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Abstract—Distributed renewable energy sources owned by pro-
sumers have been considered an effective way to fortify grid re-
silience, and enhance sustainability. However, prosumers serve
their own interests, which are affected by their risk preferences.
Moreover, their objectives are unlikely to align with those of the
society. In contrast to the conventional assumption of constant and
exogenous risk preference, we propose an alternative modeling
framework in which prosumers endogenously determine their risk
attitudes through optimization in the power sector with a day-
ahead market and real-time imbalance settlement. The decisions
made by prosumers and other participants in the wholesale power
market are expressed as a Stackelberg leader-follower game, re-
sulting in a mathematical program with equilibrium constraints.
The problem is formulated in a distributionally robust chance-
constrained framework to account for renewable generation un-
certainty. We show that the effect of uncertainty can be mitigated
in the market if prosumers are allowed to optimally determine their
risk attitudes. We also examine the case of price-taking prosumers,
in which consistent implications are obtained. Therefore, our work
highlights the fact that endogenizing risk preferences can be a
useful tool for managing risk in the power market.

Index Terms—Distributionally robust chance constraint,
mathematical program with equilibrium constraints, power
market, prosumer, risk.

I. INTRODUCTION
A. Motivation

LECTRICITY markets are evolving rapidly and funda-
mentally, in response to the growing need for renewable
capacity and generation, mainly reinforced by the efforts to

Manuscript received 17 August 2022; revised 20 November 2022 and 26
December 2022; accepted 30 January 2023. Date of publication 6 February 2023;
date of current version 15 March 2023. The work of Yihsu Chen was supported
in part by the National Science Foundation under Grant CMMI-1832683. The
work of Andrew L. Liu was supported in part by the National Science Foundation
under Grants ECCS-1509536 and CMMI-1832688. Paper no. TEMPR-00024-
2022. (Corresponding author: Yihsu Chen.)

Sepehr Ramyar is with the Department of Electrical and Computer Engineer-
ing, University of California Santa Cruz, Santa Cruz, CA 95064 USA (e-mail:
sramyar @ucsc.edu).

Yihsu Chen is with Department of Electrical and Computer Engineering, and
Environmental Studies, University of California Santa Cruz, Santa Cruz, CA
95064 USA (e-mail: yihsuchen@ucsc.edu).

Makoto Tanaka is with the National Graduate Institute for Policy Studies
(GRIPS), Tokyo 106-8677, Japan (e-mail: mtanaka@grips.ac.jp).

Andrew L. Liu is with the School of Industrial Engineering at Purdue Uni-
versity, West Lafayette, IN 47907 USA (e-mail: andrewliu@purdue.edu).

Digital Object Identifier 10.1109/TEMPR.2023.3242664

, Member, IEEE, Andrew L. Liu
, Senior Member, IEEE

, Member, IEEE,

mitigate climate change and pursue sustainability. This has
resulted in significant changes in the design and operation of
modern power grids. As more smart meters and digital grid
technologies become available, the industry witness more fa-
cilitation, and hence the willingness toward renewable power
generation, such as a solar photovoltaic (PV) system, among
traditional consumers. This trend, in conjunction with a variety
of distributed energy resources (DER), such as electric vehicles
(EV) and storage, has challenged the traditional supply-centric
paradigm and illustrated a new reality focused on the demand
side in electricity markets.

As the demand side of energy markets becomes increas-
ingly engaged, the behavior and strategies of the once-idle
demand-side participants begin to affect the functioning of
electricity markets more significantly. In particular, we observe
the emergence of prosumers, that is, agents capable of con-
current generation and consumption of power, as opposed to
conventional consumers or suppliers that would traditionally
participate in one side of the market only. As more conventional
consumers become prosumers, the collective effect on the design
and operation of electricity markets becomes paramount [1].
The engagements of consumers in the electricity markets are
amplified by aggregators that integrate demand response (DR)
and DER that offer bundled energy products to the market [2],
[3]. This trend has recently been accelerated by FERC Order
2222, which paves the way for the increased adoption of DER
technologies [4].

Prosumers with non-dispatchable renewable power sources
face inherent uncertainty of natural resources, such as solar
and wind. Hence, individuals’ attitudes toward risk play an
important role in the decision making of prosumers, similar to
the situation facing investors in financial markets. Within the
research communities of economics, finance, and engineering,
the assumption of constant and exogenous risk preference has
been standard practice [5], [6]. However, in recent years, such
a standard assumption has been considered unrealistic because
it occasionally fails to describe historical data, particularly in
financial markets.! For instance, [8] argues that a model with

IRelated to this point, Alan Greenspan suggested in his speech at the Federal
Reserve Bank of Kansas City that an increase in the market value of asset claims
partly depends on changing investors’ attitudes toward risk [7].
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constant risk aversion cannot replicate the key statistical prop-
erties observed in real financial markets. The study demon-
strates that a time-varying risk-aversion parameter that responds
to unexpected excess returns can replicate historical data. In
contrast, [9] develops a general equilibrium model in which
heterogeneous preferences are endogenously determined in mar-
kets. They empirically show that the risk aversion parameters
vary across households under different market conditions by
comparing landed and landless households in Bangladesh.

Given the increasing influence of prosumers with uncertain
renewable power sources, their behavioral and risk assessments
have become a key focus, with possible ramifications for the
outcomes of current electricity markets [10], [11]. Prosumer
attitudes toward risk have a direct bearing on the quantities they
supply and demand, and hence, overall market outcomes, given
the rapid penetration of renewable energy sources. The degree
of prosumer risk aversion is expected to respond and adapt to
the surrounding economic environment and market conditions
as in the case of investors in the financial field [8]. Therefore,
a modeling framework that captures the decision making of
prosumers in the context of endogenous risk attitudes under
uncertainty is of particular importance.

B. Related Work and Contributions

Previous studies have addressed some dimensions of risk
elements in electricity markets involving prosumers. In [12],
the authors investigated the risks involved in community energy
markets, with a particular focus on peer-to-peer and energy-
sharing mechanisms. The authors developed a conditional value-
at-risk (CVaR) model for household and community PV systems
and formulated the problem in terms of a stochastic game. Sim-
ilarly, the authors in [13] formulated a cooperative game theory
framework for energy hubs and community energy systems
using CVaR with a profit-sharing scheme. In [14], the authors
proposed a decision method for energy bids in the day-ahead
energy market, and evaluated the risks related to the different
decisions of prosumers in the microgrid. [15] studied the role
of distributed energy resources or on-site generation in the
consumer’s risk management strategy using a CVaR approach.
The study shows that by swapping electricity with high price
volatility for gas with low price volatility, even relatively ineffi-
cient technologies can reduce risk exposure. However, existing
studies on the stochastic approaches for prosumers are scant and
mostly assume constant and exogenous risk preference. These
studies fall short of explicitly capturing the formation of the risk
tolerance of prosumers and modeling how this factor affects their
decisions and, consequently, market outcomes.

