(i.e., regardless of the status of the COVID-19 pandemic),

thus changing energy consumption patterns. It is the task of

the models to understand the usefulness of the post pandemic
feature in the prediction of energy consumption during the

unsupervised learning.

TABLE I: Features of energy data

Feature name Data type Description
delivered kwh Float Energy consumed in 12-hour pe-

riod
temperature Float Air temperature
time of year Float Time of the year, where January 1

equals one, July 1 equals zero, and
other days of the year are interpo-
lated between zero and one

weekend Boolean 1 during the weekend, 0 otherwise
am Boolean 1 from midnight to noon, 0 other-

wise
holiday Boolean 1 during federal holidays, 0 other-

wise
cases Float 7-day average of COVID-19 cases

in Larimer County
hospitalizations Float 7-day average of COVID-19 hospi-

talization in Larimer County
deaths Float confirmed COVID-19 related

deaths in Larimer County
school closure Boolean 1 during school closure, 0 other-

wise
bar restaurant closure Boolean 1 during bar and restaurants clo-

sure, 0 otherwise
post pandemic Boolean 1 after March 10, 2020, 0 otherwise

Table I summarizes all the features used in this study. The

first six features are not COVID-19 related and are used to

answer all three research questions. The last six features are

COVID-19 related and are used only to answer RQ3.
The time of year feature represents the day of the year

of a record. It repeats every year (i.e., a particular day of

the year will have the same value every year) and it is

used to understand the seasonality of energy consumption.

It tells the models which period of the year it is (e.g.,

Summer or Winter). This is important because temperature

is correlated with energy consumption. For this reason, days

that on average have similar temperatures, should have similar

values. Not only May 1 and May 2 should have similar

values, but also November 1 and March 1 should have sim-

ilar values. It is particularly necessary to help non-temporal

models understand the cyclic nature of energy consumption.

The values of the time of year feature span from one to

zero, with one on January 1, zero on July 2, and all other

days with an interpolated value between one and zero. The

formula is |(day of year− half year)/half year|, where

day of year goes from 0 to 364 (365 on a leap year) and

half year is equal to 182 (183 on a leap year). This feature

is created in this fashion because neural networks work best

with normalized input values (generally between -1 and 1 or

between 0 and 1). The date as a string could definitely not be

given to a network as input, nor could the day of the year as

an integer between 1 and 365 (366 on leap years). In the first

case because a neural network cannot handle a string as input

and in the second case because the value is not normalized and

the first and the last day of the year would have values at the

opposite ends of the spectrum despite being part of the same

season and have similar weather. Figure 2 shows the value of

the feature time of year over the course of three years.

Fig. 2: Value of the time of year feature over the course of

five years

The holiday feature indicates whether or not a specific date

is a federal holiday or not. Its value is equal to one during a

federal holiday and it is equal to zero all other days.

Before feeding the data to the machine learning models,

all features are normalized using min-max normalization. This

improves the optimization of neural networks during training.

III. BACKGROUND ON ML MODELS

We use three machine learning models based on temporal

and non-temporal features that are known to be effective in

energy prediction tasks [2]–[6], [14]. Energy consumption

patterns appear to be temporally dependent [15]. For example,

the energy consumed by a residential user depends upon the

time of the day, the day of the week, and the season. As a

result, we use temporal models based on Long Short Term

Memory (LSTM) networks, which preserve long-term tempo-

ral dependencies among data records in their predictions [7].

On the other hand, the energy consumed by any premise

is highly dependent on the daily temperature [2]. Thus, we

also use non-temporal techniques (Support Vector Regression

(SVR) and Multi-Layer Perceptron (MLP)), which base the

prediction of energy consumed on a specific date primarily on

the temperature on the same day.

Our objective is to determine whether a non-temporal

model can effectively predict the energy consumption without

involving the past record values in the prediction. We use

these features to help the non-temporal models: time of year,

weekend, am. These features allow the non-temporal models to

understand the different patterns of energy consumption based

on time of the year, day of the week and time of the day.

