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Pole Skipping in Holographic Theories with Bosonic Fields
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We study pole skipping in holographic conformal field theories dual to diffeomorphism invariant
theories containing an arbitrary number of bosonic fields in the large N limit. Defining a weight to organize
the bulk equations of motion, a set of general pole skipping conditions are derived. In particular, the
frequencies simply follow from general covariance and weight matching. In the presence of higher-spin
fields, we find that the imaginary frequency for the highest-weight pole skipping point equals the higher-
spin Lyapunov exponent which lies outside of the chaos bound. Without higher-spin fields, we show that
the energy density Green’s function has its highest-weight pole skipping happening at a location related to
the out-of-time-order correlator for arbitrary higher-derivative gravity, with a Lyapunov exponent
saturating the chaos bound and a butterfly velocity matching that extracted from a shockwave calculation.
We also suggest an explanation for this matching at the metric level by obtaining the on-shell shockwave
solution from a regularized limit of the metric perturbation at the skipped pole.
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Introduction.—The out-of-time-order correlator (OTOC),
an important quantity containing characteristics of chaos,
can be calculated holographically in a shockwave spacetime
[1-5]. For a localized perturbation to a chaotic system
at temperature 7', the OTOC between a perturbation W at
x =t = 0 and a probe operator V at a later time ¢ behaves as
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where X, is the bulk solution satisfying Dirichlet boundary
condition Xp — X at infinity and ingoing wave boundary
condition at the horizon and I1 is its conjugate variable in a
radial foliation. In terms of an asymptotic expansion, it is
proportional to the ratio between the coefficient of the
normalizable falloff and that of the non-normalizable
falloff. A quasinormal mode, by definition, does not have
a non-normalizable divergence, so the poles of the Green’s
function are identified with the quasinormal spectrum.
Generically, Xp is uniquely determined from X,, and
Gy, is, therefore, well defined. However, a would-be pole can
sometimes get multiplied by a zero, resulting in an ill-
defined limit. This happens at a special frequency and

(Vx, )WV (x, )W) ~ 1 — ehlt=t=lxl/vs) (1)
where ¢, is called the scrambling time. This defines the
Lyapunov exponent A; and the butterfly velocity vp. For
classical bulk gravitational theories, 4; saturates the chaos
bound A; <2aT [6], so they are said to be maximally
chaotic. The butterfly velocity, however, depends on the
theory [2,7-11].

More recently, it was discovered that the quantities 4;

and v may already show up in features of the energy
density retarded Green’s function through a phenomenon
called pole skipping [12—14]. It was first found numerically
for pure Einstein gravity [12] and later studied analytically
for Einstein gravity with matter [14]. See also Refs. [15-31]
for holographic and Refs. [32—-37] for boundary studies.

The retarded Green’s function is the relation between a
source and its response. Holographically, the Green’s
function of an operator dual to a bulk dynamic field X
(suppressing indices) is given by [38,39]
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where 1; and vy are, respectively, the Lyapunov exponent
and the butterfly velocity extracted from a holographic
OTOC calculation (1) in Einstein gravity minimally coupled
to a large class of matter fields [12,14].

To explain this universality, Ref. [14] discovered a
feature of Einstein’s equation at the horizon. Expanding
metric perturbations around a stationary planar black hole
in terms of Fourier modes, a particular component of
Einstein’s equation evaluated at the horizon was found
to be trivial at Eq. (3) so that there exists one fewer
constraint. This implies an extra degree of freedom of the
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ingoing modes and, consequently, an ambiguity in the bulk
solution X and, in turn, the Green’s function Gg.

Later, it was discovered that pole skipping happens more
generally at other locations and for other types of Green’s
functions [17,18,30,40-49]. See also Refs. [50,51] for
higher-derivative corrections and Ref. [52] for a zero-
temperature example. However, unlike the one at
Eq. (3), the other skipped poles are unrelated to chaos.

We put these in the same framework by considering
general diffeomorphism invariant bulk theories with matter
fields that are not necessarily minimally coupled. For
simplicity, we consider only bosonic fields and leave a
discussion of fermionic fields to the last section. By
defining a weight, we can separate the equations of motion
into different groups and evaluate them in a given order.
This allows us to find the frequencies of the skipped poles
and the corresponding momenta, in general. This is done in
Sec. “General pole skipping conditions”. Furthermore, we
observe a relation between higher-weight pole skipping
frequencies and higher-spin Lyapunov exponents and use it
to justify the removal of a bounded tower of higher-spin
fields from consideration in the remaining sections.

