
Research article

A monotonicity approach to Pogorelov's Hessian estimates for Monge-Ampère equation[†]

Yu Yuan*

Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195, USA

[†] **This contribution is part of the Special Issue:** Nonlinear PDEs and geometric analysis

Guest Editors: Julie Clutterbuck; Jiakun Liu

Link: www.aimspress.com/mine/article/6186/special-articles

* **Correspondence:** Email: yuan@math.washington.edu.

Abstract: We present an integral approach to Pogorelov's Hessian estimates for the Monge-Ampère equation, originally obtained via a pointwise argument.

Keywords: Monge-Ampère equation

Dedicated to Neil S. Trudinger on the occasion of his 80th birthday.

In this note, we present a mean value inequality approach to Pogorelov's Hessian estimates for the Monge-Ampère equation, derived via a pointwise argument [3].

Theorem 0.1. *Let u be a smooth convex solution to $\det D^2u = 1$ with $Du(0) = 0$ on $D_\tau = \{x \in \mathbb{R}^n : x \cdot u_x \leq \tau^2\}$. Then*

$$|D^2u(0)| \leq \left[2|B_1| \frac{\tau^n}{|D_\tau|} \frac{|\partial D_\tau|}{|D_\tau|} \|Du\|_{L^\infty(D_\tau)} \right]^{2n}. \quad (0.1)$$

The Hessian estimates for the (dual) potential equation of minimal Lagrangian surfaces, including the two dimensional Monge-Ampère equation $\det D^2u = 1$, obtained in recent years, originate in Trudinger's classic mean value inequality proof of the gradient estimates for the minimal hypersurface equation, by Bombieri-De Giorgi-Miranda [2].

0.1. Monotonicity on maximal surface

Taking the gradient of the both sides of the Monge-Ampère equation

$$\ln \det D^2u = 0, \quad (0.2)$$

we have

$$\sum_{i,j=1}^n g^{ij} \partial_{ij}(x, Du(x)) = 0, \quad (0.3)$$

where (g^{ij}) is the inverse of the induced metric $g = (g_{ij}) = D^2u$ on the Lagrangian graph $M = (x, Du(x)) \subset (\mathbb{R}^n \times \mathbb{R}^n, 2dxdy)$ (for simplicity of notation, we drop the 2 in $g = 2D^2u$). Because of (0.2) and (0.3), the Laplace-Beltrami operator of the metric g also takes the non-divergence form $\Delta_g = \sum_{i,j=1}^n g^{ij} \partial_{ij}$. Denote the extrinsic distance of the position vector (x, Du) to the origin by

$$z = (x_1, \dots, x_n) \cdot Du = x \cdot u_x \stackrel{u_x(0)=0}{=} x \cdot (u_x(x) - u_x(0)) \stackrel{u \text{ convex}}{\geq} 0.$$

Then

$$\begin{aligned} |\nabla_g z|^2 &= \sum_{i,j=1}^n g^{ij} \partial_i z \partial_j z = \sum_{i,j,k=1}^n g^{ij} (u_i + x_k u_{ki}) (u_j + x_k u_{kj}) \\ &\stackrel{p}{=} \sum_{i=1}^n g^{ii} (u_i^2 + x_i^2 u_{ii}^2 + 2x_i u_i u_{ii}) \geq 4x \cdot u_x, \\ \Delta_g z &= x \cdot \Delta_g u_x + u_x \cdot \Delta_g x + 2 \langle \nabla_g x, \nabla_g u_x \rangle_g = 2 \sum_{i,j,k=1}^n g^{ij} \partial_i x_k \partial_j u_k \\ &\stackrel{p}{=} 2 \sum_{i=1}^n g^{ii} u_{ii} = 2n \leq \frac{n}{2} \frac{|\nabla_g z|^2}{z}, \end{aligned}$$

where at any fixed point p , we assume that D^2u is diagonalized, and we use (0.3) for $\Delta_g z$. In terms of $s = \sqrt{z}$, we have

$$|\nabla_g s| \geq 1 \text{ and } \Delta_g s \leq (n-1) |\nabla_g s|^2 / s. \quad (0.4)$$

