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Automatic fetal brain tissue segmentation can enhance the quantitative assessment of brain development at this
critical stage. Deep learning methods represent the state of the art in medical image segmentation and have
also achieved impressive results in brain segmentation. However, effective training of a deep learning model
to perform this task requires a large number of training images to represent the rapid development of the
transient fetal brain structures. On the other hand, manual multi-label segmentation of a large number of 3D
images is prohibitive. To address this challenge, we segmented 272 training images, covering 19-39 gestational
weeks, using an automatic multi-atlas segmentation strategy based on deformable registration and probabilistic
atlas fusion, and manually corrected large errors in those segmentations. Since this process generated a large
training dataset with noisy segmentations, we developed a novel label smoothing procedure and a loss function
to train a deep learning model with smoothed noisy segmentations. Our proposed methods properly account
for the uncertainty in tissue boundaries. We evaluated our method on 23 manually-segmented test images of a
separate set of fetuses. Results show that our method achieves an average Dice similarity coefficient of 0.893
and 0.916 for the transient structures of younger and older fetuses, respectively. Our method generated results
that were significantly more accurate than several state-of-the-art methods including nnU-Net that achieved
the closest results to our method. Our trained model can serve as a valuable tool to enhance the accuracy and
reproducibility of fetal brain analysis in MRI.

1. Introduction an urgent requirement. Automatic analysis methods can increase the
speed, accuracy and reproducibility of quantification of fetal brain
development. Accurate segmentation of the fetal brain into relevant

tissue compartments is especially critical because many congenital

1.1. Background and motivation

Fetal magnetic resonance imaging (MRI) has emerged as an impor-
tant and viable tool for assessing the development of brain in utero. It
has enabled assessment of normal and abnormal brain growth trajecto-
ries in utero (Corbett-Detig et al., 2011). Moreover, fetal MRI may offer
more accurate assessment and quantification of fetal brain development

brain disorders manifest themselves as changes in the size or shape
of these tissues. Whereas manual segmentation is time-consuming and
prone to high intra/inter-observer variability (Gousias et al., 2012),
automatic segmentation promises high speed and reproducibility. As

and degeneration when ultrasound images are inadequate (Hosny and
Elghawabi, 2010; Weisstanner et al., 2015). Faster image acquisition
methods (Yamashita et al., 1997) and superior super-resolution algo-
rithms (Ebner et al., 2020; Kainz et al., 2015; Kuklisova-Murgasova
et al., 2012; Gholipour et al., 2010) can now reconstruct high-quality
3D fetal brain images from stacks of 2D slices. These technical ad-
vancements have significantly improved the quality of fetal brain MRI.
As a result, a growing number of works have successfully used fetal
MRI to study various congenital brain disorders (Egana-Ugrinovic et al.,
2013; Mlczoch et al., 2013). As the use of fetal MRI in clinical and
research studies grows, quantitative image analysis methods become
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a result, in recent years there have been multiple efforts to segment
different tissue compartments in the fetal brain.

Makropoulos et al. (2018) have reviewed automatic fetal and neona-
tal brain segmentation techniques in MRI. Here, we focus primarily
on deep learning (DL) methods. Deep learning-based segmentation of
adult brain into different tissue compartments has been successfully
attempted by several studies in recent years (Dolz et al., 2018; Sun
et al,, 2019). Overall, they show that DL methods are capable of
accurately segmenting brain into relevant tissue compartments. Com-
paratively, much fewer studies have targeted the fetal brain tissue
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segmentation. For fetal cortical gray matter segmentation, one study
proposed obtaining cheap annotations using an automatic segmentation
method originally designed for neonatal brains (Fetit et al., 2020). They
used a human-in-the-loop method to refined those segmentations on
selected 2D slices. A fully convolutional network (FCN) was trained
using these annotations. Their method achieved an average Dice Sim-
ilarity Score (DSC) of 0.76. Segmentation of cortical gray matter has
been addressed by several other works. One work used a deep attentive
FCN and reported a mean DSC of 0.87 (Dou et al., 2020), whereas
another study proposed integrating a topological constraint into the
training loss function and achieved a mean DSC of 0.70 (Dumast et al.,
2021). Another study used the nnU-Net framework to segment the
white matter, ventricles, and cerebellum in fetal brain MRI, achieving
DSC values in the range 0.78-0.94 (Fidon et al., 2021). To reduce
the impacts of motion artifacts and partial volume effects, Li et al.
(2021) proposed a unified deep learning framework to jointly estimate
a conditional atlas and predict a segmentation. The rationale for this
approach is that the prior knowledge provided by the atlas can guide
the segmentation where image quality is low. The idea of leveraging
atlases to improve deep learning-based segmentation has been explored
in several other works (Oguz et al., 2018; Diniz et al., 2020; Karimi
et al., 2018; Zeng et al., 2018; Karimi et al., 2019). A succession of
two FCNs was proposed by Khalili et al. (2019), the first to extract
the intracranial volume and the second to segment the brain tissue
into seven compartments. This method achieved a mean DSC of 0.88.
For segmenting the fetal brain into seven tissue compartments, another
study used a single 2D UNet and achieved a mean DSC of 0.86 (Payette
et al., 2020). Payette et al. (2021) compared a multi-atlas segmentation
method with several DL methods for segmentation of fetal brain into
seven tissue types and found that overall DL methods can achieve more
accurate results.

