Automating Multivariable Workflow Composition for
Model-to-Model Integration

Raul Alejandro Vargas-Acosta Luis Garnica Chavira
Computer Science
The University of Texas at El
Paso
El Paso, Texas, USA

ravargasaco@miners.utep.edu

The University of Texas at El
Paso
El Paso, Texas, USA
lagarnicachavira@utep.edu

Abstract— Many societal-relevant challenges, including
environmental ones, require comprehensive approaches that
integrate decoupled data, models, and perspectives. Integrating
data and models is critical for these approaches but can also
become cumbersome. Computational workflows are widely used
to integrate heterogeneous data and computational processes
within or across domains. However, creating computational
workflows may require computational and domain expertise not
necessarily possessed by potential users. This paper presents our
efforts to enable automated multivariable workflow composition
implemented as a workflow composer in the Sustainable Water for
Integrated Modeling (SWIM) platform. We describe the
uninformed search algorithm used in the workflow composer and
an initial evaluation with a case study that requires integrating two
water (balance) models that cover the Middle Rio Grande in the
U.S. Southwest region. Preliminary results show that the
evaluation of integrating models should not only consider the
technical and scientific perspective but also how users understand
and use the results of these complex systems. Efforts toward
automating the model-to-model integration can significantly
support scientific endeavors and decision-making by enabling
various stakeholders to use scientific models.

Keywords—workflow composition, model-to-model integration,
cyberinfrastructure, democratizing computational workflows,
containers, microservices

I. INTRODUCTION

Many of the most challenging real world-problems
confronting society, such as environmental issues and
sustainable development, are tightly coupled and achievable
only with unprecedented integration of perspectives across
disciplinary, professional, cultural, institutional, and political
boundaries, as well as communication of findings to decision-
makers [1], [2], [3]. Integrating models to address such complex
problems is frequently done ad hoc [4]. Models have data inputs
that can be complex, and they generate voluminous data outputs
that must be analyzed and/or visualized to be understood.
Moreover, a single model might not produce the desired
information and the execution of several models is needed,
which requires keeping track of which inputs resulted in which

This material is based upon work supported by the National Science
Foundation (NSF) under Grant No. 1835897. This work used resources from
the Cyber-ShARE Center of Excellence, which is supported by NSF Grant No.
HRD-1242122.

CyberShare Center of Excellence

Natalia Villanueva-Rosales Deana D. Pennington

Computer Science Earth, Environment and
The University of Texas at El Resource Sciences
Paso The University of Texas at El

El Paso, Texas, USA Paso
nvillanuevarosales@utep.edu El Paso, Texas, USA
ddpennington@utep.edu

outputs. Software solutions can ease the burden of data and
model integration, allowing scientists to rapidly construct
complex analyses that better represent real-world problems and
enable findings to be more easily communicated to decision-
makers.

Computational workflows enable the integration of data and
models across different domains [5]. At the core level,
computational scientific workflows describe tasks and data
needed to address a particular problem [6]. Computational
workflows are widely used across domains that require
expensive computational processes.

Creating a workflow usually starts at a conceptual level with
the use of abstract representations such as Data Flow Diagrams
(DFD) and Directed Acyclic Graphs (DAGs). This abstract
representation can be mapped to a workflow structure that
allows users to manage relevant processes through workflow-
management systems (WMS) [7]. Declarative workflows can
then be serialized to a target WMS system using programmatic
libraries or following tool-specific syntax and structure. The
workflow specification may also require metadata to locate data
and jobs across distributed computational environments, along
with data transfer protocols and credentials. The disparity of
workflow specification languages across WMSs was addressed
by standardization efforts such as the Common Workflow
Language (CWL) [8].

Despite broad access and standardization efforts, users may
require domain and technical expertise for manually building
workflows describing complex processes. Opportunities to
provide additional tools supporting the creation of workflows
and automate tasks have been previously identified [7].

Cloud services currently provide users easy access to
computational resources where the management of computing
nodes, networking, storage and power resources rests solely on
cloud-service providers [9]. Cloud services also provide Web-
based interfaces to simplify the deployment and use of custom
applications. Burkat et al. identified the model of serverless
computing (i.e., applications running on the cloud) as a viable
execution model for scientific workflows [10].

DOI 10.1109/eScience55777.2022.00030 ©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Alex Vargas
DOI 10.1109/eScience55777.2022.00030 ©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This paper presents an approach using search strategies to
build workflow plans on-the-fly supported by a cloud-ready
architecture that has been applied for model-to-model
integration in the Sustainable Water Through Integrated
Modeling (SWIM) Platform!. In particular, we describe our
efforts to: 1) automate model-to-model workflow creation, ii)
serialize the workflow to CWL to use existing WMS, and iii)
attenuate barriers to entry for users by simplifying the payload
structure of workflow requests and workflow outputs. This work
can contribute to the democratization process of scientific
modeling, in alignment with the FAIR principles [11], by
making scientific workflows more Findable, Accessible,
Interoperable, and Reusable by experts and non-expert
stakeholders.

This paper is organized as follows: first, we provide
background on the transition of scientific computational
workflows to cloud-based infrastructure. Second, we explore
related work that uses rich metadata and semantics for workflow
composition, complementing our efforts. Third, we present our
approach to automating workflow composition, including a
description of the core algorithm and an abstract example. Next,
we present an end-to-end implementation of a model
orchestration microservice pool illustrated with a water-domain
scenario with preliminary evaluation findings. A discussion with
lessons learned follows. Last, we provide conclusions and future
work.

II. BACKGROUND

Scientific domains such as physics, astronomy, and
biomedicine require complex workflow composition and
execution management implementations [5], [12]-[17]. In the
biomedical research field, Kotliar et al. identified over 100
workflow management systems, each with its way of specifying
workflow pipelines [18]. These different specifications make
workflow reproducibility across WMSs, particularly domain-
specific ones, a challenging task.

Generic WMSs provide a higher level of abstraction for
creating and executing workflows regardless of the application
domain. In addition, many of these systems are gradually
migrating to workflow specification standards such as the
CWL 2. This transition can provide a seamless workflow
specification compatible with multiple WMSs, thus facilitating
the reproducibility and interoperability of computational
workflows across application domains.

The underlying architecture of traditional WMSs uses HPC
task management systems such as SLURM [19] and HT Condor
[20]. WMSs built on top of these systems were initially designed
for scientists to deploy workflow pipelines in HPC
environments such as local campus clusters and computing
centers. Workflow processes typically rely on (worker) nodes
that execute tasks provided by the WMS queue [10]. With the
emergence of cloud computing, researchers and WMS providers

acknowledge the viability of migrating scientific workflows to
the cloud with challenges such as cost and performance
requiring further research [21]-[23].

The potential for computational cloud services for scientific
workflows has been acknowledged for over 10 years. The first
cloud platform rollouts were focused on web and business
applications. Back then, available services did not focus on
supporting large-scale workflow applications [24]. Today,
Cloud platforms like Microsoft Azure’, Amazon Web Services
(AWS)*, and Google Cloud Platform (GCP)° facilitate the
deployment of custom software applications in a few steps,
eliminating the time-consuming task of setting up the
environment.

