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Diffusion tensor imaging (DTI) is a widely used method for studying brain white matter development and
degeneration. However, standard DTI estimation methods depend on a large number of high-quality measure-
ments. This would require long scan times and can be particularly difficult to achieve with certain patient
populations such as neonates. Here, we propose a method that can accurately estimate the diffusion tensor from
only six diffusion-weighted measurements. Our method achieves this by learning to exploit the relationships
between the diffusion signals and tensors in neighboring voxels. Our model is based on transformer networks,
which represent the state of the art in modeling the relationship between signals in a sequence. In particular, our
model consists of two such networks. The first network estimates the diffusion tensor based on the diffusion
signals in a neighborhood of voxels. The second network provides more accurate tensor estimations by learning
the relationships between the diffusion signals as well as the tensors estimated by the first network in neigh-
boring voxels. Our experiments with three datasets show that our proposed method achieves highly accurate
estimations of the diffusion tensor and is significantly superior to three competing methods. Estimations pro-
duced by our method with six diffusion-weighted measurements are comparable with those of standard esti-
mation methods with 30-88 diffusion-weighted measurements. Hence, our method promises shorter scan times
and more reliable assessment of brain white matter, particularly in non-cooperative patients such as neonates
and infants.
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Diffusion weighted magnetic resonance imaging (DW-MRI) is one of

the most common medical imaging modalities. It uses the diffusion of
water molecules, and restrictions thereof due to obstacles such as
membranes and fibers, to generate contrast. Although its applications
are not limited to brain, DW-MRI is presently the best non-invasive tool
for studying the brain micro-structure in vivo. Diffusion tensor imaging
(DTI) is a specific type of DW-MRI that is widely used in neuroimaging
[1,10,41]. DTI is capable of capturing diffusion anisotropy, i.e., the
dependence of the diffusion process on the orientation. In DTI, a
Gaussian model of diffusion is assumed, whereby the orientation-
dependence of diffusion is characterized with a 3x3 symmetric

The diffusion tensor formalism can be interpreted as representing the
surface of the diffusion front with an ellipsoid. An eigen-decomposition
of D gives us the direction of the strongest diffusion as well as param-
eters such as mean diffusivity (MD) and fractional anisotropy (FA),
which are widely used to study brain development and as biomarkers for
various diseases [8,9,40,42]. There exist more complex models of tissue
micro-structure, e.g. [7,53,66]. Nonetheless, DTI remains the most
widely used method in brain micro-structure studies because of easier
acquisition and model fitting and wide-spread availability of DTI anal-
ysis software.
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Given diffusion signals measured with higher and lower diffusion
weightings, s; and sg respectively, one can write:
S / S0 = exp( — by Dy — byDyy — b, D,

—2b,Dyy — 2b,.D,. — 2b,.D,.), @

where b.. are elements of the so-called b-matrix [29,41]. Given a set of m
such measurements, after log-transformation, one can express the rela-
tion between the diffusion tensor elements and the measurements as a
linear system of equations:

BD =S, 3)

where B is a design matrix that depends only on the directions and
strengths of the applied diffusion-sensitizing gradients, S is the vector of
log-transformed diffusion signal measurements, and D= [Dxx, Dyy, Dy,
Dyy, Dyz, Dy,] is the vector of unknowns.

Many different approaches have been proposed for estimating D. The

ordinary least squares solution can be obtained as D = (B'B) “'BTS. This
solution is based on the assumption of homoskedasticity, i.e., that the
variance of the noise is the same for all measurements. Even though this
assumption is largely correct for the diffusion signal before the log
transformation, it is not correct after the transformation. After log-
transformation, the measurement variance is higher for lower signal
intensities. Therefore, one can improve upon the ordinary least squares
method by introducing weights: D = (BTWB) “'B'WS, where W is a
diagonal matrix with the diagonal elements proportional to the mea-
surements [36]. Alternatively, one could attempt solving the original
non-linear system of equations without log-transforming the measure-
ments. This approach is theoretically more appealing but can suffer from
other problems such as sensitivity to the initial solution, convergence to
local minimum, and higher computational cost.

There have been attempts to improve upon the least squares-based
methods mentioned above. For example, basic least squares-based
methods may yield a tensor that has negative eigen-values, which is
physically invalid. One approach to enforce positivity of eigenvalues is
Cholesky factorization of the diffusion tensor [35,36]. Other notable
methods include algorithms that aim at reducing the effect of erroneous
measurements due to such factors as high noise, subject head motion,
and cardiac pulsation. For example, RESTORE algorithm uses an itera-
tive weighted least squares strategy to detect and remove erroneous
measurements [14,15]. Bootstrap methods have been used to improve
and quantify the accuracy and uncertainty of DTI parameter estimation
[16,35].

The above methods are widely used in practice and constitute the
core of the tensor fitting algorithms in common DW-MRI software
[21,61]. However, they require a large number of measurements for
accurate tensor estimation. Although the diffusion tensor has only six
degrees of freedom, practical guidelines recommend acquiring at least
30 measurements with diffusion encoding directions uniformly spread
on the sphere [31,58]. It is strongly recommended to increase the
number of measurements to much larger than 30, if possible, in order to
achieve more accurate and more robust tensor estimation [29]. These
requirements highlight the challenging nature of estimating micro-
structural parameters of interest from noisy and imperfect measure-
ments. However, they also suggest that standard diffusion tensor esti-
mation methods may be sub-optimal. In particular, these estimation
methods are based on biophysical models of diffusion that can only
approximate the true underlying signal generation processes. More
importantly, the classical estimation methods fit the diffusion signal on a
voxel-wise basis. They fail to take into account the correlation between
signals in neighboring voxels and to exploit the spatial regularity of
diffusion tensor values.