1.2. Segmentation with noisy labels

Deep learning segmentation models, which represent the state of the
art, require large accurately-labeled training datasets. Such datasets are
especially difficult to come by in fetal MRI because the image quality is
low and accurate multi-label segmentation of 3D images is very time-
consuming. Despite recent progress in super-resolution reconstruction
methods, 3D fetal MR images can suffer from residual motion and
partial volume effects, making accurate delineation of tissue boundaries
challenging and uncertain. Moreover, the fetal brain undergoes rapid
and significant changes during the second and the third trimesters.
Therefore, to develop an accurate DL model, training data should
include a sufficiently large number of subjects at different gestational
ages (GA) in order to fully capture the variability in the transient fetal
brain structures.

Because detailed manual segmentation of a large number of 3D
fetal brain images is impossible or prohibitive, an alternative strategy
would be to use less accurate annotations. Scenarios with weak, partial,
or noisy labels are very common in medical image analysis. Hence,
training of DL models with imperfect labels has been the subject of
intense research in recent years (Cheplygina et al., 2019; Tajbakhsh
et al., 2019; Rajchl et al., 2016). Such labels can often be obtained at
low cost using automatic or semi-automatic methods. Song et al. (2020)
have reviewed the state of the art methods for handling the label noise
in DL. Karimi et al. (2020) present a survey that is more focused on
medical image analysis applications, where the authors have identified
six classes of methods for training DL models under strong label noise.
Below, we describe two of the techniques that are more relevant to this
work.

Loss function. There have been many efforts to devise loss func-
tions that are tolerant to label noise (Zhang and Sabuncu, 2018;
Rusiecki, 2019). These loss functions typically tend to down-weight the
penalty on data samples that incur very high loss values, under the
assumption that those data samples are likely to have wrong labels.
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Another group of loss functions and training procedures are based on
estimating and incorporating a label transition matrix (Patrini et al.,
2017; Sukhbaatar et al., 2014). Label transition matrix T € RIXL,
where L is the number of labels, is meant to describe how the correct
labels are flipped into incorrect labels. If we denote the clean and noisy
class probability vectors with, respectively, p. € RL and p, € Rf,
then we have p, = Tp,. Hence, T;; is the probability that the correct
label j is flipped to label i. Different approaches to estimating 7" and
using it in training DL classification models have been proposed in prior
works (Thekumparampil et al., 2018; Bekker and Goldberger, 2016).

Label smoothing. Label smoothing has been extensively used in
image classification (Pereyra et al., 2017) as well as in natural language
processing applications (Chorowski and Jaitly, 2016). However, very
few studies have used label smoothing for segmentation applications.
In fact, the standard label smoothing approach is unlikely to be suitable
for segmentation applications. This is because, unlike classification
where the whole image is represented with one probability vector,
in segmentation a probability vector belongs to a single pixel/voxel
and there are strong spatial correlations between the labels of nearby
voxels. Standard label smoothing ignores those spatial correlations
and essentially assumes that the probability that label & is flipped
to label | # k is the same for all /, which is an unrealistic as-
sumption. One study suggested smoothing the object boundaries in
training data in order to improve the uncertainty calibration of the
trained model (Islam and Glocker, 2021). However, although they
used the term “spatially-varying” to describe their method, they ap-
plied a fixed operation to all voxels. Another study proposed a label
smoothing approach to improve the model uncertainty calibration for
scene segmentation (Liu et al., 2021). In the context of image col-
orization, one study used label smoothing to achieve more accurate
scene segmentation (Nguyen-Quynh et al., 2020). However, none of
these studies have properly addressed the spatially-varying nature of
boundary uncertainty in semantic segmentation.

Another challenge in fetal brain tissue segmentation is that it in-
volves a large number of compartments that vary significantly in size.
In this work, we aim to segment the fetal brain into more than 30
classes, where the volume of the smallest class is typically 10* times
smaller than the volume of the largest class. This can present a signif-
icant challenge for some of the loss functions that are commonly used
to train DL segmentation models.

The goal of this work is to develop methods for accurate fetal brain
tissue segmentation in MRI. Most prior works have segmented only a
single tissue (e.g., Dou et al. (2020), Fetit et al. (2020)) or have divided
the fetal brain into a small number of tissue compartments (e.g., Payette
et al. (2020), Fidon et al. (2021)). In this work, we consider more
than 30 relevant and important tissue compartments. To capture the
rapid brain growth in utero and the complex developmental trajectories
of these tissues, we use a training dataset of 272 images covering
the gestational age between 19 and 39 weeks. Instead of manually
annotating this dataset, which would have been prohibitive, we use a
combination of automatic atlas-based segmentation and manual correc-
tion of gross errors. Using the expert-estimated boundary uncertainty
for different tissues, we develop novel methods for label smoothing
and for training a DL model with the smoothed labels. We evaluate
our trained model and compare it with several alternative methods on
a set of manually-segmented test images. We show that our method
achieves high segmentation accuracy and outperforms several state of
the art methods.