Following [2, p.392], set

$$\psi(s) \stackrel{\chi=\chi_{[0,1]}}{=} \int_s^\infty t \chi(t/\rho) dt = \begin{cases} \frac{1}{2} (\rho^2 - s^2) & 0 \leq s \leq \rho \\ 0 & s > \rho \end{cases},$$

actually in the following, χ is taken as a nonnegative smooth approximation of the characteristic function of $(-\infty, 1) \subset (-\infty, \infty)$ with support in $(-\infty, 1)$. We have

$$\begin{aligned} \Delta_g \psi(s) &= \psi' \Delta_g s + \psi'' |\nabla_g s|^2 \\ &= -s \chi(s/\rho) \Delta_g s - \left[\chi(s/\rho) + \frac{s}{\rho} \chi'(s/\rho) \right] |\nabla_g s|^2 \\ &\geq - \left[n \chi(s/\rho) + \frac{s}{\rho} \chi'(s/\rho) \right] |\nabla_g s|^2 \\ &= \rho^{n+1} \frac{d}{d\rho} [\rho^{-n} \chi(s/\rho)] |\nabla_g s|^2, \end{aligned}$$

where we use (0.4) in the above inequality. Multiply both sides by any nonnegative superharmonic quantity $q : q \geq 0$ and $\Delta_g q \leq 0$, then integrate over the whole maximal surface M , one has

$$0 \geq \int_M \psi \Delta_g q dv_g = \int_M q \Delta_g \psi dv_g \geq \rho^{n+1} \frac{d}{d\rho} \left[\int_M q \rho^{-n} \chi(s/\rho) |\nabla_g s|^2 dv_g \right].$$

Note $1 \leq |\nabla_g s| \xrightarrow{x \rightarrow 0} 1$ by tedious asymptotic analysis and $dv_g = dx$, after taking limit in the smooth approximation of the characteristic function, we obtain

$$|B_1| q(0) \geq \tau^{-n} \int_{D_\tau} q |\nabla_g s|^2 dv_g \geq \tau^{-n} \int_{D_\tau} q dx. \quad (0.5)$$

0.2. Superharmonic quantity

Lemma 0.1. Suppose u is a smooth convex solution to $\det D^2u = 1$. Then

$$\Delta_g \ln \det [I + D^2u(x)] \geq \frac{1}{2n} \left| \nabla_g \ln \det [I + D^2u(x)] \right|^2, \quad (0.6)$$

or equivalently for $q(x) = \{\det [I + D^2u(x)]\}^{\frac{-1}{2n}}$

$$\Delta_g q \leq 0. \quad (0.7)$$

To begin the proof of Lemma 0.1, we first denote $b(x) = \ln \det [I + D^2u(x)]$ and rewrite $\Delta_g b$ only in terms of the second and third order derivatives of u , relying on the following equations for the first and second order derivatives of u :

$$0 = \partial_\alpha \ln \det D^2u = \sum_{i,j=1}^n g^{ij} \partial_{ij} u_\alpha \stackrel{p}{=} \sum_{i=1}^n g^{ii} u_{ii\alpha}, \quad (0.8)$$

$$\begin{aligned} 0 = \sum_{i,j=1}^n \partial_\beta (g^{ij} \partial_{ij} u_\alpha) &= \sum_{i,j=1}^n g^{ij} \partial_{ij} u_{\alpha\beta} - \sum_{i,j,k,l=1}^n g^{ik} \partial_\beta g_{kl} g^{lj} \partial_{ij} u_\alpha, \\ \Delta_g u_{\alpha\beta} &= \sum_{i,j=1}^n g^{ij} \partial_{ij} u_{\alpha\beta} \stackrel{p}{=} \sum_{k,l=1}^n g^{kk} g^{ll} u_{kla} u_{kl\beta}, \end{aligned} \quad (0.9)$$

where at any fixed point p , we assume that D^2u is diagonalized. The first and second derivatives of b are

