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Abstract— Many societal-relevant challenges, including 

environmental ones, require comprehensive approaches that 

integrate decoupled data, models, and perspectives. Integrating 

data and models is critical for these approaches but can also 

become cumbersome. Computational workflows are widely used 

to integrate heterogeneous data and computational processes 

within or across domains. However, creating computational 

workflows may require computational and domain expertise not 

necessarily possessed by potential users. This paper presents our 

efforts to enable automated multivariable workflow composition 

implemented as a workflow composer in the Sustainable Water for 

Integrated Modeling (SWIM) platform. We describe the 

uninformed search algorithm used in the workflow composer and 

an initial evaluation with a case study that requires integrating two 

water (balance) models that cover the Middle Rio Grande in the 

U.S. Southwest region. Preliminary results show that the 

evaluation of integrating models should not only consider the 

technical and scientific perspective but also how users understand 

and use the results of these complex systems. Efforts toward 

automating the model-to-model integration can significantly 

support scientific endeavors and decision-making by enabling 

various stakeholders to use scientific models. 

Keywords—workflow composition, model-to-model integration, 

cyberinfrastructure, democratizing computational workflows, 

containers, microservices 

I. INTRODUCTION 

Many of the most challenging real world-problems 
confronting society, such as environmental issues and 
sustainable development, are tightly coupled and achievable 
only with unprecedented integration of perspectives across 
disciplinary, professional, cultural, institutional, and political 
boundaries, as well as communication of findings to decision-
makers [1], [2], [3]. Integrating models to address such complex 
problems is frequently done ad hoc [4]. Models have data inputs 
that can be complex, and they generate voluminous data outputs 
that must be analyzed and/or visualized to be understood. 
Moreover, a single model might not produce the desired 
information and the execution of several models is needed, 
which requires keeping track of which inputs resulted in which 

outputs. Software solutions can ease the burden of data and 
model integration, allowing scientists to rapidly construct 
complex analyses that better represent real-world problems and 
enable findings to be more easily communicated to decision-
makers. 

Computational workflows enable the integration of data and 
models across different domains [5]. At the core level, 
computational scientific workflows describe tasks and data 
needed to address a particular problem [6]. Computational 
workflows are widely used across domains that require 
expensive computational processes. 

Creating a workflow usually starts at a conceptual level with 
the use of abstract representations such as Data Flow Diagrams 
(DFD) and Directed Acyclic Graphs (DAGs). This abstract 
representation can be mapped to a workflow structure that 
allows users to manage relevant processes through workflow-
management systems (WMS) [7]. Declarative workflows can 
then be serialized to a target WMS system using programmatic 
libraries or following tool-specific syntax and structure. The 
workflow specification may also require metadata to locate data 
and jobs across distributed computational environments, along 
with data transfer protocols and credentials. The disparity of 
workflow specification languages across WMSs was addressed 
by standardization efforts such as the  Common Workflow 
Language (CWL) [8].  

Despite broad access and standardization efforts, users may 
require domain and technical expertise for manually building 
workflows describing complex processes. Opportunities to 
provide additional tools supporting the creation of  workflows 
and automate tasks have been previously identified [7].  

Cloud services currently provide users easy access to 
computational resources where the management of computing 
nodes, networking, storage and power resources rests solely on 
cloud-service providers [9]. Cloud services also provide Web-
based interfaces to simplify the deployment and use of custom 
applications. Burkat et al. identified the model of serverless 
computing (i.e., applications running on the cloud) as a viable 
execution model for scientific workflows [10]. 
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This paper presents an approach using search strategies to 
build workflow plans on-the-fly supported by a cloud-ready 
architecture that has been applied for model-to-model 
integration in the Sustainable Water Through Integrated 
Modeling (SWIM) Platform1 . In particular, we describe our 
efforts to: i) automate model-to-model workflow creation, ii) 
serialize the workflow to CWL to use existing WMS, and iii) 
attenuate barriers to entry for users by simplifying the payload 
structure of workflow requests and workflow outputs. This work 
can contribute to the democratization process of scientific 
modeling, in alignment with the FAIR principles [11], by 
making scientific workflows more Findable, Accessible, 
Interoperable, and Reusable by experts and non-expert 
stakeholders.  

This paper is organized as follows: first, we provide 
background on the transition of scientific computational 
workflows to cloud-based infrastructure. Second, we explore 
related work that uses rich metadata and semantics for workflow 
composition, complementing our efforts. Third, we present our 
approach to automating workflow composition, including a 
description of the core algorithm and an abstract example. Next, 
we present an end-to-end implementation of a model 
orchestration microservice pool illustrated with a water-domain 
scenario with preliminary evaluation findings. A discussion with 
lessons learned follows. Last, we provide conclusions and future 
work. 

II. BACKGROUND 

Scientific domains such as physics, astronomy, and 
biomedicine require complex workflow composition and 
execution management implementations [5], [12]–[17]. In the 
biomedical research field, Kotliar et al. identified over 100 
workflow management systems, each with its way of specifying 
workflow pipelines [18]. These different specifications make 
workflow reproducibility across WMSs, particularly domain-
specific ones, a challenging task. 

Generic WMSs provide a higher level of abstraction for 
creating and executing workflows regardless of the application 
domain. In addition, many of these systems are gradually 
migrating to workflow specification standards such as the 
CWL 2 . This transition can provide a seamless workflow 
specification compatible with multiple WMSs, thus facilitating 
the reproducibility and interoperability of computational 
workflows across application domains. 