2. Materials and methods
2.1. Data and annotation procedures

Data from 294 fetuses with GA between 19.6 and 38.9 weeks (mean
30.6; standard deviation 5.3) were used in this study. These data were
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collected in studies approved by the institutional review board com-
mittee. Written informed consent was obtained from pregnant women
volunteers who participated in research MRI scans for fetal MRI. All
images were collected with 3-Tesla Siemens Skyra, Trio, or Prisma
scanners using 18 or 30-channel body matrix coils via repeated T2-
weighted half-Fourier acquisition single shot fast spin echo (T2wSSFSE)
scans in the orthogonal planes of the fetal brain. The slice thickness was
2 mm with no inter-slice gap, in-plane resolution was between 0.9 mm
and 1.1 mm, and acquisition matrix size was 256 x 204, 256 x 256, or
320 x 320. Volumetric images were reconstructed using an iterative
slice-to-volume reconstruction algorithm (Kainz et al., 2015), brain
extracted and registered to a standard atlas space in a procedure
described in Gholipour et al. (2017). The resulting 3D images had
isotropic voxels of size 0.8 mm. We selected 22 of these fetuses and
set them aside as “test subjects” for final evaluation. The test subjects
had GA between 23.3 and 38 weeks (mean 32.9; standard deviation
4.14). We used the remaining, completely independent, 272 subjects
as “training subjects” to develop/train our methods and also to train
the competing techniques.

We manually segmented the test images in detail. To speed up the
process, we first generated automatic segmentation for each subject
with a multi-atlas segmentation method using a publicly available
atlas (Gholipour et al., 2017). This is a four-dimensional (i.e., spatio-
temporal) atlas that covers the GA range between 19 and 39 weeks
at one-week intervals. For each test fetus, we registered atlases that
were within one week GA of the fetus using a diffeomorphic deformable
registration algorithm. We then used the probabilistic Simultaneous
Truth and Performance Level Estimation (STAPLE) algorithm (Akhondi-
Asl and Warfield, 2013) to fuse the segmentations. Then, experienced
annotators carefully refined all labels in several rounds until the seg-
mentations were consistent and free of any non-trivial errors. This was
a laborious effort, which required 4-10 days of work for each scan. We
used these manual segmentations as “ground truth” to test our method
and competing techniques.

We then segmented the 272 training scans using a similar two-step
approach, but with one major difference. Specifically, in the manual
refinement step the annotators only corrected major errors, which on
average required approximately two hours of work for each scan that
had major errors. This was done because manually segmenting all
272 images with the same level of detail as done for the test images
would have been impossible given the annotators’ time. Furthermore,
in order to account for the potential errors and uncertainties in these
segmentations, we asked the annotators to specify the degree of uncer-
tainty in the boundary of each tissue type. Given that all images had
the same spatial resolution, this uncertainty was expressed in terms
of the number of voxels. The boundary uncertainty specified by the
annotators varied considerably for different tissues. For example, for
lateral ventricle the boundary uncertainty was 0 voxels, meaning that
the boundary was generally unambiguous, while for the caudate nuclei
it was 2 voxels.

Labels considered in this study included the following: hippocampus
(HP)", amygdala (AM)', caudate nuclei (CD)', lentiform nuclei (LN)",
thalami (TH)', corpus callosum (CC), lateral ventricles (LV)', brainstem
(ST), cerebellum (CR)?, subthalamic nuclei (SN)', hippocampal com-
missure (HC), fornix (FN), cortical plate (CP)', subplate zone (SP)f,
intermediate zone (IZ)', ventricular zone (VZ)¥, white matter (WM)",
internal capsule (IC)’, CSF, and ganglionic eminence (GE)". A  next
to a label in this list indicates that separate components in the left
and the right brain hemispheres were considered for that tissue type.
In the rest of this paper, we use the acronyms defined above to
refer to these tissues and structures. Following the construction of the
atlas (Gholipour et al., 2017), there is one age-dependent difference in
tissue labels. Specifically, fetuses that are younger than 32 weeks GA
have separate SP and IZ labels, whereas for fetuses that are 32 weeks
GA and older these two tissue types are merged as a single label: WM.
As a result, younger fetuses have 33 tissue labels, whereas older fetuses
have 31 labels (in addition to the background label). Therefore, for our
method and also for all competing methods, we trained two separate
models for the two fetal age groups.
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2.2. Development of a DL-based segmentation method

2.2.1. Label smoothing

In order to account for the inherent and unavoidable uncertainty in
the tissue boundaries, we propose a spatially-varying label smoothing
method. Our label smoothing method is presented in Algorithm 1. It is
based on the fact that label uncertainty is limited to tissue boundaries
and depends on the tissues that meet at the boundary. Specifically, our
label smoothing strategy is based on the observation that, as confirmed
by our annotators, the boundary uncertainty is dictated by the more
certain tissue. For example, consider a boundary where one of the
adjoining tissues has an uncertainty of two voxels (less certain) but the
other has an uncertainty of zero voxels (more certain). The boundary
will have an uncertainty of zero because the tissue with more certain
boundary resolves the ambiguity.