$$\begin{aligned} \partial_\alpha b &= \sum_{i,j=1}^n (I + g)^{ij} u_{ij\alpha} \\ \partial_{\alpha\beta} b &= \sum_{i,j=1}^n (I + g)^{ij} \partial_{\alpha\beta} u_{ij} - \sum_{i,j,k,l=1}^n (I + g)^{ik} \partial_\beta (\delta_{kl} + g_{kl}) (I + g)^{lj} u_{ij\alpha} \\ &\stackrel{p}{=} \sum_{i=1}^n (1 + u_{ii})^{-1} \partial_{\alpha\beta} u_{ii} - \sum_{k,l=1}^n (1 + u_{kk})^{-1} (1 + u_{ll})^{-1} u_{kla} u_{kl\beta}, \end{aligned}$$

where $((I + g)^{ij}) = (I + g)^{-1}$. Coupled with (0.9), we arrive at

$$\begin{aligned} \Delta_g b &= \sum_{\alpha,\beta=1}^n g^{\alpha\beta} \partial_{\alpha\beta} b \stackrel{p}{=} \sum_{\alpha=1}^n g^{\alpha\alpha} \partial_{\alpha\alpha} b \\ &= \sum_{i=1}^n (1 + u_{ii})^{-1} \Delta_g u_{ii} - \sum_{\alpha,k,l=1}^n g^{\alpha\alpha} (1 + u_{kk})^{-1} (1 + u_{ll})^{-1} u_{kla}^2 \\ &= \sum_{i,k,l=1}^n (1 + \lambda_i)^{-1} g^{kk} g^{ll} u_{kli}^2 - \sum_{\alpha,k,l=1}^n g^{\alpha\alpha} (1 + \lambda_k)^{-1} (1 + \lambda_l)^{-1} u_{kla}^2 \end{aligned}$$

$$\begin{aligned}
&= \sum_{i,j,k=1}^n \left[(1 + \lambda_i)^{-1} g^{jj} g^{kk} u_{ijk}^2 - (1 + \lambda_i)^{-1} (1 + \lambda_k)^{-1} g^{jj} u_{ijk}^2 \right] \\
&= \sum_{i,j,k=1}^n \lambda_i (1 + \lambda_i)^{-1} (1 + \lambda_k)^{-1} g^{ii} g^{jj} g^{kk} u_{ijk}^2 \\
&= \sum_{i,j,k=1}^n \lambda_i (1 + \lambda_i)^{-1} (1 + \lambda_k)^{-1} h_{ijk}^2,
\end{aligned} \tag{0.10}$$

where we denote (the second fundamental form) $\sqrt{g^{ii} g^{jj} g^{kk}} u_{ijk}$ by h_{ijk} . Let $\mu_i = \frac{\lambda_i - 1}{\lambda_i + 1} \in (-1, 1)$, and regrouping those terms h_{ijk} with three repeated indices, two repeated ones, and none, we have

$$\begin{aligned}
\Delta_g b &= \frac{1}{4} \sum_{i,j,k=1}^n (1 + \mu_i) (1 - \mu_k) h_{ijk}^2 \\
&= \left\{ \begin{array}{l} \frac{1}{4} \sum_i \left[(1 - \mu_i^2) h_{iii}^2 + \sum_{j \neq i} (3 - \mu_j^2 - 2\mu_i\mu_j) h_{ijj}^2 \right] \\ + \frac{1}{2} \sum_{i>j>k} (3 - \mu_i\mu_j - \mu_j\mu_k - \mu_k\mu_i) h_{ijk}^2 \end{array} \right\} \geq 0.
\end{aligned}$$

Accordingly at p , we have

$$\begin{aligned}
|\nabla_g b|^2 &= \sum_{\alpha,\beta=1}^n g^{\alpha\beta} \partial_\alpha b \partial_\beta b \stackrel{p}{=} \sum_{\alpha=1}^n g^{\alpha\alpha} \left[\sum_{j=1}^n (1 + \lambda_j)^{-1} u_{jja} \right]^2 \\
&= \sum_{\alpha=1}^n \left[\sum_{j=1}^n (1 + \lambda_j)^{-1} \lambda_j g^{jj} \sqrt{g^{\alpha\alpha}} u_{jja} \right]^2 \\
&= \frac{1}{4} \sum_{i=1}^n \left[\sum_{j=1}^n (1 + \mu_j) h_{ijj} \right]^2 = \frac{1}{4} \sum_{i=1}^n \left[\sum_{j=1}^n (1 - \mu_j) h_{ijj} \right]^2,
\end{aligned}$$

where the last equality follows from (0.8) or $\sum_{j=1}^n h_{ijj} = 0$, and the corresponding expressions with $(1 + \mu_j)$ and $(1 - \mu_j)$ for each $\mu_i < 0$ and $\mu_i \geq 0$ respectively are used to justify the Jacobi inequality (0.6) in the following.