The underlying architecture of traditional WMSs uses HPC 
task management systems such as SLURM [19] and HT Condor 
[20]. WMSs built on top of these systems were initially designed 
for scientists to deploy workflow pipelines in HPC 
environments such as local campus clusters and computing 
centers. Workflow processes typically rely on (worker) nodes 
that execute tasks provided by the WMS queue [10]. With the 
emergence of cloud computing, researchers and WMS providers 

 
1 https://purl.org/swim 
2 https://www.commonwl.org/ 
3 https://azure.microsoft.com/ 
4 https://aws.amazon.com/ 
5 https://cloud.google.com/ 

acknowledge the viability of migrating scientific workflows to 
the cloud with challenges such as cost and performance 
requiring further research  [21]–[23]. 

The potential for computational cloud services for scientific 
workflows has been acknowledged for over 10 years. The first 
cloud platform rollouts were focused on web and business 
applications. Back then, available services did not focus on 
supporting large-scale workflow applications [24]. Today, 
Cloud platforms like Microsoft Azure3, Amazon Web Services 
(AWS) 4 , and Google Cloud Platform (GCP) 5  facilitate the 
deployment of custom software applications in a few steps, 
eliminating the time-consuming task of setting up the 
environment.  

The emergence of containerization technology such as 
Docker6, Mesos Containerizer7, LXC Linux Container8 , and 
Podman9 enabled the portability of applications across different 
cloud or on-site environments. Containers are considered a 
possible solution for some workflows that incorporate 
heterogeneous systems [6]. Cloud providers now offer different 
solutions to deploy, host, and manage containers on their 
platforms (e.g., Amazon EKS, Amazon ECS, Azure Kubernetes 
Service, Google Kubernetes Engine, and Google Cloud Run). In 
addition, containerization has fostered the creation of 
microservice architectures, replacing traditional monolithic 
backends. Microservices are self-contained and independent 
services that focus on specialized tasks [25] that can be reused 
and orchestrated across single or cross-platform applications. I. 
Salvadori et al. recognize the advantages for adopting 
microservices, including deployment and maintenanceas well as 
the complexity created that requires better communication and 
cooperation [26].  

Cloud computing is further driving the creation and 
extension of WMSs to support workflow management in the 
cloud and distributed environments. The REANA platform was 
created in 2019 with data analysis and reproducibility in mind. 
It was developed with the Kubernetes-orchestrated execution 
backend to run containerized pipelines on the cloud [27]. Recent 
updates of REANA incorporate a hybrid approach that includes 
access to the traditional HT Condor backend [28]. Vahi et al. 
describe their progress in supporting container technologies in 
the Pegasus WMS. Their approach allows the automatic 
deployment of containers and job data at workflow runtime on 
platform-agnostic computing environments [13]. Pegasus 
currently supports container technology from Docker, 
Singularity [29], and Shifter [30].  

III. RELATED WORK 

In our previous work as part of the Earth, Life, and Semantic 
Web Project (ELSEWeb), we addressed data-to-model 
integration for species distribution models (SDMs) [31]. Our 
approach proposed a semantic-based cyberinfrastructure to 
automate the retrieval and manipulation of data to be consumed 

6 https://www.docker.com/ 
7 https://mesos.apache.org/ 
8 https://linuxcontainers.org/ 
9 https://podman.io/ 



by SDMs. ELSEWeb integrated data from the Earth Data 
Analysis Center (EDAC)10 with species-distribution modeling 
services provided by Lifemapper 11 . The data and modeling 
services were semantically described by extending upper-level 
ontologies such as DCAT12, OBOE13, SIO14, and PROV-O15. A 
semantic bridge (i.e., a pipeline) was built to connect data and 
model provider services with a pool of semantically-enhanced, 
data-transformation services. The pipeline description is 
consumed as a SPARQL query by the Semantic Automated Data 
Integration framework (SADI) [32], which enables the 
automated reasoning to streamline the generation and execution 
of SDMs [33]. 

In 2011, Gil et al. presented Wings, a workflow creation 
system that uses semantic representation and planning 
techniques to create workflow templates and instances. The 
process requires the active participation of a domain expert to 
define a detailed description of input variables and an abstract 
workflow. The abstract workflow includes semantic 
descriptions that allow Wings to decipher, locate, or serialize the 
workflow into an executable instance. A WMS can then execute 
the resulting workflow specification [34]. 

Subsequently, the MINT project was proposed by Gil et al. 
to assist users with cross-disciplinary model integration building 
on existing tools, including CSDMS [35], BMI [36], GSN [37], 
WINGS [34], Pegasus [23], Karma [38], and GOPHER [39]. 
MINT’s approach uses semantic representations to describe 
model requirements and data characteristics, automatic planning 
through abductive reasoning techniques, a data discovery and 
integration framework, and machine learning algorithms for 
model parameterization [40]. Their current implementation16 is 
being used to explore the role of weather on food availability in 
selected regions of the world [41].  

Kasalica et al. present the Automated Pipeline Explorer 
(APE), a framework for automated workflow composition. 
Domain knowledge in APE is represented through annotations 
and taxonomies. The required input/output data and other 
restrictions are represented with temporal constraints using 
Semantic Linear Time Logic (SLTL). SLTL expressions are 
translated into propositional logic formulas that a SAT solver 
can solve, and the results are used to construct the workflow 
[42]. 