Let us denote the expert-provided semi-automatic segmentation
with Y € RVXL, where N is the number of voxels and L is the number
of labels. Note that we can also write Y € {0,1}V*L because Y is a
hard (0 or 1) label. For each voxel, Y is a one-hot probability vector e,
(which equals 1 at location k and 0 elsewhere), where k is the indicated
tissue label for that voxel. We define Y* € R as Y* = argmax;; ;,(Y);
in other words Y(i) = e, = Y*(i) = k. We denote with U € RV
the tissue boundary uncertainty map. U is obtained from Y by simply
setting U (i) to the boundary uncertainty of the tissue label for Y (i). If,
for example, tissue label for Y (i) is caudate nuclei (CD), then U(i) = 2
because the boundary uncertainty for CD is two voxels. We use i" to
denote all voxels that are within a distance r from voxel i; in other
words i" = {k, ||k — i|| < r}. Throughout this paper, ||.|| denotes the £,-
norm. Also note that all voxel indices are in fact 3D indices (i.e., they
have xyz elements) and, hence, ||k—i|| is a distance in R3. However, we
use single letters for indices in order to simplify the notation. Finally,
we use Y(i") to denote the “patch” of Y centered on voxel i with a
radius r.

Algorithm 1: The proposed segmentation label smoothing
algorithm.

Input: hard segmentation labels ¥ € RV*L,
tissue boundary uncertainty map U € R",
and upper bound on tissue boundary
uncertainty R.
Output: smoothed segmentation labels Yy € RV*L,
Initialize: Yg = 0 € RV*L.
for i € [1,N] do
if std[Y*(i®)] = 0 or min[U (i®)] = 0 then
| Ys()=Y0);
else
r, = min[U (i®)];
W) «cexp(=llk —ill/r,) Vk € i"s;
Ys)lI] =Y WOP(Y()=1)

Vie|l,L];

Now, given manual segmentation labels, Y € RVN*L, we would like
to compute smoothed labels, Yy € RVXL, that account for uncertain
tissue boundaries. To do this for voxel i, we first consider iR, where
R = 4 is the upper bound of boundary uncertainty reported by our
annotators for all tissues. If Y (i®) is homogeneous, that is, std[Y*(i®)] =
0, it means that voxel i is far from tissue boundaries since all voxels in
iR have the same label. Otherwise, voxel i is close to a boundary. In
that case, we compute the boundary uncertainty as r, = min[U(i®)],
i.e., the minimum of the uncertainty of the tissues in iR. This is done
following the justification provided above since the tissue with the
lower uncertainty determines the uncertainty of the boundary. We
then use a weighted average of tissue probabilities in i« to compute
the smoothed class probability vector for this voxel. Specifically, we
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Fig. 1. Examples of label smoothing performed by our proposed method (Algorithm 1). Note that for each image our algorithm performs the smoothing simultaneously on all
labels, but here we show a single label in each example for better visualization. In each of the examples presented here, the top image shows the original label obtained via
multi-atlas segmentation followed by manual correction of large errors, super-imposed on the T2 image. The lower images show the smoothed label.

use a weight matrix W, « exp(—||k — il|/7) Vk € i"«, which gives
higher weights to voxels that are closer to voxel i. We have found
that the kernel width, z, should depend on the patch size, which is
in turn related to the boundary uncertainty. This also makes intuitive
sense because for more uncertain boundaries (larger r,) a larger kernel
width should be used to achieve a higher degree of smoothing. In
the experiments reported in this paper we simply set ¢ = r,, which
we found empirically to work well. In order to ensure that the class
probability vector for each voxel sums to one, W, is normalized to sum
to one. For each class label /, the smoothed probability at voxel i is then
computed as:

Ys@ll= Y WoP(Yi")=1), ¢))

where © denotes element-wise (Hadamard) product and the summation
is carried out over all voxels in the patch i"«. Fig. 1 shows example label
smoothing results generated with our proposed method. These exam-
ples show that our method smooths the boundary of each tissue/label
based not only on the boundary uncertainty of that tissue but also on
the boundary uncertainty of the adjoining tissues. For example, at the
locations where a tissue shares a boundary with the lateral ventricles
(which have a boundary uncertainty of zero voxels), the boundary
becomes unambiguous and no smoothing is performed.

2.2.2. Loss function

We use a loss function that treats certain and uncertain regions
differently. We use M to denote a binary mask that shows voxels with
uncertain (smoothed) labels. M is easily obtained as voxels where the
maximum class probability in Y; is not equal to one, or equivalently,
as voxels whose labels are altered in the process of label smoothing. In
other words:

(YS[i] # Y[i]) = Mlil=1. @
Then, our loss function is:
Loss(Y,Yg) = )\ L, Yg)+ D D TTLX,Yy), 3
M=0 M=1 1

where T-T is the inverse of transpose of T, Y is the segmentation map
predicted by our DL model, and £ is the base loss function, which we
choose to be the cross-entropy. It has been shown that multiplication
with T-T, for the uncertain boundary voxels in the second loss term
above, leads to an unbiased minimizer (Patrini et al., 2017). In other
words, the minimizer of the corrected loss function is the same as the
minimizer obtained with clean (true) labels. Even though in this work
TT was non-singular, instead of T-T we used (TT + AI)~! with A = 1
as suggested in prior works (Patrini et al., 2017) because it resulted in
faster and more stable training.