In Sec. “Matching of butterfly velocities”, it is shown
that, for general higher-derivative gravitational theories, the
butterfly velocity can be obtained from the highest-weight
equation of motion, and it agrees with the butterfly velocity
obtained via a shockwave calculation. This generalizes the
matching for Gauss-Bonnet gravity and Einstein gravity
with a string theory correction at O(a) [15]. We also try to
explain this matching between pole skipping and chaos in
the same section. By regularizing the metric perturbation at
the chaotic skipped pole with a Gaussian distribution in the
frequency Fourier space, we obtain a metric that is regular
at the horizon. Extending it to a Kruskal-Szekeres coor-
dinate patch and taking the regulator away, we show that
this metric perturbation localizes to the past horizon in a
distributional sense, like the shockwave metric. We end
with a summary and a discussion of potential future
directions in Sec. “Discussion”.

General pole skipping conditions.—The metric for a
general stationary planar black hole can be written in
ingoing Eddington-Finkelstein coordinates as

ds* = —f(r)dv* + 2dvdr + h(r)dx'dx', (4)

where f(rq) = O atthe horizon r = ryandi = 1, ..., d. The
nonvanishing Christoffel components are given by
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For simplicity, we assume that background matter fields are
stationary, isotropic, and homogeneous in x' and regular at
both past and future horizons, like the metric.

Now, if we define a pseudo-weight for any tensor
component as the number of lower v indices minus that
of lower r indices, where an upper v is considered a lower r
and vice versa, then any background tensor component
(ones constructed from the stationary background metric
and matter fields) with positive weight needs to vanish at
the horizon. We prove this next.

In Kruskal-Szekeres coordinates, defined via

U= —e/(n)-2r)/2, V = of ()o/2, (6)
where dr,/dr = 1/f(r), one can similarly define a boost
weight as the number of lower V indices minus that of
lower U indices [53]. Then, the boost symmetry (V — aV,
U +— U/a) requires that a background quantity with boost
weight n > 0 must scale like U" times a function of the
product UV, and regularity at the bifurcate horizon requires
this function to be nonsingular as UV — 0. Therefore, at
the future horizon (U = 0), this vanishes. Relating this to
quantities in ingoing Eddington-Finkelstein coordinates,

using
_ 2 av . S (av  dU
S v Fos (7)) O

for each lower index V or U of a tensor 7, we have
(suppressing other indices)

ov or 2 1
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We see that each V index maps to a v index and each U
index maps to an r index (all lower indices here but upper
ones work similarly) up to terms that are of higher order in
f. Given that background quantities with positive boost
weight and f vanish at the horizon, we arrive at the
conclusion that the same is true if we replace boost weight
with pseudo-weight. From now on, we no longer need to
mention boost weight and will refer to pseudo-weight
simply as weight [54].

To describe ingoing quasinormal modes at the horizon,
for any dynamic field X, we expand its perturbation around
the stationary background in the Fourier space as

8X(r,v,x) = 86X (r)e iwvtik, (10)

For Einstein gravity, writing Einstein’s equation as
E, =T,, a particular component under perturbation,
oE7, is proportional to

d
<k2 - liwh/> 591}1} + (C() - lZ”T) [wagii + Zkiégvi]' (1 1)
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On the horizon, for matter perturbations that are regular
enough, the stress tensor component 677, = 0 [14], and
prefactors in £/, can be tuned to zero by choosing Eq. (3).
As a consequence, Einstein’s equation provides one fewer
constraint, which serves as an explanation for the universal
behavior of the energy density Green’s function with low-
spin matter fields coupled to Einstein gravity [14].

Now consider an arbitrary diffeomorphism invariant
theory defined with a local action S =S, + Sy, where
the gravitational part S, is given by

S, —/d‘”zx\/—gﬁ(g,R, V,®) (12)

and S, is part of the action with only minimally coupled
matter fields, artificially separated from the rest for later
convenience. Here, £ can be an arbitrary function of the
metric, g, and an arbitrary number of bosonic matter fields
collectively denoted as ®. More specifically, £ can be
written as a sum of contractions between an arbitrary
number of the metric, curvature tensors, matter fields, and
an arbitrary number of covariant derivatives of them.
The metric equation of motion is defined as