The emergence of containerization technology such as
Docker®, Mesos Containerizer’, LXC Linux Container® , and
Podman’ enabled the portability of applications across different
cloud or on-site environments. Containers are considered a
possible solution for some workflows that incorporate
heterogeneous systems [6]. Cloud providers now offer different
solutions to deploy, host, and manage containers on their
platforms (e.g., Amazon EKS, Amazon ECS, Azure Kubernetes
Service, Google Kubernetes Engine, and Google Cloud Run). In
addition, containerization has fostered the creation of
microservice architectures, replacing traditional monolithic
backends. Microservices are self-contained and independent
services that focus on specialized tasks [25] that can be reused
and orchestrated across single or cross-platform applications. I.
Salvadori et al. recognize the advantages for adopting
microservices, including deployment and maintenanceas well as
the complexity created that requires better communication and
cooperation [26].

Cloud computing is further driving the creation and
extension of WMSs to support workflow management in the
cloud and distributed environments. The REANA platform was
created in 2019 with data analysis and reproducibility in mind.
It was developed with the Kubernetes-orchestrated execution
backend to run containerized pipelines on the cloud [27]. Recent
updates of REANA incorporate a hybrid approach that includes
access to the traditional HT Condor backend [28]. Vahi et al.
describe their progress in supporting container technologies in
the Pegasus WMS. Their approach allows the automatic
deployment of containers and job data at workflow runtime on
platform-agnostic computing environments [13]. Pegasus
currently supports container technology from Docker,
Singularity [29], and Shifter [30].

III. RELATED WORK

In our previous work as part of the Earth, Life, and Semantic
Web Project (ELSEWeb), we addressed data-to-model
integration for species distribution models (SDMs) [31]. Our
approach proposed a semantic-based cyberinfrastructure to
automate the retrieval and manipulation of data to be consumed

Uhttps://purl.org/swim

2 https://www.commonwl.org/
3 https://azure.microsoft.com/
4 https://aws.amazon.com/

5 https://cloud.google.com/

¢ https://www.docker.com/

7 https://mesos.apache.org/

8 https://linuxcontainers.org/
% https://podman.io/

by SDMs. ELSEWeb integrated data from the Earth Data
Analysis Center (EDAC)!° with species-distribution modeling
services provided by Lifemapper!!. The data and modeling
services were semantically described by extending upper-level
ontologies such as DCAT!2, OBOE"3, SIO'#, and PROV-O'. A
semantic bridge (i.e., a pipeline) was built to connect data and
model provider services with a pool of semantically-enhanced,
data-transformation services. The pipeline description is
consumed as a SPARQL query by the Semantic Automated Data
Integration framework (SADI) [32], which enables the
automated reasoning to streamline the generation and execution
of SDMs [33].

In 2011, Gil et al. presented Wings, a workflow creation
system that uses semantic representation and planning
techniques to create workflow templates and instances. The
process requires the active participation of a domain expert to
define a detailed description of input variables and an abstract
workflow. The abstract workflow includes semantic
descriptions that allow Wings to decipher, locate, or serialize the
workflow into an executable instance. A WMS can then execute
the resulting workflow specification [34].

Subsequently, the MINT project was proposed by Gil et al.
to assist users with cross-disciplinary model integration building
on existing tools, including CSDMS [35], BMI [36], GSN [37],
WINGS [34], Pegasus [23], Karma [38], and GOPHER [39].
MINT’s approach uses semantic representations to describe
model requirements and data characteristics, automatic planning
through abductive reasoning techniques, a data discovery and
integration framework, and machine learning algorithms for
model parameterization [40]. Their current implementation'® is
being used to explore the role of weather on food availability in
selected regions of the world [41].

Kasalica et al. present the Automated Pipeline Explorer
(APE), a framework for automated workflow composition.
Domain knowledge in APE is represented through annotations
and taxonomies. The required input/output data and other
restrictions are represented with temporal constraints using
Semantic Linear Time Logic (SLTL). SLTL expressions are
translated into propositional logic formulas that a SAT solver
can solve, and the results are used to construct the workflow
[42].

Klampanos et al. provide an overview of DARE [43], a
framework that provides a set of tools for the development,
discovery, and sharing of workflows. DARE contains a Python
API for describing workflows, the s-ProvFlow framework for
capturing the execution flow of jobs within a workflow, a
registry for storing workflow entities in both dispel4py and
CWL, an execution API for workflows, and tools for testing and
debugging workflows. DARE can execute workflows described
using dispeldpy [44] or CWL.

The previous approaches rely on a domain expert to provide
a semantic description of the data, the domain, and the tools used

for data processing (e.g., transformations and models). In
addition, users are required to describe an abstract representation
of the pipeline. ELSEWeb uses SPARQL to represent pipeline
requirements, Wings provides a Graphical User Interface to
build a semantic representation, and APE uses natural-language
templates aligned to logical propositions. In the MINT project,
Wings can generate workflow plans for the Pegasus WMS. APE
currently generates workflows as shell scripts, and support for
the CWL is planned as part of their future work. DARE makes
use of dispeldpy to support CWL. In contrast, ELSEWeb uses
SADI to orchestrate semantic web services.

Our approach follows principles of simplicity, abstraction,
and decoupling across the SWIM platform. The storage of
processing services metadata and data elements is simplified
through a semi-structured, unified JSON schema introduced in
[45]. The JSON format is used across SWIM for storage, data
transfer, and generation of web-based visualizations. JSON can
be further extended as JSON-LD to align with semantic
annotations without impacting the current system functionality.

We extended the SWIM microservice architecture to
automate workflow generation for model-to-model integration.
The following section describes the multivariable workflow
composition algorithm with an abstract use case and the end-to-
end implementation. All microservices are deployed as docker
containers as part of the SWIM ecosystem of webservices.

IV. AUTOMATED WORKFLOW COMPOSITION

SWIM’s current approach to the automated composition of
workflows uses a breadth-first search strategy. A directed
acyclic graph is built by expanding sibling nodes first; as
opposed to depth-first search where child nodes are expanded
first [46]. In Fig. 1, a computational process (p) is represented as
a node that needs to be expanded. Variables produced by this
computational process enable the exploration of additional
computational processes that can consume the generated data as
part of their inputs. In our scenario, computational processes can
produce and consume multiple data elements (e), which we also
refer to as variables in the rest of the manuscript and thus the
name of multivariable workflow composition.

Algorithm 1 shows the multivariable workflow composition
in SWIM as pseudocode. This algorithm can automatically
compose a workflow of processes that consume and produce
multiple data elements. The algorithm composes a scientific
workflow by iteratively identifying candidate processes that can
be executed based on available data elements, excluding
processes that have been analyzed (line 10). For each candidate
process, the data variables generated from such process are
added to a set of collected data variables with information about
the iteration (i.e., step) and the process that produced it (lines 14
— 21). The algorithm continues to iterate until all desired data
elements (i.e., target variables) are collected, or there are no
processes available to explore (lines 11 — 13). If multiple paths
can lead to the generation of the target variables, only the first

10 https://edac.unm.edu

' https://lifemapper.ku.edu

12 http://www.w3.org/ns/dcat

13 https://bioportal.bioontology.org/ontologies/OBOE

14 https://bioportal.bioontology.org/ontologies/SIO
15 https://www.w3.org/TR/prov-o/
16 https://mint.isi.edu

path found is returned. Fig. 1.A shows a DFD that represents a
multivariable workflow example. If a process does not
contribute to the final solution (e.g., the process identified as
“p8” in Fig. 1.A), that process it is not included in the workflow
(lines 26 — 40). Processes that cannot be executed due to a lack
of data elements are not included in the analysis (e.g., the
process identified as “p9” in Fig. 1.B).

