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Singular Solutions to Monge-Ampeére Equation
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Abstract. We construct merely Lipschitz and C* with rational a € (0,1 —2/n] vis-
cosity solutions to the Monge-Ampeére equation with constant right hand side.
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1 Introduction

In this note, we construct (convex) Lipschitz and C!*#* viscosity solutions to the Monge-
Ampere equation with constant right hand side via Cauchy-Kovalevskaya, after in-
tegerizing fractional powers in the corresponding equation for those singular profiles
from [8] and [3, 5].

Theorem 1.1. There exists a merely Lipschitz viscosity solution to det D>u = 1in By C R" for
n > 3. There also exist merely CY*~1 with rational & = % € (1,2 — 2] viscosity solutions to

detD?u = 1in By C R" forn > 3.

These C# solutions to the Monge-Ampere equation det D?u = 1 illustrate a regu-
larity wall phenomena: merely C'* with rational « € (0,1 — 2/n] solutions can never
become better. This is in contrast with the regularity theory for Monge-Ampere equa-
tions [9] and [4]: once solutions are CL(1-2/m)+, they self-improve to smoothness.

Note that our singular solutions via Cauchy-Kovalevskaya to the Monge-Ampere
equation det D?u = 1 are singular precisely along a segment of one axis, where the con-
vex solutions are linear, or zero, to be precise. If one tries to produce higher dimensional

*Corresponding author. Email addresses: caffarel@math.utexas.edu (L. Caffarelli), yuan@math.
washington.edu (Y. Yuan)

http:/ /www.global-sci.org/ata/ 121 (©2022 Global-Science Press



122 L. Caffarelli and Y. Yuan / Anal. Theory Appl., 38 (2022), pp. 121-127

subspace singular set, where the dimension S must be less than 1/2 by the theorem in [3],
a good start is the Pogorelov type profile there,

() = 0 ()

withx = (xf,- -, x),_g,x{,- -+, x¢) . The profile with

Fllv =1+ | f
satisfies the Monge-Ampere with the right hand side being a polynomial of |x” |2 , posi-
tive near the origin. The ODE for f (|x”|) with singular term f’ (|x”|) / |x"| correspond-
ing to det D?u = 1 can be solved by the method in [2] and [1].
Alternatively, relying on the existence of solutions to the Dirichlet problem for
Monge-Ampere equations, with S dimensional singular set profile |x/|>2°/" (1 + |x"|?)
as boundary value in a small ball, one obtains the following

Proposition 1.1. There exist local merely C''=5/" viscosity solutions to det D?u = 1 in R" for
n > 3 such that singular set of the solutions is the S dimensional set

5= {(x,x") : |x| =0}
inasmallball for1 < S <n/2.

Let us sketch a proof for this proposition. Case S = 1 is also noted in the above.
The Lipschitz limit of a family of (convex) smooth solutions to det D?u = 1 with smooth
boundary value approximations of subsolution

U_ =y ‘x/‘Z—ZS/n <1 + ‘x//‘Z)

fory = (1-2S/ n)fl/ " on the boundary of a small ball is our viscosity solution. The
convex solution u (x) vanishes in subspace x” with |x’| = 0, because it is between the
convex combinations of zero boundary value and the subsolution u_ there. Surely u (x)
is singular in the S dimensional subspace (0, x”) .

We show that u is regular everywhere else. By [4,5], the other possible singular set of u
outside 5, must contain a line segment, where u is linear. This singular segment intersects
the boundary of the small ball or the set S. The barrier argument in [9] and [4, 5] shows
the two ends of the segment cannot be both on the boundary of the small ball, where u is
smooth. The only other scenario that the segment has one end on S, and the other end on
the boundary of the small ball is not possible either. This is because the linear function,
the restriction of u on the segment, equaling 0 and 1#_ > 0 respectively on the two ends,
cannot be less than the supersolution

M+ — 2,)/ ‘x/‘2725/l’l
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with sublinear growth near [x'| = 0.
Note that the solution u is trapped between the supersolution u™ and the subsolution

u_=-v ‘x,lz—zs/n (1 + ‘x”f) :

We see that u is exactly C"!=25/", This finishes the sketch of the proof for Proposition 1.1.

In closing, we remark that Mooney [6] recently showed that the n — 1 dimensional
Hausdorff measure of the singular set of every subsolution to det D*u = 1 is zero, and
the collection of S-dimensional affine singular sets, on each of which the subsolution
is linear, also has zero n — S dimensional Hausdorff measure. In particular, the affine
dimension S is less than n/2. This provides a new proof for the theorem in [3]. The no
better than C'# with B € [0,1/3] solutions in [6,7] have almost n — 1 and exactly n — 1
respectively Hausdorff dimensional singular sets, where each of the solutions is not a
single linear function.