Klampanos et al. provide an overview of DARE [43], a 
framework that provides a set of tools for the development, 
discovery, and sharing of workflows. DARE contains a Python 
API for describing workflows, the s-ProvFlow framework for 
capturing the execution flow of jobs within a workflow, a 
registry for storing workflow entities in both dispel4py and 
CWL, an execution API for workflows, and tools for testing and 
debugging workflows. DARE can execute workflows described 
using dispel4py [44] or CWL. 

The previous approaches rely on a domain expert to provide 
a semantic description of the data, the domain, and the tools used 

 
10 https://edac.unm.edu 
11 https://lifemapper.ku.edu 
12 http://www.w3.org/ns/dcat 
13 https://bioportal.bioontology.org/ontologies/OBOE 

for data processing (e.g., transformations and models). In 
addition, users are required to describe an abstract representation 
of the pipeline. ELSEWeb uses SPARQL to represent pipeline 
requirements, Wings provides a Graphical User Interface to 
build a semantic representation, and APE uses natural-language 
templates aligned to logical propositions. In the MINT project, 
Wings can generate workflow plans for the Pegasus WMS. APE 
currently generates workflows as shell scripts, and support for 
the CWL is planned as part of their future work. DARE makes 
use of dispel4py to support CWL. In contrast, ELSEWeb uses 
SADI to orchestrate semantic web services.  

Our approach follows principles of simplicity, abstraction, 
and decoupling across the SWIM platform. The storage of 
processing services metadata and data elements is simplified 
through a semi-structured, unified JSON schema introduced in 
[45]. The JSON format is used across SWIM for storage, data 
transfer, and generation of web-based visualizations. JSON can 
be further extended as JSON-LD to align with semantic 
annotations without impacting the current system functionality. 

We extended the SWIM microservice architecture to 
automate workflow generation for model-to-model integration. 
The following section describes the multivariable workflow 
composition algorithm with an abstract use case and the end-to-
end implementation. All microservices are deployed as docker 
containers as part of the SWIM ecosystem of webservices. 

IV. AUTOMATED WORKFLOW COMPOSITION 

SWIM’s current approach to the automated composition of 
workflows uses a breadth-first search strategy. A directed 
acyclic graph is built by expanding sibling nodes first; as 
opposed to depth-first search where child nodes are expanded 
first [46]. In Fig. 1, a computational process (p) is represented as 
a node that needs to be expanded. Variables produced by this 
computational process enable the exploration of additional 
computational processes that can consume the generated data as 
part of their inputs. In our scenario, computational processes can 
produce and consume multiple data elements (e), which we also 
refer to as variables in the rest of the manuscript and thus the 
name of multivariable workflow composition.  

Algorithm 1 shows the multivariable workflow composition 
in SWIM as pseudocode. This algorithm can automatically 
compose a workflow of processes that consume and produce 
multiple data elements. The algorithm composes a scientific 
workflow by iteratively identifying candidate processes that can 
be executed based on available data elements, excluding 
processes that have been analyzed (line 10). For each candidate 
process, the data variables generated from such process are 
added to a set of collected data variables with information about 
the iteration (i.e., step) and the process that produced it (lines 14 
– 21). The algorithm continues to iterate until all desired data 
elements (i.e., target variables) are collected, or there are no 
processes available to explore (lines 11 – 13). If multiple paths 
can lead to the generation of the target variables, only the first 

14 https://bioportal.bioontology.org/ontologies/SIO 
15 https://www.w3.org/TR/prov-o/ 
16 https://mint.isi.edu 



path found is returned. Fig. 1.A shows a DFD that represents a 
multivariable workflow example. If a process does not 
contribute to the final solution (e.g., the process identified as 
“p8” in Fig. 1.A), that process it is not included in the workflow 
(lines 26 – 40). Processes that cannot be executed due to a lack 
of data elements are not included in the analysis (e.g., the 
process identified as “p9” in Fig. 1.B). 

In this example (Fig. 1.A), the target data elements are 
labeled as “e11” and “e12”, user-provided data elements are 
“e1”, “e2”, “e3”, “e4”, and “e5”. The target data elements and 
input data elements form part of the abstract workflow request 
received as an input. The abstract workflow request also 
includes metadata for available processes, referred to this 
example as “ProcessCatalog” that contains information for the 
processes (i.e., “p1,…,p9”), including their data inputs and 
outputs. The abstract workflow request is further described in 
Subsection V.B. 

All processes are described in the process catalog. The 
process catalog includes the data elements consumed by a 
process and the data elements produced. The process catalog 
used in our example contains nine processes depicted in Fig. 1; 
the blue path shows a candidate workflow path for generating 
the target variables.  

The multivariable workflow composition algorithm 
generated the blue path by first analyzing all desired and 
available initial data variables (lines 1-2 in Algorithm 1) for the 
creation of a target and collected data sets, a record of the origins 
of the initial data variables is created in lines 5 – 8. Based on 
collected variables and visited process, process nodes that can 
be executed are collected in line 10, resulting in “p1” being 
selected. Data variables generated by this process are added to 
the collected data set, the record of data origins is updated, and 
“p1” is added as a visited process. This iteration is repeated, and 
now line 10 expands processes p2, p3, p4, and p5; data variables 
generated by these processes are added to the collected data set, 
the record of data origin is updated, and the visited process is 
updated. In our example, both processes “p3” and “p4” generate 
the same variables; however, only the first process selected for 
analysis that generated the variable is used as the origin of the 
variable. In the third iteration, the processes p6, p7, and p8 are 
retrieved from the process catalog in line 10, after analyzing 
their outputs all target variables are generated. In the fourth 
iteration, line 9 validates that the collected data set contains the 
target variable and stops iterating. TABLE I shows the possible 
paths for this abstract example; however, only one path is 
selected in the algorithm (TABLE I, row 1). Each “step” can 
include a set of processes that can be executed in parallel. 