However, we do use these feature with the temporal models

as well, this is because adding new features could improve,

but not worsen, the model prediction.
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We describe the temporal and non-temporal models in

Sections III-A and III-B respectively.

A. Temporal Machine Learning Model

Our LSTM model is based on a Recurrent Neural Network

(RNN) [16] that contains loops in its structure to allow

information to persist and make networks learn sequential

dependencies among data records [7]. The original RNNs

can only learn short-term dependencies among data records

by using the recurrent feedback connections [17]. LSTMs

extend RNNs by using specialized gates and memory cells

in their neuron structure to learn long-term dependencies. The

computational units (neurons) of an LSTM are called memory
cells. An LSTM has the ability to remove or add information

to the memory cell state by using gates. The gates are defined

as weighted functions that govern information flow in the

memory cells. The gates are composed of a sigmoid layer and

a point-wise operation to optionally let information through.

The sigmoid layer outputs a number between zero (to let

nothing through) and one (to let everything through). There

are three types of gates, namely, forget, input, and output.
• Forget gate: Decides what information to discard from

the memory cell.

• Input gate: Decides which values to use from the network

input to update the memory state.

• Output gate: Decides what to output based on the input

and the memory state.

In our experiment, we use two LSTM networks. The first

network is an original LSTM model that takes a sequence of

past records (Rt−i, (i = 1, ..., p)) as input to predict a single

record (Rt−i) as output. The second network is an LSTM-

autoencoder model as a sequence-to-sequence predictor, which

takes a sub-sequence of records (Rt−i, (i = 1, ..., p)) as

input to predict a one-step-ahead sub-sequence of records

(Rt−(i+1), (i = 1, ..., p)) as output. The LSTM-autoencoder

model is capable of extracting and encoding significant fea-

tures of the input sub-sequence into a new representation,

resulting in accuracy improvements and reducing overfitting

risk in comparison with the original LSTMs [18].

B. Non-Temporal Machine Learning Models

We use two models, which are Support Vector Regression

(SVR) and Multilayer Perceptron (MLP). The SVR is a

support-vector machine that is generally used to compute a

linear function of its inputs (however, we are going to use non-

linear kernels), whereas the MLP is a feedforward artificial

neural network that computes a non-linear function of its

inputs.

Support Vector Regression (SVR). Support Vector Machine

(SVM) is a machine-learning method based on structural risk

minimization technique, which balances fitting the training

data against model complexity [19]. An SVM sets one or

more hyperplanes in a high-dimensional space to perform

classification by finding the hyperplane that maximizes the

margin between the two data classes [20], [21]. The version

of SVM for regression estimation is known as Support Vector

Regression (SVR) [8]. SVR fits errors within a certain thresh-

old while minimizing the error rate. Research has shown that

SVR performs better than traditional regression methods [22]–

[24].

The performance of SVR relies on a kernel, which is a

function that helps find a hyperplane in a high-dimensional

space with low computational cost [6], [25]. There are four

types of kernel functions, namely, linear, polynomial, Radial

Basis Function (RBF), and sigmoid. Polynomial kernel shapes

a curved line, and RBF kernel creates complex regions. In

this work, we test all three non-linear kernels, to make a

comparison with the non-linear MLP. It has been shown

that polynomial, RBF and sigmoid kernels are effective in

modeling non-linear patterns in data [2].

Multi Layer Perceptron (MLP). An MLP is an Artificial

Neural Network [26] with an extremely popular usage in

energy consumption prediction because of its capability in esti-

mating continuous non-linear functions [27]. Tosun et al. [28]

studied the difference in prediction using regression models

and neural networks, which shows that the usage of complex

non-linear networks can result in great effectiveness for the

prediction tasks. An MLP consists of an interconnection of

a number of neurons. The input layer receives the input

data. The intermediate layers, called hidden layers, perform

computations on the input data. An MLP uses a supervised

technique called backpropagation [29] for training.