DTI estimation accuracy depends not only on the number of mea-
surements, but also on several other factors. For example, the choice of
the diffusion gradient strength (the b-vale) can have a significant effect,
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as shown by several prior works [2,6,31]. Similarly, the arrangement of
the directions of diffusion-sensitizing gradients can also be very
important [17,28,58]. Another important factor is the signal to noise
ratio (SNR). The effect of noise on diffusion tensor estimation error has
been explored in the past and various methods for reducing the impact
of measurement noise have been proposed [12,25,30]. Moreover, like
any other DW-MRI technique, diffusion tensor imaging suffers from
artifacts such as eddy current-induced distortions, magnetic suscepti-
bility effects, subject motion, and cardiac pulsation [47,52,55].

Although many factors contribute to DTI estimation error, as briefly
discussed above, in general increasing the number of measurements
improves the accuracy and robustness of estimation [28,29]. Acquiring
more measurements means longer scan times. Moreover, it may be
difficult to achieve with non-cooperative subjects such as infants and
young children, where part of the data may have to be discarded due to
excessive motion. Therefore, methods that can accurately estimate the
diffusion tensor from smaller numbers of measurements are highly
desirable. Machine learning methods have a great potential in this re-
gard. Unlike standard estimation methods, they do not need to assume a
known mathematical model for the diffusion signal and noise. Instead,
they learn the mapping from the diffusion signal to the tensor from
training data. Furthermore, they can effectively learn the spatial corre-
lations in the diffusion signal and the parameter(s) of interest. With the
increasing availability of very large DW-MRI datasets, the advantage of
machine learning methods has grown. It is now possible to train a ma-
chine learning model on these large and rich datasets and use the trained
model on less perfect in-house datasets.

1.2. Related works

Applications of machine learning and data-driven methods for
parameter estimation in DW-MRI have been explored in several prior
works. Random forests, support vector regression, and other classical
machine learning methods were used in several works [50,51,54,56].
More recently, deep learning has been shown to hold great promise for
improving the accuracy and robustness of parameter estimation in DW-
MRI [5,24,44,49]. Several recent studies have shown that deep learning
can dramatically reduce the number of measurements, and hence the
scan times, required for estimating micro-structural parameters of in-
terest. The g-space deep learning (q-DL) was one of the first deep
learning methods for diffusion parameter estimation [24]. It showed
that a three-layer neural network could accurately estimate diffusion
kurtosis as well as neurite orientation dispersion and density measures,
while reducing the required number of measurements by a factor of 12.
This result was particularly interesting given that a very simple neural
network was used and the network performed the prediction on a voxel-
wise basis, i.e., without exploiting spatial correlations.

Following the success of q-DL, several studies have used deep
learning models to estimate other diffusion parameters on a voxel-wise
basis. One study showed that a deep neural network can achieve
significantly more accurate estimation of fiber orientations than stan-
dard methods such as constrained spherical deconvolution [49]. Ex-
amples of other parameters that have been estimated on a voxel-wise
basis include the number [38] and orientation [39] of major fibers.

One can expect more accurate and more robust estimation when
spatial correlations between the signal in neighboring voxels and the
spatial regularity of the parameter(s) of interest are exploited. There are
a variety of deep learning models that are capable of learning such
spatial patterns. Perhaps the most well-known of these models are
convolutional neural networks (CNN). Prior works have applied CNNs
on patches of DW images to estimate the fiber orientations [37,45]. One
study reported that more accurate estimation of diffusion kurtosis
measures could be obtained, compared with the q-DL framework, with a
simple CNN [44]. In other studies, CNNs have been used for tract seg-
mentation and tractography analysis [63,65].

Several recent studies have used deep learning models for estimating
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the diffusion tensor, FA, and MD. One study used a CNN for direct
estimation of the diffusion tensor from DW-MRI measurements [43].
Aliotta et al. used a multi-layer perceptron to estimate MD and FA [4].
Another notable example is the DeepDTI method [59], which proposed a
CNN model for estimating the diffusion signal residuals. The input to the
CNN is a set of potentially noisy and artifact-full DW scans that are
stacked together. The CNN learns to map these low-quality scans to their
difference (residual) with respect to high-quality reference DW scans. In
order to improve the model accuracy, anatomical (i.e., T1 and T2) im-
ages are registered to the DW scans and stacked with the DW scans to
enrich the CNN input. In a recent study by our own team, we used CNNs
for accurate color-FA estimation for fetuses [32,33]. A combination of a
CNN and a multi-layer perceptron was used for FA and MD estimation in
a recent work [3]. Another recent study used a multi-scale encoder-
decoder CNN for estimating FA and MD [64]. The authors also used a
monte-carlo dropout technique to compute the prediction uncertainty of
the model predictions.

Despite the importance of the efforts mentioned above, the potential
of deep learning for improving the accuracy and robustness of parameter
estimation in DW-MRI is highly under-explored. One important short-
coming of most prior studies is their failure to effectively model the
relationship between diffusion signal in neighboring voxels. Some
methods, such as [24,49], have only used the signal in one voxel. Some
other methods, for example [37,45], have used models such as CNNs
that have originally been devised for computer vision applications and
are not optimal for regression and parameter estimation applications.
There are also studies that have used 2D CNNs, which fail to exploit the
correlations in all three dimensions [23].