At this stage, the process graph contains multiple paths for 
generating target variables and a process that doesn’t contribute 
to the final output. Lines 26 – 40 then use the record of data 
origin to retrieve the iteration and the process that generated it. 
The cycle continues for every data collected, given the inputs 
required by the processes. 

 

 

After this process is finalized, the algorithm creates a 
workflow composed of the process {“p1”} as the first step; 
{“p2”,”p3”,”p5”} as the second step, these processes can be 
executed simultaneously as there is no data dependency among 
each other; and {“p6”} as the third and final step. 

Algorithm 1: Multivariable Workflow Composition 

1: targetVariable = desired variable provided in the request 

2: collectedVarSet = available variable provided in the request 

3: iterationNumber = 1 

4: visitedProcess = new Set(String) 

5: for each variable  collectedVarSet do 

6:       variable.addOrigin(“request”) 

7:       variable.addStep(0) 

8: end for 

9: while !collectedVarSet.contains(targetVariable) do 

10: 
      executableProcesses = 
            ProcessCatalog.getProcessBy(collectedVarSet, 

                                                                  visitedProcess) 

11: 
      if  executableProcesses.isEmpty() 
          && !collectedVarSet.contains(targetVariable)  do 

12: 
          return Exception(“Target variable cannot be generated 

                   with available processes and initial variables”) 

13:       end if 

14:       for each process  executableProcesses do 

15:             for each variable  process.getOutputs() do 

16:                   variable. addOrigin(process) 

17:                   variable. addStep(iterationNumber) 

18:                   collectedVarSet.add(variable) 

19:             end for 

20:             visitedProcess.add(process.getId()) 

21:       end for 

22:       iterationNumber++ 

23: end while 

24: workflowMap = new Map(Integer, Process set) 

25: varToBeCollectedSet = desired variable provided in the request 

26: for each variable   varToBeCollectedSet do 

27:       varMetadata = collectedVarSet.get(variable) 

28:       if workflowMap.contains(varMetadata.getStep()) do 

29:             processSet = workflowMap.get(varMetadata.getStep()) 

30:       end if 

31:       else do 

32:             processSet = new Set(Process set) 

33:       end else 

34:       process = varMetadata.getOrigin() 

35:       for each variableInput  process.getInputs() do 

36:             varToBeCollectedSet.add(variableInput) 

37:       end for 

38:       processSet.add(process) 

39:       workflowMap.put(varMetadata.getStep(), processSet) 

40: end for 

41: return workflowMap 



TABLE I. POSSIBLE WORKFLOW PATHS 

Path Step 1 Step 2 Step 3 
1 p1 p2, p3, p5 p6 
2 p1 p2, p4, p5 p6 
3 p1 p3, p5 p7 
4 p1 p4, p5 p7 

 

V. END-TO-END MODEL-TO-MODEL INTEGRATION 
This section describes our end-to-end solution for a case 

study that requires model-to-model integration. SWIM’s 
architecture builds upon existing capabilities of WMS, 
automated workflow planning, and cloud-based infrastructure. 
Scientific computation processes are encapsulated as 
webservices and containerized for easy deployment to the cloud 
or on-site infrastructure. The capabilities of workflow 
composition and management are also offered as a web service 
through a container. 

A sequence diagram of the SWIM Orchestration 
Microservice Pool is shown in Fig. 2. A user’s workflow request 
(SWIM workflow request) initializes the sequence. A user’s 
request can be performed programmatically via an HTTP 
request or through SWIM’s Broker Open API documentation. A 
service orchestration endpoint receives the workflow request. 

A. The SWIM Broker Service 
The SWIM Broker Service 17  is an application-specific 

service that directs the workflow processing logic into a 
sequence of internal method calls and external microservices. 
The SWIM Broker first validates user credentials in the form of 
a JSON Web Token (JWT). The authentication token must be 

 
17 https://services.cybershare.utep.edu/swim-broker/swagger 

included as part of the workflow request headers. The SWIM 
workflow request contains a JSON payload that specifies data 
inputs, outputs of interest, and pre-processing operation rules. 

The pre-processing unit of the SWIM Broker currently 
supports two rules:  equivalence and default data exclusion. 
These rules are further explained in section VI.B. 

The pre-processing unit performs the following operations: 
i) assigns a unique identifier to the workflow, ii) applies user-
defined rules, iii) generates an abstract model catalog, iv) 
generates an abstract workflow request, and v) stores mappings 
between SWIM identifiers and those of the abstract products. 
The by-products of the pre-processing unit are serialized as 

Fig.  2. Sequence Diagram of the SWIM Orchestration Microservice Pool 

User

<endpoint>:
<webservice instance>

Notation: UML

postprocess:
SWIM Merge

execute:
Workflow CWL

serialize:
Workflow CWL

compose:
Workflow Composer

orchestrate:
SWIM Broker

internal call

async return

sync call
SWIM workflow

result

FinalizeWorkflow()

send workflow result
request workflow result

send execution acknowledgement
request workflow execution

send serialization acknowledgement
request cwl serialization

send workflow plan
request workflow plan

request SWIM 
workflow

RunPreprocessor()

isAuthValid()

 

Fig.  1. DFD of a multivariable workflow example. A) Depicts processes analyzed using Algorithm 1.  The dashed path passes through candidate nodes, the blue 
solid path is selected for the workflow. B) Illustrates how processes in the catalog that cannot be executed because input variables are not provided are not visited
by the Algorithm 1. 