In this example (Fig. 1.A), the target data elements are
labeled as “el1” and “e12”, user-provided data elements are
“el”, “e2”, “e3”, “e4”, and “e5”. The target data elements and
input data elements form part of the abstract workflow request
received as an input. The abstract workflow request also
includes metadata for available processes, referred to this
example as “ProcessCatalog” that contains information for the
processes (i.e., “pl,...,p9”), including their data inputs and
outputs. The abstract workflow request is further described in
Subsection V.B.

All processes are described in the process catalog. The
process catalog includes the data elements consumed by a
process and the data elements produced. The process catalog
used in our example contains nine processes depicted in Fig. 1;
the blue path shows a candidate workflow path for generating
the target variables.

The multivariable workflow composition algorithm
generated the blue path by first analyzing all desired and
available initial data variables (lines 1-2 in Algorithm 1) for the
creation of a target and collected data sets, a record of the origins
of the initial data variables is created in lines 5 — 8. Based on
collected variables and visited process, process nodes that can
be executed are collected in line 10, resulting in “pl” being
selected. Data variables generated by this process are added to
the collected data set, the record of data origins is updated, and
“p1” is added as a visited process. This iteration is repeated, and
now line 10 expands processes p2, p3, p4, and p5; data variables
generated by these processes are added to the collected data set,
the record of data origin is updated, and the visited process is
updated. In our example, both processes “p3” and “p4” generate
the same variables; however, only the first process selected for
analysis that generated the variable is used as the origin of the
variable. In the third iteration, the processes p6, p7, and p8 are
retrieved from the process catalog in line 10, after analyzing
their outputs all target variables are generated. In the fourth
iteration, line 9 validates that the collected data set contains the
target variable and stops iterating. TABLE I shows the possible
paths for this abstract example; however, only one path is
selected in the algorithm (TABLE I, row 1). Each “step” can
include a set of processes that can be executed in parallel.

At this stage, the process graph contains multiple paths for
generating target variables and a process that doesn’t contribute
to the final output. Lines 26 — 40 then use the record of data
origin to retrieve the iteration and the process that generated it.
The cycle continues for every data collected, given the inputs
required by the processes.

Algorithm 1: Multivariable Workflow Composition

1: targetVariable = desired variable provided in the request
2: collectedVarSet = available variable provided in the request
3: iterationNumber = 1
4: visitedProcess = new Set(String)
5: for each variable € collectedVarSet do
6: variable.addOrigin(“request”)
7: variable.addStep(0)
8: end for
9: while !collectedVarSet.contains(targetVariable) do
executableProcesses =
10: ProcessCatalog.getProcessBy(collectedVarSet,
visitedProcess)
11: if executableProcesses.isEmpty() .
) && !collectedVarSet.contains(targetVariable) do
12: return .Except.ion(“Target variable_cz_n'mot bej generated
) with available processes and initial variables”)
13: end if
14: for each process € executableProcesses do
15: for each variable € process.getOutputs() do
16: variable. addOrigin(process)
17: variable. addStep(iterationNumber)
18: collectedVarSet.add(variable)
19: end for
20: visitedProcess.add(process.getld())
21: end for
22: iterationNumber++

23: end while

24: workflowMap = new Map(Integer, Process set)

25: varToBeCollectedSet = desired variable provided in the request
26: for each variable € varToBeCollectedSet do

27: varMetadata = collectedVarSet.get(variable)

28: if workflowMap.contains(varMetadata.getStep()) do
29: processSet = workflowMap.get(varMetadata.getStep())
30: end if

31: else do

32: processSet = new Set(Process set)

33: end else

34: process = varMetadata.getOrigin()

35: for each variablelnput € process.getlnputs() do

36: varToBeCollectedSet.add(variablelnput)

37: end for

38: processSet.add(process)

39: workflowMap .put(varMetadata.getStep(), processSet)
40: end for

41: return workflowMap

After this process is finalized, the algorithm creates a
workflow composed of the process {“pl1”} as the first step;
{“p2”,’p3”,’p5”} as the second step, these processes can be
executed simultaneously as there is no data dependency among
each other; and {“p6”} as the third and final step.

B)

| ,
,-;"’
-y
‘lll E ‘\"
il m \f\
]))
' " RN [
AN PR R[] SN __ I f

-®

gy

Legend

O Process Node

[] DataElement

— Flow Direction

Fig. 1. DFD of a multivariable workflow example. A) Depicts processes analyzed using Algorithm 1. The dashed path passes through candidate nodes, the blue
solid path is selected for the workflow. B) Illustrates how processes in the catalog that cannot be executed because input variables are not provided are not visited

by the Algorithm 1.

TABLE L. POSSIBLE WORKFLOW PATHS

Path Step 1 Step 2 Step 3
1 pl p2, p3, p5 p6
2 pl p2, p4, p5 p6
3 pl p3,pS p7
4 pl p4, p5 p7

V. END-TO-END MODEL-TO-MODEL INTEGRATION

This section describes our end-to-end solution for a case
study that requires model-to-model integration. SWIM’s
architecture builds upon existing capabilities of WMS,
automated workflow planning, and cloud-based infrastructure.
Scientific computation processes are encapsulated as
webservices and containerized for easy deployment to the cloud
or on-site infrastructure. The capabilities of workflow
composition and management are also offered as a web service
through a container.

A sequence diagram of the SWIM Orchestration
Microservice Pool is shown in Fig. 2. A user’s workflow request
(SWIM workflow request) initializes the sequence. A user’s
request can be performed programmatically via an HTTP
request or through SWIM’s Broker Open API documentation. A
service orchestration endpoint receives the workflow request.

A. The SWIM Broker Service

The SWIM Broker Service '’ is an application-specific
service that directs the workflow processing logic into a
sequence of internal method calls and external microservices.
The SWIM Broker first validates user credentials in the form of
a JSON Web Token (JWT). The authentication token must be

included as part of the workflow request headers. The SWIM
workflow request contains a JSON payload that specifies data
inputs, outputs of interest, and pre-processing operation rules.

The pre-processing unit of the SWIM Broker currently
supports two rules: equivalence and default data exclusion.
These rules are further explained in section VI.B.

The pre-processing unit performs the following operations:
i) assigns a unique identifier to the workflow, ii) applies user-
defined rules, iii) generates an abstract model catalog, iv)
generates an abstract workflow request, and v) stores mappings
between SWIM identifiers and those of the abstract products.
The by-products of the pre-processing unit are serialized as

i orchestrate: compose: serialize: execute: postprocess:
User SWIM Broker Workflow Composer ||Workflow CWL || Workflow CWL || SWIM Merge
| 1 ‘ 1
[1_request SWIM 1,
workflow
jisAuthVa\id()
|
jRunPreprocessor() |
i
i
request workflow plan -
|c_send workflow plan __| !
request cwl serialization .
send serialization ackr rent j
request workflow execution r
send execution ackr U
request workflow result r
send workflow result u
i Notation: UML
ijahzeWorkﬂow() sync call
SWIM workflow, <endpoint>:
result <webservice instance> | _async return _
- internal call

Fig. 2. Sequence Diagram of the SWIM Orchestration Microservice Pool

17 https://services.cybershare.utep.edu/swim-broker/swagger

JSON payloads and sent over to the workflow composer to
request a workflow plan.