IV. PROPOSED METHODOLOGY

Figure 3 shows an overview of the proposed methodology

with three steps. Step A identifies the best model to predict

energy consumption in a normal period (i.e. a period in which

there are no abnormal events that impact energy consumption,

such as pandemics, flooding, and hurricanes). Step B measures

the impact of the phenomenon that causes the abnormal

situation on energy consumption. The impact is measured as

the difference between the expected energy consumed and the

actual energy consumed. Step C creates a new model that is

able to predict energy consumption during the event. This step

is conducted by using the best performing model (previously

selected in section IV-A) and adding new features that

describe the evolution of the situation. These features provide

the model with more information that can be used to learn

changing energy consumption patterns and to improve energy

consumption prediction. Sections IV-A to IV-C describe these

steps using the COVID-19 pandemic case study.

A. Model Comparison

We compare the six (MLP, SVR-poly, SVR-rbf, SVR-sig,

LSTM, and LSTM-autoencoder) machine learning models

presented in Section III on the task of predicting energy

consumption for the period Jan 2017—Feb 2020. The goal

is to find the most effective model (i.e., the model with the

lowest prediction error). The models take the temperature,
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Event Model

Best Model

A: Model Comparison

Impact

B: Impact Measurement Model Update

Domain-Related Features
Models

Event-Related Features

Feature Identification

C: Event Model Creation

Event Data Public Orders

Fig. 3: Methodology Overview

time of year, weekend, am and holiday features of an individ-

ual record i as input and predict the value of delivered kwhi

for the same record.

Many hyperparameters need to be tuned in order for the

models to make the best predictions. We use grid search to find

the best combination for each model. The loss function [26]

for the neural networks used in this work is the Mean Squared

Error (MSE), which is the most commonly used regression

loss function and is defined as the sum of squared distances

between the target and predicted values. For the MLP, we use

two hidden layers of size 20 and the Adam optimizer with

a learning rate of 0.001. For the LSTM models we use the

LSTM layers followed by one dense layer of size 20 and the

Adam optimizer with a learning rate of 0.001.

The following hyperparameters of the SVR models need to

be tuned: regularization, gamma, and epsilon. Values of 100,

0.1, and 0.1 for the hyperparameters respectively give the best

results. Finally, for the polynomial kernel of the SVR we use

a degree of 3.

To compare the models we use the MSE computed on

the validation set of each model for each premise class on

12-hour intervals. We use MSE during training because it

can amplify larger error and because it is widely used in

regression problems. Table II contains the MSE for all models

and all classes of premises. All models achieve a low (less than

1%) MSE on the validation set of residential and commercial

premises (GS, GS-25, and GS-50). MLP has a 0.1% MSE on

residential and commercial premises, which is the lowest of all

the models. SVR-poly and SVR-rbf average around 0.2% MSE

for residential and commercial premises. Temporal networks

perform worst on residential and commercial premises, with

an average MSE of around 0.4% and 0.6% for LSTM-

autoencoder and LSTM respectively. SVR-sigmoid also has

an average of 0.6%.

Industrial premises (GS-750) result in higher MSEs of no

more than 3.7%. On industrial premises temporal networks

performed best with a MSE of 2.1% and 2.4% for LSTM-

autoencoder and LSTM respectively. Of the non-temporal

networks, MLP has the lowest MSE on industrial premises

(2.8%). SVR models have a slightly higher MSE of 3.0%,

3.2%, and 3.7% for SVR-poly, SVR-rbf, and SVR-sigmoid

respectively.

Temporal models perform better on industrial premises

and non-temporal models perform better on residential and

commercial premises. A possible explanation could be that

the class GS-750 only contains 15 premises, making the

data more erratic and unpredictable, and in turn making the

next value easier to predict by knowing the previous. This

is supported by the fact that the MSE on the class GS-750

is higher than the MSE on all other classes of premises for

all models. The fact that the class GS-750 only contains 15

premises does not entail that the dataset used to train the

models is smaller. The dataset contains the same number of

datapoints (i.e. the same number of 12-hour interval energy

cunsumption readings). The difference with the other classes

is that those readings are from a smaller (only 15) set of

premises. Figures 4 shows the different energy consumption

pattern for GS and GS-750 premises in the year 2019. Indeed

the measured consumption for GS-750 premises appears more

random and less predictable.

