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A B S T R A C T   

Diffusion tensor imaging (DTI) is a widely used method for studying brain white matter development and 
degeneration. However, standard DTI estimation methods depend on a large number of high-quality measure
ments. This would require long scan times and can be particularly difficult to achieve with certain patient 
populations such as neonates. Here, we propose a method that can accurately estimate the diffusion tensor from 
only six diffusion-weighted measurements. Our method achieves this by learning to exploit the relationships 
between the diffusion signals and tensors in neighboring voxels. Our model is based on transformer networks, 
which represent the state of the art in modeling the relationship between signals in a sequence. In particular, our 
model consists of two such networks. The first network estimates the diffusion tensor based on the diffusion 
signals in a neighborhood of voxels. The second network provides more accurate tensor estimations by learning 
the relationships between the diffusion signals as well as the tensors estimated by the first network in neigh
boring voxels. Our experiments with three datasets show that our proposed method achieves highly accurate 
estimations of the diffusion tensor and is significantly superior to three competing methods. Estimations pro
duced by our method with six diffusion-weighted measurements are comparable with those of standard esti
mation methods with 30–88 diffusion-weighted measurements. Hence, our method promises shorter scan times 
and more reliable assessment of brain white matter, particularly in non-cooperative patients such as neonates 
and infants.   

1. Introduction 

1.1. Diffusion tensor imaging 

Diffusion weighted magnetic resonance imaging (DW-MRI) is one of 
the most common medical imaging modalities. It uses the diffusion of 
water molecules, and restrictions thereof due to obstacles such as 
membranes and fibers, to generate contrast. Although its applications 
are not limited to brain, DW-MRI is presently the best non-invasive tool 
for studying the brain micro-structure in vivo. Diffusion tensor imaging 
(DTI) is a specific type of DW-MRI that is widely used in neuroimaging 
[1,10,41]. DTI is capable of capturing diffusion anisotropy, i.e., the 
dependence of the diffusion process on the orientation. In DTI, a 
Gaussian model of diffusion is assumed, whereby the orientation- 
dependence of diffusion is characterized with a 3×3 symmetric 

matrix, i.e., a tensor: 

D =

⎡

⎣
Dxx Dxy Dxz
Dxy Dyy Dyz
Dxz Dyz Dzz

⎤

⎦. (1) 

The diffusion tensor formalism can be interpreted as representing the 
surface of the diffusion front with an ellipsoid. An eigen-decomposition 
of D gives us the direction of the strongest diffusion as well as param
eters such as mean diffusivity (MD) and fractional anisotropy (FA), 
which are widely used to study brain development and as biomarkers for 
various diseases [8,9,40,42]. There exist more complex models of tissue 
micro-structure, e.g. [7,53,66]. Nonetheless, DTI remains the most 
widely used method in brain micro-structure studies because of easier 
acquisition and model fitting and wide-spread availability of DTI anal
ysis software. 
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Given diffusion signals measured with higher and lower diffusion 
weightings, s1 and s0 respectively, one can write: 

s1
/

s0 = exp
(
− bxxDxx − byyDyy − bzzDzz

−2bxyDxy − 2bxzDxz − 2byzDyz
)
,

(2)  

where b.. are elements of the so-called b-matrix [29,41]. Given a set of m 
such measurements, after log-transformation, one can express the rela
tion between the diffusion tensor elements and the measurements as a 
linear system of equations: 

BD̃ = S, (3)  

where B is a design matrix that depends only on the directions and 
strengths of the applied diffusion-sensitizing gradients, S is the vector of 
log-transformed diffusion signal measurements, and D̃ = [Dxx,Dyy, Dzz, 
Dxy, Dxz, Dyz] is the vector of unknowns. 

Many different approaches have been proposed for estimating D̃. The 
ordinary least squares solution can be obtained as D̃ =

(
BTB

)−1BTS. This 
solution is based on the assumption of homoskedasticity, i.e., that the 
variance of the noise is the same for all measurements. Even though this 
assumption is largely correct for the diffusion signal before the log 
transformation, it is not correct after the transformation. After log- 
transformation, the measurement variance is higher for lower signal 
intensities. Therefore, one can improve upon the ordinary least squares 
method by introducing weights: D̃ =

(
BTWB

)−1BTWS, where W is a 
diagonal matrix with the diagonal elements proportional to the mea
surements [36]. Alternatively, one could attempt solving the original 
non-linear system of equations without log-transforming the measure
ments. This approach is theoretically more appealing but can suffer from 
other problems such as sensitivity to the initial solution, convergence to 
local minimum, and higher computational cost. 

There have been attempts to improve upon the least squares-based 
methods mentioned above. For example, basic least squares-based 
methods may yield a tensor that has negative eigen-values, which is 
physically invalid. One approach to enforce positivity of eigenvalues is 
Cholesky factorization of the diffusion tensor [35,36]. Other notable 
methods include algorithms that aim at reducing the effect of erroneous 
measurements due to such factors as high noise, subject head motion, 
and cardiac pulsation. For example, RESTORE algorithm uses an itera
tive weighted least squares strategy to detect and remove erroneous 
measurements [14,15]. Bootstrap methods have been used to improve 
and quantify the accuracy and uncertainty of DTI parameter estimation 
[16,35]. 

The above methods are widely used in practice and constitute the 
core of the tensor fitting algorithms in common DW-MRI software 
[21,61]. However, they require a large number of measurements for 
accurate tensor estimation. Although the diffusion tensor has only six 
degrees of freedom, practical guidelines recommend acquiring at least 
30 measurements with diffusion encoding directions uniformly spread 
on the sphere [31,58]. It is strongly recommended to increase the 
number of measurements to much larger than 30, if possible, in order to 
achieve more accurate and more robust tensor estimation [29]. These 
requirements highlight the challenging nature of estimating micro- 
structural parameters of interest from noisy and imperfect measure
ments. However, they also suggest that standard diffusion tensor esti
mation methods may be sub-optimal. In particular, these estimation 
methods are based on biophysical models of diffusion that can only 
approximate the true underlying signal generation processes. More 
importantly, the classical estimation methods fit the diffusion signal on a 
voxel-wise basis. They fail to take into account the correlation between 
signals in neighboring voxels and to exploit the spatial regularity of 
diffusion tensor values. 