In general, common approaches to dealing with uncertainty
are divided into two groups, i.e., stochastic optimization (or
programming) and robust optimization. The stochastic opti-
mization approach explicitly considers a probability distribution
regarding uncertainty [16], while the robust optimization method
assumes realizations of events within a deterministic uncertainty
set [17]. Both methods have been extensively applied to the
area of power systems [18], [19], [20]. In this study, we focus
on stochastic optimization, specifically a chance-constrained

stochastic program [21], [22]. Chance-constrained problems in-
volve probabilistic constraints with an explicit risk tolerance (or
reliability) level, which is an exogenously pre-defined parameter
in the model. Utilizing this explicit risk factor, we propose an
alternative model for endogenously adjusting the risk attitude
via optimization.

One drawback of chance-constrained stochastic programs
is the possibly limited availability of the exact distributional
information. Itis usually hard to identify the true probability dis-
tribution associated with uncertainty. A recent strand of research
has addressed this issue, proposing stochastic programs with dis-
tributionally robust chance constraints, which consider a family
of probability distributions with some known properties [23],
[24], [25], [26].2 Recent applications of this approach to the
power sector include [28], [29], [30]. More recent advances in
data-driven distributionally robust chance-constrained programs
that combine the strength of machine learning and mathematical
programming can be found in [31], [32], [33].

In a similar vein, we investigate a distributionally robust
chance-constrained framework for endogenous risk manage-
ment of prosumers. We model prosumers who own renewable
generation systems and make decisions in a day-ahead wholesale
power market, anticipating the effect of their decisions, espe-
cially regarding their risk preferences, on the other participants
in the market. Specifically, in our model, the degree of the
risk aversion of prosumers is endogenously determined by their
profit-maximization problem.? To the best of our knowledge, this
is the first study to derive a prosumer risk-aversion parameter
(as a decision variable) by optimization, thereby advancing the
modeling approach in addition to its management implications.
Such a framework has been scarce, even in other fields, such as
finance, with the exception of [34], which models an investor that
endogenously chooses his/her risk preference by maximizing the
probability of achieving wealth that grows faster than the target
growth rate.

The situation confronting prosumers is expressed as a Stack-
elberg leader-follower game with a formulation of a mathe-
matical program with equilibrium constraints (MPEC) [35],
[36]. The problem is formulated in a distributionally robust
chance-constrained framework to account for the uncertainty of
the renewable generation of prosumers. Within this framework,
similar to [37], prosumers who act as a leader maximize their
surplus by adjusting their risk attitudes. In other words, we
are interested in the extent to which prosumers can benefit
from the market through their strategic behavior and ability to
optimally manage their risk preferences. Our solution approach
applies the Wolfe duality to the lower-level problem to concavify
the bilinear term in the objective function of the upper-level
problem. A theoretical analysis of solution properties of the
model is also provided. Finally, a perfectly competitive case

2In the past decades, the robust optimization approach has also been extended
to the distributionally robust methods. See, for example, [27] for a review of
recent research progress in this field.

3Individual DER owners with different risk preferences may enter an agree-
ment by signing onto a program and pay a premium to delegate an aggregator
to manage their risk. In this case, the aggregator, as a proxy, would determine
its risk attitude in a way that maximizes their aggregate profits.
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is also presented to compare the results with the Stackelberg
case. We demonstrate how optimally adjusted risk aversion by
prosumers affects outcomes in the wholesale power market using
the IEEE Reliability Test System (RTS 24-Bus) [38]. Thus, our
contribution includes:

1) explicitly and endogenously modeling of prosumers’ risk
preference using a Stackelberg leader-follower framework
formulated as a distributionally robust chance-constrained
optimization,

2) analyzing the theoretical and solution properties of the
model,

3) examining and comparing the market outcomes to the
perfectly competitive cases when prosumers can manage
their risk by optimally adjusting their risk tolerance, and

4) demonstrating that endogenous adjustment of risk aver-
sion can be a useful tool to manage uncertainties.

This paper proceeds as follows. In Section II, we formulate

a distributionally robust chance-constrained MPEC, in which
leader prosumers determine their risk preferences. Section III
further presents a case study based on an IEEE 24-bus system.
Section IV concludes the study.

II. MODEL

A. Endogenous Risk Management

Consider a simple chance-constrained stochastic program of
the following form:

migier)r(lizeE [f(z,&m)] (1a)
subject to
Plg(e,6) <0] >1-r (1b)

where X C R", £ is a random parameter with probability dis-
tribution P supported on = C R, r € [0, 1] is an exogenous pa-
rameter for risk tolerance, f : R"*2 — R, and g : R**! — R.
This formulation can be regarded as exogenous risk manage-
ment in the sense that the risk tolerance is pre-specified by the
modeler [21].

However, a decision maker in the real world may modify
its attitude toward risk in different situations such as changing
economic environments. In this paper, we propose an alternative
formulation in which a decision maker adjusts its risk tolerance
r by optimization:

imige E 5
mipimize [f(z.&m)] (2a)
subject to

Plg(z,&) <0] >1—r (2b)

This approach is viewed as endogenous risk management
with an adjustable risk preference. It provides more flexibility
for the decision maker, which would be beneficial. Since it is,
in practice, challenging to obtain knowledge of the underlying
probability distribution, we further consider a distributionally
robust chance-constrained framework. Sections II-C and II-D
detail the prosumer’s problem in this context.

B. Market Framework

We examine the decision and outcomes in a day-ahead market.
The grid operator maximizes the social surplus, collecting bids
from generators and consumers. The prosumer maximizes its
surplus in the day ahead, facing renewable output uncertainty in
the real time. A shortage or excess of energy for the prosumer
is finally settled at a real-time imbalance rate/price. Note that
the real time is another layer, which is beyond the scope of our
paper.

We consider a Stackelberg framework in which the prosumer
is the leader and the other market participants are followers. This
Stackelberg game is formulated as a mathematical program with
equilibrium constraints (MPEC) defined as in (3a):

minimize f(x, 3a
jinimniz fz,y) (3a)

subject to

0< F(z,y) Ly>0 (3b)

where z € R, y e R™, Z C R*™™, f:R"™ R, F:
R™*™ —» R™, and L denotes complementarity, i.e., 0 < u L
v > 0 is equivalentto u > 0, v > 0 and uv = 0.4

An MPEC can be regarded as an optimization problem faced
by aleader (upper-level problem), whose actions affect the equi-
librium of a market (lower-level problem), which consequently
affects the leader’s objective. The next section discusses this
issue in detail.