B. The Workflow Composer Service

The Workflow Composer Service receives the abstract model
catalog and the abstract workflow request as input. These two
artifacts include platform-independent metadata that identifies
models and data elements with general unique identifiers. The
abstract model catalog contains the metadata of available
modeling and transformation services. The abstract workflow
request contains the user-defined payload with the identifiers
generated by the pre-processing unit.

The multivariable workflow composition algorithm,
described in section IV, is implemented in this service. The
computational processes for the case study in section VI are
classified as scientific models or data transformation jobs. All
the models and transformation jobs are wrapped with a
webservice interface in our implementation. Transformation
services enable the serialization of data values in the format
required by the following scientific model to be executed. Data
changes might include units (e.g., Metric to English) or data
structures (e.g., different schemas).

The serialization of the workflow plan is generated in JSON
format. The serialized workflow plan contains metadata for the
execution of every model and its prerequisites (i.e., models or
transformation services that need to be executed beforehand).
The workflow plan is sent as a response to the SWIM Broker
Service, which in turn, sends the workflow plan to the Workflow
CWL service.

The Workflow Composition implementation as a
microservice is available online on GitHub!® and as a docker
image on the DockerHub registry'®.

C. The Workflow CWL Service

SWIM leverages the third-party CWL Python API for
creating CWL workflows [47]. A CWL serialization can be used
to execute workflows in a WMS that uses this same standard
(e.g., Pegasus). The CWL API is used to transform a workflow
plan serialized as JSON into a CWL workflow and use the
workflow management capabilities of the CWL tool. All the
processing nodes in SWIM communicate through webservice
interfaces. Thus, the curl command in the Linux container of the
Workflow CWL Service is used to send and receive messages
using the HTTP protocol.

The Workflow CWL implementation as a microservice is
available online on GitHub?® and as a docker image on
DockerHub?!.

D. The SWIM Merge Service

The SWIM Merge Service is a post-processing microservice
that prepares the response payload of the workflow. The merge
service receives the workflow identifier. From this identifier the
service can query the workflow database to retrieve the
mappings between SWIM and the abstract workflow. Once the

identifiers are translated to SWIM terms, the service retrieves
modeling outputs requested by the user. The workflow database
also stores provenance of where each output was generated
from; this is included as another block in the final payload.

E. Workflow Result Availability

Scenario results generated from each model in the workflow
are made available in the Public Scenarios listing?? with all the
features available in the current SWIM web-based interface
(e.g., visualizations and sorting of outputs according to role).
Workflow scenarios can be identified by the name containing
“Custom workflow scenario” followed by a unique identifier.
The scenario results can be consulted within the interface and
can be modified and executed as a new scenario entry. The web
interface is currently limited to executing only one model and
scenario at a time. The model orchestration capabilities,
described in this manuscript, are currently available only
through the SWIM Broker Service.

VI. CASE STUDY

A. Overview

This case study aims to support scientists and policy-makers
in exploring different scenarios and the effects of short-term
management strategies projected into the future. In particular,
answering the question: How does regional reservoir storage
behave in an economically optimal water use scenario?

This case study requires the integration of two
heterogeneous models available in SWIM, namely the Water
Balance Model (WBM) [48] and the Hydroeconomic Model
(HEM) [49]. The coverage area for both models is bounded to
the Middle Rio Grande in the Paso del Norte region, which
includes the south of New Mexico (NM), West Texas in the US,
and the north of Chihuahua in Mexico. The WBM is a regional
water supply simulation model driven by: upstream inputs to
Elephant Butte Reservoir in NM, local climate, regional water
demand, and existing reservoir operation rules. The HEM is an
economic optimization model that maximizes profits from
regional water use. Both models can take multiple inputs and
generate output values for multiple variables.

The metadata corresponding to the models integrated in
SWIM, along with metadata about their inputs and outputs are
stored on a database instance accessible through the SWIM
API?*. The SWIM Broker pre-processes these catalogs into an
abstract catalog representation that is included as payload to the
workflow composer.

Fig. 3 shows a DAG diagram of the model-to-model
integration scenario derived from our case study (i.e., the
composed workflow). Nodes represent a webservice exposing a
scientific model (e.g., HE Model) or a transformation job (e.g.,
swim-assembler). The rectangles represent data elements. The
top and bottom boxes correspond to workflow inputs and
outputs, respectively. The swim-assembler handles the retrieval
of default data values for variables from the modeling database
and constructs a model scenario input for model consumption.

18 https://purl.org/swim/repos/composer
19 https://purl.org/swim/docker/composer
20 https://purl.org/swim/repos/cwl

2! https://purl.org/swim/docker/cwl
22 https://swim.cybershare.utep.edu/en/public
23 https://services.cybershare.utep.edu/swim-api/api-docs/

SWIM Workflow Inputs

T g —
EndYearV2 CablnitStorageV2 EBInitStorageV2
‘ StartYearV2 ‘ SanMarV2_cfs

swim-
assembler

swim-

assembler WBM Scenario

SWEvapV2_ft

HEM Scenario

A 4

WBM Scenario
Result

Legend

Model Processor

HEM Scenario
Result

Transformation
Processor

Flow Direction

SWIM Workflow Outputs

river_flows ‘ l water_stocks ‘ l EBStorageV2_af‘ lCabReIeaseVZfaf

Fig. 3. DAG of a SWIM model-to-model integration scenario derived from the
case study where the models HE and WB are integrated.

Below is a description of the inputs used to generate this
workflow and the outputs generated, which are also depicted in
Fig. 3.

B. SWIM Workflow Input

In this section, we describe the content of the SWIM
workflow request payload used in the case study. The payload is
divided into three blocks: inputs, outputs, and rules.

Listing 1 shows an excerpt of the SWIM workflow request
payload. The first block of the input payload includes data inputs
with custom values specified by the user. For each input entry,
the “paramName” field carries a unique identifier for the data
element. The “paramValue” field is a user-defined value for the
parameter. The scenario provided indicates a numeric value of
1994 to the input parameter with the identifier “StartYearV2”.
The remaining inputs for this scenario are depicted in Fig. 3. The
workflow composer implementation supports numeric, table,
and time-series data serialized in JSON. As the “paramValue”
field is not bounded to a specific data type, this field can
potentially reference more complex data input types (e.g., Tiff,
Geo-JSON, NetCDF). The outputs block specifies the target
output data that should be obtained after the workflow
execution. The “varName” field holds a unique identifier for
each output. Both input and output blocks can be extended with
additional metadata that could enable data transformations such
as unit conversions, resolutions, or time-series timesteps.

The rules block defines user-selected rule objects. Currently,
rule objects are manually specified by users as a JSON payload
through a simple editor available in the SWIM broker. Each rule
object describes one rule applicable to a set of variables (i.e.,

{ "inputs" : [
{"paramName" : "StartYearV2",
"paramValue" : 1994 }],
"outputs" : [
{"varName" : "EBStorageV2 af" },
{ "varName" : "water_stocks" }],
"rules" : [
{ "excludeDefault" : ["evap rat p"]},
{ "equivalence" : ["evap_rat p", "SWEvapV2_ft"]}]

Listing 1. SWIM workflow input excerpt for the case study.

model inputs and outputs). Below is the current notation of a rule
object:

{“ruleName”: ["variable-1”, “variable-2”, ...]}

Our current implementation supports two rules, the
equivalence and the excludeDefault rules. The equivalence rule
defines a set of variables to be semantically equivalent, which
entails that all corresponding variables satisfy alignment
restrictions w.r.t. data format, data structure, measurement units,
and resolution. In the case of a time series, further consistency
checks should include time range and time-step resolution.
Automated data consistency checks are part of ongoing
development that can be potentially leverage related work [34].
In addition, automatic generation of data transformation sub-
workflows can further facilitate the alignment of variables to
satisfy the equivalence rule and other potential rules.