We computed the label transition matrix T empirically from our
training data. Specifically, after applying Algorithm 1 on the training
labels, we computed T from 50 of the training images as 7 ;
Ziy=jum=1; P(Y; = i), where summation is performed over all images.
This empirical estimation is based on the standard definition of the
label transition matrix. We normalized each column of T to sum to
unity because it should be a left stochastic matrix. Fig. 2 shows our

estimated 7 for younger and older fetuses.

2.2.3. Implementation and experiments

As the baseline for implementation and comparison of different
methods (described below) we used the nnU-Net framework (Isensee
et al., 2021). nnU-Net is considered to be the state of the art in medical
image segmentation. In particular, on 53 different segmentation tasks,
nnU-Net has shown that with proper selection of the training pipeline
settings, standard 3D U-Net architectures (Cicek et al., 2016) can match
or outperform more elaborate network architectures. Hence, we adopt
nnU-Net’s network architecture (i.e., a 3D U-Net) and follow its training
and inference strategies. We assess the effectiveness of our proposed
methods by comparing against the methods below.

+ nnU-Net. We followed the methods and settings in Isensee et al.
(2021). In particular, we used the default loss function, which is
the sum of cross-entropy and Dice.

We tried three alternative loss functions. These included (1) Gen-
eralized Dice (Sudre et al., 2017) which has been proposed to
improve the segmentation accuracy when the target objects are
small or suffer from severe class imbalance, (2) Focal loss (Lin
et al.,, 2017), which has been devised to address the extreme
class imbalance by down-weighting the impact of structures that
are easier to segment, and (3) improved Mean Absolute Error
(iMAE) (Wang et al., 2019), which has been proposed for training
DL models under strong label noise.

Training on clean labels. In this approach, instead of training on
the 272 images with noisy segmentations, we used leave-one-out
cross-validation to train and test using the 22 images with highly
accurate labels, which we have called “test subjects” so far. Of
those 22 subjects, 8 were younger fetuses (GA < 32) and 14 were
older fetuses (GA > 32). Therefore, for younger fetuses each time
we trained the model on 7 images and tested on the remaining
image, and for older fetuses each time we trained on 13 of the
images and tested on the remaining image. In this approach, each
of the 22 images was used as a test image in exactly one of
the experiments. Therefore, the test set for this experiment was
the same as for the other methods. Since the number of training
images in this approach is small, we performed this experiment
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Fig. 2. Label transition matrices, T, for the younger (left) and older (right) age groups. We have used a log transformation, log(T + 0.001), to display these matrices in order to
better highlight the smaller off-diagonal elements. Label numbers have been shown on the rows and columns of the matrices. For younger fetuses the label names are as follows
(acronyms have been defined in the text in Section 2.1). 1: background, 2: HP left, 3: HP right, 4: AM left, 5: AM right, 6: CD left, 7: CD right, 8: LN left, 9: LN right, 10: TH left,
11: TH right, 12: CC, 13: LV left, 14: LV right, 15: ST, 16: CR left, 17: CR right, 18: SN left, 19: SN right, 20: HC, 21: FN, 22: CP left, 23: CP right, 24: SP left, 25: SP right, 26:
1Z left, 27: 1Z right, 28: VZ left, 29: VZ right, 30: IC left, 31: IC right, 32: CSF, 33: GE left, 34: GE right. For older fetuses, the first 23 labels are the same as those for younger
fetuses, and the remaining labels are as follows. 24: VZ left, 25: VZ right, 26: WM left, 27: WM right, 28: IC left, 29: IC right, 30: CSF, 31: GE left, 32: GE right.

both without and with transfer learning, which is a common
method for dealing with limited training data (Cheplygina et al.,
2019; Karimi et al., 2021). For transfer learning, we used 400
subjects from the Developing Human Connectome Project dataset
(DHCP) (Hughes et al., 2017; Cordero-Grande et al., 2016) for
pre-training. To the best of our knowledge, this is the most similar
public dataset for the application considered in this work. It
includes T2 images and tissue segmentation maps with 87 labels
for newborns with GA in the range 29-45 weeks. For transfer
learning, we pre-trained the network using this dataset. We then
replaced the last network layer (i.e., the segmentation head) with
a new head to match the number of labels considered in this work
(34 for the younger fetuses and 32 for the older fetuses). We fine-
tuned the pre-trained network on our data following the same
leave-one-out cross-validation approach described above. We per-
formed this separately for younger and older fetuses. Moreover,
as in all experiments except for UNet++ and DeepLab mentioned
below, the network architecture was the same 3D U-Net from the
nnU-Net framework.

Standard label smoothing. Following the standard label smooth-
ing approach (Szegedy et al., 2016; Pereyra et al., 2017; Miiller
et al., 2019), we set Y[i] = (1 — a)Y[i] + «/L for every voxel,
except for the background voxels. We use a = 0.1, which previous
studies have shown to be a good setting (Pereyra et al., 2017;
Miiller et al., 2019).