DTI estimation accuracy depends not only on the number of mea
surements, but also on several other factors. For example, the choice of 
the diffusion gradient strength (the b-vale) can have a significant effect, 

as shown by several prior works [2,6,31]. Similarly, the arrangement of 
the directions of diffusion-sensitizing gradients can also be very 
important [17,28,58]. Another important factor is the signal to noise 
ratio (SNR). The effect of noise on diffusion tensor estimation error has 
been explored in the past and various methods for reducing the impact 
of measurement noise have been proposed [12,25,30]. Moreover, like 
any other DW-MRI technique, diffusion tensor imaging suffers from 
artifacts such as eddy current-induced distortions, magnetic suscepti
bility effects, subject motion, and cardiac pulsation [47,52,55]. 

Although many factors contribute to DTI estimation error, as briefly 
discussed above, in general increasing the number of measurements 
improves the accuracy and robustness of estimation [28,29]. Acquiring 
more measurements means longer scan times. Moreover, it may be 
difficult to achieve with non-cooperative subjects such as infants and 
young children, where part of the data may have to be discarded due to 
excessive motion. Therefore, methods that can accurately estimate the 
diffusion tensor from smaller numbers of measurements are highly 
desirable. Machine learning methods have a great potential in this re
gard. Unlike standard estimation methods, they do not need to assume a 
known mathematical model for the diffusion signal and noise. Instead, 
they learn the mapping from the diffusion signal to the tensor from 
training data. Furthermore, they can effectively learn the spatial corre
lations in the diffusion signal and the parameter(s) of interest. With the 
increasing availability of very large DW-MRI datasets, the advantage of 
machine learning methods has grown. It is now possible to train a ma
chine learning model on these large and rich datasets and use the trained 
model on less perfect in-house datasets. 

1.2. Related works 

Applications of machine learning and data-driven methods for 
parameter estimation in DW-MRI have been explored in several prior 
works. Random forests, support vector regression, and other classical 
machine learning methods were used in several works [50,51,54,56]. 
More recently, deep learning has been shown to hold great promise for 
improving the accuracy and robustness of parameter estimation in DW- 
MRI [5,24,44,49]. Several recent studies have shown that deep learning 
can dramatically reduce the number of measurements, and hence the 
scan times, required for estimating micro-structural parameters of in
terest. The q-space deep learning (q-DL) was one of the first deep 
learning methods for diffusion parameter estimation [24]. It showed 
that a three-layer neural network could accurately estimate diffusion 
kurtosis as well as neurite orientation dispersion and density measures, 
while reducing the required number of measurements by a factor of 12. 
This result was particularly interesting given that a very simple neural 
network was used and the network performed the prediction on a voxel- 
wise basis, i.e., without exploiting spatial correlations. 

Following the success of q-DL, several studies have used deep 
learning models to estimate other diffusion parameters on a voxel-wise 
basis. One study showed that a deep neural network can achieve 
significantly more accurate estimation of fiber orientations than stan
dard methods such as constrained spherical deconvolution [49]. Ex
amples of other parameters that have been estimated on a voxel-wise 
basis include the number [38] and orientation [39] of major fibers. 

One can expect more accurate and more robust estimation when 
spatial correlations between the signal in neighboring voxels and the 
spatial regularity of the parameter(s) of interest are exploited. There are 
a variety of deep learning models that are capable of learning such 
spatial patterns. Perhaps the most well-known of these models are 
convolutional neural networks (CNN). Prior works have applied CNNs 
on patches of DW images to estimate the fiber orientations [37,45]. One 
study reported that more accurate estimation of diffusion kurtosis 
measures could be obtained, compared with the q-DL framework, with a 
simple CNN [44]. In other studies, CNNs have been used for tract seg
mentation and tractography analysis [63,65]. 

Several recent studies have used deep learning models for estimating 
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the diffusion tensor, FA, and MD. One study used a CNN for direct 
estimation of the diffusion tensor from DW-MRI measurements [43]. 
Aliotta et al. used a multi-layer perceptron to estimate MD and FA [4]. 
Another notable example is the DeepDTI method [59], which proposed a 
CNN model for estimating the diffusion signal residuals. The input to the 
CNN is a set of potentially noisy and artifact-full DW scans that are 
stacked together. The CNN learns to map these low-quality scans to their 
difference (residual) with respect to high-quality reference DW scans. In 
order to improve the model accuracy, anatomical (i.e., T1 and T2) im
ages are registered to the DW scans and stacked with the DW scans to 
enrich the CNN input. In a recent study by our own team, we used CNNs 
for accurate color-FA estimation for fetuses [32,33]. A combination of a 
CNN and a multi-layer perceptron was used for FA and MD estimation in 
a recent work [3]. Another recent study used a multi-scale encoder- 
decoder CNN for estimating FA and MD [64]. The authors also used a 
monte-carlo dropout technique to compute the prediction uncertainty of 
the model predictions. 

Despite the importance of the efforts mentioned above, the potential 
of deep learning for improving the accuracy and robustness of parameter 
estimation in DW-MRI is highly under-explored. One important short
coming of most prior studies is their failure to effectively model the 
relationship between diffusion signal in neighboring voxels. Some 
methods, such as [24,49], have only used the signal in one voxel. Some 
other methods, for example [37,45], have used models such as CNNs 
that have originally been devised for computer vision applications and 
are not optimal for regression and parameter estimation applications. 
There are also studies that have used 2D CNNs, which fail to exploit the 
correlations in all three dimensions [23]. 