Overall, all models achieve a low MSE on all classes of

premises on the task of predicting energy consumption before

the COVID-19 pandemic. MLP is overall the best performing

model, closely followed SVR-poly and SVR-rbf.

TABLE II: MSE (%) of models with pre-COVID-19 data

Model Res GS GS-25 GS-50 GS-750 Avg
MLP 0.1 0.1 0.1 0.1 2.8 0.6
SVR-poly 0.3 0.2 0.1 0.2 3.0 0.8

SVR-rbf 0.2 0.2 0.2 0.1 3.2 0.8
SVR-sigmoid 1.0 0.8 0.5 0.3 3.7 1.3
LSTM 1.0 0.6 0.6 0.4 2.4 1.0
LSTM-autoencoder 0.6 0.3 0.3 0.3 2.1 0.7

The answer to RQ1 is MLP, because it has a prediction

MSE % of 0.1 in all but one premise class, and has the

lowest average MSE among all models (0.6%). MLPs have

also been confirmed by researchers to be well suited for

various prediction tasks [30], [31]. MLPs outperform SVMs

in predicting features of big data as SVMs might become

overwhelmed by the curse of dimensionality, and as a result,

have poor generalization properties when dealing with high-

dimensional data [32], [33]. Moreover, MLPs are capable of

learning the relevant features from the data as a result of using

a multi-layer architecture with several layers of non-linearity.

Although LSTMs are known to be superior to MLPs in case

of sequential data [34], the complex architecture of the LSTM

model requires more training data points than the MLP model

to achieve a higher prediction accuracy. Moreover, the LSTM

model requires more cycles of annual data for its training to

capture changing factors, such as effects of global warming

and technology developments on the energy consumption.

Figure 5 shows the measured and predicted energy con-

sumption for residential premises for the year 2019 for

the models MLP, SVR-poly, SVR-rbf, SVR-sig, LSTM, and

LSTM-autoencoder, respectively. The blue line in the plots
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Fig. 4: Normalized measured energy consumption for GS premises (blue) and GS-750 premises (purple)

Fig. 5: Predicted energy consumption (KWh) for residential premises in the year 2019

represents the measured energy consumed by residential

premises. There is a clear section in the summer period with

higher spikes in measured consumption probably caused by

the use of air conditioning. This section repeats with similar

intensity every summer in the data that we analyzed (2017-

2021). The measured consumption also appear to be slightly

higher in Winter than in Spring or Fall, with some spikes

around February. This finding is consistent in every year that

we analyzed (2017-2021). This could be caused by the use

of electric heating in some premises. Overall there is great

variation in the measured energy consumption from one day

to another. This is clearly visible in the plots, as the gray line is

not smooth at all. Furthermore, a sawtooth pattern appears to

be present both in the measured and in the predicted energy

consumption. A sawtooth pattern is sequence that alternates

high and low points regularly (i.e. like a sawtooth wave). This

is explained by the fact that we analyze and predict energy

consumption on 12-hour intervals. So, if the consumption is

generally higher in the afternoons compared to the mornings,

then the plot will appear to go up and down within a period

of 24 hours.

The first plot in figure 5 shows the prediction made by

the MLP model (in green) compared to the actual measured

consumption (in blue). It is clearly visible in the plots that the

MLP prediction closely follows the actual measured energy

consumption, as expected by the results shown in Table II.

The second and third plots in figures 5 show the prediction

of SVR-poly (in magenta) and SVR-rbf (in cyan) respectively.

The predictions closely follow the measured energy consump-

tion and the models are overall slightly less accurate then the

MLP. This could be caused by the lower capacity of the two

models to understand high dimensional data when compared

to a MLP.