C. Bi-Level Problem of Power Market With Prosumers

In this section, we describe the prosumer’s problem in the
upper- and lower-level problems faced by the grid operator. Z, F,
and KC denote the sets of nodes, conventional generation firms,
and transmission lines, respectively. Furthermore, H ¢; denotes
the set of generation units at node ¢ owned by firm f. We also
note that the Greek variables within parentheses to the right of
the equation render the corresponding dual variable.

1) Upper-Level Problem: In this study, the prosumer makes
a decision in a day-ahead wholesale power market, anticipating
its effect on other participants. Therefore, the prosumer can be
modeled as the leader in a Stackelberg game.’ The prosumer at
node ¢ is assumed to possess non-dispatchable renewable capac-
ity with a negligible short-run marginal cost. The output from
renewable sources is denoted by a random variable I%i, which
is uncertain because it depends on available natural resources
such as solar and wind. We assume that the distribution P; of
K; belongs to a set P; of distributions, and the only requirement
we impose on IP; is that its first and second moments are known;
that is, E[K;] = K, and V[K;] = o2, respectively, but without
exact knowledge of the probability distributions. In contrast,
the prosumer also owns a dispatchable or backup resource, for

“4More formaly, an MPEC can be defined by using variational inequality [39]

SThe individual “behind-the-meter” prosumers, such as the owner of a rooftop
solar panel, might have limited access to the wholesale or bulk market and may
be subject to fixed tariffs when selling their surplus power back to the grid. We
assume that the prosumer (or aggregator) that we present here is a result of the
aggregation of a large number of prosumers, thereby allowing them to interact
with the bulk market directly.
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example, an on-site diesel generator, that supplies power g;
with an increasing and strictly convex cost function CY(g;) and
capacity of G; to hedge against uncertain output K. Specifically,
we assume a quadratic cost function, C¢ (g;) = D%°g; + %go g2
However, its supply would not be able to fully compensate for
the intermittent renewable output.

Regarding the demand side, the prosumer’s benefit function
of consuming electricity at node i is given by Bl(l;), where
I; corresponds to the self-consumption at each node.® Benefit
function B!(l;) is assumed to be increasing and strictly concave.
Speciﬁcally, we assume a quadratic benefit function, Bl(l;) =
AL, — 5 B’O 12, for a relevant range of consumption. We assume
that the prosumer is only allowed to sell or buy power locally, that
is, at each node, which is consistent with the layered structure of
a future grid [40]. Allowing the prosumer to sell power to other
nodes will not change the outcomes as the increase/decline in
revenue is entirely offset by the transmission charge under the
framework of locatinal marginal prices [41].

We posit that the prosumer maximizes its surplus by deter-
mining four types of variables: i) its risk attitude/preference or
tolerance ; € [0, 1], in which a smaller r; indicates that the
prosumer is more risk averse; ii) the amount of traded power
z;, buying from (z; < 0) or selling to (z; > 0) in node 7 at
price p;, iii) the amount of its own power consumption /; and
iv) the amount of power to be generated g; from the backup
dispatchable technology. We further formulate a distributionally
robust chance-constrained problem for the prosumer facing an
uncertain renewable output K; as follows:

maxmnzez {plzz + Bi(l;) - Cg(gz)}

Tiy2i5li,9i
+ Z]E {Pf(fgi -z —; +9i)}
:

(4a)

subject to

inf Pylzi+l— g~ Ki 0] 2 1-r; (5;),Vi (4b)

]Pi Epi

g S Gl (Iﬂ?i),Vi (40)
risli,gi >0 Vi (4e)

The three terms in the first line of the objective function (4a)
correspond to revenue (+) or cost (—) from transactions in the
day-ahead wholesale market, the benefit of consuming power,
and the generation costs incurred from backup resources, re-
spectively.” The second line provides the expected cost/revenue
inreal time, where Py is a fixed or contracted retail rate between
the prosumer and utility for node ¢. Here, we envision a situation
in which the prosumer is allowed to participate in a day-ahead

%The basic model for the prosumer’s demand can be also found in [36].

"The interaction of the prosumer with the bulk day-ahead energy market is
modeled by shifting the supply curves and sales decisions of conventional pro-
ducers. An alternative way of modeling this situation is to horizontally aggregate
the demand curves of consumers and prosumers. However, this aggregation
might result in kinked demand curves, which pose numerical difficulties [42].

market but is subject to a fixed retail rate in real time, similar
to the situation faced by several EU countries such as Italy, the
Netherlands, and Belgium [43]. P can also be regarded as a
real-time imbalance price to finally settle a shortage or excess
of energy for the prosumer.

Constraint (4b) is the distributionally robust chance constraint
of the prosumer. It states that the sum of the renewable output
K; and self-generation g;, net of transactions with the wholesale
day-ahead market, that is, z;, is equal to or greater than the
self-consumption /; with probability 1 — r; or greater for any
distributions in P;. Because the renewable output K ;1sarandom
variable, its realization in real time inherently varies, depending
on the weather condition. The prosumer who is conscious of risk
would be concerned about bad scenarios with the realization of
very low renewable output because it will incur costs to settle the
imbalance of power in real time. This is analogous to investors
who are cautious about market volatility and are concerned about
possible losses owing to the realization of low returns on their
financial assets. We posit that the prosumer decides their risk
attitude by adjusting r; in constraint (4b), where a smaller r;
means more risk averse. Constraints (4c)—(4e) specify the ranges
of the four decision variables, that is, 7;, 2;, [;, and g;.

2) Lower-Level Problem: We further introduce the lower-
level problem in which the grid operator takes bids from
suppliers and consumers/load serving entities and maximizes
the social surplus of the wholesale market, subjected to pro-
sumer’s decision z;. Let xf,d;, and y; denote the power
output produced by generation unit h at node ¢ owned by
firm f, the quantity demanded by consumers at node ¢, and
the net power injection/withdrawal at node ¢, respectively. We
assume an increasing and strictly concave quadratic benefit

; _ po
function B;(d;) = P;d; — 2Q0
sumption, and an increasing and strictly convex quadratic cost

d2 for a relevant range of con-

. cY, .
function Cip(zfin) = DY, pin + —5*x%,, for generation.
The lower-level problem is represented as the maximization of
the social surplus (i.e., benefit minus cost) faced by the grid
operator:

Bi( Cyi i 5
wipize ) 2., Cratera) 6o
friheHys;

subject to

rin < Xpin (Brin),Vf,i,h € Hyy (5b)