1.3. Contributions of this work 

In this work, we propose a novel method for diffusion tensor esti
mation. Our main idea is to exploit the correlations between the diffu
sion signal and diffusion tensor parameters in neighboring voxels. Brain 
tissue micro-structure is spatially regular, in the sense that micro- 
structural properties such as fiber orientations do not change 
randomly between adjacent voxels. Rather, there exist strong spatial 
correlations between neighboring voxels. Moreover, these spatial cor
relations in the brain tissue micro-structure are largely shared across the 
brains of different subjects. These correlations in micro-structure, in 
turn, give rise to correlations between diffusion signals in neighboring 
voxels. We propose to learn these correlations in order to improve the 
accuracy and robustness of DTI estimation, especially when the mea
surements are noisy and few in number. 

Our proposed method is based on the attention models, which 
represent the state of the art in sequence modeling. While prior works 
have either ignored spatial correlations or have used computer vision 
models such as CNN to learn spatial correlations, we use attention 
models that are more flexible and more powerful. The attention mech
anism has important advantages over more classical deep learning 
models such as CNNs and RNNs. It offers higher flexibility since network 
weights are adapted in an input-dependent fashion. Moreover, each 
component/location of the output can attend to any component/loca
tion of the input, regardless of the distance between the two components 
in the sequence. In RNNs, for example, it can take up to n steps to 
propagate the information from one location in the sequence to another 
location, where n is the sequence length. In attention models, on the 
other hand, information can be exchanged between any two locations in 
the sequence in one step. We leverage these advantages to develop a 
novel method for DTI estimation. We show that our proposed method 
can accurately estimate the diffusion tensor from only six diffusion- 
weighted measurements. In particular, we demonstrate the effective
ness of our method on neonatal subjects where tensor estimation is very 
challenging and standard estimation methods can be highly inaccurate 
and unreliable. 

2. Materials and methods 

2.1. Attention models 

The concept of attention can be employed in different machine 
learning models, but here our focus is on neural networks. In a standard 
neural network, the output of each layer is computed from the output of 
the preceding layer using a function of the form xi = Ψ(WiTxi−1), where 
Wi represents the layer weights (for simplicity of presentation we omit 
the bias term) and Ψ is some non-linear function. In standard neural 
networks, the weights are optimized on a set of training data and they 
remain fixed afterwards. Attention models represent an alternative 
paradigm in which the weights are computed dynamically based on the 
input. In other words, xi = Ψ(fθ(xi−1)Txi−1), where fθ is a learnable 
function [48]. In this paradigm, the model weights are not fixed at 
training; rather, they depend on the input at inference time. The 
attention mechanism can take different forms. One common form is self- 
attention, where elements of Wi depend on the pair-wise similarity be
tween elements of the input sequence xi−1. In other words: Wi

s,t =

score
(
xi−1

s , xi−1
t

)
. The score function, score(xs

i−1,xt
i−1), quantifies the 

similarity between the two vectors xs
i−1 and xt

i−1 and can take various 
forms. One common form is Luong's multiplicative formulation: score 
(a,b) = aTHb, for some matrix H [46]. Therefore, with this formulation 
the network can learn to compute xi by “paying attention” to the rele
vant pieces of information in xi−1 in a dynamic input-dependent manner. 

In this work we follow a self-attention approach similar to that of the 
transformer network [62]. Let us denote the output of the previous 
network layer with xi−1 ∈ IRn, d, where n is the sequence length and d is 
the dimension of each element of the sequence. First, a set of query, key, 
and value sequences are computed via linear projections of xi−1: 

Qi = xi−1Wi
Q, Ki = xi−1Wi

K , and Vi = xi−1Wi
V (4) 

The projection matrices WQ
i , WK

i , and WV
i are of size IRd, dh, which 

means that the query, key, and value sequences will be of size dh. The 
self-attention output is then computed as: 

xi* =
QiKiT

̅̅̅̅̅
dh

√ Vi, (5)  

where the scaling factor 1/
̅̅̅̅̅
dh

√
is introduced for stable computations. In 

other words, self-attention is formulated based on the similarity between 
queries and keys, which are both computed from the input xi−1. Note 
that similarity between query and key vectors in Eq. (5) is computed as a 
dot product, which is a special case of Luong's attention where H is the 
identity matrix. Since xi* is in IRdh, it is passed through another fully- 
connected layer to generate xi ∈ IRd as the input for the next stage of 
the network. A transformer network consists of a succession of such self- 
attention modules. The output of the last module is projected onto the 
space of the desired network output using a fully-connected layer. 

There are two important variations to the standard transformer 
model that we also utilize in this work [48,62]. First, in order to improve 
the expressive power of the learned attention maps, multi-headed 
attention is used. In this approach, nh different query, key, and value 
sequences are computed, each with different projection matrices in Eq. 
(4). Then, xi* is formed by concatenating the nh sequences, each 
computed using Eq. (5). Second, the standard self-attention model lacks 
a means of knowing the sequence order because it is permutation- 
invariant. To overcome this limitation, a positional encoding is added 
to the input sequence [62]. Specifically, the sequence of initial input 
signals xs ∈ IRn, ds is projected onto IRd and a sequence of the same shape 
is added to it: x0 = xsWs + p. Here Ws ∈ IRds, d is the signal embedding 
projection matrix and p ∈ IRn, d is meant to encode the relative position 
between elements of the input sequence. Many different forms of posi
tional encoding have been proposed [19,48,57,62]. In this work, 
because we do not know a priori how diffusion signals and tensors in 
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neighboring voxels are related, we consider a learnable positional 
encoding. In other words, in our method p is a free parameter that is 
learned during training. 

2.2. Proposed method 

Fig. 1 shows our proposed method, which we refer to as Transformer- 
DTI because its core is similar to the transformer model [48,62]. It re
quires only six diffusion weighted measurements. The directions of the 
diffusion-sensitizing gradients for these six diffusion weighted mea
surements are clarified in more detail below. To exploit the spatial 
correlations in the signal and tissue micro-structure, the model uses the 
signal in a cubic patch of side length equal to L voxels to estimate the 
diffusion tensor in a cubic patch of the same size. Unless otherwise 
specified, in the experiments reported in this paper we use L = 5. 