1.3. Contributions of this work

In this work, we propose a novel method for diffusion tensor esti-
mation. Our main idea is to exploit the correlations between the diffu-
sion signal and diffusion tensor parameters in neighboring voxels. Brain
tissue micro-structure is spatially regular, in the sense that micro-
structural properties such as fiber orientations do not change
randomly between adjacent voxels. Rather, there exist strong spatial
correlations between neighboring voxels. Moreover, these spatial cor-
relations in the brain tissue micro-structure are largely shared across the
brains of different subjects. These correlations in micro-structure, in
turn, give rise to correlations between diffusion signals in neighboring
voxels. We propose to learn these correlations in order to improve the
accuracy and robustness of DTI estimation, especially when the mea-
surements are noisy and few in number.

Our proposed method is based on the attention models, which
represent the state of the art in sequence modeling. While prior works
have either ignored spatial correlations or have used computer vision
models such as CNN to learn spatial correlations, we use attention
models that are more flexible and more powerful. The attention mech-
anism has important advantages over more classical deep learning
models such as CNNs and RNNG. It offers higher flexibility since network
weights are adapted in an input-dependent fashion. Moreover, each
component/location of the output can attend to any component/loca-
tion of the input, regardless of the distance between the two components
in the sequence. In RNNs, for example, it can take up to n steps to
propagate the information from one location in the sequence to another
location, where n is the sequence length. In attention models, on the
other hand, information can be exchanged between any two locations in
the sequence in one step. We leverage these advantages to develop a
novel method for DTI estimation. We show that our proposed method
can accurately estimate the diffusion tensor from only six diffusion-
weighted measurements. In particular, we demonstrate the effective-
ness of our method on neonatal subjects where tensor estimation is very
challenging and standard estimation methods can be highly inaccurate
and unreliable.
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2. Materials and methods
2.1. Attention models

The concept of attention can be employed in different machine
learning models, but here our focus is on neural networks. In a standard
neural network, the output of each layer is computed from the output of
the preceding layer using a function of the form x' = ¥(W"x'"1), where
W represents the layer weights (for simplicity of presentation we omit
the bias term) and ¥ is some non-linear function. In standard neural
networks, the weights are optimized on a set of training data and they
remain fixed afterwards. Attention models represent an alternative
paradigm in which the weights are computed dynamically based on the
input. In other words, X = lI‘(fg(xi_l)Txi_l), where fy is a learnable
function [48]. In this paradigm, the model weights are not fixed at
training; rather, they depend on the input at inference time. The
attention mechanism can take different forms. One common form is self-
attention, where elements of W' depend on the pair-wise similarity be-
tween elements of the input sequence x'"!. In other words: Wi, =
score(xi-!, xi=1). The score function, score(x: !, xi™1), quantifies the
similarity between the two vectors x1 and xi ! and can take various
forms. One common form is Luong's multiplicative formulation: score
(a,b) = a’Hb, for some matrix H [46]. Therefore, with this formulation
the network can learn to compute x' by “paying attention” to the rele-
vant pieces of information in x'"! in a dynamic input-dependent manner.

In this work we follow a self-attention approach similar to that of the
transformer network [62]. Let us denote the output of the previous
network layer with X 1erR™ d, where n is the sequence length and d is
the dimension of each element of the sequence. First, a set of query, key,
and value sequences are computed via linear projections of x'~!:

O =x"'W,, K =x"'W, and V' =x"'W, (O]

The projection matrices W‘Q, Wk, and Wi, are of size IR® %, which
means that the query, key, and value sequences will be of size dj. The
self-attention output is then computed as:

o QiKiT
vy

X

Vi )

where the scaling factor 1//dj, is introduced for stable computations. In
other words, self-attention is formulated based on the similarity between
queries and keys, which are both computed from the input x . Note
that similarity between query and key vectors in Eq. (5) is computed as a
dot product, which is a special case of Luong's attention where H is the
identity matrix. Since x* is in IR%, it is passed through another fully-
connected layer to generate x' € IR? as the input for the next stage of
the network. A transformer network consists of a succession of such self-
attention modules. The output of the last module is projected onto the
space of the desired network output using a fully-connected layer.
There are two important variations to the standard transformer
model that we also utilize in this work [48,62]. First, in order to improve
the expressive power of the learned attention maps, multi-headed
attention is used. In this approach, ny different query, key, and value
sequences are computed, each with different projection matrices in Eq.
(4). Then, x'* is formed by concatenating the nj, sequences, each
computed using Eq. (5). Second, the standard self-attention model lacks
a means of knowing the sequence order because it is permutation-
invariant. To overcome this limitation, a positional encoding is added
to the input sequence [62]. Specifically, the sequence of initial input
signals x; € IR™ s projected onto IR¢and a sequence of the same shape
is added to it: x° = x;W; + p. Here W, € IR% 9 is the signal embedding
projection matrix and p € IR™ 4 is meant to encode the relative position
between elements of the input sequence. Many different forms of posi-
tional encoding have been proposed [19,48,57,62]. In this work,
because we do not know a priori how diffusion signals and tensors in
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neighboring voxels are related, we consider a learnable positional
encoding. In other words, in our method p is a free parameter that is
learned during training.

2.2. Proposed method

Fig. 1 shows our proposed method, which we refer to as Transformer-
DTI because its core is similar to the transformer model [48,62]. It re-
quires only six diffusion weighted measurements. The directions of the
diffusion-sensitizing gradients for these six diffusion weighted mea-
surements are clarified in more detail below. To exploit the spatial
correlations in the signal and tissue micro-structure, the model uses the
signal in a cubic patch of side length equal to L voxels to estimate the
diffusion tensor in a cubic patch of the same size. Unless otherwise
specified, in the experiments reported in this paper we use L = 5.

