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Abstract: We present an integral approach to Pogorelov’s Hessian estimates for the Monge-Ampere
equation, originally obtained via a pointwise argument.
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Dedicated to Neil S. Trudinger on the occasion of his 80th birthday.

In this note, we present a mean value inequality approach to Pogorelov’s Hessian estimates for the
Monge-Ampere equation, derived via a pointwise argument [3].

Theorem 0.1. Let u be a smooth convex solution to detD*u = 1 with Du(0) = 0 on D, =
{xeR”:x~uxSTz}.Then

2n
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I1Dullp=,) | - 0.1)

|D:| |D|
The Hessian estimates for the (dual) potential equation of minimal Lagrangian surfaces, including
the two dimensional Monge-Ampere equation det D*u = 1, obtained in recent years, originate in

Trudinger’s classic mean value inequality proof of the gradient estimates for the minimal hypersurface
equation, by Bombieri-De Giorgi-Miranda [2].

|D*u(0)| < |21B,]

0.1. Monotonicity on maximal surface
Taking the gradient of the both sides of the Monge-Ampere equation
Indet D*u = 0, (0.2)
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we have .
> 870; (x, Du(x)) = 0, (0.3)

ij=1
where (gij) is the inverse of the induced metric g = (gi j) = D?u on the Lagrangian graph M =

(x,Du(x)) c (R*xR",2dxdy) (for simplicity of notation, we drop the 2 in g = 2D?u). Because
of (0.2) and (0.3), the Laplace-Beltrami operator of the metric g also takes the non-divergence form

n ..
Ny = _Zlg” 0;;. Denote the extrinsic distance of the position vector (x, Du) to the origin by
L,]=

1,(0)=0 u convex

z2=(xp, %) Du=x-u, = x-(u(x) —u, (0)) > 0.
Then
2_ i SEY
|VgZ| = 2 870z0jz= ) g (u;i + xeuy;) (Mj + Xkukj)

ij=1 i.jk=1
no..

£ Zlg” (u,2 + XU + 2x,~u,~u,-,-) > 4x - uy,
=

n .
NgZ = X+ ANglhy + Uy - AgX + 2 <Vgx, Vgux> = %_ 8"0:x,0 juy

22g”ull - 2” < n |VgZ|
2z

where at any fixed point p, we assume that D*u is diagonalized, and we use (0.3) for A,z. In terms of
s = 4z, we have

|Vgs| >land Aps<(n—1) |Vgs|2 /s. (0.4)
Following [2, p.392], set
= * 1(p? -5 <s<
TONES f t)((t/p)dt={ (p7-v) Osssp
s 0 s>p
actually in the following, y is taken as a nonnegative smooth approximation of the characteristic

function of (—co, 1) C (—00, c0) with support in (—oo, 1). We have

2
Ve

A (8) =y DAy s+ "

= —sx (s/p) g 5 — [X(S/P) + g)(' (s/p) |VgS|2

2
|V,s]

ny (s/p) + g)(' (s/p)

d
Gl [7,s],

where we use (0.4) in the above inequality. Multiply both sides by any nonnegative superharmonic
quantity g : ¢ > 0 and A,q < 0, then integrate over the whole maximal surface M, one has

w1 d o 2
Ozfwqudvg:qugd/dngp“d—[f qp )((s/p)|vgs| dvg|.
M M P lIm
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Note 1 < |Vgs| = by tedious asymptotic analysis and dv, = dx, after taking limit in the smooth
approximation of the characteristic function, we obtain

|Bi] g (0) > T_"f q|Vgs|2 dve > T_”f qdx. (0.5)
D. D,

0.2. Superharmonic quantity
Lemma 0.1. Suppose u is a smooth convex solution to det D*u = 1. Then

2
’

Ag Indet|I+ D?u(x)| 2 % ‘vg Indet| + D?u ()| (0.6)

;1
or equivalently for q (x) = {det [I + D’u (x)]} o
Ay g < 0. 0.7)

To begin the proof of Lemma 0.1, we first denote b (x) = Indet [I + D?u (x)] and rewrite Agb only
in terms of the second and third order derivatives of u, relying on the following equations for the first
and second order derivatives of u :

0=d,IndetD’u =3 g0,uy £ Y ¢" o, (0.8)
i,j=1 i=1
0= 3 95(s"0ijus) = 3 701t~ Y. 8*0p8ug"ijttar
ij=1 i,j=1 i,jk,I=1
Aglhop = .Zlgijaijuaﬂ £ klZ:ngkglluklaukl,B, 0.9)
lt/: i =

where at any fixed point p, we assume that D?u is diagonalized. The first and second derivatives of b
are

8ab = Zn: (I+g)ijuija

ij=1
Oopb = ‘Zl I+ g)ij Oopltij — _ kZ‘; ] I+ 8)ik 0p (O + gr) (I + 8)lj Uija
l’]: l’j’ k) =

£ ; (1 +u)™" Oopltii — k%l (1 + )™ (1 + )™ UklaUkips
where ((I + g)ij ) =+ g)‘1 . Coupled with (0.9), we arrive at

Agb = ﬂz_lgaﬁaaﬁb £ g]gcmaaab
=2 (1 +uy)™" Agui — g (L +u)™ (1 +uy) ™y,
i1 wkl=1

= _kzl | A+ )" g, — 2 lg““ A+ )7 A+ )" u,

Mathematics in Engineering Volume 5, Issue 2, 1-6.