The proposed model aims to estimate the diffusion tensor in each 
voxel by exploiting the spatial correlations in the signal and in the 
diffusion tensor. To this end, our model consists of two sub-models, 
which are trained separately and sequentially. Model S uses the diffu
sion signal as the input and estimates the diffusion tensor. Model ST, on 
the other hand, uses the diffusion signal as well as the diffusion tensor 
estimated by Model S to provide a more accurate estimation of the 
diffusion tensor. As we show in the Results section below, Model S on its 
own can provide accurate tensor estimations. Nonetheless, the final 
estimations provided by Model ST are significantly more accurate. This 
is because Model S can only exploit the correlations between diffusion 
signals in the neighboring voxels. Model ST builds upon the estimation 
produced by Model S. Although the tensors estimated by Model S are not 
optimal, they serve as useful additional input for Model ST. Therefore, 
Model ST which provides our final tensor estimate, can learn to exploit 
the correlations in the diffusion signal as well as the correlations in the 
diffusion tensor. 

Denoting the number of diffusion measurements in each voxel with 
ns, the diffusion signal in a patch will be of shape IRL, L, L, ns. This is first 
reshaped into xs ∈ IRn, ns, where n = L3, which will serve as the input 
signal sequence for both Model S and Model ST. In both models, xs is first 

embedded into IRd and a learnable positional encoding sequence is 
added to form the input to the transformer modules, x0 ∈ IRn, d. In Model 
S, this position-encoded sequence is passed through a series of NTr 
transformer modules. The output of the last transformer module is 
projected from IRd onto IR6 to form the estimated tensor sequence of size 
IRL3, 6. This output sequence can be reshaped into IRL, L, L, 6 to obtain the 
tensor estimate for the input patch. 

Model ST has two branches, each one of them similar to Model S. One 
of the branches works on the diffusion signal, similar to Model S. The 
other branch is architecturally identical, but works on the diffusion 
tensor estimated by Model S. These two branches are meant to learn the 
spatial correlations between the diffusion signal and the tensor values. 
The outputs of these two branches are concatenated and passed through 
a fully-connected layer to estimate the final diffusion tensor estimate for 
the patch. 

2.3. Implementation and training 

We selected the model architecture hyper-parameters using pre
liminary experiments on our training datasets. We set the number of 
transformer modules, NTr, in Model S and each of the two branches of 
Model ST to 4, as shown in Fig. 1. Furthermore, we set dh = 512, and the 
number of heads in multi-headed self-attention nh = 2. We discuss the 
effects of some of these hyper-parameters on the performance of the 
proposed method in the Results section below. We initialized all learn
able parameters using He’s method [26]. We first trained Model S, by 
minimizing the square of the difference between estimated (D̂S) and 
reference (Dref) tensors: 

L
(

D̂S,Dref
)
=‖ D̂S −Dref‖

2
2 (6) 

Once training of Model S was finished, we trained Model ST. Our 
experiments showed that further fine-tuning Model S during the training 
of Model ST did not improve the accuracy of Model ST. Therefore, while 
training Model ST, we kept Model S fixed. Model ST was also trained 
using a loss function similar to Eq. (6), with D̂ST in place of D̂S. Both 

Fig. 1. A schematic of the proposed method. The input image is a volumetric (3D) image with six channels, where each channel represents one of the six normalized 
diffusion-weighted measurements. The output is a tensor image of the same shape as the input image with six channels, where each of the channels represents one of 
the six tensor elements. 
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models were trained with a batch size of 10, and an initial learning rate 
of 10−4 using Adam [34]. We reduced the learning rate by a factor of 0.9 
every time the loss on the validation set did not decrease after a training 
epoch. We stopped the training if the validation loss did not decrease 
after two consecutive epochs. All models were implemented in Tensor
Flow. Training and validation were performed on a Linux computer with 
an NVIDIA GeForce GTX 1080 GPU. 

2.4. Data and evaluation approach 

Most of the experimental results presented in this paper are with the 
developing Human Connectome Project (dHCP) dataset [11]. None
theless, to demonstrate the applicability of our method to other datasets, 
we also report experimental results with scans from the Pediatric Im
aging, Neurocognition, and Genetics (PING) dataset [27] as well as in- 
house scans of Vein of Galen Malformation (VOGM) patients at Boston 
Children's Hospital. This study was approved by the institutional review 
board. We mostly focus on the dHCP dataset because it is a publicly- 
available dataset on which the interested reader can train and test our 
method and because it is a challenging dataset. It consists of DW-MRI 
images of neonates scanned at 29–45 gestational weeks. The neonatal 
period represents a critical time in brain development. It is characterized 
by rapid cortical expansion and formation of connections between 
distant regions of the brain. Immature myelination of the white matter 
and patient motion make diffusion tensor imaging of neonates especially 
challenging. 

Each DW-MRI scan in the dHCP dataset includes measurements at 
three b-values of 400, 1000, and 2600. Following the widely-adopted 
recommendations [31], we use the b = 1000 measurements for DTI 
estimation. Each scan includes 88 measurements in the b = 1000 shell, 
which are approximately uniformly distributed on the sphere. For each 
subject, we used all 88 measurements to reconstruct a high-quality 
“reference” DTI with the constrained weighted linear least squares 
(CWLLS) method [36]. We refer to this reference reconstruction as Dref. 
For our proposed method, we selected six of the 88 measurements that 
were closest to the six optimized directions proposed in [58]. Specif
ically, the unit vectors indicating these directions are: [0.910, ± 0.416, 
0.000], [±0.416,0.000,0.910], and [0.000,0.910,±0.416]. These six 
directions have been derived to minimize the condition number of the 
diffusion tensor transformation matrix [58]. We also selected one of the 
b = 0 measurements to normalize the six b = 1000 measurements. We 
refer to the reconstructions of our proposed method with these six 
normalized measurements as DTr. For comparison with existing 
methods, we apply three methods on the same six diffusion-weighted 
measurements and one b = 0 measurement. These three methods are 
the following: 1) Constrained Weighted Linear Least Squares (CWLLS) 
[36], which is the standard estimation method, 2) Constrained 
Nonlinear Least Squares (CNLS) [36], and 3) The CNN-based method of 
Lin et al. [45]. This method was originally proposed for estimation of 
fiber orientation distribution. We simply changed the first and the last 
layers of the network to match our application. We refer to this method 
as CNN-DTI. 