> PTDFyy; <T. (A)),Vk (50)

—Y PTDFuy; < T (A),Vk (5d)
Z T — 2 =Y (m:),Vi (Se)

foheHy;

> =0 (56)

xpin >0 (epin),Vf i, h € Hy; (52)

di >0 (&),Vi (5h)
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Constraints (5b)—(5d) limit the variables according to the
generation capacity (X y;,) and the transmission capacity (7%),
along with the power transfer distribution factor (PTDFy;).
Constraint (5e) represents the nodal balance with the prosumer’s
transaction (z;) embedded. The balance between supply and
demand is implied by (5f). Constraints (5g)—(5h) represent
the non-negativity of generation and consumption, respectively.
Given that the lower level is a concave programming problem,
the solutions can be represented by its optimality conditions,
which form a mixed complementarity problem characterizing
the equilibrium of the market:

—Chin(xpin) = Brin +ni+epin =0 Vfi,h € Hyp (6a)

Bi(di) —m; +& =0 Yi (6b)
=Y (A =2 )PTDFy; +1; —0 =0 Vi (6¢)
k
0 < Bfin Lapin —Xpin <0 Vfi,h e Hy; (6d)
0<Af LY PTDFuy; —Tp <0 Vk (6e)
0<h; L — ZPTDFkiyi ~T, <0 Vk (6f)
di— > wpn—z—yi=0 Vi (6g)
foheH
> =0 (6h)
0<epin Lapn >0 Vfi,heHy (61)
0<&Ld;>0 Vi (6))

D. Distributionally Robust Chance-Constrained MPEC

Based on the upper- and lower-level problems in Section II-C,
the prosumer’s problem is now cast as a distributionally robust
chance-constrained MPEC as follows:

i . LY — C9(q;
maximize i [mzZ + B;(l;) — C; (gl)} (7a)
+ ZIE [Pf(KL —zi— 1 +gi)}
subject to
]P1€P1
(4c)—(4e), (62)—(6j) (7b)
where @ = {r;,z;,0;,0:}, Q={xspin,di,y;}, and A=

{Bpin, Ay Ay s mis 0, € pin, &} In the first line of the objective
function, the net benefit of the prosumer is expressed using the
equilibrium power price 7; (instead of p;), which is the dual
variable associated with the nodal balance constraint (5¢) in the
lower-level problem.

We first use the well-known result in [23] to convert the
chance constraints into a set of deterministic convex constraints.

Specifically, (7b) can be replaced by the following constraint:

[1— .
2+l — g — Ki + 0y - <0 Vi (8)
Ti

where K; and o; are the mean and the standard deviation of the
random variable K, respectively, as defined earlier. Constraint

177”7;
Ti

(8) is convex since the only nonlinear term, o; , 1S convex

with respect to r;. This can be seen by writing out its second
derivative: #(% —1)73/2 4 T%(% — 1)~/2, which is clearly
non-negative Vr; € (0,1].

The term K; — o; 1;1_” in (8) can be interpreted as a “risk-
derated” renewable output perceived by the prosumer, which is

assumed to be non-negative:

Ki—oi /22" > 0 vi )
Ti

1—7"7;
T4

In our context, the term, o; , denoted by ¢;, represents a

“risk-averse reservation,” also referred to as a “safety parameter”
in the chance-constrained optimization literature.® This term can
be regarded as the buffer amount of energy perceived by the pro-
sumer in order to hedge against the uncertain renewable output
in real time. A risk-averse prosumer with small r; attempts to
maintain sufficient reservation output ¢; when making decisions
in the day-ahead market, whereas a risk-neutral prosumer with
r; = 1 perceives the expected output K; without any reserva-
tions, i.e., t; = 0.

With the above reformulation, we can re-write Problem (7) as
a deterministic optimization problem as follows:

S . Ly —C9(q,

maximize i {7712’1 + B;(l;) — C; (gl)} (10a)
+ ZPzC(Kl —zi—1; +9¢)
i
subject to
[1—ri :
zi +1; — gi +0; <K; Vi (10b)
T

1—

o] — < K, Vi
r;

(4c)—(4e), (62)—(6)) (10c)

Note that the objective function in (10a) is equivalent to (7a)
since the decision variables (z;,1;, g;)Z_, are made before the
uncertainty is realized; hence, they can be factored out of the
expectation, making the objective function completely deter-
ministic.

E. Existence

In the following, we show the existence of an optimal solution
for the MPEC problem (10). To formally present the existence

8Note that at an optimal solution, (8) is always binding (i.e., equality), and

1-r;
T

hence, the second line of (7a) equals Zl Pfo;

, indicating that the

objective function in Problem (7) depends on ;.
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result, we let Z(z) denote the set of {z f;1,, d;, y; } such that with
a given vector z, the same set of constraints are satisfied. We
then have the following result.

Proposition 1: (Existence) Assume that for all {r;, z;,1;,9;}
that satisfies constraints (10b)—(10c) and (4c)—(4e), with
z := (z;)1_,, Mangasarian Fromovitz constraint qualification
(MFCQ) holds at all {z;,d;,y;} € Z(z). Then the MPEC
problem (10) has a globally optimal solution.

Proof: First, itis easy to see that the MPEC problem is always
feasible, with a feasible point of setting r; = 1 for all 7 and all
other variables to be 0. Next, we show that the feasible region
of the MPEC is compact. While the consumption variables ;
and d; are not explicitly bounded, based on the definition of the
benefit functions B!(l;) and B;(d;), they will become negative
when [; and d; become too large, which will never happen at
an optimal solution. Hence, there are implicit upper bounds for
l;and d;, forall¢ = 1,...,Z. With [; and g; being bounded in
(10b), so are the z;’s, which in turn leads to the boundedness of
y;, based on constraints (5e) and (5b). By the MFCQ assumption,
the corresponding dual variables in the lower-level problem
(6a)—(6j) are also bounded. The closedness of the MPEC feasible
region is trivially true with all constraints being continuous.
Hence, Problem (10) has a compact feasible region (or more
precisely, a compact level set since the bounds on /; and d; are
not explicit). Since the objective function (10a) is continuous,
by the well-known Weirstrass extreme value theorem, a globally
optimal solution exists for Problem (10). ([l

Remark 1: The MFCQ assumption is not restrictive in our
case. With downward-sloping consumers/prosumers’ marginal
benefit functions, the locational marginal prices 7; cannot be
unbounded, which then implies the boundedness of the hub price
0 and the congestion rents )\;_ based on constraint (6¢), and
the capacity rent 3¢;;, by constraint (6a).