The proposed model aims to estimate the diffusion tensor in each
voxel by exploiting the spatial correlations in the signal and in the
diffusion tensor. To this end, our model consists of two sub-models,
which are trained separately and sequentially. Model S uses the diffu-
sion signal as the input and estimates the diffusion tensor. Model ST, on
the other hand, uses the diffusion signal as well as the diffusion tensor
estimated by Model S to provide a more accurate estimation of the
diffusion tensor. As we show in the Results section below, Model S on its
own can provide accurate tensor estimations. Nonetheless, the final
estimations provided by Model ST are significantly more accurate. This
is because Model S can only exploit the correlations between diffusion
signals in the neighboring voxels. Model ST builds upon the estimation
produced by Model S. Although the tensors estimated by Model S are not
optimal, they serve as useful additional input for Model ST. Therefore,
Model ST which provides our final tensor estimate, can learn to exploit
the correlations in the diffusion signal as well as the correlations in the
diffusion tensor.

Denoting the number of diffusion measurements in each voxel with
ng, the diffusion signal in a patch will be of shape IRD I - ™, This is first
reshaped into x; € IR™ ™, where n = L%, which will serve as the input
signal sequence for both Model S and Model ST. In both models, x; is first
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embedded into IR? and a learnable positional encoding sequence is
added to form the input to the transformer modules, xo € IR™ 4. In Model
S, this position-encoded sequence is passed through a series of Ny,
transformer modules. The output of the last transformer module is
projected from IR? onto IR® to form the estimated tensor sequence of size
IR"" 6. This output sequence can be reshaped into IR & & © to obtain the
tensor estimate for the input patch.

Model ST has two branches, each one of them similar to Model S. One
of the branches works on the diffusion signal, similar to Model S. The
other branch is architecturally identical, but works on the diffusion
tensor estimated by Model S. These two branches are meant to learn the
spatial correlations between the diffusion signal and the tensor values.
The outputs of these two branches are concatenated and passed through
a fully-connected layer to estimate the final diffusion tensor estimate for
the patch.

2.3. Implementation and training

We selected the model architecture hyper-parameters using pre-
liminary experiments on our training datasets. We set the number of
transformer modules, Nt;, in Model S and each of the two branches of
Model ST to 4, as shown in Fig. 1. Furthermore, we set d, = 512, and the
number of heads in multi-headed self-attention n, = 2. We discuss the
effects of some of these hyper-parameters on the performance of the
proposed method in the Results section below. We initialized all learn-
able parameters using He’s method [26]. We first trained Model S, by
minimizing the square of the difference between estimated (55) and
reference (Dyef) tensors:

g(f)s,Dref) =l Ds _Dref”g (6)

Once training of Model S was finished, we trained Model ST. Our
experiments showed that further fine-tuning Model S during the training
of Model ST did not improve the accuracy of Model ST. Therefore, while
training Model ST, we kept Model S fixed. Model ST was also trained

using a loss function similar to Eq. (6), with EST in place of 55. Both

Transformer
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self-attention
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Fig. 1. A schematic of the proposed method. The input image is a volumetric (3D) image with six channels, where each channel represents one of the six normalized
diffusion-weighted measurements. The output is a tensor image of the same shape as the input image with six channels, where each of the channels represents one of

the six tensor elements.
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models were trained with a batch size of 10, and an initial learning rate
of 10~* using Adam [34]. We reduced the learning rate by a factor of 0.9
every time the loss on the validation set did not decrease after a training
epoch. We stopped the training if the validation loss did not decrease
after two consecutive epochs. All models were implemented in Tensor-
Flow. Training and validation were performed on a Linux computer with
an NVIDIA GeForce GTX 1080 GPU.

2.4. Data and evaluation approach

Most of the experimental results presented in this paper are with the
developing Human Connectome Project (dHCP) dataset [11]. None-
theless, to demonstrate the applicability of our method to other datasets,
we also report experimental results with scans from the Pediatric Im-
aging, Neurocognition, and Genetics (PING) dataset [27] as well as in-
house scans of Vein of Galen Malformation (VOGM) patients at Boston
Children's Hospital. This study was approved by the institutional review
board. We mostly focus on the dHCP dataset because it is a publicly-
available dataset on which the interested reader can train and test our
method and because it is a challenging dataset. It consists of DW-MRI
images of neonates scanned at 29-45 gestational weeks. The neonatal
period represents a critical time in brain development. It is characterized
by rapid cortical expansion and formation of connections between
distant regions of the brain. Immature myelination of the white matter
and patient motion make diffusion tensor imaging of neonates especially
challenging.

Each DW-MRI scan in the dHCP dataset includes measurements at
three b-values of 400, 1000, and 2600. Following the widely-adopted
recommendations [31], we use the b = 1000 measurements for DTI
estimation. Each scan includes 88 measurements in the b = 1000 shell,
which are approximately uniformly distributed on the sphere. For each
subject, we used all 88 measurements to reconstruct a high-quality
“reference” DTI with the constrained weighted linear least squares
(CWLLS) method [36]. We refer to this reference reconstruction as Dicf.
For our proposed method, we selected six of the 88 measurements that
were closest to the six optimized directions proposed in [58]. Specif-
ically, the unit vectors indicating these directions are: [0.910, + 0.416,
0.000], [+0.416,0.000,0.910], and [0.000,0.910,+0.416]. These six
directions have been derived to minimize the condition number of the
diffusion tensor transformation matrix [58]. We also selected one of the
b = 0 measurements to normalize the six b = 1000 measurements. We
refer to the reconstructions of our proposed method with these six
normalized measurements as Dy, For comparison with existing
methods, we apply three methods on the same six diffusion-weighted
measurements and one b = 0 measurement. These three methods are
the following: 1) Constrained Weighted Linear Least Squares (CWLLS)
[36], which is the standard estimation method, 2) Constrained
Nonlinear Least Squares (CNLS) [36], and 3) The CNN-based method of
Lin et al. [45]. This method was originally proposed for estimation of
fiber orientation distribution. We simply changed the first and the last
layers of the network to match our application. We refer to this method
as CNN-DTI.