2 Proof of Theorem 1.1

Proof. Lipschitz case. We seek for solutions in the Lipschitz profile from [5]

u (¥, xn) = o+ 0" f (0, %)
with
p=x]=[(x1, x|

The upper half Hessian D?u is

B n n_1q n
4302 fH+p2fp
Y

14202 1o
+302 f+p2fp
p 7

and its determinant

det D*u =

n_ n n—2 z
L+ 2 1f+pzfp] [ $28057 fo 0 fyp
p
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We make the following change of variable to move to an analytic equation.
Set

s=0"% and h(s,x,)=f (sz,xn) ,
then

1 » 1 /-1 1.,
ds =2sd, or dp= Eas, and 8p =1 <5385 + 5285> .
The determinant becomes
n(n
nn-2j, \ "2 s(a-1)h L
det D% = < 1++152n5_1hh ) [ +yshs + § (—shs +5%hss) |7
2 2
o - (3 + Joh)
Now we solve the reduced Monge-Ampére equation

(L+ 35" 2+ 3" )" + (4o + dshs)”
1(n 1) b 2D, 4 Le2pg

7

Cauchy-Kovalevskaya gives the analytic solution in By, (0) C R?

h(s,xn):1+n X2 4

(n=2)

Thus we have a Lipschitz solution to det D*u = 1

u(x) =[x+ \x/\%h (\x/

)
in B; (0) C R" by scaling.

Lastly, let us check our u is a viscosity to det D>y = 1. For any convex quadratic
Q (x) touching u (x) from above, observe that the touching point can never be a singular
Lipschitz point of u (x), and in turn, det D>Q > 1 at the smooth touching point of u (x) .
On the lower side, for any quadratic Q (x) touching u (x) from below, when the touching
point is at x’ = 0, observe that convex Q (x) must vanish along x’ = 0 as u (x/,x,)
vanishes, then detD*’Q = 0 < 1; when the touching point is at x’ # 0, immediately
det D?Q < 1 as u (x) is smooth nearby.

1,11 . .
C v~ case. We search for solutions in the form

u (X', x0) = p*f (0, xn) = p* [1 + pPg (p,xn)} with B=2(n—1)— na.



L. Caffarelli and Y. Yuan / Anal. Theory Appl., 38 (2022), pp. 121-127

The upper half Hessian D?u is

[ ap"f0y
0

ap" " 40" fy
p

(e —1)p* % f

and its determinant

det D*u = [p* 2 (af —l—pfp)}niz p* 2 { [

= (af +pf,)" " {

— (&fu+pfon)”
Note that
f=1+pg(p,xn),
fo=BoP g+ 0P8,
foo = B(B—1)pP g +2B0P " gp + pP gy,
then

n—2
det Du = ["‘ +apPg + BoPg + pﬁ“gp} pre 2l

+B(B—1)pPg+2BpPt g, 4+ pPH2gy,

2
— (apPgn + BoPgn + pPgp,)
n—2
[IX lX—Fﬁ pﬁg+pﬁ+lg } pn(x—Z(n—l)-l—ﬁ

o (a—1) (a+ﬁ)(w+ﬁ—1)pﬂg}gm }

[ w (e —1) (14 pPg) +2a (BpPg + pP+1g,) }pﬁg,m }

+2 (a4 B) pPrg, + pP 280

—0P [(a + B) gu + 08p,)°
-2
[a (a+B)pPg+pP 15"

a(e—1)+ (a+p) (a+p—1)pPg
+2 fx+ﬁ)pﬁ“g +oPtag,, &M L

—pF [(a+ B) gn + 8o, )

where weused nae —2 (n— 1)+ p =0.

a—1 o
_i_zlxpaflfp_’_pafpp ap fn"‘P fpn
i 0" fun

(0= 1)+ 209y + o] o
— (&fu + 0 fon)

(o (0 = 1) f + 200 + 0% fo] fn } )

125
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We make the following change of variable for & = g/p to move to an analytic equa-
tion.
Set

5 = pl/P and h(s,x,) =g (s?,xn),
then

1 1 /1- 1
_ a1 _ 2 _ p 2
95 =ps* dp or d,= 7psp_1as, and ap = —pz (Szp_las + 52p285> .

The determinant becomes
r 1 n—2
det D*u = |a + (a + B) s"Ph + spﬁpshs}

w(a—1)+ (a+B) (a+pB—1)sPPh
+2 (a + B) s”ﬁ%shs + s”ﬁ# [(1—p)shs +s?hgs] ("

—sPB [(uc +B) hy + %shm]z

\

Now we solve the reduced Monge-Ampere equation

2— 2
[oc + (a+ ) sPPh + spﬁ%shs} " spb {(a +B) hy + %shsn}
a(a—1)+ (a+p) (a+p—1)sPPh+2(a+ B) PP shs + sﬁﬁ;—z [(1— p) shs + s2hss]”
hn (S,O) = O,
h(s,0)=1,

where integer pp = 2p (n — 1) — ng > 0. Cauchy-Kovalevskaya gives the analytic solu-
tionin B, , (0) C R?

hnn =

q_
Thus we have a C7 ! solution to det D?u = 1

u (x/,xn) _ ’xl|% [1 + ‘x/|2(n71)*n% h (|x/

1
b 7 xl’l) ]
in By (0) C R" by scaling.
Exactly as in the Lipschitz case, we verify that our u (x) is a viscosity solution to the
Monge-Ampere equation det D?u = 1. ]
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