JSON payloads and sent over to the workflow composer to 
request a workflow plan. 

B. The Workflow Composer Service 

The Workflow Composer Service receives the abstract model 
catalog and the abstract workflow request as input. These two 
artifacts include platform-independent metadata that identifies 
models and data elements with general unique identifiers. The 
abstract model catalog contains the metadata of available 
modeling and transformation services. The abstract workflow 
request contains the user-defined payload with the identifiers 
generated by the pre-processing unit. 

The multivariable workflow composition algorithm, 
described in section IV, is implemented in this service. The 
computational processes for the case study in section VI are 
classified as scientific models or data transformation jobs. All 
the models and transformation jobs are wrapped with a 
webservice interface in our implementation. Transformation 
services enable the serialization of data values in the format 
required by the following scientific model to be executed. Data 
changes might include units (e.g., Metric to English) or data 
structures (e.g., different schemas). 

The serialization of the workflow plan is generated in  JSON 
format. The serialized workflow plan contains metadata for the 
execution of every model and its prerequisites (i.e., models or 
transformation services that need to be executed beforehand). 
The workflow plan is sent as a response to the SWIM Broker 
Service, which in turn, sends the workflow plan to the Workflow 
CWL service. 

The Workflow Composition implementation as a 
microservice is available online on GitHub18 and as a docker 
image on the DockerHub registry19. 

C. The Workflow CWL Service 

SWIM leverages the third-party CWL Python API  for 
creating CWL workflows [47]. A CWL serialization can be used 
to execute workflows in a WMS that uses this same standard 
(e.g., Pegasus). The CWL API is used to transform a workflow 
plan serialized as JSON into a CWL workflow and use the 
workflow management capabilities of the CWL tool. All the 
processing nodes in SWIM communicate through webservice 
interfaces. Thus, the curl command in the Linux container of the 
Workflow CWL Service is used to send and receive messages 
using the HTTP protocol.  

The Workflow CWL implementation as a microservice is 
available online on GitHub 20  and as a docker image on 
DockerHub21. 

D. The SWIM Merge Service 

The SWIM Merge Service is a post-processing microservice 
that prepares the response payload of the workflow. The merge 
service receives the workflow identifier. From this identifier the 
service can query the workflow database to retrieve the 
mappings between SWIM and the abstract workflow. Once the 

 
18 https://purl.org/swim/repos/composer 
19 https://purl.org/swim/docker/composer 
20 https://purl.org/swim/repos/cwl 

identifiers are translated to SWIM terms, the service retrieves 
modeling outputs requested by the user. The workflow database 
also stores provenance of where each output was generated 
from; this is included as another block in the final payload.  

E. Workflow Result Availability 

Scenario results generated from each model in the workflow 
are made available in the Public Scenarios listing22 with all the 
features available in the current SWIM web-based interface 
(e.g., visualizations and sorting of outputs according to role). 
Workflow scenarios can be identified by the name containing 
“Custom workflow scenario” followed by a unique identifier. 
The scenario results can be consulted within the interface and 
can be modified and executed as a new scenario entry. The web 
interface is currently limited to executing only one model and 
scenario at a time. The model orchestration capabilities, 
described in this manuscript, are currently available only 
through the SWIM Broker Service.  

VI. CASE STUDY 

A. Overview 

This case study aims to support scientists and policy-makers 
in exploring different scenarios and the effects of short-term 
management strategies projected into the future. In particular, 
answering the question: How does regional reservoir storage 
behave in an economically optimal water use scenario? 

This case study requires the integration of two 
heterogeneous models available in SWIM, namely the Water 
Balance Model (WBM) [48] and the Hydroeconomic Model 
(HEM)  [49]. The coverage area for both models is bounded to 
the Middle Rio Grande in the Paso del Norte region, which 
includes the south of New Mexico (NM), West Texas in the US, 
and the north of Chihuahua in Mexico. The WBM is a regional 
water supply simulation model driven by: upstream inputs to 
Elephant Butte Reservoir in NM, local climate, regional water 
demand, and existing reservoir operation rules. The HEM is an 
economic optimization model that maximizes profits from 
regional water use. Both models can take multiple inputs and 
generate output values for multiple variables. 

The metadata corresponding to the models integrated in 
SWIM, along with metadata about their inputs and outputs are 
stored on a database instance accessible through the SWIM 
API23. The SWIM Broker pre-processes these catalogs into an 
abstract catalog representation that is included as payload to the 
workflow composer. 

Fig. 3 shows a DAG diagram of the model-to-model 
integration scenario derived from our case study (i.e., the 
composed workflow). Nodes represent a webservice exposing a 
scientific model (e.g., HE Model) or a transformation job (e.g., 
swim-assembler). The rectangles represent data elements. The 
top and bottom boxes correspond to workflow inputs and 
outputs, respectively. The swim-assembler handles the retrieval 
of default data values for variables from the modeling database 
and constructs a model scenario input for model consumption. 

21 https://purl.org/swim/docker/cwl 
22 https://swim.cybershare.utep.edu/en/public 
23 https://services.cybershare.utep.edu/swim-api/api-docs/ 



Below is a description of the inputs used to generate this 
workflow and the outputs generated, which are also depicted in 
Fig. 3. 