With the dHCP dataset, we trained our method using scans of 200 
subjects aged 40–45 gestational weeks. We used data from 40 of these 
subjects as validation set during various stages of hyper-parameter se
lection and training. Once the training of the final model was complete, 
we tested our method on scans of 40 independent subjects; 20 of these 
were from the same age range, while the other 20 were younger subjects 
aged 29–36 gestational weeks. We compare our method with the 
competing techniques in terms of the norm of the difference between the 
estimated tensor and the reference tensor, Dref. Specifically, if we denote 
the predicted tensor with Dpred, then we define the tensor estimation 
error as 

∑
i=1
6 ∣ Dpred

i − Dref
i ∣, where the index i refers to the six tensor 

elements. Moreover, we compute the error in FA, MD, and the angle of 
the major eigen-vector of the tensor. To do this, we calculate the eigen- 
decomposition of the tensor in each voxel and compute the FA and MD 

from the eigen-values using their standard definitions [29]. For each 
voxel, the error in FA and MD is defined as the absolute difference be
tween those of the predicted and reference tensors. We compute the 
angle between the major eigen-vectors of the predicted and reference 
tensors as the angular error between the two tensors. We also present 
tractography and connectivity analysis results. To have a fair compari
son between different methods, no especial data pre-processing (e.g., 
smoothing or re-sampling) was performed for our method or any of the 
compared techniques. Our proposed method does not rely on such data 
pre-processing steps. 

3. Results and discussion 

Table 1 shows the error in the estimated tensor and three tensor- 
derived variables, i.e., FA, MD, and the orientation of the major eigen- 
vector for the proposed method and the three compared methods. For 
each of these variables, we computed the average error (across all brain 
voxels) separately for each test subject, thereby obtaining one error 
value for each parameter and subject. The numbers in Table 1 and the 
other tables in this paper show the mean ± standard deviation across 
subjects. On all 40 test subjects from the dHCP datasets our method 
achieved lower estimation errors than all other methods. As shown in 
the table, compared with other methods, our proposed method has 
reduced the error in MD by factors of approximately 2.6–9.8 and the 
error in FA and orientation of major eigen-vector by factors of approx
imately 1.5–2.2. We ran paired t-tests to determine the statistical sig
nificance of the differences between our method and the other methods. 
These tests showed that the errors for the proposed method were 
significantly lower (p < 0.001) than those of the three compared 
methods. 

Fig. 2 shows examples images reconstructed with the proposed 
method and CWLLS for two test subjects from the dHCP dataset. It shows 
two of the tensor channels, FA, MD, and color-FA images. Due to space 
limits, in this figure and the following figures we show the results of 
selected compared methods. The results shown in Fig. 2 clearly 
demonstrate a substantial advantage for the proposed method compared 
with CWLLS. The parameters estimated with the proposed method using 
six diffusion-weighted measurements are close to the reference images 
obtained with 88 measurements. On the other hand, CWLLS estimations 
are very noisy and contain large errors both in the gray matter area as 
well as in the location of major white matter tracts. Visually, the 

Table 1 
Estimation error on older (40–45 gestational weeks) and younger (29–36 
gestational weeks) test subjects from the dHCP dataset. Bold type indicates 
statistically smaller errors at p = 0.001, computed using paired t-tests to 
compare our proposed method with every one of the competing methods.  

Test subjects Method Tensor 
(×1000), 
mm2s−1 

MD 
(×1000), 
mm2s−1 

FA Angle 
(degrees) 

Older 
neonates 
(n = 20) 

CWLLS 0.450 ±
0.040 

0.413 ±
0.042 

0.155 
± 0.017 

20.2 ±
2.45 

CNLS 
0.438 ±
0.044 

0.410 ±
0.041 

0.149 
± 0.019 

20.3 ±
2.48 

CNN-DTI 
0.393 ±
0.037 

0.345 ±
0.037 

0.124 
± 0.011 

17.2 ±
2.20 

Proposed 
0.118 ±
0.019 

0.042 ±
0.029 

0.071 
±

0.003 

11.6 ±
2.07 

Younger 
neonates 
(n = 20) 

CWLLS 
0.430 ±
0.058 

0.376 ±
0.050 

0.141 
± 0.019 

18.5 ±
2.85 

CNLS 
0.420 ±
0.060 

0.370 ±
0.050 

0.144 
± 0.022 

18.7 ±
2.87 

CNN-DTI 0.401 ±
0.049 

0.325 ±
0.041 

0.137 
± 0.017 

16.4 ±
2.34 

Proposed 
0.122 ±
0.018 

0.123 ±
0.022 

0.073 
±

0.012 

10.3 ±
2.75  
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superiority of our method compared with CWLLS can be best seen in the 
color-FA images. These are standard color-coded FA images that display 
the tensor anisotropy and the orientation of the major eigenvector in a 
single image. These images show that our method can accurately esti
mate the diffusion tensor throughout the brain. 

From the examples shown in Fig. 2, the images reconstructed with 
our method seem to be less noisy than the reference image. Although the 
reference image is based on 88 measurements, it is computed by fitting 
the diffusion tensor on a voxel-wise basis, i.e., by considering the 
diffusion signal in each voxel, one at a time. Our proposed method, on 
the other hand, uses the correlations between the diffusion signal and 
tensor values among L3 neighboring voxels. For further visual assess
ment of the reconstruction results, in Fig. 3 we have shown example one- 
dimensional profiles from FA and MD images reconstructed with our 
method and CWLLS compared with the reference. Furthermore, in Fig. 4 
we have shown glyph visualization of the tensors. The profiles in Fig. 3 
show that, compared with the reference, the reconstructions produced 

by our method show no significance loss of edge sharpness and are close 
to the reference image in almost all locations. The reconstructions pro
duced with CWLLS are noisy and very different from the reference. The 
tensor visualizations presented in Fig. 4 further show that our method is 
close to the reference for most brain regions. CWLLS reconstructions, on 
the other hand, show large estimation errors in this figure. 