{ "@context": "http://purl.org/swim/vocab",
"metadata": {
"id": "2c338b57-88e9-4ea0-a100-227f980a3465",
"status": "success",
"type": "Workflow Result" },
"provenance": [{
"entity": "Model Output",
"generated AtTime": "2022.05.25.14.06.25",
"id": "EBStorageV2_af",
"wasGeneratedBy": "1fb918b3-bf35-40{3-9821-b4d907cd610f" }],
"resource": [
{
"modelID": "7b7ac93638f711ec8d3d0242",
"varName": " EBStorageV2 af",
"varValue": "..."
"varinfo": [
{
"lang": "en-us",
"varCategory™: " Storage",
"varDescription": "Elephant Butte reservoir storage...",
"varLabel": "Elephant Butte Reservoir Storage",
"varUnit": "Acre-Feet"
}s
{
"lang": "es-mx",
"varCategory": "Almacenamiento",
"varDescription": "Promedio anual en el volumen...",
"varLabel": " Almacenamiento en Presa del Elefante Butte",
"varUnit": "Acre-Pies"
11
1

Listing 2. SWIM workflow output excerpt for the case study.

Additional model inputs that are not included in the SWIM
workflow request payload and are required in the model are
assigned the default values stored in the modeling database; this
feature prevents data input redundancy. The default data
exclusion rule (excludeDefault) is used in this case study to
prevent the use of default parameter values when an output from
one model is to be used as an input to another, such is the case
of “evap _rat p” in Listing 1.

Listing 1 shows an example of the two rule types, the first
rule disables the use of the default value for the variable
parameter “evap rat p”. The second rule defines the variables
“evap _rat p” and “SWEvapV2_ ft” as semantically equivalent.

C. SWIM Workflow Output

This section describes the content of the SWIM workflow
output of the case study scenario. The workflow payload follows
a custom object specification divided into three blocks:
metadata, provenance, and resource. Fields contained within
each block are aligned to multiple standard vocabularies
specified in the SWIM Vocabulary >* in JSON-LD format.
Listing 2 shows an excerpt of the SWIM workflow output. The
first block of the output payload contains general metadata
regarding the execution of the overall workflow; the excerpt in
Listing 2 includes the execution status and the object type. Fields
in this block align with Dublin Core Metadata Terms? in the
SWIM Vocabulary; the reference to the vocabulary is included
in the @context field of the JSON-LD payload.

The provenance block shows a trace of where the workflow
entities originated from. For example, the entity “Model Output”
with id “EBStorageV2_af” was generated by another entity with
id “1fb918b3-bf35-40f3-9821-b4d907cd610f”. We anticipate
leveraging metadata to trace back the parent entity, in this case
a modeling service, with the use of an RDF graph. Fields in this
block align with the W3C PROV Namespace?®.

Finally, the resource block contains the target data elements
requested by the user (for simplicity, the excerpt contains only
one output data element). The data elements include metadata
using the SWIM data model schema [45] with field alignments

I Surface Water Evaporation Depth

p 140
1.38
7
W I R N O L . I, . . 4
S EEFF PR PP

Fig. 4. SWIM screenhot of the visualization of Surface Water Evaporation Depth
output values of the WBM that are sent to the HEM as Reservoir Evaporation
Rate.

Caballo Reservoir Releases

BOBOR Catallo Reserwir Releasss

Fig. 5. SWIM screenshot of the visualization of Caballo Reservoir Releases
projected by the WBM.

River Flows

POOBR Caballo outfow gauge [Wew-evios-sTorae-Sisto-cinc-on-Rie-Crande Il Ris-Srande-abeve-t
o — B R Crende-siFona

Fig. 6. SWIM screenshot of the visualization of Caballo Outflows projected by
the HEM. This time series is a subset of the River Flows output which includes
annual flows along different locations on the Rio Grande River.

to the SIO Ontology?’. The generated data values from the
model execution are contained within the “varValue” field.

D. Evaluation

Validating the integration of models is more dependent on
the compatibility of the models, their inputs, and integration
methods than on the usability of a workflow management tool.
This task should consider how scientists and decision-makers
can interpret the results from such complex data and model
integrations. This subsection presents our initial efforts for
evaluating model-to-model integration.

The SWIM orchestration infrastructure allows to seamlessly
integrate the two available models by using previously described
rule objects that define which models' inputs and outputs are
semantically equivalent. The equivalence rule drives the
automated process to generate and execute a modeling
workflow. In this case study, the reservoir evaporation rate, an
output of the WBM, is defined as an input to the HEM. Using
SWIM'’s infrastructure, annual reservoir evaporation rates from
the WBM are generated and used as input to the HEM. The
generated model scenario (Fig. 3) for the HEM indicates that the
output reservoir evaporation rate from the WBM was consumed

24 http://purl.org/swim/vocab
25 http://purl.org/dc/elements/1.1/

26 https://www.w3.org/ns/prov
27 https://bioportal.bioontology.org/ontologies/SIO

Surface Water Storage

$08B Surface Storage Location [l Storage Capacity

3500

3000 AR 4 S By

2500 ! Vi R . . s .
.) - \

s of Cubic Meters
L)
.

2000 | %
L)

Allior
...
-

Fig. 7. SWIM screenshot of the visualization of Surface Water Storage
projected by HEM. This output is a sum of the two regional reservoirs, Elephant
Butte and El Caballo.

as an input to the HEM. Fig. 4 was generated in SWIM for
visualizing the Surface Water Evaporation Depth values
generated by the WBM. These values are sent to the HEM as
Reservoir Evaporation Rate values within the workflow process.

Being the WBM a simulation model, and the HEM an
optimization model with the same area of coverage, we
leveraged the SWIM infrastructure to perform a cross-validation
exercise under the same scenario conditions. Conditions include
the projection time range, reservoir operation rules and input
water flows derived from climate projections. By restricting the
optimization “wiggle room” (i.e., using same starting conditions
and water distribution ranges) of the HEM within these
constraints, a user can expect that equivalent outputs in both
models follow similar trends.

For this evaluation, the projected outflows from El Caballo
Reservoir and water storage volume upstream at Elephant Butte
Reservoir were compared. Results show that Caballo outflow
values “CabReleaseV2_af” projected in the WBM (Fig. 5) have
a similar trend to those projected by the HEM “river flows”
(Fig. 6). This cross-validation exercise indicated compatibility
of both models regarding projections of water flows at the El
Caballo Reservoir location.

The reservoir storage through time in both models was also
compared, and different results were observed - higher reservoir
storage volume was generated in the HEM “water_stocks” than
in the WBM “EBStorageV2_af” (Fig. 7 and Fig. 8). This result
could be interpreted as inconsistent from a scientific perspective.
Although the technical infrastructure worked as envisioned, it
seems that some of the scientific model assumptions were
different and were not considered when creating this scenario.
One possible explanation for these results is that the input
parameters for starting reservoir storage may have impacted
storage through time. This result requires further discussion with
domain experts/model providers to identify other differences in
starting conditions or assumptions in both models that can
identify scenarios for which these models can or cannot be
integrated from the scientific perspective.