E :iéSg :_L(SS_M:T
Yomgegt g8g”

we - (13)
The remaining equations of motion are given by
68/6® = 0, indices suppressed. Now, to obtain Eq. (2),
the idea is to perturb the dynamical fields and apply the
equations of motion everywhere. However, it turns out
sufficient to consider the near-horizon expansion of all
perturbations in order to study pole skipping. For read-
ability, we introduce the following compact notation: We
use 6€ = 0 to denote collectively all the perturbed equa-
tions of motions and their radial derivatives (V,) evaluated
on the horizon. These are essentially the coefficients of a
near-horizon Taylor expansion. We further define 6, as
the subset of 6€ with weight p, organized into a vector, and
denote its number of components as [5E,|.
Similarly, we collect perturbations of all dynamics fields
(including both the metric and matter) and their radial
derivatives with weight ¢ into 64X, (all evaluated on the

horizon). For example, X, = (69,,, V,6B,,,,...) and
5‘)(0 = (5gij’ vrégvi’ Vrvrégvm 5Ai? vréAw . )
With these definitions, we can now write
8, = M, (0. k)5X,, (14)
q

where each M, ,(w, k) is a matrix of size [6E,| x |6X,].
To arrive at this form, first commute all V,’s through V;’s
and V,’s to the rightmost location before substituting the
Fourier expansion and evaluating the V,’s and V,’s. By
definition, the radial derivatives are then absorbed into 6. X g

For later convenience, we also commute all V; to the
right of V,,.
We now prove a useful property that, for p > ¢,

M, (0.k) « [@ = (p = 1)ag]...[0 — qawg],  (15)

where wy = i2zT = if'(ry)/2.
Begin by noticing that, for a given p and ¢/,

8, ~ F(g.R. V. @)(V,)(V)(V,)"6X s,y (16)

before substituting the Fourier expansion, where F is some
c-number tensor component constructed out of g, R, V, and
® such as R,;,;A*V ,¢ evaluated on the horizon of the
background configuration and 6X ., is the perturbation to
some component of a dynamic field X with weight
q' + m—not evaluated on the horizon until acted upon
by all the derivative operators in front. Next, notice that the
only way to raise weight is with V,, because any back-
ground tensor with positive weight vanishes on the horizon.
Therefore, to raise the weight of (V,)"6X,,, to that of
6, one needs k > p — ¢'. From Eq. (5), it is straightfor-
ward to show that, on the horizon,

V,T x (av —gf’(ro)>T (17)

for a general tensor component 7 with weight n; therefore,
evaluating (V,)¥ and substituting Eq. (10) gives at least a
factor of [ — (p — 1)w]...[@ — ¢'wy]. Finally, the remain-
ing part (V,;)(V,)"8X ;,, evaluates to a number of terms,
each proportional to 6, for some g > ¢'. This follows
from Eq. (5), where any Christoffel symbol appearing in
V,T vanishes if multiplying an object with lower weight
than 7. This concludes our proof of Eq. (15).

We now discuss the general conditions for pole skipping.
We take as an assumption that pole skipping happens
whenever an equation of motion becomes trivial [55].
Suppose the highest weight of X is gq; then the highest
weight of 6& is also g (since the action, being a scalar, has
weight zero). Consequently, for any positive integer s, once
we set

@ = (g0 — 5)wo, (18)

all M, (w,k) with p > gy —s > g are then set to zero
(assuming they are not all automatically zero). Now consider
the square matrix

Mﬁio#]o e M40~Q0_5+1
M, (k) = . (19)

Mqo—s+1,q0 Mq{]—s+1,q0—s'+l

where Eq. (18) has been substituted. The full set of equations
of motion 6 o Y p, does not determine 6X P Y g, when
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det M (k) = 0. (20)

Equations (18) and (20) are, therefore, the generalized pole
skipping conditions (for any given s > 1), assuming the
second one has solutions. If the theory has a highest-spin
field with bounded spin /, then g, = [ and the pole skipping
frequencies are (I — s)wy, consistent with observations made
in Refs. [18,32,49] and, in particular, reproducing the
positions of pole skipping at Matsubara frequencies first
found in Ref. [18]. The second condition is a polynomial
equation for k, and the roots are then the pole skipping
momenta, which could be more than one. The order of the
polynomial increases with the size of the matrix, and,
therefore, there will be generically more pole skipping points
at larger s (lower w).

The first pole skipping happens at s = 1 at frequency
® = (qy— 1)wy = i(qy — 1)2zT. Suppose there exists an
equation of motion with, e.g., three lower » indices. In that
case, there will be a skipped pole at 2w, = 4T, and the
field perturbation (10) will grow like exp(4zTt). On this
ground, we expect (finitely many) higher-spin fields to
violate the chaos bound. This is supported by an indepen-
dent calculation of the spin-/ Lyapunov exponent 1, =
(I—-1)2xT [56] and is consistent with the findings of
Refs. [32,57]. Bounded higher-spin fields also suffer from
causality violation [58], which is another reason to exclude
them from consideration in the next section. Notice,
however, that equations of motion for fields with no
dynamics automatically have M, ,(w,k) =0 for p > ¢
due to the nonappearance of V,, so they do not become
trivial from nontrivial; therefore, they do not violate the
chaos bound, in agreement with Ref. [56], where pure AdS;
higher-spin gravity was exempt from their argument for
bound violation.