In order to investigate the effect of measurement noise on the per
formance of our proposed method, we conducted a simulation experi
ment where we added simulated noise to the scans from the dHCP 
dataset. Specifically, independent and identically-distributed Rician 
noise with signal-to-noise ratio (SNR) in the range [15,50] dB was 
added. An SNR of 15 dB is close to the lowest SNR reported or used for 
simulation in prior works [18,60]. Table 2 shows the results of this 
experiment in terms of error in FA and the orientation of the major 
tensor eigen-vector for the proposed method and CWLLS. The noise had 
a much smaller effect on our proposed method than on CWLLS. For our 
method, the error in FA and the orientation of the major eigenvector 

Fig. 2. Example tensor images estimated with CWLLS and the proposed method and their corresponding tensor-derived parameters. These images were recon
structed from scans of two neonatal subjects from the dHCP dataset. The top subject has a gestational age of 41 weeks, which is within the age range of subjects that 
have been used for training (i.e., 40–45 gestational weeks). The bottom subject has a gestational age of 31 weeks, which is much younger than the age range of the 
training subjects. For each subject, we have shown two of the six tensor channels (i.e., Dxx and Dxy), FA, MD, and color-FA. 
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increased by 4.2 % and 5.2 %, respectively, as we reduced the SNR from 
50 dB to 15 dB. Comparatively, the errors for CWLLS increased by 18.1 
% and 20.0 %, respectively. Fig. 5 shows example slices and profiles of 
FA and MD images reconstructed with our proposed method at SNR =
15. They show that, even at this low SNR, reconstructions of our pro
posed method are close to the reference image. 

Fig. 6 shows three example whole-brain connectomes generated 
from the diffusion tensors estimated with the proposed method and 
CNN-DTI. Tractography provides an indirect assessment of diffusion 
tensor estimation accuracy because the tractography results depend on 
the settings of the fiber tracing algorithm. For a fair comparison, we used 
the same seed locations and the same fiber tracing algorithm for 
different methods. Specifically, we used the white matter mask provided 
as part of the dHCP dataset for seeding. Moreover, we used the EuDX 

tractography algorithm [20], which is a fiber tracing algorithm that 
relies heavily on voxel-wise fiber directions instead of imposing global 
fiber priors. We used a step size of 0.5 mm. As shown in these example 
figures, the connectome produced with our proposed method from only 
6 measurements is similar to the one produced based on Dref recon
structed from 88 measurements. The connectome produced with CNN- 
DTI, on the other hand, lacks much of the major white matter tracts. 
Fig. 7 shows example connectivity maps between 87 brain regions 
provided for each dHCP scan, computed from the whole-brain con
nectomes. As shown in this example, the connectivity map for the pro
posed method from only 6 measurements is similar to that of the 
reference connectome computed from 88 measurements. The connec
tivity maps for CNN-DTI and CWLLS, on the other hand, are very 
different and lack many of the connections that are present in the 

Fig. 3. Example one-dimensional profiles of FA (top) and MD (bottom) images reconstructed by the proposed method and CWLLS. For each image, we have shown 
one horizontal (H) and one vertical (V) profile. The locations of these profiles have been marked with the blue lines on the reference images (left-most column). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Example glyph visualizations of the diffusion tensor images reconstructed with the proposed method and CWLLS alongside the reference tensors.  

Table 2 
Reconstruction error in terms of the angle of the major tensor eigen-vector and FA for CWLLS and the proposed method for different amounts of simulated noise added 
to the signal. The test subjects in this experiment were the 20 older neonates that were used in the experiment reported in Table 1. The first column shows the case 
where no noise was added to the signal. Bold type indicates statistically smaller errors at p = 0.001, computed using paired t-tests to compare our proposed method 
with CWLLS.  

Parameter Method No added noise SNR = 50 dB SNR = 30 dB SNR = 20 dB SNR = 15 dB 

angle (degrees) 
CWLLS 20.2 ± 2.45 20.5 ± 2.41 21.2 ± 2.49 22.8 ± 2.55 24.6 ± 2.56 
Proposed 11.6 ± 2.07 11.7 ± 2.09 11.9 ± 2.05 12.0 ± 2.11 12.2 ± 2.15 

FA CWLLS 0.155 ± 0.017 0.157 ± 0.017 0.165 ± 0.020 0.172 ± 0.025 0.183 ± 0.026 
Proposed 0.071 ± 0.003 0.071 ± 0.003 0.071 ± 0.005 0.073 ± 0.006 0.074 ± 0.006  
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reference connectivity map. For a quantitative comparison of the con
nectivity matrices, we considered 100 off-diagonal elements of the 
reference connectivity matrix with the largest values, i.e., the 100 pairs 
of brain regions with the strongest connections. We compared the values 
of those matrix elements between the reference connectivity matrix and 
the connectivity matrix computed with our method using a paired t-test 
with a significance threshold of p = 0.001. The test showed that the 
connectivity matrix for our method was not different from the Reference 
(p = 0.32). On the other hand, the comparison of the Reference con
nectivity matrix and the connectivity matrix estimated with CWLLS 

using the same statistical significance test showed a significant differ
ence (p < 0.001). Similarly, for CNN-DTI the difference with the 
Reference connectivity matrix was significant (p < 0.001). 

With regard to architectural hyper-parameters, increasing the patch 
size (L) to 7 did not improve the estimation accuracy of the proposed 
method. Note that the number of signals in the sequence grows cubically 
with L. Increasing L from 5 to 7 would increase the sequence length from 
125 to 343. Our experiments show that the transformer modules become 
difficult to train with L ≥ 6. On the other hand, reducing L to 3 signif
icantly increased the method's estimation error, obviously because of the 

Fig. 5. Example slices (left) and one-dimensional profiles (right) from the FA and MD images reconstructed with the proposed method with added simulated Rician 
noise with an SNR of 15 dB. For each image, we have shown one horizontal (H) and one vertical (V) profile. The locations of these profiles have been marked with the 
blue lines on the corresponding reference image slice (left-most column). (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 6. Example whole-brain connectomes produced with the EuDX tractog
raphy algorithm based on the reference diffusion tensor estimated from 88 
measurements and the diffusion tensors estimated with our proposed method 
and CNN-DTI from only 6 measurements. 