VII. DISCUSSION

The need to integrate models to address complex problems
in more holistic ways is recognized in [4]. The case study
presented in this manuscript illustrated the use of SWIM to

Elephant Butte Reservoir Storage

SBBBRK Eicphant Butie Reservoir Storage [l Elephant Butte Storage Calendar Year Average (1864-2013)
I storage Capacity
2501
R
HERNFA)
000 =
g [l 1
I} *
g Vo
S 1500 \ A
3 \
2 s v
» 1000 \ o~
2 . Y
S ! . SN e
=) i . -, IR i) e, .
a / . N / /
oigt.g-® P . ¥ PP .y
R P & & SRR S > oo B S

Oy
%,
o,

Fig. 8. SWIM screenshot of the visualization of Elephant Butte Reservoir
Storage projected by the WBM.

integrate two models with water balance capabilities (i.c.,
model-to-model integration) with an automated multivariable
workflow composition. An important lesson learned from the
case study's evaluation is that model integration needs to be
validated from both the technical and the scientific perspectives.
Similar challenges have been identified in the literature. Voinov
and Shugart stated that attempts to integrate multiple models to
achieve a more holistic understanding can quickly lead to
“integronsters” [50], integrated models that generate monstrous
results due to incompatible assumptions, parameters, scales, and
model formulations. These incompatibilities are extremely
difficult to anticipate, unless domain expertise of the integrated
models is available (e.g., through a modeler or group of
modelers) when scenarios that integrate models are created. In
addition, since model integration aims to generate and explore
more holistic models across disciplines, it remains a challenge
to make this informed assessment in advance for all possible
scenarios beyond checking some obvious potential
incompatibilities such as spatial and temporal scale.

The SWIM infrastructure alleviates the burden of
performing some manual tasks by automating: i) loading of
extensive data for model consumption, ii) model-to-model
workflow composition, and iii) serialization and execution of the
model-to-model workflow to generate outputs of interest.
SWIM users also benefit from generating data visualizations in
a Web-based interface (Figs. 4-8). These features assist in
comparing scenario results and identifying potential
inconsistencies that could be otherwise harder to find or
overseen when running the models separately. Possible
solutions to validate model-to-model integration follows.

First, creating explicit mappings of common inputs to
models that will be integrated (i.e., not just the output to input
connections) would provide a mechanism to automatically
check that these values are consistent. We believe this approach
can be applied in scenarios similar to our case study to identify
up-front possible inconsistencies.

Second, there is an opportunity to develop methods that
scientifically validate the results of model-to-model integration.
Current validation approaches focus on single models,
comprehensive approaches that systematically validate the
results from model integration are still to be developed. In our
case study, a comparison of the graphical visualizations of

selected outputs assisted in identifying potential inconsistencies.
This was an ad-hoc validation rather than a systematic approach.

Third, semantic approaches for data and model integration
have been investigated [34], [40]. These approaches depend on
considerable community effort in developing formal
ontology(ies) and annotating the inputs and outputs of specific
datasets and models using these ontologies; thus, providing
domain expertise to enable the system to provide automatic
checking of compatibilities and potentially automated
transformations [34], [51], [52]. These efforts can also support a
more comprehensive description of data and models that can be
asssist users in reusing and/or repurposing data and models
considering their original assumptions and potential limitations.

These initial results seem to challenge the premise of this
research — that technologies can foster the use of scientific
models by non-experts. Current infrastructure can certainly do
this, but with the use of automation, additional tools and
techniques are needed to support the interpretation of model
results and under which scenarios can models be integrated and,
thus, prevent model misuse, misunderstanding of model
limitations, and misinterpretation of results. We discussed some
solutions to prevent these issues but also recognize that this is
also a human challenge, beyond the scope of this manuscript.
Additional research is being conducted to investigate how users
understand and use the results of these complex integrated
systems by social and environmental scientists that are part of
the SWIM research team. Analysis of workshops with
stakeholders is currently underway to investigate how
stakeholders reason with data and models of future water
resources under different climate scenarios, and stakeholder
perception of the usefulness of SWIM for understanding the
water resource system.

VIII. CONCLUSIONS AND FUTURE WORK

Computational workflows are widely used in scientific
research for executing several computational processes. The use
of workflows provides many advantages. However, the design
and reuse of workflows is sometimes a cumbersome task if
workflows are manually composed and require domain
expertise. The presented approach addresses this issue with an
automated workflow composer implemented as a planning
microservice in SWIM that leverages Web-based technologies.
The workflow composer enables the automatic composition of
multivariable workflows.

The workflow composer currently implements a breadth-
first, uninformed search to explore computational processes that
produce target variables and returns a workflow (if possible).
The accompanying infrastructure for the automatic composition
of workflows provides a decoupled and abstract design of
microservices that can be reused in other application domains.
The proposed multivariable workflow composition algorithm
can be refined by implementing a heuristic function for
evaluating and selecting computational processes; thus,
implementing an informed search (Al-planning). We envision a
refined implementation of this algorithm as part of the
ecosystem of SWIM services that enable the automated creation
of scientific workflows.

The current implementation of the workflow composer in
SWIM was initially evaluated in the water sustainability
domain, with a case study that required integrating the HEM and
WBM models. The validation of the model-to-model integration
with the case study showed expected results with respect to the
functionality of SWIM infrastructure. However, from the
scientific perspective, potential inconsistencies in the model
assumptions or conditions used in the scenario for the case study
scenario were identified. This presents an opportunity for future
work in the SWIM model-orchestration service pool to
automatically verify the alignment of inputs and outputs of
models considering scientific constraints. We anticipate using
rich metadata annotations (i.e., semantics) to further describe
data elements and model assumptions that affect computational
processes. The use of semantics and formal requirement
descriptions has been previously explored in [34] and [42]. We
also discussed the challenges of validating the integration of
models from the scientific perspective, since models are being
used beyond their original purpose, and possible approaches to
address those challenges and prevent unexpected use of these
frameworks, such as misinterpretation of results.

In addition to verification of data alignment, metadata
annotations can be leveraged for the automated generation of
rules for model-to-model integration (e.g., equivalence rules)
introduced in section VI.B. These efforts can support the work
of domain experts in aligning scientific variables across models.

SWIM’s workflow composer creates a provenance trace of
the resulting workflow. Our future work includes the generation
of an RDF graph for representing and enriching this information.
Our current implementation does not allow users to control the
granularity of the workflow provenance trace. We anticipate that
different levels of execution diagnostic data can be leveraged
from WMSs’ logs.

Efforts towards automating model-to-model integration with
consistency validation both from the technical and scientific
perspectives can support this task but still require domain
expertise; thus, they need to leverage both human and machine
capabilities. These efforts can significantly support scientific
endeavors and decision-making by enabling a wide variety of
stakeholders to focus on the use of scientific models instead of
using decoupled modules that require the manual curation of
data and use of various tools and infrastructure.

ACKNOWLEDGMENT

The authors wish to thank the research team and
collaborators (scientists and students) that have participated in
SWIM for their invaluable contributions. A special thanks goes
to Bill Hargrove, Alfredo Granados, Frank Ward, Alex Mayer,
and Dave Gutzler, as well as the anonymous reviewers for their
insightful comments for the improvement of this manuscript.

Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

[10]

(1]

[12

—

[13]

[14]

[15]

[16

—

[17]

REFERENCES

“Review of Targets for the Sustainable Development Goals: The Science
Perspective (2015),” International Science Council.
https://council.science/publications/review-of-targets-for-the-
sustainable-development-goals-the-science-perspective-2015/ (accessed
Aug. 17,2022).