SVLS (Islam and Glocker, 2021). SVLS is a label smoothing
method, recently proposed for medical image segmentation.
UNet++. In order to also investigate the potential impact of
network architecture, we compared with UNet++ (Zhou et al.,
2018). This is a more elaborate nested U-Net architecture that
has been proposed specifically for medical image segmentation,
which claims to be better than the standard U-Net.

DeepLab. DeepLab is a popular deep learning model for semantic
segmentation (Chen et al., 2017). The novelty of the network
architecture is the use of atrous convolutions. Furthermore, a
Conditional Random Field is used to improve the resolution of
the segmentation predictions.

Note that in all of the above approaches, except for UNet++ and
DeepLab, we followed the same nnU-Net framework for the choice of
network architecture and training settings. We refer to Isensee et al.
(2021) for the details of this framework. For UNet++, we followed
the settings of the original paper (Zhou et al., 2018). Furthermore, as
mentioned above, for all methods except for “Training on clean labels”,
we had 272 training images. For each method, we first selected a good
initial learning rate using a subset of 100 images. We then trained the

model using the selected initial learning rate on all 272 images. We
used the “poly” learning rate decay as in Isensee et al. (2021). All
training and test runs were performed using TensorFlow 1.14 under
Python 3.7 on a Linux computer with an NVIDIA GeForce GTX 1080
GPU. The source code, trained model, and sample image data and
segmentation labels for this work have been made publicly available
at https://github.com/bchimagine/fetal_tissue_segmentation.

3. Results and discussion

Table 1 shows the summary of the segmentation accuracy results
in terms of Dice Similarity Coefficient (DSC), 95 percentile of the
Hausdorff Distance (HD95), and Average Symmetric Surface Distance
(ASSD). Our method has achieved the best results in terms of all three
criteria. To determine the statistical significance of the differences, we
performed paired t-tests to compare our method with every competing
method in terms of these three criteria. These tests showed that, with
a p-value threshold of 0.001, our method achieved significantly higher
DSC and significantly lower HD95 and ASSD than all other methods,
both for younger and older age groups.

In terms of all metrics, nnU-Net was the second best method after
our proposed method. As we mentioned above, we used the default loss
function, which is the sum of Dice and cross-entropy. Compared with
this default loss function, Generalized Dice and Focal Loss performed
poorly because they systematically missed one or two of the structures.
That is, with Generalized Dice and Focal Loss, the network output for
one or two of the labels was empty. The missed structure(s) changed
with network weight initialization, but they were usually the smaller
structures such as amygdala, caudate, or subthalamic nuclei. Overall,
in this application with more than 30 labels we have found that loss
functions based on Dice do not perform well. This may be due to the
fact that the overall loss is the sum of the loss on individual labels and
as the number of labels increases the relative contribution of each of
the labels to the total loss becomes smaller. Since the Dice is limited
to the range [0,1], the worst-case effect of a label on the total loss is
(1/L), where L is the number of labels. In our application with L ~ 33,
the effect of completely missing one of the labels is only 3%. As a
result, training is prone to ignoring one the labels entirely and proceed
to reduce the overall loss by improving the segmentation of the other
labels.

Compared with the Generalized Dice and the Focal Loss, the iMAE
loss performed comparatively better and always segmented all the
labels. However, it did not perform as well as nnU-Net’s default loss.
The iMAE loss has been proposed to strike a balance between the
Mean Absolute Error (MAE) and cross-entropy. Although some studies


https://github.com/bchimagine/fetal_tissue_segmentation

D. Karimi et al.

Table 1

Medical Image Analysis 85 (2023) 102731

Segmentation accuracy metrics presented separately for younger and older fetuses. The metrics were computed separately for each label; this
table presents mean + standard deviation over all labels. Best results for each metric are in bold. We used paired t-tests to compare our proposed
method with every other method. Asterisks in this table denote significantly better results for the proposed method than all other methods (at
a significant threshold of p < 0.001). In the Method column in this table, T.L. stands for transfer learning.

Dataset Method DSC HD95 (mm) ASSD (mm)
nnU-Net 0.872 +0.063 0.99 +0.11 0.26 +0.14
Generalized Dice 0.845 +0.087 1.09 +£0.12 0.32 +0.26
Focal loss 0.839 +0.080 1.15+1.20 0.30+0.19
iMAE 0.865 +0.075 1.06 +£0.15 0.26 +0.17
Training on clean labels (without T.L.) 0.863 + 0.068 1.09+0.14 0.28 +0.16
Younger fetuses Training on clean labels (with T.L.) 0.866 + 0.062 1.03+0.13 0.27 +0.17
Standard label smoothing 0.833 +0.084 1.08 £0.17 0.34+0.21
SVLS 0.843 +0.074 1.07 £0.17 0.30+0.18
DeepLab 0.851 +£0.072 1.11+£0.15 0.30+0.15
UNet++ 0.866 + 0.060 1.02 +0.14 0.27+0.15
Proposed method 0.893 + 0.066* 0.94 +0.13" 0.23 +0.13"
nnU-Net 0.896 + 0.066 0.98 +£0.11 0.36 +0.12
Generalized Dice 0.866 + 0.070 1.16 £0.11 0.46 +£0.15
Focal loss 0.861 + 0.068 1.16 £0.16 0.42+0.16
iMAE 0.880 + 0.064 1.09 +£0.17 0.41+0.20
Training on clean labels (without T.L.) 0.877 +0.073 1.12+0.14 0.40 +0.18
Older fetuses Training on clean labels (with T.L.) 0.880 +0.070 1.04 £0.15 0.40 +0.20
Standard label smoothing 0.853 +£0.071 1.16 £0.12 0.39+0.23
SVLS 0.856 +0.077 1.10+£0.13 0.37+0.27
DeepLab 0.865 +0.074 1.21 £0.19 0.43+0.26
UNet++ 0.885 +0.070 1.08 £0.16 0.38 +0.23
Proposed method 0.916 + 0.059" 0.94 +0.13" 0.25 + 0.09"
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Fig. 3. Comparison of our method and nnU-Net in terms of DSC for different structures on younger (top) and older (bottom) fetuses.