| % [ g = (1 T 07 gy
L, J,K=

Y A +)T A+ )" g,
i, k=1

S A+ 1+ a0 R,
i,j,k=1

(0.10)

where we denote (the second fundamental form) +/g/g//g"*u;; by h;j. Let y; = 471 ¢ (~1,1), and

Ai+1

regrouping those terms £, with three repeated indices, two repeated ones, and none, we have

1 »
beb=7 % (1+u)(1- 1) By
i,k
Ly
Z 1 - l"tl 111 + Z]#l (3 ﬂ] - 2/1!”]) hlzJ]] 2 0.
+ Zz>]>k (3 Miltj — Hjte — luk:ul) hijk
Accordingly at p, we have
2 n n n -1 2
|ng| = ﬁzlgaﬁaabaﬁb = Zlgml [Zl (1 + /lj) ujj(y]
a,B= a= j=
2
n n -1 ..
= Zl[zl(l-l—/l]) /ljg”\/g Ujja
a=1|j=
1n n 2 1 n n 2
=GB 0] =3B |£ 0]
where the last equality follows from (0.8) or >, h;;; = 0, and the corresponding expressions

with (1 + ,uj) and (1 - U j) for each y; < 0 and y; > O respectively are used to justify the Jacobi

inequality (0.6) in the following.
For each fixed i, case y; > O:

1 2
Z (] (1 —,u]')hijj) <

<L+ ) (=) W+ 5[0 =45 +2(1 = )| 12
J#
where in the last inequality we used

™=

(1= p)* i + z( w) 1,

J#t

| =

1

| =

(1_ ')2< 1 -3 for u; € [0, 1) .
M >
2(1 = pip;) forp; € (-1,0) and 1; > 0

case i; € (—1,0): Symmetrically we have

2
2_1,1(2(“#1) w) <+ u) (=) I+ 5 1= 8+ 2(1 = ;)| 13

Jj=1 J#I

We have proved the Jacobi inequality (0.6) in Lemma 0.1.
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0.3. Divergence of Au

Plug in the superharmonic quantity from (0.7) to (0.5), we get

{det [I + D%u (0)]}ﬁ =q'(0) <|B|T"

b, qdx
From
2
|DT|2 — (f ql/Zq—l/de) Sf quf q_ldx,
DT DT DT
we have | .
< Zf g 'dx.
Jp, adx "~ 1D I,
Now
f q_ldx:f [(1+A) (1 +4,)]% dx<f (1 + Apay) dx (0.11)
D D D-

1S/lmax
< f 2Amaxdx < Zf Audx = 2f uydA < 210D;|||Dull~p.) -
D, D 0D,

Therefore, we arrive at the claimed estimate in Theorem 0.1.

™ |0D,]
|D| | D]

2n
[D*u(0)] < det |1+ D*u(0)] < [2 1Bl ||Du||Lm<D,>] :

Remark 0.1. Relying on a “rougher” superharmonic quantity g = A L=y satisfying A,q < 0, repeat

the above arguments, in particular, with (1 + A,x) in (0.11) replaced by An.x, we have a sharper
estimate

7" |0D,]
|D:| |D-|
Remark 0.2. In addition to the conditions in Theorem 0.1, assuming u (0) = 0, and the solution u (x)
exists on {x eR":u(x) < 7'2} , then we have

n—1
|D?1 (0)] = Amax (0) < [|Bl| ||Du||Lm(D,>] : (0.12)

FTZ{XERHZM(X)SS(H)TZ}CDTZ{XERHZX-MXSTZ}CFT/W

for a small dimensional constant € (n) , where the second inclusion follows from 0 < u, = (ru,),—ru,, <
(ru,), for the convex function u; and the first inclusion follows from the fact that the gradient Du is
small at low enough level set of u, which can be derived from the “separation” Corollary 1 in [1, p.40],
of lower level set of the convex solution u from the boundary of the upper level set of u#, combined
with the invariance of the “extrinsic distance” x - u, (x) and the equation det D?*u (x) = 1 under affine
transform v (x) = u (Ax) withdetA = 1 : x- v, (x) = Ax - u, (Ax), det D*v (x) = 1, and the invariance of
the equation det D*u (x) under scaling v (x) = u (7x) /7% : det D*v (x) = 1.

We claim 1
o "
T I1Dull gy | (0.13)

|D2Lt (0)| = /lmax (0) <|C (I’l)
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or a weaker estimate
[

|

2n
|D*u (0)| < [C (n) ||Du||Lm(rT)] : (0.14)

In fact, going with the sharper superharmonic quantity g = A,00=D 0.5) becomes

|B1] g (0) ZT—"f quZT_"f qdx.
D, r,

Repeating Step 0.3 Divergence of Au, with D, replaced by I';, we have

0T "
D*u(0)] = Amax (0) < ['Bll —— == [|Du| ] :
| | T
By John’s lemma, there exists an ellipsoid E such that the convex set I'; satisfies £ Cc I'; C nE.
Alexandrov estimate and simple barrier argument combined with the equation det D*u = 1 on I'; and
E respectively, lead to ¢ (n) 7" < [I;| < C (n) T".
Consequently, we arrive at the sharper Hessian estimate (0.13) in terms of the level set of solution
u.
For the weaker Hessian estimate (0.14) in terms of the level set u, just repeat the above argument

with the weaker superharmonic quantity g = {det [I + Dzu]}_fl" .
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