B. SWIM Workflow Input 

In this section, we describe the content of the SWIM 
workflow request payload used in the case study. The payload is 
divided into three blocks: inputs, outputs, and rules.  

      Listing 1 shows an excerpt of the SWIM workflow request 
payload. The first block of the input payload includes data inputs 
with custom values specified by the user. For each input entry, 
the “paramName” field carries a unique identifier for the data 
element. The “paramValue” field is a user-defined value for the 
parameter. The scenario provided indicates a numeric value of 
1994 to the input parameter with the identifier “StartYearV2”. 
The remaining inputs for this scenario are depicted in Fig. 3. The 
workflow composer implementation supports numeric, table, 
and time-series data serialized in JSON. As the “paramValue” 
field is not bounded to a specific data type, this field can 
potentially reference more complex data input types (e.g., Tiff, 
Geo-JSON, NetCDF). The outputs block specifies the target 
output data that should be obtained after the workflow 
execution. The “varName” field holds a unique identifier for 
each output. Both input and output blocks can be extended with 
additional metadata that could enable data transformations such 
as unit conversions, resolutions, or time-series timesteps.  

The rules block defines user-selected rule objects. Currently, 
rule objects are manually specified by users as a  JSON payload 
through a simple editor available in the SWIM broker. Each rule 
object describes one rule applicable to a set of variables (i.e., 

model inputs and outputs). Below is the current notation of a rule 
object: 

{“ruleName”: ["variable-1”, “variable-2”, …]} 

Our current implementation supports two rules, the 
equivalence and the excludeDefault rules. The equivalence rule 
defines a set of variables to be semantically equivalent, which 
entails that all corresponding variables satisfy alignment 
restrictions w.r.t. data format, data structure, measurement units, 
and resolution. In the case of a time series, further consistency 
checks should include time range and time-step resolution. 
Automated data consistency checks are part of ongoing 
development that can be potentially leverage related work [34]. 
In addition, automatic generation of data transformation sub-
workflows can further facilitate the alignment of variables to 
satisfy the equivalence rule and other potential rules. 

Listing 2. SWIM workflow output excerpt for the case study. 

{ "@context": "http://purl.org/swim/vocab", 

   "metadata": { 
        "id":  "2c338b57-88e9-4ea0-a100-227f980a3465", 

        "status": "success", 

        "type": "Workflow Result" }, 
    "provenance": [ { 

 "entity": "Model Output", 

 "generatedAtTime": "2022.05.25.14.06.25", 
 "id": "EBStorageV2_af", 

 "wasGeneratedBy": "1fb918b3-bf35-40f3-9821-b4d907cd610f" }], 

    "resource": [  
        { 

            "modelID": "7b7ac93638f711ec8d3d0242", 
            "varName": " EBStorageV2_af", 

            "varValue": "...", 

            "varinfo": [ 
                { 

                  "lang": "en-us", 

                  "varCategory": " Storage", 
                  "varDescription": "Elephant Butte reservoir storage...", 

                  "varLabel": "Elephant Butte Reservoir Storage", 

                  "varUnit": "Acre-Feet" 
                }, 

                { 

                  "lang": "es-mx", 
                  "varCategory": "Almacenamiento", 

                  "varDescription": "Promedio anual en el volumen...", 

                  "varLabel": " Almacenamiento en Presa del Elefante Butte", 
                  "varUnit": "Acre-Pies" 

                }]  

}] 
} 

 

Fig.  3. DAG of a SWIM model-to-model integration scenario derived from the 

case study where the models HE and WB are integrated. 
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{ "inputs" : [  

         {"paramName" : "StartYearV2", 

          "paramValue" : 1994 }], 
  "outputs" : [ 

         {"varName" : "EBStorageV2_af " }, 

        { "varName" : "water_stocks" } ], 
   "rules" : [ 

        { "excludeDefault" : ["evap_rat_p"] },      

        { "equivalence" : ["evap_rat_p", "SWEvapV2_ft"]}] 
} 

Listing 1. SWIM workflow input excerpt for the case study. 



Additional model inputs that are not included in the SWIM 
workflow request payload and are required in the model are 
assigned the default values stored in the modeling database; this 
feature prevents data input redundancy. The default data 
exclusion rule (excludeDefault) is used in this case study to 
prevent the use of default parameter values when an output from 
one model is to be used as an input to another, such is the case 
of “evap_rat_p” in Listing 1.  

Listing 1 shows an example of the two rule types, the first 
rule disables the use of the default value for the variable 
parameter “evap_rat_p”. The second rule defines the variables 
“evap_rat_p” and “SWEvapV2_ft” as semantically equivalent.  

C. SWIM Workflow Output 

      This section describes the content of the SWIM workflow 
output of the case study scenario. The workflow payload follows 
a custom object specification divided into three blocks: 
metadata, provenance, and resource. Fields contained within 
each block are aligned to multiple standard vocabularies 
specified in the SWIM Vocabulary 24  in JSON-LD format. 
Listing 2 shows an excerpt of the SWIM workflow output. The 
first block of the output payload contains general metadata 
regarding the execution of the overall workflow; the excerpt in 
Listing 2 includes the execution status and the object type. Fields 
in this block align with Dublin Core Metadata Terms25 in the 
SWIM Vocabulary; the reference to the vocabulary is included 
in the @context field of the JSON-LD payload. 