in image classification have shown improved accuracy with MAE and
iMAE when label noise is high, our results show that in the application
considered in this study they do not lead to the highest segmentation
accuracy. Another limitation of the iMAE loss is much longer training
time, as we discuss further below.

Training on clean labels was not effective, evidently because of the
much reduced number of training images. Although this approach used
more accurate manual labels for training, it was limited to far fewer
training images (7 or 13 training in leave-one-out cross-validation
experiments, compared with 272 training images for the other methods
in Table 1). Although in some applications 7-13 training images may
be adequate to achieve high segmentation accuracy (Karimi et al.,
2021), the application considered in this work is especially challenging
due to the rapid fetal brain development and significant changes in
the brain size and shape. Because of the rapid developments in the
shape and complexity of structures such as the cortical gray matter,
much larger numbers of training images are needed to allow the
network to effectively learn these structures across the gestational
age. As mentioned in the Methods section above, this experiment
was performed both without and with transfer learning. As shown in

Table 1, there was a consistent but small improvement in segmentation
accuracy due to transfer learning. We used paired t-tests to assess
the statistical significance of these differences. The tests showed a
significant reduction in HD95 (p < 0.001) for both younger and older
fetuses, although no significant differences (p ~ 0.16 — 0.35) in DSC
or ASSD were found for either younger or older fetuses. The results
presented for transfer learning in Table 1 were obtained by fine-tuning
all layers of the pre-trained network. We experimented with other
transfer learning approaches such as shallow fine-tuning (Tajbakhsh
et al., 2016; Karimi et al., 2021) but did not achieve better results. The
results of these experiments suggest that, in the application considered
in this work, training with a small number of manually labeled images
cannot achieve the same level of segmentation accuracy as training
with a much larger number of training images with less accurate labels.

Standard label smoothing and SVLS did not work well and achieved
worse accuracy metrics than nnU-Net. Standard label smoothing treats
all voxels, including voxels that are far from any tissue boundary, in the
same way. The SVLS method only smooths the boundary voxels, but it
uses a label smoothing approach that does not take into account the
actual tissue-dependent boundary uncertainties. The results obtained
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Fig. 4. Comparison of our method and nnU-Net in terms of HD95 (the top two plots) and ASSD (the bottom two plots) on younger and older fetuses. The GA group for each plot
is shown on the right of that plot.

Image Reference Proposed nnU-Net

Fig. 5. Two example segmentation maps predicted by our proposed method and nnU-Net. Red arrows point to some of nnU-Net’s segmentation errors. The top example is for a
younger fetus (GA= 26.7 weeks), whereas the bottom example is for an older fetus (GA= 38 weeks).

with these two methods shows that un-informed or spatially uniform la- the arguments presented by Isensee et al. (2021) that more elaborate
bel smoothing is not useful for segmentation with noisy labels. Finally, network architectures and post-processing operations do not necessarily
UNet++ and DeepLab did not perform as well as nnU-Net, confirming lead to better results.
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Fig. 6. Example segmentations predicted by our proposed method and nnU-Net. Each of

over-segmentations and under-segmentations.

Fig. 3 shows more detailed label-specific DSC comparison of our
method with nnU-Net, which was better than the other competing
methods in terms of the overall segmentation accuracy, as shown in
Table 1. For structures that have separate left and right labels, we
have combined the two labels into one label in order to produce a less
cluttered plot. On younger fetuses, our method achieved significantly
higher DSC than nnU-Net on all structures (p < 0.001), except for CC,
where the difference was not significant. For older fetuses, our method
achieved significantly higher DSC on 14 of the structures (p < 0.001),
while on the remaining four structures (LN, TH, WM, and CSF) although
the mean DSC for our method was higher, the differences were not
significant. Fig. 4 shows similar plots for HD95 and ASSD. For HD95,
paired t-tests showed that our proposed method achieved significantly
(p < 0.001) lower errors than nnU-Net on all structures except for LN
and CR on older fetuses. For ASSD, our method achieved significantly
(p < 0.001) lower errors on all structures except for CR on older fetuses.