If g = 2, which is the case for an arbitrary metric theory
coupled to matter fields of spin no larger than two, then the
bound is satisfied and, in fact, saturated. We will discuss
this further in the next section.

For gq < 2, such as a scalar or vector field without
gravitational backreaction, there is no growing mode and,
therefore, no relation to chaos, but an infinite number of
skipped poles still exist and constrain the structure of
Green’s functions [17,18].

Matching of butterfly velocities.—For arbitrary higher-
derivative gravity coupled to scalar, vector, or form fields,
qo = 2 (from the metric) and the highest-weight skipped
pole has @ = i2zT. We now show that the corresponding
butterfly velocity matches that obtained from the OTOC.

In this case, the only dynamic field with weight 2 is
0X, = dg,,, and the corresponding equation of motion is
6, = 6E,, — 6T,, = 0. The perturbation to the stress
tensor component 67, does not necessarily vanish, but
oT!, (=6T,,—-T,,09,, does vanish for matter fields
regular on the horizon [14]. We will make this restriction
in order to compare results with OTOC: The metric

shockwave also has vanishing 677. Therefore, the pole
skipping conditions with s = 1 are given by

SE; _

detMl = 59
Vo

0. (21)

W = Wy,

This gives a polynomial equation for k& with only even
powers (by symmetry). In cases where the polynomial is of
quartic order or higher, one can take the view that all
corrections to Einstein gravity should be treated perturba-
tively so only the roots continuously connected to Einstein
gravity are physical. But, as we will see, the matching is
evident without a perturbative treatment.

For the class of theories we consider,

SEy = Hyy(f h,0,.®)(0,)/(9)'8g,,  (22)
k,l

for some noncovariant c-number coefficients H; ;. The
nontrivial statement that no d, acts on dg,,, and none of the
other components such as dg,; can appear follows directly
from the weight argument. As an example, consider the
Einstein gravity equation of motion (11) studied in
Ref. [14]. Since g;; has weight zero, it has to pick up a
factor of @ to get to weight one and then a factor of
(0 — wy) to get to weight two, similarly for &g,; which
needs only to raise its weight by one. Another simplifica-
tion in Einstein gravity is due to the fact of it being two-
derivative. It is not possible for Eq. (11) to contain a term
like, for example, d,6¢,,;: This quantity has weight zero and,
therefore, needs two wv-derivatives to go to two, but it
already has one derivative itself.

To compare this with the shockwave calculation, we
move to Kruskal-Szekeres coordinates defined in Eq. (6).
Then UV = —e/'"0)": and the metric is given by

ds* = 2A(UV)dUdV + B(UV)dx'dx', (23)

21

MO =T v

B(UV) = h(r). (24)

In general, higher-derivative gravity and for a shockwave
along V =0, the only nontrivial component of SEj
perturbed by a local source is SEY [11]. For a general
perturbation dg,,, translating to ingoing Eddington-
Finkelstein coordinates, this component is given by

)
SEY = <— SE' + SE! — SE! — MéEE). (25)

V \f(r) 2

Compared to the first term, others are suppressed with extra
factors of f(r), so they vanish when evaluated on the
horizon. Similarly, §TY o 5T, but recall that this vanishes
for regular matter configurations. Therefore,
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where we used the transformation 9, =
going to the second line and a trick

1 1

Vav 59\/% (26)
2/f"(ro)]Voy in

in going to the third line. The fourth line follows from a

reorganization of the sum with new coefficients A x> and
the last line follows from

4691 1)(1] x)
19 Vv, — o 28
gvv( x) f/(ro) V2 ( )
The special thing about @ = w, is that
5,y ~ i = gli2oo/f (m)]TogV — (29)
and, therefore,
|
Sgyy(V,x) ~ v e~ikx, (30)