Fig. 7. The connectivity map between 87 brain regions for a test subject in the 
dHCP dataset. The connectivity maps were computed from the whole-brain 
connectomes derived based on the reference diffusion tensor (estimated from 
88 measurements) and the diffusion tensors estimated with the proposed 
method, CWLLS, and CNN-DTI (estimated from 6 measurements). 
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reduced spatial context to utilize in the estimation. We also found that 
increasing the number of transformer modules in Models S and ST 
beyond 4 did not improve the accuracy of our method. Furthermore, 
increasing the projection dimension and the number of self-attention 
heads to values larger than our default values (i.e., dh = 512 and nh =

2) did not improve the estimation accuracy. On the other hand, our two- 
stage estimation approach proved to be effective. 

Fig. 8 shows example tensor and FA images reconstructed with 
Model S and Model ST and the corresponding error maps, i.e., the dif
ference between the estimated values and the reference. Model ST 
consistently improved the estimation accuracy of Model S. For example, 
the tensor estimation error for Model S on older neonates and younger 
neonates from the dHCP dataset were, respectively, 0.154 ± 0.028 and 
0.168 ± 0.031. Paired t-tests showed that these errors were significantly 
higher than the errors for Model ST reported in Table 1, although they 
were significantly lower than the errors for CWLLS, CNLS, and CNN-DTI 
(p < 0.001). We performed extensive experiments to investigate whether 
the accuracy of Model S could be improved to match Model ST by 
changing hyper-parameters (L, dh, nh, number of transformer modules, 
and training settings). However, Model ST was consistently more ac
curate than Model S, regardless of hyper-parameter settings. These ob
servations support and justify our proposed two-stage approach that 
exploits the spatial correlations in the diffusion signal as well as in the 
tensors. 

The error maps shown in Fig. 8 display some spatial structure for 
both Model S and Model ST. To examine these spatial structures, we 
computed FA and MD estimation errors separately for white matter 
(WM), gray matter (GM) and CSF voxels. Furthermore, we computed 
these errors for four different structures in WM. The results of this 
analysis are presented in Table 4. The first observation from this table is 
that, for both FA and MD, the reconstruction errors in WM are less than 

those in GM and CSF. However, for the four different WM sub-structures 
the errors are very similar. We performed paired t-tests to compare the 
FA and MD reconstruction errors for these four structures, separately for 
Model S and Model ST. None of these tests showed statistical signifi
cance at p = 0.001. On the other hand, on all three tissue types (WM, 
GM, CSF) and all four WM structures shown in this table, the FA and MD 
estimation errors for Model ST were significantly smaller (p < 0.001) 
than those for Model S. 

Fig. 9 shows example Bland-Altman plots for the FA and MD errors 
for Model S and Model ST. We have shown plots for Model T versus the 
reference (left column), Model ST versus the reference (middle column), 
and Model T versus Model ST (right column). In the plots for Model T 
versus Model ST, because none of them can be considered the reference, 
we have used the average of the two models as the horizontal axis as 
suggested in [13,22]. These plots show that for both FA and MD, both 
models tend to have larger errors for larger values of FA and MD. 
However, for both FA and MD, Model ST shows fewer large errors. For 
both FA and MD, the bias (i.e., the mean error compared with the 
reference) of Model ST is smaller than the bias of Model S. The plots in 
the right column in this figure also show that the “corrections” made by 
Model ST over Model S are over all values of FA and MD. 

Table 3 and Fig. 10 show the results of further evaluations of our 
method on 20 test subjects from the PING dataset and 7 VOGM patients. 
Each of the scans in these two datasets included 30 measurements in the 
b = 1000 shell. For each scan in these datasets, we used all 30 mea
surements to reconstruct the reference image. We then selected six of the 
b = 1000 measurements (and one b = 0 measurement for normalization) 
for reconstruction with the proposed method and the three competing 
methods in the same way as described above for the experiments with 
the dHCP dataset. The VOGM patients' age range was 0–3 years and the 
PING subjects' age range was 3–20 years. Because of higher myelination 

Fig. 8. Comparison of estimation errors for Model S and Model ST in our proposed method. We have shown the results on two subjects from the dHCP dataset; an 
older subject (top) and a younger subject (bottom). As shown in Fig. 1, Model S uses the diffusion signals to predict the tensor values. Model ST, on the other hand, 
builds upon the estimations of Model S by learning to incorporate the spatial correlations in the diffusion signal and tensor values. 
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and better data quality, competing methods achieved more accurate 
estimations on these two datasets than on the dHCP dataset. Moreover, 
compared with the experiments on the dHCP dataset above, in these 
experiments Dref is more biased towards DCWLLS and, to some extent, 
DCNLS. This is because DCWLLS and DCNLS are reconstructed using 6 out of 
the 30 measurements used to reconstruct Dref and they are all recon
structed using least-square principles. Nonetheless, our proposed 
method achieved significantly lower errors on both of these additional 
datasets, as indicated in Table 3. Compared with the competing 
methods, our proposed method reduced the estimation error in MD by 
factors of 1.9 − 3.2, error in FA by factors of 1.4 − 1.55, and error in the 
orientation of the major eigen-vector by factors of 1.38 − 1.58. The 
superiority of the proposed method can be visually observed in the 

examples shown in Fig. 10. Due to space limits, we have shown the re
sults of our proposed method and CNN-DTI, which was slightly more 
accurate than CWLLS and CNLS. The differences between our method 
and CNN-DTI is especially more clear in the color-FA images that encode 
both the degree of anisotropy and the direction of the major eigen-vector 
in the same image. 