The fourth plot in figure 5 shows the prediction of the

SVR-sig model (in brown). The plot clearly indicates that the

prediction is not accurate and most of what the model is doing

is following the sawtooth pattern.

The fifth and sixth plots in figures 5 show the predic-
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tion of the temporal models LSTM (in yellow) and LSTM-

autoencoder (in orange) respectively. It is visible in the picture

that these two models hardly predict the energy consumption.

They mostly follow the sawtooth pattern that repeats every 24

hours. It is possible that by analyzing 12-hour intervals, the 24

hour cycle of the energy consumption overpowers any other

possible temporal pattern (e.g. seasons and weekends), that

could be learnt by the LSTM model, thus making it harder to

make accurate predictions.

B. Impact Measurement

The best performing model (MLP) of section IV-A is used

to measure the impact of the COVID-19 pandemic on energy

consumption for the city of Fort Collins. We use the MLP

model trained on pre COVID-19 data to make a prediction

for the COVID-19 period. We compare the predicted energy

consumption to the actual energy consumption. The difference

is the result of different energy consumption patterns during

COVID-19. This is because the model takes into account all

major factors (e.g., temperature, time of year, and weekend)

except for the COVID-19 pandemic.

Table III shows the impact of COVID-19 on energy con-

sumption for the period Mar 2020—Dec 2021. The table

shows the Mean Absolute Error (MAE) which is the mean

absolute difference between the measured and the predicted

energy consumption of each 12-hour interval. We use the

MAE because it shows the absolute error, (which is more

understandable by humans in the context of COVID-19 impact

on energy consumption), rather than the squared error in the

case of MSE, or the root squared error in the case of RMSE.

The table also shows the total measured, total predicted and

total difference for the period Mar 2020–Dec 2021.

Energy consumption for residential premises over the period

Mar 2020—Dec 2021 increased by 2.66%. This is explained

by the fact that people stayed at home more (some working

remotely and some attending classes remotely) and thus con-

sumed more energy in their homes than in previous years.

The MAE for residential premises is 4.85%, which is higher

than the overall difference. This entails that in some 12-

hour intervals the consumption was higher than expected and

in some it was lower than expected. This means that the

consumption patterns, not only increased on average, but also

changed w.r.t. when the energy is consumed.

Energy consumption for commercial premises over the

period Mar 2020 - Dec 2021 decreased by on average 11%.

This decrease is much larger in magnitude than the increase

in consumption for residential premises (only 2.66%). This

is explained by the fact that lots of bars, restaurants and

other commercial businesses shutdown completely during the

COVID-19 lockdown, and after that many continued working

for months with a decreased number of customers, thus

consuming less energy overall. The average MAE is 7.25%,

which is higher than the percentage total difference. This,

again, proves that the consumption patterns changed w.r.t.

when the energy is consumed.

Energy consumption for industrial premises over the period

Mar 2020—Dec 2021 decreases by an almost negligible

0.46%. This is explained by the fact that large industrial

premises largely did not shutdown during the COVID-19

lockdown because they were deemed essential. Furthermore,

among all classes of premises, industrial has the fewest

number of premises and is the one with the largest MSE in

Section IV-A. This entails that the prediction for industrial

premises is the least reliable. This is also shown by the higher

MAE of 17.22%, which is unjustified (there is no apparent

reason why the energy consumption patterns in industrial

premises would change so much).

TABLE III: Impact of COVID-19 on energy consumption

Metric Res GS GS-25 GS-50 GS-750
MAE (%) 4.85 6.07 7.7 7.99 17.22
MAE (MWh) 66.7 14.5 10.1 25.9 3.8
TotM (GWh) 773.4 169.2 93.3 265.2 9.4
TotP (GWh) 753.4 186.5 106.3 299.7 9.4
TotD (%) 2.66 -9.25 -12.2 -11.5 -0.46
TotD (GWh) 20.0 -17.2 -13.0 -34.5 -0.04

MAE: Mean Absolute Error
TotM: Total energy measured
TotP: Total energy predicted

TotD: Total energy difference (TotM - TotP)

The answer to RQ2 is: overall the consumption was reduced

by 44.7 GWh or 3.4%. This reduction is plausible because

the difference between the total energy consumed during the

period Mar 2018 - Dec 2019 and the COVID-19 period (i.e.,

Mar 2020 - Dec 2021) is -33.3 GWh or 2.5%, which is very

similar to the difference between the actual and the predicted

energy consumed for the COVID-19 period.