S. H. Hamilton, S. ElSawah, J. H. A. Guillaume, A. J. Jakeman, and S. A.
Pierce, “Integrated assessment and modelling: Overview and synthesis
of salient dimensions,” Environmental Modelling & Software, vol. 64, pp.
215-229, Feb. 2015, doi: 10.1016/j.envsoft.2014.12.005.

G. F. Laniak et al., “Integrated environmental modeling: A vision and
roadmap for the future,” Environmental Modelling & Software, vol. 39,
pp- 3-23, Jan. 2013, doi: 10.1016/j.envsoft.2012.09.006.

G. F. Belete, A. Voinov, and G. F. Laniak, “An overview of the model
integration process: From pre-integration assessment to testing,”
Environmental Modelling & Software, vol. 87, pp. 49-63, Jan. 2017, doi:
10.1016/j.envsoft.2016.10.013.

J. Carrillo, D. Garijo, M. Crowley, R. Carrillo, Y. Gil, and K. Borda,
“Semantic Workflows and Machine Learning for the Assessment of
Carbon Storage by Urban Trees,” presented at the Proceedings of the 3rd.
International Workshop on Capturing Scientific Knowledge collocated
with the 10th. International Conference on Knowledge Capture (K-CAP
’19), Los Angeles, CA, Nov. 2019. [Online]. Available: http://ceur-
ws.org/Vol-2526/paperl.pdf

E. Deelman et al., “The future of scientific workflows,” The International
Journal of High Performance Computing Applications, vol. 32, no. 1, pp.
159175, Jan. 2018, doi: 10.1177/1094342017704893.

Y. Gil et al.,, “Examining the challenges of scientific workflows,”
Computer, vol. 40, no. 12, pp. 24-32, 2007, doi: 10.1109/MC.2007.421.

M. R. Crusoe et al., “Methods Included: Standardizing Computational
Reuse and Portability with the Common Workflow Language,” Commun.
ACM, vol. 65, no. 6, pp. 54-63, May 2022, doi: 10.1145/3486897.

B. Jennings and R. Stadler, “Resource Management in Clouds: Survey
and Research Challenges,” J Netw Syst Manage, vol. 23, no. 3, pp. 567—
619, Jul. 2015, doi: 10.1007/s10922-014-9307-7.

K. Burkat et al., “Serverless Containers — Rising Viable Approach to
Scientific Workflows,” in 2021 IEEE 17th International Conference on
eScience (eScience), Sep. 2021, pp- 40-49. doi:
10.1109/eScience51609.2021.00014.

M. D. Wilkinson et al., “The FAIR Guiding Principles for scientific data
management and stewardship,” Sci Data, vol. 3, no. 1, p. 160018, Mar.
2016, doi: 10.1038/sdata.2016.18.

A. Zia et al., “Coupled impacts of climate and land use change across a
river-lake continuum: insights from an integrated assessment model of
Lake Champlain’s Missisquoi Basin, 2000-2040,” Environ. Res. Lett.,
vol. 11, no. 11, p. 114026, Nov. 2016, doi: 10.1088/1748-
9326/11/11/114026.

K. Vahi et al., “Custom Execution Environments with Containers in
Pegasus-Enabled Scientific Workflows,” in 2019 15th International
Conference on eScience (eScience), Sep. 2019, pp. 281-290. doi:
10.1109/eScience.2019.00039.

N. Pavlovikj, K. Begcy, S. Behera, M. Campbell, H. Walia, and J. S.
Deogun, “A Comparison of a Campus Cluster and Open Science Grid
Platforms for Protein-Guided Assembly Using Pegasus Workflow
Management System,” in 2014 IEEE International Parallel Distributed
Processing Symposium Workshops, May 2014, pp. 546-555. doi:
10.1109/IPDPSW.2014.66.

B. Riedel et al., “Distributed Data and Job Management for the
XENONIT Experiment,” in Proceedings of the Practice and Experience
on Advanced Research Computing, New York, NY, USA, Jul. 2018, pp.
1-8. doi: 10.1145/3219104.3219155.

P. Maechling et al., “Simplifying construction of complex workflows for
non-expert users of the southern california earthquake center community
modeling environment,” ACM SIGMOD Record, vol. 34, no. 3, pp. 24—
30, 2005, doi: 10.1145/1084805.1084811.

G. S. Davies, T. Dent, M. Tapai, 1. Harry, C. Mclsaac, and A. H. Nitz,
“Extending the PyCBC search for gravitational waves from compact

[18

(19

[20

[21

[22

[23

[24

25

[26

27

[28

[29

[30

[31

[32

[33

[34

[35

=

]

=

—

—

—

[}

=

[}

—

]

]

=

]

]

]

]

—_

binary mergers to a global network,” Phys. Rev. D, vol. 102, no. 2, p.
022004, Jul. 2020, doi: 10.1103/PhysRevD.102.022004.

M. Kotliar, A. V. Kartashov, and A. Barski, “CWL-Airflow: a lightweight
pipeline manager supporting Common Workflow Language,”
GigaScience, vol. 8, mno. 7, p. giz084, Jul. 2019, doi:

10.1093/gigascience/giz084.

A.B.Yoo0,M. A. Jette, and M. Grondona, “SLURM: Simple Linux Utility
for Resource Management,” in Job Scheduling Strategies for Parallel
Processing, Berlin, Heidelberg, 2003, pp. 44-60. doi:
10.1007/10968987_3.

D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the Condor experience,” Concurrency and Computation:
Practice and Experience, vol. 17, no. 2-4, pp. 323-356, 2005, doi:
10.1002/cpe.938.

J. J. Rehr, F. D. Vila, J. P. Gardner, L. Svec, and M. Prange, “Scientific
Computing in the Cloud,” Computing in Science Engineering, vol. 12, no.
3, pp. 3443, May 2010, doi: 10.1109/MCSE.2010.70.

G. Juve and E. Deelman, “Scientific Workflows in the Cloud,” in Grids,
Clouds and Virtualization, M. Cafaro and G. Aloisio, Eds. London:
Springer, 2011, pp. 71-91. doi: 10.1007/978-0-85729-049-6 4.

E. Deelman et al., “The Evolution of the Pegasus Workflow Management
Software,” Computing in Science & Engineering, vol. PP, pp. 1-1, May
2019, doi: 10.1109/MCSE.2019.2919690.

Y. Zhao, X. Fei, 1. Raicu, and S. Lu, “Opportunities and Challenges in
Running Scientific Workflows on the Cloud,” in 2011 International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery, Oct. 2011, pp. 455-462. doi: 10.1109/CyberC.2011.80.

P. Jamshidi, C. Pahl, N. C. Mendonga, J. Lewis, and S. Tilkov,
“Microservices: The Journey So Far and Challenges Ahead,” IEEE
Software, vol. 35, no. 3, pp. 24-35, May 2018, doi:
10.1109/MS.2018.2141039.

1. Salvadori, A. Huf, R. dos S. Mello, and F. Siqueira, “Publishing Linked
Data Through Semantic Microservices Composition,” in Proceedings of
the 18th International Conference on Information Integration and Web-
based Applications and Services, New York, NY, USA, 2016, pp. 443—
452. doi: 10.1145/3011141.3011155.

T. Simko, L. Heinrich, H. Hirvonsalo, D. Kousidis, and D. Rodriguez,
“REANA: A System for Reusable Research Data Analyses,” EPJ Web
Conf., vol. 214, p. 06034, 2019, doi: 10.1051/epjcont/201921406034.