Remark 2: While we show the existence of a globally optimal
solution of the MPEC problem, uniqueness may not hold. As
seen in the objective function (10a), there may be multiple
solutions such that the sum of the two terms >, [n;(z) — Pf]z;

and ), [Bl( i) —C¥(gi) + PF(—1; + gq)] remains the same.

FE. Solution Method

While state-of-the-art nonlienar programming solvers, such as
KNITRO and FILTER, could solve the MPEC directly, we are
interested in finding a globally optimal solution with guarantees.
It is challenging here because of the bilinear term ), 7;2;
in the objective function in addition to the complementarity
constraints. To deal with the bilinear term, we propose a method
that applies the Wolfe duality to the lower-level problem. Using
the strong duality and constraints in the Wolfe dual formulation
of the lower-level problem, we show that the bilinear term can
be concavified as follows (see details in Appendix B):

D mzi= ) Bildi)di =) + )Tk

k
- > {C}ih(fffih)xfihJrﬂfithih} (11)
f,i,hEqu‘,

With the above reformulation, we obtain the following MPEC:

. + -
mgacg}rg}\ze Bi(d;)d; Ek:()»k + 2 )Tk
- Z [C}ih(xfih)xfih + Bfithih}
FriheH s
+ Z[ —CY( gz)JFPC(Ki*Zz*lHrgi)}
subject to
(8), (9), (4c)—(4e), (6a)—(6)) (12)

which, excluding the complementarity constraints, is a con-
cave programming problem, as the functions B;(-), Crin(-),
Bl(-) and CY(-) are all assumed to be convex or concave
quadratic functions. To further deal with the complementarity
constraints, under the assumption of MFCQ of the set =(z),
we can use the well-known big-M reformulation technique
to convert the complementarity constraints into mixed-integer
based constraints [44], [45]. More specifically, for a generic
complementarity constraint (in one dimension): 0 < u L v > 0,
we can equivalently re-write it as (given that u and v are
bounded): 0 < u < Mz, 0<v<(1—2)M, z€{0,1}, with
a sufficiently large constant M. Based on the above discussions
of concavity and using the big-M technique, the MPEC problem
(12) can be solved by off-the-shelf mixed-integer solvers, such
as Gurobi, to obtain a globally optimal solution.’

III. CASE STUDY
A. Data and Assumptions

The model was applied to an IEEE reliability test system (RTS
24-Bus) [38]. The topology of the system comprises 24 buses, 38
transmission lines, and 17 loads. We aggregate the 32 generators
into 13 generators by integrating those with the same marginal
cost and located at the same node. However, six generation units
were excluded from the dataset because they are hydropower
units, which operate at a maximum output of 50 MW [47]. To
analyze the effect of transmission congestion, the capacity of line
7 between nodes 3 and 24 in the test case was reduced to 150
MW. The generation cost is represented by a quadratic function
parameterized by D?cih and C?ih as coefficients for the linear
and quadratic terms, respectively. Furthermore, the prosumer,
or the leader, located at node 1 is assumed to have the same
demand function as the consumers in that node. The prosumer
owns a renewable generation unit that produces varying amounts
of power (contingent on available natural resources), and a dis-
patchable unit as a backup option. The RTS 24-Bus case was first
formulated as a least-cost minimization problem and solved with
a fixed nodal load to compute dual variables associated with load
constraints. Further, the dual variables, in conjunction with an
assumed price elasticity of —0.2 are used to calculate the demand

°In our case study, the model was solved as a mixed-integer nonlinear program
using Gurobi v9.1.2 [46], which found a global optimal solution within seconds
on a MacBook Pro equipped with 2.8 GHz Quad-Core Intel Core i7 and 16 G
RAM.
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TABLE I
RESULTS: THE CASE WHERE P¢ =$20/MWH AND o =20% (OF K)

TABLE II
RESULTS: THE CASE WHERE P¢ =$60/MWH AND o =20% (OF K)

Expected renewable output [MWh] 25 110 Expected renewable output [MWh] 25 110
Prosumer’s sale(+)/purchase(—) [MWh] -59.50 9.96 Prosumer’s sale(+)/purchase(-) [MWh] -79.39 -79.39
Prosumer’s load [MWh] 99.48 105.32 Prosumer’s load [MWh] 97.56 97.56
Prosumer’s backup generation [MWh] 14.97 5.28 Prosumer’s backup generation [MWh] 18.16 18.16
Power price at node 1 [$/MWh] 45.21 40.77 Power price at node 1 [$/MWh] 46.80 46.80
Prosumer’s risk-averse reservation [MWh] 0 0 Prosumer’s risk-averse reservation [MWh] 25 110
Prosumer’s optimal risk (r*) 1 1 Prosumer’s optimal risk (r*) 0.038 0.038
Expected revenue(+)/cost(-) of imbalance® [$K] 0 0 Expected revenue(+)/cost(-) of imbalance® [$K] 1.5 6.6
Prosumer surplus [$K] 9.85 13.65 Prosumer surplus [$K] 10.06 15.16
Conventional consumption [MWh] 2,848.55  2,857.91 Conventional consumption [MWh] 2,844.93  2,844.93
Conventional generation [MWh] 2,908.05 2,847.95 Conventional generation [MWh] 2,92433 292433
Grid operator’s revenue [$K] 9.67 5.52 Grid operator’s revenue [$K] 11.19 11.19
Producer surplus [$K] 41.92 4471 Producer surplus [$K] 40.96 40.96
Consumer surplus [$K] 255.89 257.14 Consumer surplus [$K] 255.45 255.45
Wholesale social surplus [$K] 307.49 307.36 Wholesale social surplus [$K] 307.60 307.60
Total day-ahead social surplus [$K] 317.35 321.02 Total day-ahead social surplus [$K] 316.17 316.17

@ This represents the expected imbalance settlement, which is equal to
Pt=0

parameters, P? and V. The magnitude of the price elasticity of
demand is comparable to that in the literature [48]. Hereafter, we
omit index ¢ for the variables and parameters associated with the
prosumer, focusing on node 1. Several cases are considered by
varying the imbalance price P¢ ($20/MWh and $60/MWh) and
expected renewable output K = [E [f( ] (25 MWh and 110 MWh)
with uncertainty characterized by the standard deviation o (20%
and 80% of the expected renewable output K). For example, the
uncertainty corresponding to o =20% of K =110 MWhis equal
to 22 MWh (= 0.2 x 110). The results are then presented in the

next section.

B. Main Results

The main results are summarized in Tables I-IV. Each table
with the same layout contains the results pertaining to the pro-
sumer, wholesale, and economic rent distributions. We further
focus our discussion mainly on the behavior of a prosumer. Note
that for prosumer surplus, we include the expected monetary
value of the imbalance settlement, which is equal to P¢t, but
exclude it when calculating the “day-ahead” total social surplus
as the real-time settlement does not occur in the day-ahead
market and it is just an expected transfer between two parties
(i.e., cancelled out).