The provenance block shows a trace of where the workflow 
entities originated from. For example, the entity “Model Output” 
with id “EBStorageV2_af ” was generated by another entity with 
id “1fb918b3-bf35-40f3-9821-b4d907cd610f”. We anticipate 
leveraging metadata to trace back the parent entity, in this case 
a modeling service, with the use of an RDF graph. Fields in this 
block align with the W3C PROV Namespace26.  

Finally, the resource block contains the target data elements 
requested by the user (for simplicity, the excerpt contains only 
one output data element). The data elements include metadata 
using the SWIM data model schema [45] with field alignments 

 
24 http://purl.org/swim/vocab 
25 http://purl.org/dc/elements/1.1/ 

to the SIO Ontology 27 . The generated data values from the 
model execution are contained within the “varValue” field. 

D. Evaluation 

Validating the integration of models is more dependent on 
the compatibility of the models, their inputs, and integration 
methods than on the usability of a workflow management tool. 
This task should consider how scientists and decision-makers 
can interpret the results from such complex data and model 
integrations. This subsection presents our initial efforts for 
evaluating model-to-model integration.  

The SWIM orchestration infrastructure allows to seamlessly 
integrate the two available models by using previously described 
rule objects that define which models' inputs and outputs are 
semantically equivalent. The equivalence rule drives the 
automated process to generate and execute a modeling 
workflow. In this case study, the reservoir evaporation rate, an 
output of the WBM, is defined as an input to the HEM. Using 
SWIM’s infrastructure, annual reservoir evaporation rates from 
the WBM are generated and used as input to the HEM. The 
generated model scenario (Fig. 3) for the HEM indicates that the 
output reservoir evaporation rate from the WBM was consumed 

26 https://www.w3.org/ns/prov 
27 https://bioportal.bioontology.org/ontologies/SIO 

 

Fig. 5. SWIM screenshot of the visualization of Caballo Reservoir Releases 

projected by the WBM.  

    

Fig. 6. SWIM screenshot of the visualization of Caballo Outflows projected by 

the HEM. This time series is a subset of the River Flows output which includes 

annual flows along different locations on the Rio Grande River. 

 

Fig. 4. SWIM screenhot of the visualization of Surface Water Evaporation Depth 

output values of the WBM that are sent to the HEM as Reservoir Evaporation 

Rate. 



as an input to the HEM. Fig. 4 was generated in SWIM for 
visualizing the Surface Water Evaporation Depth values 
generated by the WBM. These values are sent to the HEM as 
Reservoir Evaporation Rate values within the workflow process. 

Being the WBM a simulation model, and the HEM an 
optimization model with the same area of coverage, we 
leveraged the SWIM infrastructure to perform a cross-validation 
exercise under the same scenario conditions. Conditions include 
the projection time range, reservoir operation rules and input 
water flows derived from climate projections. By restricting the 
optimization “wiggle room” (i.e., using same starting conditions 
and water distribution ranges) of the HEM within these 
constraints, a user can expect that equivalent outputs in both 
models follow similar trends.  

For this evaluation, the projected outflows from El Caballo 
Reservoir and water storage volume upstream at Elephant Butte 
Reservoir were compared. Results show that Caballo outflow 
values “CabReleaseV2_af”  projected in the WBM (Fig. 5) have 
a similar trend to those projected by the HEM “river_flows” 
(Fig. 6). This cross-validation exercise indicated compatibility 
of both models regarding projections of water flows at the El 
Caballo Reservoir location. 

The reservoir storage through time in both models was also 
compared, and different results were observed - higher reservoir 
storage volume was generated in the HEM “water_stocks” than 
in the WBM “EBStorageV2_af” (Fig. 7 and Fig. 8). This result 
could be interpreted as inconsistent from a scientific perspective. 
Although the technical infrastructure worked as envisioned, it 
seems that some of the scientific model assumptions were 
different and were not considered when creating this scenario. 
One possible explanation for these results is that the input 
parameters for starting reservoir storage may have impacted 
storage through time. This result requires further discussion with 
domain experts/model providers to identify other differences in 
starting conditions or assumptions in both models that can 
identify scenarios for which these models can or cannot be 
integrated from the scientific perspective.  

VII. DISCUSSION 

The need to integrate models to address complex problems 
in more holistic ways is recognized in [4]. The case study 
presented in this manuscript illustrated the use of SWIM to 

integrate two models with water balance capabilities (i.e., 
model-to-model integration) with an automated multivariable 
workflow composition. An important lesson learned from the 
case study's evaluation is that model integration needs to be 
validated from both the technical and the scientific perspectives. 
Similar challenges have been identified in the literature. Voinov 
and Shugart stated that attempts to integrate multiple models to 
achieve a more holistic understanding can quickly lead to 
“integronsters” [50], integrated models that generate monstrous 
results due to incompatible assumptions, parameters, scales, and 
model formulations. These incompatibilities are extremely 
difficult to anticipate, unless domain expertise of the integrated 
models is available (e.g., through a modeler or group of 
modelers) when scenarios that integrate models are created.  In 
addition, since model integration aims to generate and explore 
more holistic models across disciplines, it remains a challenge 
to make this informed assessment in advance for all possible 
scenarios beyond checking some obvious potential 
incompatibilities such as spatial and temporal scale.  

The SWIM infrastructure alleviates the burden of 
performing some manual tasks by automating: i) loading of 
extensive data for model consumption, ii) model-to-model 
workflow composition, and iii) serialization and execution of the 
model-to-model workflow to generate outputs of interest. 
SWIM users also benefit from generating data visualizations in 
a Web-based interface (Figs. 4-8). These features assist in 
comparing scenario results and identifying potential 
inconsistencies that could be otherwise harder to find or 
overseen when running the models separately. Possible 
solutions to validate model-to-model integration follows.  