R. Maciulaitis et al., “Support for HTCondor high-Throughput
Computing Workflows in the REANA Reusable Analysis Platform,” in
2019 15th International Conference on eScience (eScience), Sep. 2019,
pp- 630-631. doi: 10.1109/eScience.2019.00091.

D. Godlove, “Singularity: Simple, secure containers for compute-driven
workloads,” in Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (learning), New York, NY,
USA, Jul. 2019, pp. 1-4. doi: 10.1145/3332186.3332192.

L. Gerhardt et al., “Shifter: Containers for HPC,” J. Phys.: Conf. Ser., vol.
898, p. 082021, Oct. 2017, doi: 10.1088/1742-6596/898/8/082021.

N. Villanueva-Rosales, N. del Rio, D. Pennington, and L. Gamica
Chavira, “Semantic Bridges for Biodiversity Sciences,” in The Semantic
Web - ISWC 2015, Cham, 2015, pp. 310-317. doi: 10.1007/978-3-319-
25010-6_20.

M. D. Wilkinson, B. Vandervalk, and L. McCarthy, “The Semantic
Automated Discovery and Integration (SADI) Web service Design-
Pattern, API and Reference Implementation,” Journal of Biomedical
Semantics, vol. 2, no. 1, p. 8, Oct. 2011, doi: 10.1186/2041-1480-2-8.

N. Del Rio, N. Villanueva-Rosales, D. Pennington, K. Benedict, A.
Stewart, and C. J. Grady, “Elseweb meets sadi: Supporting data-to-model
integration for biodiversity forecasting,” 2013. [Online]. Available:
https://www.aaai.org/ocs/index.php/FSS/FSS13/paper/view/763 1

Y. Gil et al, “Wings: Intelligent Workflow-Based Design of

Computational Experiments,” IEEE Intelligent Systems, vol. 26, no. 1,
pp. 6272, Jan. 2011, doi: 10.1109/MIS.2010.9.

S. Peckham, “The CSDMS Standard Names: Cross-Domain Naming
Conventions for Describing Process Models, Data Sets and Their
Associated Variables,” International Congress on Environmental
Modelling and Software, Jun. 2014, [Online]. Available:
https://scholarsarchive.byu.edu/iemssconference/2014/Stream-A/12

[36]

[37]

[38]

[39]

[40

[

[41

—

[42]

[43]

R. Ferreira da Silva, D. Garijo, S. Peckham, Y. Gil, E. Deelman, and V.
Ratnakar, “Towards Model Integration via Abductive Workflow
Composition and Multi-Method Scalable Model Execution,”
International Congress on Environmental Modelling and Software, Jun.
2018, [Online]. Available:
https://scholarsarchive.byu.edu/iemssconference/2018/Stream-A/14

D. Garijo et al., “A Semantic Model Catalog to Support Comparison and
Reuse,” International Congress on Environmental Modelling and
Software, Jun. 2018, [Online]. Available:
https://scholarsarchive.byu.edu/iemssconference/2018/Stream-A/11

S. Gupta, P. Szekely, C. A. Knoblock, A. Goel, M. Taheriyan, and M.
Muslea, “Karma: A System for Mapping Structured Sources into the
Semantic Web,” in The Semantic Web: ESWC 2012 Satellite Events,
Berlin, Heidelberg, 2015, pp. 430-434. doi: 10.1007/978-3-662-46641-
4 40.

A. Karpatne, Z. Jiang, R. R. Vatsavai, S. Shekhar, and V. Kumar,
“Monitoring Land-Cover Changes: A Machine-Learning Perspective,”
IEEE Geoscience and Remote Sensing Magazine, vol. 4, no. 2, pp. 8-21,
Jun. 2016, doi: 10.1109/MGRS.2016.2528038.

Y. Gil et al., “MINT: model integration through knowledge-powered data
and process composition,” in 9th International Congress on
Environmental Modelling and Software, 2018, vol. 8. [Online]. Available:
https://scholarsarchive.byu.edu/iemssconference/2018/Stream-A/13/

Y. Gil et al., “Artificial Intelligence for Modeling Complex Systems:
Taming the Complexity of Expert Models to Improve Decision Making,”
ACM Trans. Interact. Intell. Syst., vol. 11, no. 2, p. 11:1-11:49, Jul. 2021,
doi: 10.1145/3453172.

V. Kasalica and A.-L. Lamprecht, “Workflow Discovery with Semantic
Constraints: The SAT-Based Implementation of APE,” Electronic
Communications of the EASST, vol. 78, no. 0, Art. no. 0, May 2020, doi:
10.14279/tuj.eceasst.78.1092.

L. A. Klampanos et al., “DARE Platform\: a Developer-Friendly and Self-
Optimising Workflows-as-a-Service Framework for e-Science on the
Cloud,” Journal of Open Source Software, vol. 5, no. 54, p. 2664, Oct.
2020, doi: 10.21105/joss.02664.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

R. Filgueira, A. Krause, M. Atkinson, I. Klampanos, A. Spinuso, and S.
Sanchez-Exposito, “dispel4py: An Agile Framework for Data-Intensive
eScience,” in 2015 IEEE 11th International Conference on e-Science,
Aug. 2015, pp. 454-464. doi: 10.1109/eScience.2015.40.

L. Garnica Chavira, J. Caballero, N. Villanueva-Rosales, and D.
Pennington, “Semi-structured Knowledge Models and Web Service
Driven Integration for Online Execution and Sharing of Water
Sustainability Models,” International Congress on Environmental
Modelling and Software, Jun. 2018, [Online]. Available:
https://scholarsarchive.byu.edu/iemssconference/2018/Stream-A/43

S. Rusell and P. Norvig, Artificial Intelligence: A Modern Approach, 1st
Edition. United States of America: Prentice-Hall, Inc., 1995.

P. Amstutz et al., “Common Workflow Language, v1.0,” 2016, doi:
https://doi.org/10.6084/m9.figshare.3115156.v2.

R. N. Holmes, A. Mayer, D. S. Gutzler, and L. G. Chavira, “Assessing the
Effects of Climate Change on Middle Rio Grande Surface Water Supplies
Using a Simple Water Balance Reservoir Model,” Earth Interactions, vol.
26, no. 1, pp. 168-179, Jan. 2022, doi: 10.1175/EI-D-21-0025.1.

F. A. Ward, A. S. Mayer, L. A. Garnica, N. T. Townsend, and D. S.
Gutzler, “The economics of aquifer protection plans under climate water
stress: New insights from hydroeconomic modeling,” Journal of
Hydrology, vol. 576, pp. 667684, Sep. 2019, doi:
10.1016/j.jhydrol.2019.06.081.

A. Voinov and H. H. Shugart, “‘Integronsters’, integral and integrated
modeling,” Environmental Modelling & Software, vol. 39, pp. 149-158,
Jan. 2013, doi: 10.1016/j.envsoft.2012.05.014.

B. T. Essawy, J. L. Goodall, H. Xu, and Y. Gil, “Evaluation of the
OntoSoft Ontology for describing metadata for legacy hydrologic
modeling software,” Environmental Modelling & Software, vol. 92, pp.
317-329, Jun. 2017, doi: 10.1016/j.envsoft.2017.01.024.

M. Stoica and S. D. Peckham, “An Ontology Blueprint for Constructing
Qualitative and Quantitative Scientific Variables.,” 2018.