C. Event Model Creation

We add features that describe the COVID-19 pandemic in

order to improve the prediction of energy consumption during

the COVID-19 pandemic. Here, the goal is no longer to use the

best model to measure the impact of the COVID-19 pandemic,

but rather to create a model that understands the COVID-19

pandemic and can predict the energy usage with a lower error.

We add the six features discussed in section I related to

COVID-19: cases, hospitalizations, deaths, school closure,

bar restaurant closure, and post pandemic. We trained a

MLP model with the same hyperparameters described in

section IV-A, but with the additional six features.

Table IV contains the MSE, computed on the COVID-19

period, of the MLP model for all classes of premises both

with and without COVID-19 features. The table shows a

consistent reduction in the MSE for all classes of premises

for the model that includes the six COVID-19 features. On

average the improvement is 0.9%. Particularly on the classes

GS-25 and GS-50 the improvement is 8 fold and 9 fold re-

spectively. These results show that we can improve the energy

consumption prediction during the COVID-19 pandemic by

adding COVID-19 related features. This model can be used to

predict energy consumption during future pandemics that are

not related to COVID-19. This is because we can use the same

COVID-19-related features: cases, hospitalizations, deaths,
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school closure, bar restaurant closure, and post pandemic,

but with the data of a different pandemic. This model could

also be adapted to a different pandemic by adding or removing

features, depending on the nature of the pandemic considered.

TABLE IV: MSE (%) of models with and without COVID-19

features

Res GS GS-25 GS-50 GS-750
without covid features 0.3 0.6 0.8 0.9 5.0
with covid features 0.1 0.2 0.1 0.1 2.6

The proposed methodology indicates that the best model

selected in step A, should be used in step C to create the

event model. The rational is that the best model in step A

is also the best model in step C. We have verified this by

training and evaluating all models from section IV-A using

the pandemic-related features. Our results showed that MLP

is still the best model.
The second part of RQ3 asks about the importance of

different features when making a prediction. To answer that

question, we compute two metrics: feature importance and

feature correlation. We define feature importance for a feature f
as the MSE computed on the validation set when shuffling the

values of feature f. The higher the MSE, the more important

feature f is. This is because a higher MSE means a greater

prediction error, which means that by shuffling the feature

(effectively nullifying it, such that the model cannot rely on it

in the prediction) the error is increased. Feature correlation

for a feature f is the Pearson correlation between feature

f and energy consumption. The higher the correlation, the

more important feature f is. This is because a high correlation

(positive or negative) entails that the two variables increase or

decrease at a similar rate. Thus, when one is high, it is easy

to predict that the other one will be high too, and vice versa.
Table V contains the feature importance metric (MSE when

shuffling a feature) of the MLP model for all classes of

premises. Temperature and am are by far the overall most

important features in the prediction, followed by time of year.

The most important COVID-19 feature is post pandemic,

followed by hospitalizations, cases, and deaths. Overall, the

whole GS-750 class has much higher MSE. This is because of

the fact that the MLP model as a higher MSE on the GS-750

class to begin with. For this reason, comparisons cannot be

made across classes, but only within.
For residential premises the most important feature is am,

followed by temperature. The feature am is very important as

shown by the plots in section IV-A, where the sawtooth pattern

is very visible and it is directly related to the am feature.
For commercial premises the most important feature is

temperature. This is explained by the fact that air temperature

determines heating and cooling of buildings, which in turn de-

termines energy consumption. Air temperature is particularly

impactful for commercial premises because they generally

have a much larger size and more open internal layout, which

require a lot more energy to heat or cool.
For industrial premises the most important feature is

time of year. This seems inexplicable because large industrial

premises are not expected to have seasonality in energy

consumption. A factor contributing to this result might again

be that the prediction for industrial premises is overall less

reliable (because of a higher MSE).