With the dHCP dataset, we trained our method using scans of 200
subjects aged 40-45 gestational weeks. We used data from 40 of these
subjects as validation set during various stages of hyper-parameter se-
lection and training. Once the training of the final model was complete,
we tested our method on scans of 40 independent subjects; 20 of these
were from the same age range, while the other 20 were younger subjects
aged 29-36 gestational weeks. We compare our method with the
competing techniques in terms of the norm of the difference between the
estimated tensor and the reference tensor, D,f. Specifically, if we denote
the predicted tensor with Dpeq, then we define the tensor estimation
error as 21'6:1 | D;red - D§Ef|, where the index i refers to the six tensor
elements. Moreover, we compute the error in FA, MD, and the angle of
the major eigen-vector of the tensor. To do this, we calculate the eigen-
decomposition of the tensor in each voxel and compute the FA and MD
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from the eigen-values using their standard definitions [29]. For each
voxel, the error in FA and MD is defined as the absolute difference be-
tween those of the predicted and reference tensors. We compute the
angle between the major eigen-vectors of the predicted and reference
tensors as the angular error between the two tensors. We also present
tractography and connectivity analysis results. To have a fair compari-
son between different methods, no especial data pre-processing (e.g.,
smoothing or re-sampling) was performed for our method or any of the
compared techniques. Our proposed method does not rely on such data
pre-processing steps.

3. Results and discussion

Table 1 shows the error in the estimated tensor and three tensor-
derived variables, i.e., FA, MD, and the orientation of the major eigen-
vector for the proposed method and the three compared methods. For
each of these variables, we computed the average error (across all brain
voxels) separately for each test subject, thereby obtaining one error
value for each parameter and subject. The numbers in Table 1 and the
other tables in this paper show the mean + standard deviation across
subjects. On all 40 test subjects from the dHCP datasets our method
achieved lower estimation errors than all other methods. As shown in
the table, compared with other methods, our proposed method has
reduced the error in MD by factors of approximately 2.6-9.8 and the
error in FA and orientation of major eigen-vector by factors of approx-
imately 1.5-2.2. We ran paired t-tests to determine the statistical sig-
nificance of the differences between our method and the other methods.
These tests showed that the errors for the proposed method were
significantly lower (p < 0.001) than those of the three compared
methods.

Fig. 2 shows examples images reconstructed with the proposed
method and CWLLS for two test subjects from the dHCP dataset. It shows
two of the tensor channels, FA, MD, and color-FA images. Due to space
limits, in this figure and the following figures we show the results of
selected compared methods. The results shown in Fig. 2 clearly
demonstrate a substantial advantage for the proposed method compared
with CWLLS. The parameters estimated with the proposed method using
six diffusion-weighted measurements are close to the reference images
obtained with 88 measurements. On the other hand, CWLLS estimations
are very noisy and contain large errors both in the gray matter area as
well as in the location of major white matter tracts. Visually, the

Table 1

Estimation error on older (40-45 gestational weeks) and younger (29-36
gestational weeks) test subjects from the dHCP dataset. Bold type indicates
statistically smaller errors at p = 0.001, computed using paired t-tests to
compare our proposed method with every one of the competing methods.

Test subjects ~ Method Tensor MD FA Angle
(x1000), (x1000), (degrees)
mm? ! mm?s~!
0.450 + 0.413 + 0.155 20.2 +
CWLLS 0.040 0.042 + 0.017 2.45
CNLS 0.438 + 0.410 + 0.149 20.3 +
Older 0.044 0.041 + 0.019 2.48
neonates 0.393 + 0.345 + 0.124 17.2 +
(n=20) CNN-DTI 0.037 0.037 +0.011 2.20
Proposed 0.118 + 0.042 + 0'171 11.6 +
0.019 0.029 0.003 2.07
0.430 + 0.376 + 0.141 18.5 +
CWLLS 0.058 0.050 + 0.019 2.85
CNLS 0.420 + 0.370 + 0.144 18.7 +
Younger 0.060 0.050 + 0.022 2.87
neonates 0.401 + 0.325 + 0.137 16.4 +
NN-DTI
(n=20) ¢ 0.049 0.041 + 0.017 2.34
Proposed 0.122 + 0.123 + 0'3:73 10.3 £
0.018 0.022 0.012 2.75
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Fig. 2. Example tensor images estimated with CWLLS and the proposed method and their corresponding tensor-derived parameters. These images were recon-
structed from scans of two neonatal subjects from the dHCP dataset. The top subject has a gestational age of 41 weeks, which is within the age range of subjects that
have been used for training (i.e., 40-45 gestational weeks). The bottom subject has a gestational age of 31 weeks, which is much younger than the age range of the
training subjects. For each subject, we have shown two of the six tensor channels (i.e., Dy, and Dy,), FA, MD, and color-FA.

superiority of our method compared with CWLLS can be best seen in the
color-FA images. These are standard color-coded FA images that display
the tensor anisotropy and the orientation of the major eigenvector in a
single image. These images show that our method can accurately esti-
mate the diffusion tensor throughout the brain.