First, creating explicit mappings of common inputs to 
models that will be integrated (i.e., not just the output to input 
connections) would provide a mechanism to automatically 
check that these values are consistent. We believe this approach 
can be applied in scenarios similar to our case study to identify 
up-front possible inconsistencies.  

Second, there is an opportunity to develop methods that 
scientifically validate the results of model-to-model integration. 
Current validation approaches focus on single models, 
comprehensive approaches that systematically validate the 
results from model integration are still to be developed. In our 
case study, a comparison of the graphical visualizations of 

 

Fig. 7. SWIM screenshot of the visualization of Surface Water Storage 

projected by HEM. This output is a sum of the two regional reservoirs, Elephant 

Butte and El Caballo. 

 

Fig. 8. SWIM screenshot of the visualization of Elephant Butte Reservoir 

Storage projected by the WBM. 



selected outputs assisted in identifying potential inconsistencies. 
This was an ad-hoc validation rather than a systematic approach.  

Third, semantic approaches for data and model integration 
have been investigated [34], [40]. These approaches depend on 
considerable community effort in developing formal 
ontology(ies) and annotating the inputs and outputs of specific 
datasets and models using these ontologies; thus, providing 
domain expertise to enable the system to provide automatic 
checking of compatibilities and potentially automated 
transformations [34], [51], [52]. These efforts can also support a 
more comprehensive description of data and models that can be 
asssist users in reusing and/or repurposing data and models 
considering their original  assumptions and potential limitations.  

These initial results seem to challenge the premise of this 
research – that technologies can foster the use of scientific 
models by non-experts. Current infrastructure can certainly do 
this, but with the use of automation, additional tools and 
techniques are needed to support the interpretation of model 
results and under which scenarios can models be integrated and, 
thus, prevent model misuse, misunderstanding of model 
limitations, and misinterpretation of results.  We discussed some 
solutions to prevent these issues but also recognize that this is 
also a human challenge, beyond the scope of this manuscript.  
Additional research is being conducted to investigate how users 
understand and use the results of these complex integrated 
systems by social and environmental scientists that are part of 
the SWIM research team. Analysis of workshops with 
stakeholders is currently underway to investigate how 
stakeholders reason with data and models of future water 
resources under different climate scenarios, and stakeholder 
perception of the usefulness of SWIM for understanding the 
water resource system.  

VIII. CONCLUSIONS AND FUTURE WORK 

Computational workflows are widely used in scientific 
research for executing several computational processes. The use 
of workflows provides many advantages. However, the design 
and reuse of workflows is sometimes a cumbersome task if 
workflows are manually composed and require domain 
expertise. The presented approach addresses this issue with an 
automated workflow composer implemented as a planning 
microservice in SWIM that leverages Web-based technologies. 
The workflow composer enables the automatic composition of 
multivariable workflows. 

The workflow composer currently implements a breadth-
first, uninformed search to explore computational processes that 
produce target variables and returns a workflow (if possible). 
The accompanying infrastructure for the automatic composition 
of workflows provides a decoupled and abstract design of 
microservices that can be reused in other application domains. 
The proposed multivariable workflow composition algorithm 
can be refined by implementing a heuristic function for 
evaluating and selecting computational processes; thus, 
implementing an informed search (AI-planning). We envision a 
refined implementation of this algorithm as part of the 
ecosystem of SWIM services that enable the automated creation 
of scientific workflows. 

The current implementation of the workflow composer in 
SWIM was initially evaluated in the water sustainability 
domain, with a case study that required integrating the HEM and 
WBM models. The validation of the model-to-model integration 
with the case study showed expected results with respect to the 
functionality of SWIM infrastructure. However, from the 
scientific perspective, potential inconsistencies in the model 
assumptions or conditions used in the scenario for the case study 
scenario were identified. This presents an opportunity for future 
work in the SWIM model-orchestration service pool to 
automatically verify the alignment of inputs and outputs of 
models considering scientific constraints. We anticipate using 
rich metadata annotations (i.e., semantics) to further describe 
data elements and model assumptions that affect  computational 
processes. The use of semantics and formal requirement 
descriptions has been previously explored in [34] and [42]. We 
also discussed the challenges of validating the integration of 
models from the scientific perspective, since models are being 
used beyond their original purpose, and possible approaches to 
address those challenges and prevent unexpected use of these 
frameworks, such as misinterpretation of results.  

In addition to verification of data alignment, metadata 
annotations can be leveraged for the automated generation of 
rules for model-to-model integration (e.g., equivalence rules) 
introduced in section VI.B. These efforts can support the work 
of domain experts in aligning scientific variables across models. 

SWIM’s workflow composer creates a provenance trace of 
the resulting workflow. Our future work includes the generation 
of an RDF graph for representing and enriching this information. 
Our current implementation does not allow users to control the 
granularity of the workflow provenance trace. We anticipate that 
different levels of execution diagnostic data can be leveraged 
from WMSs’ logs. 

Efforts towards automating model-to-model integration with 
consistency validation both from the technical and scientific 
perspectives can support this task but still require domain 
expertise; thus, they need to leverage both human and machine 
capabilities. These efforts can significantly support scientific 
endeavors and decision-making by enabling a wide variety of 
stakeholders to focus on the use of scientific models instead of 
using decoupled modules that require the manual curation of 
data and use of various tools and infrastructure.  
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