TABLE V: Feature importance: MSE (%) of models when

shuffling feature

Feature Res GS GS-25 GS-50 GS-750
temperature 1.1 1.0 1.3 1.2 5.5
cases 0.3 0.3 0.2 0.2 5.5
hospitalizations 0.5 0.1 0.2 0.1 3.7
deaths 0.3 0.1 0.1 0.1 3.4
weekend 0.2 0.4 0.3 0.3 3.3
am 1.4 0.5 0.5 0.2 4.5
post pandemic 0.6 0.4 0.4 0.4 5.5
bar restaurants closure 0.2 0.2 0.2 0.2 4.6
school closure 0.2 0.2 0.2 0.2 5.9
holiday 0.2 0.1 0.1 0.1 3.3
time of year 0.7 0.4 0.4 0.3 6.9

Table VI contains the Pearson correlation between features

and energy consumption for all classes of premises. High cor-

relation (positive or negative) is a proxy for feature importance

in the prediction. The two strongest correlations to energy

consumption are temperature and am. In contrast with table V,

in table VI the correlation can be compared between different

classes of premises.
As with the feature importance analysis, the feature am

has the highest correlation for residential premises at -0.6,

followed by the feature temperature at 0.38. Again, as with

the feature importance analysis, the feature temperature has

the highest correlation for commercial premises.
For industrial premises, the feature time of year has the

highest correlation to energy consumption.
These results show a very high degree of consistency

between feature importance and Pearson correlation.

TABLE VI: Feature correlation to energy consumption

Feature Res GS GS-25 GS-50 GS-750
temperature 0.38 0.54 0.64 0.59 -0.21
cases -0.01 -0.19 -0.26 -0.32 0.04
hospitalizations 0.0 -0.2 -0.28 -0.34 0.05
deaths 0.01 -0.13 -0.19 -0.22 0.0
weekend 0.05 -0.37 -0.27 -0.36 -0.01
am -0.6 -0.54 -0.61 -0.49 -0.2
post pandemic 0.04 -0.21 -0.29 -0.38 -0.06
bar restaurants closure -0.02 0.13 0.13 0.18 0.21
school closure -0.16 -0.14 -0.14 -0.1 0.4
holiday 0.05 -0.08 -0.09 -0.08 0.04
time of year 0.01 -0.22 -0.28 -0.3 0.44

The answer to RQ3 is: The following features can be

added to improve the energy consumption prediction dur-

ing the COVID-19 period: cases, hospitalizations, deaths,

school closure, bar restaurant closure, and post pandemic.

Not all COVID-19 related features contribute the same way

to the improvement of the prediction. The most impor-

tant COVID-19 related features are, in order of impor-

tance, post pandemic, hospitalizations, cases, and deaths.

school closure and bar restaurant closure have a low impor-

tance. A possible reason is that these two features are very

coarse grained (i.e. they are a boolean, not a float, and they
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change very seldom during the course of the pandemic) and

that makes them less predictive of energy consumption. For the

feature bar restaurant closure, another reason is that bars and

restaurants are a small subset of all commercial premises and

their closure impacts mildly the aggregated consumption of all

commercial premises. Overall the average MSE improvement

caused by the COVID-19 related features is 0.9%. The features

that overall affect energy consumption prediction the most are:

temperature, am, time of year and school closure.

V. RELATED WORK

Machine learning models have been widely used in time

series analysis. Empirical research has demonstrated that ma-

chine learning algorithms outperform statistical models in

complicated time series prediction problems [35].

Recently, the prediction of energy consumption using ma-

chine learning models has been highly valued [2], [3], [36].