Compare this with a linearized shockwave perturbation
Sgvy ~ 6(V)e™, (31)

where p = 2xT/vg upon using 6EY =0 (outside of a
localized source in x). Noticing that (V) has the same
distributional behavior as 1/V under Vo, [12], e.g.,
V& (V) =-=6(V) and Vd(1/V)/dV = —1/V, it follows
that k = i2zT /vy upon using Eq. (26) for the perturbation
(30), thereby extending Eq. (3) to general higher-derivative
gravity and, hence, some of the results of Refs. [14,15].
Given the similarity between 1/V and §(V) and the role
this similarity plays in establishing the equivalence of these
two calculations of the butterfly velocity, it is natural to
wonder whether there is a more direct connection between
them. An immediate obstacle is the divergence of the
function 1/V at the past horizon V = 0. We mitigate this
problem with an unnormalized [59] regularization of the
Fourier space delta function along the real frequency line:

[azster = [ azesre (32)

giving rise to a mode

5g,y = /mae @) g, (33)

To compare with the shockwave metric (31), we convert
this to Kruskal-Szekeres coordinates. Using Eq. (28),

0, V <0,
ogyy = Vra 1 ,—a(logV)?/4 (34)
Tve (logV)?/4 vy >,

where we have used the fact that the perturbation vanishes
exactly behind the past horizon. This function is finite and
integrates to a constant for finite a, and it vanishes every-
where off the horizon as a — 0. It, therefore, behaves as a
regularized 5( V). Taking the regulator away, this becomes a
shockwave localized at V = 0 [60].

Discussion.—We have defined a quantity called weight
to organize bulk equations of motion and exploited its
convenience to show that pole skipping happens in holo-
graphic conformal field theories dual to quite general
diffeomorphism invariant bulk theories. As a result, the
pole skipping frequencies show up at (g, — s)w, for all
s € 7", where wy = i2zT and g is defined as the weight
of the highest-weight object. In particular, a theory that has
a bounded highest spin larger than two, in general, gives
rise to gy > 2, which leads to very fast scrambling that
violates the chaos bound. It is, therefore, reasonable to
disallow a finite tower of higher-spin fields, in addition to
causality reasons [58]. This brings down ¢, to two, and,
with this restriction, the metric is the field that can have the
highest weight. This is the main reason behind the
universality of the special pole skipping point at @ = il
and k = id; /vy, where 4; = 22T and vy is defined via a
OTOC calculation.

In other words, for maximally chaotic holographic
theories, instead of needing to compute a four-point
function, the retarded Green’s function already knows
about the butterfly velocity, and its dependence on the
bulk theory is exactly the same as an OTOC would predict.
It would be interesting to test this statement for nonholo-
graphic maximally chaotic theories [61]. Furthermore,
there are now three ways of computing the butterfly
velocity: (i) using an entanglement wedge, (ii) using a
shockwave, and (iii) using pole skipping. We proved the
equivalence between the second and third prescriptions
themselves [64].

The restriction of the discussion to bosons is for
simplicity, and the generalization to include fermions
should be completely analogous. For minimally coupled
spinors on a fixed background, pole skipping has been
shown to happen at @ = (gy — s)wy for a half integer
qo = 1/2 and positive integers s [41]; with a spin-3/2
Rarita-Schwinger field, g, becomes 3/2 [47]. Both of the
examples fit the pattern that the leading pole skipping
happens at (g, — 1)y, and, if one allows both bosonic and
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fermionic fields with arbitrary couplings between them,
one might expect that both g, and s can be half integers. It
might be of use to analyze this with the weight argument,
perhaps beginning by rephrasing the current discussion in a
spin connection language.

We should summarize three assumptions that were used:
(i) the existence of a finite gqg; (ii) the nontriviality of
Eq. (18), i.e., the entries set to zero by this equations are not
already all zero; and (iii) Eq. (20) has solutions. We expect
that assumption (i) can be lifted with more careful analysis,
but assumptions (ii) and (iii) are essential. Given any
theory, one needs to check whether these are satisfied.
For example, Vasiliev gravity violates assumption (i), as it
contains an infinite tower of higher-spin fields; this is
consistent with it being dual to a sector of a free theory [65],
which does not exhibit chaos.

Another condition implicit in our discussion is the
restriction to finite temperatures. Extremal black holes
do not have a bifurcate surface, so the property derived
from regularity at the bifurcate surface no longer applies.
Furthermore, poles in the Green’s function get replaced by
branch cuts [52,66]. Accordingly, a generalization of our
argument to zero temperature will be nontrivial.

We also showed that the shockwave metric could be
obtained from a regularized mode of the metric perturba-
tion. This serves as an explanation for the similarities
between the two calculations and the equivalence regard-
less of the theory. One might try different regulators or use
different subtraction schemes to find a more regulator-
independent relation.
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