For each fixed i , case $\mu_i \geq 0$:

$$\begin{aligned}
\frac{1}{2n} \left(\sum_{j=1}^n (1 - \mu_j) h_{ijj} \right)^2 &\leq \frac{1}{2} (1 - \mu_i)^2 h_{iii}^2 + \sum_{j \neq i} \frac{1}{2} (1 - \mu_j)^2 h_{ijj}^2 \\
&\leq (1 + \mu_i) (1 - \mu_i) h_{iii}^2 + \sum_{j \neq i} [1 - \mu_j^2 + 2(1 - \mu_i\mu_j)] h_{ijj}^2,
\end{aligned}$$

where in the last inequality we used

$$\frac{1}{2} (1 - \mu_j)^2 \leq \begin{cases} 1 - \mu_j^2 & \text{for } \mu_j \in [0, 1) \\ 2(1 - \mu_i\mu_j) & \text{for } \mu_j \in (-1, 0) \text{ and } \mu_i \geq 0 \end{cases} ;$$

case $\mu_i \in (-1, 0)$: Symmetrically we have

$$\frac{1}{2n} \left(\sum_{j=1}^n (1 + \mu_j) h_{ijj} \right)^2 \leq (1 + \mu_i) (1 - \mu_i) h_{iii}^2 + \sum_{j \neq i} [1 - \mu_j^2 + 2(1 - \mu_i\mu_j)] h_{ijj}^2.$$

We have proved the Jacobi inequality (0.6) in Lemma 0.1.

0.3. Divergence of Δu

Plug in the superharmonic quantity from (0.7) to (0.5), we get

$$\left\{ \det \left[I + D^2 u(0) \right] \right\}^{\frac{1}{2n}} = q^{-1}(0) \leq |B_1| \tau^n \frac{1}{\int_{D_\tau} q dx}.$$

From

$$|D_\tau|^2 = \left(\int_{D_\tau} q^{1/2} q^{-1/2} dx \right)^2 \leq \int_{D_\tau} q dx \int_{D_\tau} q^{-1} dx,$$

we have

$$\frac{1}{\int_{D_\tau} q dx} \leq \frac{1}{|D_\tau|^2} \int_{D_\tau} q^{-1} dx.$$

Now

$$\begin{aligned} \int_{D_\tau} q^{-1} dx &= \int_{D_\tau} [(1 + \lambda_1) \cdots (1 + \lambda_n)]^{\frac{1}{2n}} dx < \int_{D_\tau} (1 + \lambda_{\max}) dx \\ &\stackrel{1 \leq \lambda_{\max}}{\leq} \int_{D_\tau} 2\lambda_{\max} dx \leq 2 \int_{D_\tau} \Delta u dx = 2 \int_{\partial D_\tau} u_\gamma dA \leq 2 |\partial D_\tau| \|Du\|_{L^\infty(D_\tau)}. \end{aligned} \quad (0.11)$$

Therefore, we arrive at the claimed estimate in Theorem 0.1.

$$|D^2 u(0)| < \det \left[I + D^2 u(0) \right] \leq \left[2 |B_1| \frac{\tau^n}{|D_\tau|} \frac{|\partial D_\tau|}{|D_\tau|} \|Du\|_{L^\infty(D_\tau)} \right]^{2n}.$$

Remark 0.1. Relying on a “rougher” superharmonic quantity $q = \lambda_{\max}^{-1/(n-1)}$ satisfying $\Delta_g q \leq 0$, repeat the above arguments, in particular, with $(1 + \lambda_{\max})$ in (0.11) replaced by λ_{\max} , we have a sharper estimate

$$|D^2 u(0)| = \lambda_{\max}(0) \leq \left[|B_1| \frac{\tau^n}{|D_\tau|} \frac{|\partial D_\tau|}{|D_\tau|} \|Du\|_{L^\infty(D_\tau)} \right]^{n-1}. \quad (0.12)$$