Seyedzadeh et al. [2] show that Artificial Neural Network

(ANN) and Support Vector Machine (SVM) were the most

adopted machine learning techniques for energy and electricity

prediction. Weather-based features, such as temperature (65%

of studies used this feature), humidity (40%), and solar ra-

diation (25%) were the most common features used in those

studies. In these studies, machine learning-based approaches

have been shown to be effective in energy consumption

prediction for specific premise types [37], [38] with relatively

stable environmental conditions.

Researchers have also modeled energy consumption under

unstable conditions, such as COVID-19 pandemic [39]. Dalcali

et al. [40] proposed a hybrid multiple linear regression-

feedforward artificial neural network (ANFIS) algorithm to

analyze the impact of COVID-19 on the total energy con-

sumption in Bursa, Turkey in 2020. This approach uses

environmental conditions (i.e., daily average temperature, wind

speed, pressure, and humidity), days of the week, and COVID-

19 pandemic precautions (i.e., restrictions governments have

applied to reduce and control the impact of the pandemic) as

inputs to the algorithm. Their results show that environmental

factors had a more pronounced effect on the estimation of

electrical energy consumption than days of the week and

COVID-19 precautions. Lu et al. [14] used a support vector

machine model to predict daily electricity demand of US from

January to May 2020. This approach uses the number of daily

infections, the number of daily deaths, and a GRSI factor (i.e.,

an indicator of the degree of lockdown proposed by the Oxford

University) as the model’s input and demonstrated that using

the daily infections results in the highest prediction accuracy

and stability. As these approaches were trained and evaluated

using only the during-COVID data, they do not measure the

effect of pandemic-related features in the model improvement.

Huang et al. [41] used a rolling mechanism called IMSGM

that identifies the gap between predicted and the actual energy

consumption by industries to analyze the impact of the pan-

demic on electricity in different time periods relating to the

local lockdown policies in China. This approach uses a uni-

variate time-series modeling technique that takes pre-COVID

consumption sequence as input to predict the consumption

during the pandemic and does not involve any COVID-related

features into its modeling. Moreover, none of these approaches

provide distinct prediction analysis for different premises.

VI. CONCLUSIONS

We proposed a three-step methodology to study, understand

and predict energy consumption in abnormal situations. We

used the COVID-19 pandemic in the City of Fort Collins as

case study to demonstrate the effectiveness of the methodol-

ogy. The outputs of the proposed methodology are the mea-

sured impact of the abnormal event on the energy consumption

and a model that can predict energy consumption during

the abnormal event. We compared the effectiveness of six

machine learning models in predicting energy consumption

for five classes of premises before the COVID-19 pandemic.

We demonstrated that an MLP model is more accurate in

predicting energy consumption compared to more structurally

complex models, such as LSTM and SVR. The MLP model

achieved an MSE of 0.1%.
We improved by 0.9% the MSE of an MLP model in

making energy consumption predictions during the COVID-19

pandemic by including features related to the COVID-19 pan-

demic (e.g., cases, hospitalizations, and deaths). This model

can be used to make predictions about energy consumption

during future pandemics, as it contains features that can be

adapted to different pandemics (e.g. cases, hospitalizations,

and deaths). We showed that the most important features when

making an energy consumption prediction are: air temperature,

time of the day and day of the year.
Our results show that the energy consumption in residential

premises was increased. Out results also show that the energy

consumption in small-size (GS), medium-size (GS-25), and

large-size commercial (GS-50) premises was reduced. This can

be explained by the fact that at the start of the pandemic people

mostly stayed at home and bars and restaurants were closed.

Industrial premises show a vary minor reduction in energy

consumption during the COVID-19 pandemic.
The methodology presented in this paper can be applied in

future in case of other pandemics or large scale phenomenons

(e.g. hurricanes, fires, and tornandos) that effect energy con-

sumption pattern. Our future work involves the applicability of

our models in other abrupt changes of the environment, such

as unanticipated weather.
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