Table I reports the case where P¢ =$20/MWh and o account
for 20% (of K). Facing a relatively low price of P¢ =$20/MWh
in real time, the prosumer finds it economically undesirable
to maintain a larger “risk-averse reservation” in the day-ahead
market. This is because the real-time settlement for energy
imbalance is of less concern for the prosumer. Therefore, as
demonstrated in Table I, the prosumer prefers less risk-averse
attitude, even behaving risk neutrally by choosing r* =1. The
prosumer is in short (long) position when expected renewable
output K is 25 MWh (110 MWh), buying 59.5 MWh from (sell-
ing 9.96 MWh into) the grid. With a more expected renewable
output of K =110 MWHh, the prosumer consumes more while
selling excess energy into the day-ahead market, which results in
alarger amount of prosumer surplus. Overall, the system benefits
from a higher expected renewable output, thereby resulting in a
greater total day-ahead social surplus.

@ This represents the expected imbalance settlement, which is equal to
Pct. We exclude it from the total “day-ahead” social surplus, while
including it in calculating prosumer surplus.

TABLE III
RESULTS: THE CASE WHERE P¢ =$20/MWH AND o =80% (OF K)

Expected renewable output [MWh] 25 110
Prosumer’s sale(+)/purchase(-) [MWh] -59.50 9.96
Prosumer’s load [MWh] 99.48 105.32
Prosumer’s backup generation [MWh] 14.97 5.28
Power price at node 1 [$/MWh] 45.21 40.77
Prosumer’s risk-averse reservation [MWh] 0 0
Prosumer’s optimal risk (r*) 1 1
Expected revenue(+)/cost(-) of imbalance® [$K] 0 0
Prosumer surplus [$K] 9.85 13.65
Conventional consumption [MWh] 2,848.55  2,857.91
Conventional generation [MWh] 2,908.05 2,847.95
Grid operator’s revenue [$K] 9.67 5.52
Producer surplus [$K] 41.92 44.71
Consumer surplus [$K] 255.89 257.14
Wholesale social surplus [$K] 307.49 307.36
Total day-ahead social surplus [$K] 317.35 321.02

@: Same as in Table T

Table II shows the outcomes when P¢ =$60/WMh and o is
20% (of K). Under arelatively high price of P¢ =$60/WMh, the
energy imbalance settlement in real time is of greater concern,
thereby inducing the prosumer to behave conservatively with
r* close to zero by holding a considerable amount of a “risk-
averse reservation” in the day-ahead market. The prosumer’s
reservation becomes as high as the expected renewable output,
thereby resulting in a risk-derated output of 0. Consequently,
the prosumer increases energy purchases from the grid in the
day-ahead market even when 110 MWh of renewable output is
expected. This is in contrast to Table I, in which the prosumer
behaves risk neutrally, selling 9.96 MWh to the grid under
K =110 MWh. The backup generation of the prosumer also
increases compared with that in Table I. When the expected
renewable output increases, the risk-averse prosumer adjusts
their reservation by the same amount, thereby resulting in the
same rent distribution in the day-ahead market for K’ =25 MWh
and 110 MWh in Table II.

In Tables III and IV, o increases from 20% to 80% (of K),
while maintaining the same setup for P¢, as shown in Tables
I and II. The observations in Tables I and II also emerge in
Tables III and IV. This implies that the degree of uncertainty
would not affect the market outcomes when the prosumer can
endogenously determine or “internalize” their risk attitude to
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TABLE IV
RESULTS: THE CASE WHERE P¢ =$60/MWH AND o =80% (OF K)

Expected renewable output [MWh] 25 110
Prosumer’s sale(+)/purchase(-) [MWh] -79.39 -79.39
Prosumer’s load [MWh] 97.56 97.56
Prosumer’s backup generation [MWh] 18.16 18.16
Power price at node 1 [$/MWh] 46.80 46.80
Prosumer’s risk-averse reservation [MWh] 25 110
Prosumer’s optimal risk (r*) 0.390 0.390
Expected revenue(+)/cost(-) of imbalance® [$K] 1.5 6.6
Prosumer surplus [$K] 10.06 15.16
Conventional consumption [MWh] 2,84493  2,844.93
Conventional generation [MWh] 2,924.33 292433
Grid operator’s revenue [$K] 11.19 11.19
Producer surplus [$K] 40.96 40.96
Consumer surplus [$K] 255.45 255.45
Wholesale social surplus [$K] 307.60 307.60
Total day-ahead social surplus [$K] 316.17 316.17
@: Same as in Table IT
g o« — K=25MWh
2 = --- K=110MWh
b= _
5
£z
E
E oo
< T T T T T
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Imbalance Price P [$/MWh]
Fig. 1. Plot of optimal risk attitude »* against imbalance price P¢ under o =

20% (of K') and Stackelberg leader-follower cases.

achieve their maximized surplus. That is, the outcomes depend
mainly on P¢ rather than on o when the risk preference can
be optmized. Consequently, the outcomes in Table III (IV) are
equivalent to those in Table I (II).

In Fig. 1, we further elaborate on the effect of imbalance
price P¢ on the optimal risk attitude r* under 0 = 20% (of
K). Fig. 1 shows that the prices for energy imbalance settle-
ment play a key role in the prosumer’s decision of the optimal
risk attitude, indicating that a relatively low imbalance price
induces a less risk-averse behavior (i.e., greater r*), and vice
versa. When the imbalance price rises, the prosumer eventually
switches from a risk-neutral to risk-averse attitude within a
threshold range of P¢. As illustrated in Fig. 1, the threshold
range of the imbalance price is higher when the prosumer faces
expected renewable output of K =25 MWh compared to the
case of ' =110 MWh. This suggests that when facing a smaller
magnitude of uncertainty (0.2 x 25 MWh), the prosumer can
tolerate higher imbalance prices. Outside the threshold range of
P¢, r* is equivalent between K =25 and 110 MWh. Finally,
the threshold range, in which the risk attitude of the prosumer
is more responsive to the imbalance prices, depends on the
(day-ahead) power prices at node 1. Had the power price at
node 1 been higher, the threshold would also shift to a range
bracketed with higher imbalance prices.