Remark 0.2. In addition to the conditions in Theorem 0.1, assuming $u(0) = 0$, and the solution $u(x)$ exists on $\{x \in \mathbb{R}^n : u(x) \leq \tau^2\}$, then we have

$$\Gamma_\tau = \{x \in \mathbb{R}^n : u(x) \leq \varepsilon(n) \tau^2\} \subset D_\tau = \{x \in \mathbb{R}^n : x \cdot u_x \leq \tau^2\} \subset \Gamma_{\tau/\sqrt{\varepsilon(n)}}$$

for a small dimensional constant $\varepsilon(n)$, where the second inclusion follows from $0 \leq u_r = (ru_r)_r - ru_{rr} \leq (ru_r)_r$ for the convex function u ; and the first inclusion follows from the fact that the gradient Du is small at low enough level set of u , which can be derived from the “separation” Corollary 1 in [1, p.40], of lower level set of the convex solution u from the boundary of the upper level set of u , combined with the invariance of the “extrinsic distance” $x \cdot u_x(x)$ and the equation $\det D^2 u(x) = 1$ under affine transform $v(x) = u(Ax)$ with $\det A = 1 : x \cdot v_x(x) = Ax \cdot u_x(Ax)$, $\det D^2 v(x) = 1$, and the invariance of the equation $\det D^2 u(x)$ under scaling $v(x) = u(\tau x) / \tau^2 : \det D^2 v(x) = 1$.

We claim

$$|D^2 u(0)| = \lambda_{\max}(0) \leq \left[C(n) \frac{|\partial \Gamma_\tau|}{|\Gamma_\tau|} \|Du\|_{L^\infty(\Gamma_\tau)} \right]^{n-1}, \quad (0.13)$$

or a weaker estimate

$$|D^2u(0)| \leq \left[C(n) \frac{|\partial\Gamma_\tau|}{|\Gamma_\tau|} \|Du\|_{L^\infty(\Gamma_\tau)} \right]^{2n}. \quad (0.14)$$

In fact, going with the sharper superharmonic quantity $q = \lambda_{\max}^{-1/(n-1)}$, (0.5) becomes

$$|B_1| q(0) \geq \tau^{-n} \int_{D_\tau} q dx \geq \tau^{-n} \int_{\Gamma_\tau} q dx.$$

Repeating Step 0.3 Divergence of Δu , with D_τ replaced by Γ_τ , we have

$$|D^2u(0)| = \lambda_{\max}(0) \leq \left[|B_1| \frac{\tau^n}{|\Gamma_\tau|} \frac{|\partial\Gamma_\tau|}{|\Gamma_\tau|} \|Du\|_{L^\infty(\Gamma_\tau)} \right]^{n-1}.$$

By John's lemma, there exists an ellipsoid E such that the convex set Γ_τ satisfies $E \subset \Gamma_\tau \subset nE$. Alexandrov estimate and simple barrier argument combined with the equation $\det D^2u = 1$ on Γ_τ and E respectively, lead to $c(n) \tau^n \leq |\Gamma_\tau| \leq C(n) \tau^n$.

Consequently, we arrive at the sharper Hessian estimate (0.13) in terms of the level set of solution u .

For the weaker Hessian estimate (0.14) in terms of the level set u , just repeat the above argument with the weaker superharmonic quantity $q = \{\det[I + D^2u]\}^{-\frac{1}{2n}}$.

Acknowledgments

This work is partially supported by an NSF grant.

Conflict of interest

The author declares no conflict of interest.

References

1. L. A. Caffarelli, A priori estimates and the geometry of the Monge Ampère equation, In: *Nonlinear partial differential equations in differential geometry*, Providence, RI: Amer. Math. Soc., 1996, 5–63.
2. D. Gilbarg, N. S. Trudinger, *Elliptic partial differential equations of second order*, Berlin, Heidelberg: Springer, 2001. <https://doi.org/10.1007/978-3-642-61798-0>
3. A. V. Pogorelov, *The Minkowski multidimensional problem*, New York-Toronto-London: Halsted Press [John Wiley & Sons], 1978.