Our study has some limitations that need to be mentioned. First, we 
only considered the diffusion tensor reconstruction from six measure
ments. The goal of this paper was to demonstrate the potential gains of 
exploiting the spatial correlations and the capability of attention-based 
neural networks to learn these correlations. Therefore, to enhance the 
focus of the study we used a fixed measurement scheme as input to our 
network. Although we anticipate that the use of these neural network 
models should be useful for other DW-MRI models and other measure
ment schemes, those could be investigated in future works. Moreover, 
although we have evaluated our method on three different and inde
pendent datasets, an application-specific evaluation may be warranted if 
our method is to be used for a specific clinical application. For example, 
it is not clear how our method (using six measurements) would compare 
with the reference image (using much larger measurement sets) if the 
reconstructions are to be used for detecting subtle changes in the brain 
micro-structure due to lesions or other pathologies. Therefore, further 
evaluation of our proposed method for specific clinical patient pop
ulations may be useful. 

4. Conclusions 

Diffusion tensor imaging is increasingly being used to study brain 
development and degeneration. However, the same least squares-based 
estimation methods [36] have been commonly used in the past two 
decades. Standard estimation methods, which are based on linear or 
non-linear fitting of measurements on a per-voxel basis, can be highly 
sub-optimal. The main intuition of our work is that state of the art deep 
neural networks for modeling signal sequences can be adapted to 
develop accurate DTI estimation methods. In particular, the transformer 
models that have been used in this work are capable of learning very 
complicated correlations between signals in a sequence. Using this 

Fig. 9. Bland Altman plots for FA (top) and MD (bottom). Plots have been shown for Model T versus the reference (left column), Model ST versus the reference 
(middle column), and Model T versus Model ST (right column). To simplify the presentation we have multiplied values of MD by 1000 and they are in units 
of mm2s−1. 

Table 3 
Average and standard deviation of the estimation error for CWLLS and the 
proposed method on scans of 20 subjects from the PING dataset and 7 VOGM 
patients. Bold type indicates statistically lower errors at p = 0.001 computed 
using paired t-tests to compare our proposed method with every one of the 
competing methods.  

Test 
subjects 

Method tensor 
(×1000), 
mm2s−1 

MD 
(×1000), 
mm2s−1 

FA Angle 
(degrees) 

PING (n 
= 20) 

CWLLS 
0.320 ±
0.035 

0.317 ±
0.040 

0.107 ±
0.022 

18.5 ±
3.30 

CNLS 0.322 ±
0.037 

0.319 ±
0.040 

0.110 ±
0.025 

18.9 ±
3.30 

CNN-DTI 
0.299 ±
0.030 

0.277 ±
0.032 

0.103 ±
0.020 

17.8 ±
3.07 

Proposed 
0.174 ±
0.021 

0.101 ±
0.033 

0.073 
± 0.011 

12.4 ±
2.28 

VOGM 
(n = 7) 

CWLLS 
0.407 ±
0.054 

0.350 ±
0.049 

0.125 ±
0.016 

18.0 ±
2.53 

CNLS 0.401 ±
0.055 

0.364 ±
0.050 

0.127 ±
0.017 

18.2 ±
2.77 

CNN-DTI 
0.346 ±
0.034 

0.329 ±
0.042 

0.114 ±
0.012 

15.9 ±
2.22 

Proposed 
0.147 ±
0.031 

0.176 ±
0.028 

0.082 
± 0.014 

11.5 ±
2.69  
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model, we developed a method that was able to learn spatial correlations 
between diffusion signals and tensor values in neighboring voxels for 
accurate tensor estimation. On the challenging neonatal DW-MRI scans 
from the dHCP dataset, our method reduced the estimation error, 
compared with three competing methods, by factors of 1.5–9.8. The 
estimations of the proposed method were close to the reference esti
mations that were obtained using 88 measurements. Our method also 
led to superior tractography and connectivity analysis. Furthermore, our 

method showed highly accurate and robust estimation on two additional 
datasets. These observations demonstrate the significant potential of the 
proposed method for improving the accuracy of DTI estimation, espe
cially for challenging cohorts such as neonates and infants. Therefore, 
our method can facilitate DTI studies to detect subtle changes in brain, 
while also reducing the scan time. 

Fig. 10. Example tensor images and tensor-derived parameters obtained with CNN-DTI and the proposed method on a subject from the PING dataset (top) and a 
VOGM patient (bottom). The PING subject was 14 years old at scan time. The VOGM patient was 2 months old at scan time. The location of malformation in the brain 
of the VOGM patient is clearly visible in the reference image. For each subject, we have shown two tensor channels (Dxx and Dxy), FA, MD, and color-FA. 

Table 4 
FA and MD reconstruction errors for Model S and Model ST for selected tissue types: white matter (WM), gray matter (GM), and Cerebrospinal Fluid (CSF). Addi
tionally, errors have been shown for four white matter structures: corpus callosum (CC), temporal lobe white matter (TLWM), occipital lobe white matter (OLWM), and 
frontal lobe white matter (FLWM). The test subjects in this experiment were 20 older neonates from the dHCP dataset. Bold type indicates statistically smaller errors at 
p = 0.001, computed using paired t-tests. As in the other tables, to simplify the presentation we have multiplied the MD errors by 1000 and they are in units of mm2s−1.   

Method WM GM CSF CC TLWM OLWM FLWM 

FA 
Model S 0.058 ± 0.004 0.066 ± 0.006 0.092 ± 0.007 0.060 ± 0.004 0.058 ± 0.005 0.057 ± 0.004 0.057 ± 0.006 
Model ST 0.054 ± 0.004 0.061 ± 0.005 0.082 ± 0.007 0.053 ± 0.006 0.055 ± 0.004 0.054 ± 0.005 0.052 ± 0.005 

MD Model S 0.038 ± 0.020 0.045 ± 0.018 0.058 ± 0.015 0.037 ± 0.022 0.037 ± 0.024 0.040 ± 0.020 0.040 ± 0.023 
Model ST 0.035 ± 0.018 0.041 ± 0.017 0.050 ± 0.016 0.034 ± 0.020 0.034 ± 0.021 0.036 ± 0.017 0.035 ± 0.015  
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