From the examples shown in Fig. 2, the images reconstructed with
our method seem to be less noisy than the reference image. Although the
reference image is based on 88 measurements, it is computed by fitting
the diffusion tensor on a voxel-wise basis, i.e., by considering the
diffusion signal in each voxel, one at a time. Our proposed method, on
the other hand, uses the correlations between the diffusion signal and
tensor values among L° neighboring voxels. For further visual assess-
ment of the reconstruction results, in Fig. 3 we have shown example one-
dimensional profiles from FA and MD images reconstructed with our
method and CWLLS compared with the reference. Furthermore, in Fig. 4
we have shown glyph visualization of the tensors. The profiles in Fig. 3
show that, compared with the reference, the reconstructions produced

by our method show no significance loss of edge sharpness and are close
to the reference image in almost all locations. The reconstructions pro-
duced with CWLLS are noisy and very different from the reference. The
tensor visualizations presented in Fig. 4 further show that our method is
close to the reference for most brain regions. CWLLS reconstructions, on
the other hand, show large estimation errors in this figure.

In order to investigate the effect of measurement noise on the per-
formance of our proposed method, we conducted a simulation experi-
ment where we added simulated noise to the scans from the dHCP
dataset. Specifically, independent and identically-distributed Rician
noise with signal-to-noise ratio (SNR) in the range [15,50] dB was
added. An SNR of 15 dB is close to the lowest SNR reported or used for
simulation in prior works [18,60]. Table 2 shows the results of this
experiment in terms of error in FA and the orientation of the major
tensor eigen-vector for the proposed method and CWLLS. The noise had
a much smaller effect on our proposed method than on CWLLS. For our
method, the error in FA and the orientation of the major eigenvector
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Fig. 3. Example one-dimensional profiles of FA (top) and MD (bottom) images reconstructed by the proposed method and CWLLS. For each image, we have shown
one horizontal (H) and one vertical (V) profile. The locations of these profiles have been marked with the blue lines on the reference images (left-most column). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Reference

Proposed method

CWLLS

Fig. 4. Example glyph visualizations of the diffusion tensor images reconstructed with the proposed method and CWLLS alongside the reference tensors.

Table 2

Reconstruction error in terms of the angle of the major tensor eigen-vector and FA for CWLLS and the proposed method for different amounts of simulated noise added
to the signal. The test subjects in this experiment were the 20 older neonates that were used in the experiment reported in Table 1. The first column shows the case
where no noise was added to the signal. Bold type indicates statistically smaller errors at p = 0.001, computed using paired t-tests to compare our proposed method

with CWLLS.
Parameter Method No added noise SNR = 50 dB SNR = 30 dB SNR = 20 dB SNR =15 dB
ngle (degrees) CWLLS 20.2 + 2.45 20.5 + 2.41 21.2 + 2.49 22.8 + 2.55 24.6 + 2.56
angle ldegrees Proposed 11.6 + 2.07 11.7 + 2.09 11.9 + 2.05 12.0 + 2.11 12.2 £2.15
A CWLLS 0.155 + 0.017 0.157 + 0.017 0.165 + 0.020 0.172 + 0.025 0.183 + 0.026
Proposed 0.071 + 0.003 0.071 + 0.003 0.071 + 0.005 0.073 + 0.006 0.074 + 0.006

increased by 4.2 % and 5.2 %, respectively, as we reduced the SNR from
50 dB to 15 dB. Comparatively, the errors for CWLLS increased by 18.1
% and 20.0 %, respectively. Fig. 5 shows example slices and profiles of
FA and MD images reconstructed with our proposed method at SNR =
15. They show that, even at this low SNR, reconstructions of our pro-
posed method are close to the reference image.

Fig. 6 shows three example whole-brain connectomes generated
from the diffusion tensors estimated with the proposed method and
CNN-DTIL. Tractography provides an indirect assessment of diffusion
tensor estimation accuracy because the tractography results depend on
the settings of the fiber tracing algorithm. For a fair comparison, we used
the same seed locations and the same fiber tracing algorithm for
different methods. Specifically, we used the white matter mask provided
as part of the dHCP dataset for seeding. Moreover, we used the EuDX

tractography algorithm [20], which is a fiber tracing algorithm that
relies heavily on voxel-wise fiber directions instead of imposing global
fiber priors. We used a step size of 0.5 mm. As shown in these example
figures, the connectome produced with our proposed method from only
6 measurements is similar to the one produced based on D..f recon-
structed from 88 measurements. The connectome produced with CNN-
DTI, on the other hand, lacks much of the major white matter tracts.
Fig. 7 shows example connectivity maps between 87 brain regions
provided for each dHCP scan, computed from the whole-brain con-
nectomes. As shown in this example, the connectivity map for the pro-
posed method from only 6 measurements is similar to that of the
reference connectome computed from 88 measurements. The connec-
tivity maps for CNN-DTI and CWLLS, on the other hand, are very
different and lack many of the connections that are present in the
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the web version of this article.)

Reference CNN-DTI

Proposed

Fig. 6. Example whole-brain connectomes produced with the EuDX tractog-
raphy algorithm based on the reference diffusion tensor estimated from 88
measurements and the diffusion tensors estimated with our proposed method
and CNN-DTI from only 6 measurements.

reference connectivity map. For a quantitative comparison of the con-
nectivity matrices, we considered 100 off-diagonal elements of the
reference connectivity matrix with the largest values, i.e., the 100 pairs
of brain regions with the strongest connections. We compared the values
of those matrix elements between the reference connectivity matrix and
the connectivity matrix computed with our method using a paired t-test
with a significance threshold of p = 0.001. The test showed that the
connectivity matrix for our method was not different from the Reference
(p = 0.32). On the other hand, the comparison of the Reference con-
nectivity matrix and the connectivity matrix estimated with CWLLS

Reference Proposed

CNN-DTI CWLLS

Fig. 7. The connectivity map between 87 brain regions for a test subject in the
dHCP dataset. The connectivity maps were computed from the whole-brain
connectomes derived based on the reference diffusion tensor (estimated from
88 measurements) and the diffusion tensors estimated with the proposed
method, CWLLS, and CNN-DTI (estimated from 6 measurements).

using the same statistical significance test showed a significant differ-
ence (p < 0.001). Similarly, for CNN-DTI the difference with the
Reference connectivity matrix was significant (p < 0.001).