C. Relative Profit Loss

This section presents the results concerning the effect of a pro-
sumer’s decision about the risk attitude on its profit (or surplus).
We define the “relative profit loss” in (13) to quantify the extent

(a) P° = $20/MWh (b) P°= $60/MWh

(=g (=g
& £
N — K=110(1) T — K=110(0.038)
= A - K=25(1) = o - K=25(0.038)
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53 < 5] <
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K] K]
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Fig. 2. Plot of relative profit loss against prosumer’s risk attitude r under o =

20% (of K') and Stackelberg leader-followers cases.

of a prosumer’s forgone profit when choosing a sub-optimal risk
attitude 7 in comparison with the maximum profit under optimal
r* as follows:

m(r) —m(r)
()
where 7(7*) denotes a prosumer’s profit under the optimal risk

attitude r* and 7 () is its profit for a given level of r.

Fig. 2 plots the relative profit loss defined in (13) in y-axis
against different values of risk tolerance (r) in x-axis for P¢
equal to $20/MWh in (a) and $60/MWh in (b), respectively.
All the scenarios shown in Fig. 2 assume that the degree of
uncertainty o is equal to 20% (of K). The values in parentheses
correspond to the optimal 7* in each case.

Several observations have emerged. As demonstrated in
Tables I and IT and Fig. 1, a relatively low imbalance price of
P¢ =$20/MWh makes the prosumer behave risk neutrally by
choosing r* = 1, while arelatively high price of P¢ =$60/MWh
induces a risk-averse attitude with r* = 0.038 close to 0. Rela-
tive profit loss depends on the deviation of r from the optimum
r*. In Fig. 2(a), given 7* = 1 under P¢ =$20/MWHh, the relative
profit losses display as decreasing functions in 7. By contrast,
the losses shown in Fig. 2(b) increase in 7 given that r* is
close to 0 under P¢ =$60/MWh. Additionally, the relative profit
loss is larger for K =110 MWh compared with the case of
K =25 MWh in both figures. This would make sense as getting
wrong is likely more costly when the prosumer could have
benefited substantially from a greater expected renewable output
of K =110 MWh.

We further examine how o, or the degree of renewable output
uncertainty, affects the relative profitloss. Fig. 3 plots the relative
profit loss against risk attitude  under various levels of o with
four combinations of K and P¢.!° Fig. 3(a) and (b) show the
cases of P¢ =$20/MWHh, in which the optimal risk attitude of
the prosumer is r* = 1; that is, to behave risk neutrally. For
a given sub-optimal r, when r* = 1 is optimal, the prosumer
worsens with a larger value of relative profit loss as the degree
of uncertainty increases. In contrast, Fig. 3(c) and (d) illustrate
the cases of P¢ =$60/MWh, in which the optimum for the
prosumer is to choose the risk-averse attitude of r* < 1. Contrary

relative profit loss = x 100%

13)

10Note that condition (9) is violated below a threshold value of r under each
scenario. We visualize only the relevant ranges in the figures.
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(a) K=110 MWh and P = $20/MWh (b) K=25 MWh and P® = $20/MWh
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Fig. 3. Plot of relative profit loss ratios for various levels of o under Stackel-

berg leader-follower cases.

to the case of P¢ =$20/MWh, for a given sub-optimal r, the
risk-averse prosumer is generally better off with a lower value
of relative profit loss as the degree of uncertainty increases.
Therefore, Fig. 3(a) and (b) imply that conservative risk attitude
when P¢ is lower is more costly in the face of a situation
with greater uncertainty (larger o and t), while the prosumer
should have behaved risk neutrally (or ¢ = 0) at the optimum. In
contrast, as shown in Fig. 3(c) and (d), failure in adequately
adjusting risk attitude when P¢ is greater is more costly in
the face of a smaller degree of uncertainty (smaller o and ?),
resulting in an insufficient risk-averse reservation. Finally, the
overall relative profit loss is greater under K =110 MWh than
under K =25 MWh, intuitively indicating that the cost of getting
wrong is greater with a larger K.

D. Case of Perfect Competition

In the case of perfect competition, the prosumer simply
solves Problem (4) without the lower-level problem. Collecting
the optimality conditions for both the prosumer and the grid
operator, we can solve the resulting mixed complementarity
problem to obtain the equilibrium outcomes. Fig. 4 plots the
optimal risk attitude r* against the imbalance price P¢ under
o = 20% (of K) in the perfectly competitive case. The results
illustrated in Fig. 4 are broadly consistent with those in Fig. 1
under the Stackelberg case in the sense that the threshold range
of P¢ is higher when the prosumer faces expected renewable
output of K =25 MWh compared to the case of K =110 MWh.
Moreover, when K =25 MWh, the prosumer abruptly switches
from risk-neutral to risk-averse attitude in the threshold of P¢ in
both Figs. 1 and 4. However, one noticeable difference between
these two figures for K =25 MWh is that the threshold of
P¢ is higher under the Stackelberg case than under the perfect

% _

2 x| — K=25MWh

£ < --- K=110 MWh

< —

%"‘\ <
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Fig. 4. Plot of optimal risk attitude 7* against imbalance price P¢ under
o = 20% (of K) and perfect competition cases.

competition case. This implies that the Stackelberg leader pro-
sumer with market power can tolerate higher imbalance prices,
whereas perfect competition induces more conservative attitute.
Another discernible difference between these two figures is that
when K =110 MWh, the transition of r* from risk-neutral to
risk-averse attitude is more gradual in Fig. 1 than in Fig. 4,
suggesting that a leader position with market power allows the
prosumer to soften more effectively the impact of the imbalance
price through adjusting its risk preference.

IV. CONCLUSION

Entities like prosumers in the electric power sector increas-
ingly confront various risks in the real world, including those
induced by climate change, as exemplified by the Texas market
in February 2021 [49]. Empirical evidence suggests that decision
makers can modify their risk preferences in different situations,
e.g., changing environments and volatile market conditions [50].
In the current context, a prosumer participating in the day-ahead
wholesale power market can maximize its profit by optimally
adjusting the risk preference by further considering uncertain
renewable resources. This study proposes a distributionally
robust chance-constrained mathematical program with equilib-
rium constraints (MPEC) approach to examine the prosumer’s
endogenous decision concerning their risk attitude. We over-
come the non-concavity of the prosumer’s objective function by
applying Wolfe duality to the lower-level problem of the grid
operator.

The model is applied to a case study based on the IEEE
RTS 24-bus system. Our analysis indicates that when allowing a
prosumer to endogenously decide the risk preference on behalf
of individual DER owerns in the face of uncertain renewable
output with energy imbalance settlement, the prosumer can
effectively hedge market risk by behaving more conservatively
upon perceiving a “risk-derated” output. However, a fine-tuned
adjustment in risk preference is only required within a certain
range of imbalance prices, as shown in Fig. 1. Below (Above)
the threshold defined by the range, the risk neutrality (extreme
risk aversion) is preferred. We demonstrate that the degree of
uncertainty in renewable outputs may play a less significant role
in determining market outcomes if the prosumer can internalize
its risk attitude optimally based on the “risk-averse reservation.”
This insight suggests that endogenizing risk preference can
be a useful tool for managing risk in the wholesale market.
Finally, compared to the perfectly competitive case, prosumers,
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as a leader, can adjust their risk preference more comfortably,
responding to the real-time imbalance price.