Fig. 5 shows two example segmentation maps, for one younger fetus
and one older fetus, predicted by our method and nnU-Net. Both our
proposed method and nnU-Net succeed in segmenting different struc-
tures with good accuracy. Nonetheless, the segmentations produced
by the proposed method were consistently superior. The segmentation
results produced by nnU-Net often included clearly visible errors that
were not present in the segmentations produced with the proposed
method.

Fig. 6 shows example segmentations for specific structures, which
allow us to better visualize the segmentations errors and highlight
under-segmentations and over-segmentations separately. Both our pro-
posed method and nnU-Net segment most structures with good accu-
racy. Our method produces visibly superior segmentations on almost all

Image Proposed nnU-Net

the ten examples shows one isolated structure and highlights correct segmentations,

structures and has less under-segmentation and less over-segmentation.
Some of these structures, such as the cortical plate, have complex
3D geometries that are very difficult to segment manually. Although
the additional errors in nnU-Net’s output compared with our proposed
method may seem small, errors of this magnitude can make analyses
which rely on consistent topology impossible and may necessitate long
hours of manual correction. Our method produces better segmentations
that can reduce the required manual corrections and enhance the
accuracy and reproducibility of automatic analysis pipelines.

All methods considered for comparison above are based on fully
convolutional networks. Further comparison with a non-DL method
can be instructive and useful. To this end, we compared our proposed
method with atlas-based segmentation, which is a popular classical
method (Cabezas et al., 2011; Aljabar et al., 2009). We used a multi-
atlas segmentation (MAS) method similar to that described in Sec-
tion 2.1, without the manual refinement, to segment the 22 test images.
MAS approach segmented a target image via diffeomorphic deformable
registration of at least 3 atlases to the target image, followed by label
fusion using probabilistic STAPLE (Akhondi-Asl and Warfield, 2013).
The mean DSC of MAS segmentations on younger and older fetuses
were, respectively, 0.875 + 0.102 and 0.874 + 0.114. These values were
significantly (p < 0.001) lower than those achieved by the proposed
method presented in Table 1. The only structure that MAS segmented
slightly more accurately than the proposed method was the cerebellum
on the younger fetuses (mean DSC of 0.924 for MAS versus 0.921 for
the proposed method that was statistically not significant, p = 0.30).
For all other structures, the proposed method achieved more accurate
segmentation that were mostly statistically significant.
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Fig. 7. Example segmentations predicted by our proposed method and multi-atlas segmentation (MAS). Each of the four examples in this figure shows one isolated structure and

highlights correct segmentations, over-segmentations and under-segmentations.

The difference between the proposed method and MAS were largest
for more convoluted structures such as cortical plate (CP), subplate
zone (SP), intermediate zone (IZ), ventricular zone (VZ), and white
matter (WM). We show examples of the segmentations produced with
the proposed method and MAS in Fig. 7. For complex structures such
as CP the segmentations produced by MAS show large errors. There are
at least two causes for these errors. First, the registration between the
atlas and the target images is never perfect, and the registration error is
especially larger at the locations of thin and complex structures such as
CP. Registration is difficult in fetal MRI due to stronger partial volume
effects and reduced spatial resolution. Second, there is significant inter-
subject variability in the local shape of these structures, and atlases
cannot fully represent this variability. Therefore, regardless of the
registration error, the segmentation accuracy of atlas-based methods is
limited by the fact that an atlas can only represent the “average shape”
and fails to capture the inter-subject variability. Deep learning meth-
ods avoid these pitfalls because they learn the complex relationship
between the image intensity maps and the target segmentation map
directly from the subject training data, rather than inferring it from an
atlas.

The training time for our proposed method and all other deep
learning methods was 30 h. The only exception was training with the
iMAE loss that required 100 h. The inference time for a test image was
approximately 4-6 s, depending on the brain size with larger brains
taking closer to 6 s. For MAS, non-rigid registration of the atlas images
to the target image took approximately 12 min and the label fusion
with the probabilistic STAPLE took approximately 13 min, for a total
of approximately 25 min.

4. Conclusions

As the diagnostic quality of fetal MRI improves and its applications
grow, accurate quantitative analysis methods are increasingly needed
to take full advantage of this imaging technique. Training DL models to
address the needs of this application is challenged by the typically low
image quality and by difficulty of obtaining large labeled datasets. Our
study is a step forward in improving the accuracy and reproducibility of
fetal MRI analysis as it enables accurate segmentation of the brain into
more than 30 relevant and important tissue compartments. To address
the main challenges outlined above, we used a semi-automatic method
to obtain segmentation labels on our training images. This enabled
us to segment a large number of training images with reasonable
annotator time. We developed a novel training method based on a label
smoothing strategy that accounted for tissue boundary uncertainties.
This enabled us to account for the label noise in a systematic and
principled manner in our model training. Our evaluations showed
that our method produced significantly more accurate segmentations

than the state of the art. The improved segmentation accuracy offered
by our proposed method can translate into more accurate and more
reproducible quantitative assessment of fetal brain development. It
can also lead to substantial reductions in the annotator time because
manual segmentations are very time-consuming. Finally, our methods
may be useful in many similar setting in medical image segmentation
where boundary uncertainties are important.
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