With regard to architectural hyper-parameters, increasing the patch
size (L) to 7 did not improve the estimation accuracy of the proposed
method. Note that the number of signals in the sequence grows cubically
with L. Increasing L from 5 to 7 would increase the sequence length from
125 to 343. Our experiments show that the transformer modules become
difficult to train with L > 6. On the other hand, reducing L to 3 signif-
icantly increased the method's estimation error, obviously because of the
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reduced spatial context to utilize in the estimation. We also found that
increasing the number of transformer modules in Models S and ST
beyond 4 did not improve the accuracy of our method. Furthermore,
increasing the projection dimension and the number of self-attention
heads to values larger than our default values (i.e., d, = 512 and nj, =
2) did not improve the estimation accuracy. On the other hand, our two-
stage estimation approach proved to be effective.

Fig. 8 shows example tensor and FA images reconstructed with
Model S and Model ST and the corresponding error maps, i.e., the dif-
ference between the estimated values and the reference. Model ST
consistently improved the estimation accuracy of Model S. For example,
the tensor estimation error for Model S on older neonates and younger
neonates from the dHCP dataset were, respectively, 0.154 4+ 0.028 and
0.168 £ 0.031. Paired t-tests showed that these errors were significantly
higher than the errors for Model ST reported in Table 1, although they
were significantly lower than the errors for CWLLS, CNLS, and CNN-DTI
(p < 0.001). We performed extensive experiments to investigate whether
the accuracy of Model S could be improved to match Model ST by
changing hyper-parameters (L, dy, ny, number of transformer modules,
and training settings). However, Model ST was consistently more ac-
curate than Model S, regardless of hyper-parameter settings. These ob-
servations support and justify our proposed two-stage approach that
exploits the spatial correlations in the diffusion signal as well as in the
tensors.

The error maps shown in Fig. 8 display some spatial structure for
both Model S and Model ST. To examine these spatial structures, we
computed FA and MD estimation errors separately for white matter
(WM), gray matter (GM) and CSF voxels. Furthermore, we computed
these errors for four different structures in WM. The results of this
analysis are presented in Table 4. The first observation from this table is
that, for both FA and MD, the reconstruction errors in WM are less than
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those in GM and CSF. However, for the four different WM sub-structures
the errors are very similar. We performed paired t-tests to compare the
FA and MD reconstruction errors for these four structures, separately for
Model S and Model ST. None of these tests showed statistical signifi-
cance at p = 0.001. On the other hand, on all three tissue types (WM,
GM, CSF) and all four WM structures shown in this table, the FA and MD
estimation errors for Model ST were significantly smaller (p < 0.001)
than those for Model S.

Fig. 9 shows example Bland-Altman plots for the FA and MD errors
for Model S and Model ST. We have shown plots for Model T versus the
reference (left column), Model ST versus the reference (middle column),
and Model T versus Model ST (right column). In the plots for Model T
versus Model ST, because none of them can be considered the reference,
we have used the average of the two models as the horizontal axis as
suggested in [13,22]. These plots show that for both FA and MD, both
models tend to have larger errors for larger values of FA and MD.
However, for both FA and MD, Model ST shows fewer large errors. For
both FA and MD, the bias (i.e., the mean error compared with the
reference) of Model ST is smaller than the bias of Model S. The plots in
the right column in this figure also show that the “corrections” made by
Model ST over Model S are over all values of FA and MD.

Table 3 and Fig. 10 show the results of further evaluations of our
method on 20 test subjects from the PING dataset and 7 VOGM patients.
Each of the scans in these two datasets included 30 measurements in the
b = 1000 shell. For each scan in these datasets, we used all 30 mea-
surements to reconstruct the reference image. We then selected six of the
b = 1000 measurements (and one b = 0 measurement for normalization)
for reconstruction with the proposed method and the three competing
methods in the same way as described above for the experiments with
the dHCP dataset. The VOGM patients' age range was 0-3 years and the
PING subjects' age range was 3-20 years. Because of higher myelination
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Fig. 8. Comparison of estimation errors for Model S and Model ST in our proposed method. We have shown the results on two subjects from the dHCP dataset; an
older subject (top) and a younger subject (bottom). As shown in Fig. 1, Model S uses the diffusion signals to predict the tensor values. Model ST, on the other hand,
builds upon the estimations of Model S by learning to incorporate the spatial correlations in the diffusion signal and tensor values.
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Table 3

Average and standard deviation of the estimation error for CWLLS and the
proposed method on scans of 20 subjects from the PING dataset and 7 VOGM
patients. Bold type indicates statistically lower errors at p = 0.001 computed
using paired t-tests to compare our proposed method with every one of the
competing methods.