In summary, our contribution lies in developing a distribu-
tionally robust chance-constrained MPEC framework to model
the endogenous decision making of risk preferences under un-
certainty. Our analysis also highlights the importance of un-
derstanding the prosumer’s risk aversion when evaluating its
interaction with, and its effects on a power market. We believe
that the framework developed herein as well as the concept
of “risk-averse reservation” will become more important risk-
management tools in near future when more DERSs are intro-
duced to the market. As an extension of our work, data-driven
methods can be applied to model uncertainty of renewable
output using empirical distributions based on Big Data (see,
for example, [31]) although those would require more complex
modeling with significant computational costs.

APPENDIX A
NOMENCLATURE
1) Indices and Sets
1€Z Nodes.
f€F  Firms.
h € Hy; Generating units at node ¢ owed by firm f.

kel Transmission lines.

2) Parameters

PTDFy;  Powertransmission distribution factor for a unit of
power transferred from node : to the hub through
line k.

T Thermal limit for line & (MW).

P?.QY Vertical and horizontal intercepts of demand curve

at node i ($/MWh).
Coefficients of marginal cost function for gener-
ation unit 4 at node 7 owned by firm f ($/MWh).

0 0
D%y, sz‘h

Xrin Production capacity for generation unit & at node
1 owned by firm f (MW).

Al plo Vertical and horizontal intercepts of prosumer’s
marginal benefit for consumption at node ¢
($/MWh).

f(?;, K; Prosumer’s random and mean renewable output

at node : (MWh).
o; Standard deviation of prosumer’s renewable out-
put at node ¢ (MWh)

D €9 Coefficients of marginal cost function for pro-
sumer’s dispatchable unit at node i ($/MWh).

G Production capacity of prosumer’s dispatchable
unit at node ¢ (MW).

Py Fixed retail or contracted rate at node ¢ ($/MWh)

3) Primal Variables

T Prosumer’s risk attitude/tolerance variable at node ¢
t; Prosumer’s risk-averse reservation at node ¢ (MWh)
Zi Prosumer’s sales (+) or purchases (-) at node ¢ (MWh).

l; Prosumer’s demand at node 7« (MWh).

gi Power produced by prosumer’s dispatchable unit at node
i (MWh).
2 tin Power generated by generation unit & at node ¢ owned

by firm f (MWh).
d; Consumer’s demand at node ¢« (MWh).
Ui Power injection/withdrawal at node ¢ (MWh).

4) Dual Variables

Brin Dual variable for capacity constraint of unit h at node
1 owned by firm f ($/MWh).

)\g, A, Dual variables for limit of line & ($/MWh).

i Dual variable for supply and demand balance at node
i (wholesale power price, p;) ($/MWh).

0 Dual variable for total supply and demand balance
($/MWh).

0; Dual variable for prosumer’s power balance at node ¢
($/MWh).

Ki Dual variable for prosumer’s dispatchable generation
capacity at node 7 ($/MWh).

v; Dual variable associated with prosumer’s risk toler-

ance cap at node i ($)

APPENDIX B
WOLFE DUAL OF LOWER-LEVEL PROBLEM

Cosider a general concave program max,{ f(z)|g(x) < 0},
where z € R”, f: R” — R, and ¢ : R® — R™. A concave
function f and convex functions ¢ are assumed to be con-
tinuously differentiable. Then, the corresponding Wolfe dual
is expressed as min, ; {L£(z, 1)|V L(x,A) = 0,1 > 0}, where
V.L(x,2) are the gradients of the Lagrangian L(z,1) =
f(x) — AT g(x) with multipliers A € R™. For a concave (or
convex) programming problem, strong duality holds between the
primal and Wolfe dual problems if the primal problem satisfies
the Slater condition and has optimal solutions [51].

The Wolfe dual of the concave program (5a) in the lower level
is represented as follows :

frisheHy;

min

min (A-1a)

- Z 5j'ih($f¢h*Xfih)*Z)»Z7 <ZPTDFkiTk>

fri,heHy; k
_ Z)\; <Z —PTDFMyZ‘ — Tk> — Z nidi + Z ;%
k i 7 [

K
+ Z ﬂif”fih"'ZT)iyi—@ZyrF Z €fihT fih
[

Tt hEH g i fiiheHs;
+ Zfidi
subject to
- C}ih(ffih) — Brin +mi +€pin =0 Vfi,h € Hyy
(A-1b)
Bi(di) =i +& =0 Vi (A-lc)
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—> (A =1, )PTDFyi+mi—0=0 Vi (A-1d)

k
ﬂfihmefih > 0 Vf,l,h S Hfia A'z;)"]; > 0 Vka 57, > 0 Vi
(A-le)

Note that non-negativity constraints are imposed on
{Bgin, A, Ay, € pins &}, which are associated with the inequal-
ity constraints in the primal problem (5a). Otherwise, the vari-
ables are unrestricted. From the strong duality of a concave
program, the primal problem (5a) and the Wolfe dual problem
(A-1) have the same optimal value. Thus, we obtain:

— Y Brinlwgig— Xgan) =0 i

f,i,hGHfi 7
=Y WD PTDFuyi =T |+ > epintsin
ko i frishet s

—> M | Do —PTDFuy: = Ti |+ &di
k i i
- Z nidi + Z Mz >, mEgn A Yy myi =0

f,i,hG’Hfi 7
(A-2)

Using constraints (A-1b)-(A-1d), we can further simplify
(A-2). In particular, from (A-1b), we have:

(=Clhin(xgin) = Bin + 1 + €fin) T in = 0
Z (=Byin +mi +epin)Tpin = Z Chin(sin)T pin

friheHy; friheHy;
(A-3)
From (A-1c), we derive:
(Bi(d;) —mi + &)di =0
ST (mi+&)di = = Bi(di)d (A-4)
Fom (A-1d), we obtain:
(— S"(rf — 2p)PTDF + i — 9) yi =0
k
> (i —0)yi =Y (1) —2,)PTDFyy; (A-5)

Substituting (A-3), (A-4), and (A-5) into (A-2), we can concav-
ify the bilinear term ) ", 77;2; as follows:

Y mzi= Y Bidi)di =Y (A + 4T

k

- Z (Crin(@sin)zsin + BrinXgin) (A-6)
friheHy;
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