Test Method tensor MD FA Angle
subjects (x1000), (x1000), (degrees)
mm?s~! mm?s~!
0.320 + 0.317 £ 0.107 + 18.5 £
CWLLS 0.035 0.040 0.022 3.30
CNLS 0.322 + 0.319 + 0.110 + 189 +
PING (n 0.037 0.040 0.025 3.30
=20) 0.299 + 0.277 £ 0.103 + 17.8 £
CNN-DTI 0.030 0.032 0.020 3.07
Proposed 0.174 + 0.101 + 0.073 124 +
P 0.021 0.033 + 0.011 2.28
0.407 + 0.350 + 0.125 + 18.0 +
CWLLS 0.054 0.049 0.016 2.53
CNLS 0.401 + 0.364 + 0.127 + 18.2 +
VOGM 0.055 0.050 0.017 2.77
n=7) 0.346 + 0.329 + 0.114 + 159 +
CNN-DTI 0.034 0.042 0.012 2.22
Proposed 0.147 + 0.176 + 0.082 11.5 +
P 0.031 0.028 + 0.014 2.69

and better data quality, competing methods achieved more accurate
estimations on these two datasets than on the dHCP dataset. Moreover,
compared with the experiments on the dHCP dataset above, in these
experiments Dqf is more biased towards Dcwiis and, to some extent,
Dcnis- This is because Dewirs and Denis are reconstructed using 6 out of
the 30 measurements used to reconstruct D, and they are all recon-
structed using least-square principles. Nonetheless, our proposed
method achieved significantly lower errors on both of these additional
datasets, as indicated in Table 3. Compared with the competing
methods, our proposed method reduced the estimation error in MD by
factors of 1.9 — 3.2, error in FA by factors of 1.4 — 1.55, and error in the
orientation of the major eigen-vector by factors of 1.38 — 1.58. The
superiority of the proposed method can be visually observed in the
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examples shown in Fig. 10. Due to space limits, we have shown the re-
sults of our proposed method and CNN-DTI, which was slightly more
accurate than CWLLS and CNLS. The differences between our method
and CNN-DTI is especially more clear in the color-FA images that encode
both the degree of anisotropy and the direction of the major eigen-vector
in the same image.

Our study has some limitations that need to be mentioned. First, we
only considered the diffusion tensor reconstruction from six measure-
ments. The goal of this paper was to demonstrate the potential gains of
exploiting the spatial correlations and the capability of attention-based
neural networks to learn these correlations. Therefore, to enhance the
focus of the study we used a fixed measurement scheme as input to our
network. Although we anticipate that the use of these neural network
models should be useful for other DW-MRI models and other measure-
ment schemes, those could be investigated in future works. Moreover,
although we have evaluated our method on three different and inde-
pendent datasets, an application-specific evaluation may be warranted if
our method is to be used for a specific clinical application. For example,
it is not clear how our method (using six measurements) would compare
with the reference image (using much larger measurement sets) if the
reconstructions are to be used for detecting subtle changes in the brain
micro-structure due to lesions or other pathologies. Therefore, further
evaluation of our proposed method for specific clinical patient pop-
ulations may be useful.

4. Conclusions

Diffusion tensor imaging is increasingly being used to study brain
development and degeneration. However, the same least squares-based
estimation methods [36] have been commonly used in the past two
decades. Standard estimation methods, which are based on linear or
non-linear fitting of measurements on a per-voxel basis, can be highly
sub-optimal. The main intuition of our work is that state of the art deep
neural networks for modeling signal sequences can be adapted to
develop accurate DTI estimation methods. In particular, the transformer
models that have been used in this work are capable of learning very
complicated correlations between signals in a sequence. Using this
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Fig. 10. Example tensor images and tensor-derived parameters obtained with CNN-DTI and the proposed method on a subject from the PING dataset (top) and a
VOGM patient (bottom). The PING subject was 14 years old at scan time. The VOGM patient was 2 months old at scan time. The location of malformation in the brain
of the VOGM patient is clearly visible in the reference image. For each subject, we have shown two tensor channels (Dy, and D,,), FA, MD, and color-FA.

Table 4

FA and MD reconstruction errors for Model S and Model ST for selected tissue types: white matter (WM), gray matter (GM), and Cerebrospinal Fluid (CSF). Addi-
tionally, errors have been shown for four white matter structures: corpus callosum (CC), temporal lobe white matter (TLWM), occipital lobe white matter (OLWM), and
frontal lobe white matter (FLWM). The test subjects in this experiment were 20 older neonates from the dHCP dataset. Bold type indicates statistically smaller errors at
p = 0.001, computed using paired t-tests. As in the other tables, to simplify the presentation we have multiplied the MD errors by 1000 and they are in units of mm?s~?.

Method WM GM CSF CC TLWM OLWM FLWM
FA Model S 0.058 + 0.004 0.066 + 0.006 0.092 + 0.007 0.060 + 0.004 0.058 + 0.005 0.057 + 0.004 0.057 + 0.006
Model ST 0.054 £ 0.004 0.061 £ 0.005 0.082 + 0.007 0.053 £ 0.006 0.055 £ 0.004 0.054 £ 0.005 0.052 £ 0.005
MD Model S 0.038 + 0.020 0.045 £ 0.018 0.058 £ 0.015 0.037 £ 0.022 0.037 + 0.024 0.040 £ 0.020 0.040 £ 0.023
Model ST 0.035 £+ 0.018 0.041 £ 0.017 0.050 + 0.016 0.034 £ 0.020 0.034 £ 0.021 0.036 + 0.017 0.035 + 0.015

model, we developed a method that was able to learn spatial correlations
between diffusion signals and tensor values in neighboring voxels for
accurate tensor estimation. On the challenging neonatal DW-MRI scans
from the dHCP dataset, our method reduced the estimation error,
compared with three competing methods, by factors of 1.5-9.8. The
estimations of the proposed method were close to the reference esti-
mations that were obtained using 88 measurements. Our method also
led to superior tractography and connectivity analysis. Furthermore, our
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method showed highly accurate and robust estimation on two additional
datasets. These observations demonstrate the significant potential of the
proposed method for improving the accuracy of DTI estimation, espe-
cially for challenging cohorts such as neonates and infants. Therefore,
our method can facilitate DTI studies to detect subtle changes in brain,
while also reducing the scan time.
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