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1 Introduction

The contributions of Euclidean wormhole saddles to gravitational systems have been as
puzzling as they have been illuminating (see e.g. [1–15]). On the one hand, in the gravi-
tational replica trick for the von Neumann entropy [7, 8, 16, 17] these wormholes provide
an explanation for the quantum extremal surface (QES) formula [18], and consequently
for the consistency of semiclassical black hole evaporation with unitarity [19, 20]. On the
other hand, the presence of wormholes gives rise to an apparent lack of factorization that
raises questions about whether a low-energy description of gravity can be contained in a
single theory or must be emergent from an ensemble [1–3, 5, 6, 9–13, 21–35].

Given the crucial role these wormholes play in ensuring unitarity, are there other quan-
tities aside from measures of entropy to which wormholes contribute in the semiclassical
regime? This seems likely: we might expect that the imprint of such an important aspect of
gravity would be detectable with more general and simpler observables than entropies. The
most fundamental such object in an investigation into the basic import of non-factorizing
Euclidean geometries is the generating functional.

How, then, does the factorization problem manifest at the level of the generating
functional? An answer to this question would go significantly further in resolving the
puzzles raised by the inclusion of replica wormholes in the gravitational path integral than
the study of any one individual quantity, be it entropy or any other observable.

This query was initially raised in the context of gravity in [36], which found significant
modifications to the behavior of the generating functional of Jackiw-Teitelboim (JT) grav-
ity (at nonperturbatively low temperatures) depending on whether connected topologies
were permitted to contribute. In fact, in the absence of replica wormholes the generat-
ing functional gives rise to a negative entropy at low temperature, while the inclusion
of wormholes in a nonperturbative completion of JT does in fact give rise to a positive
thermodynamic entropy all the way to zero temperature [37–45].

However, these advances offer limited insight in the quest towards an understanding
of the role of non-factorization in the emergence of semiclassical gravity. First, the results
of [37–45] are highly nonperturbative and thus do not shed light on the nature and behavior
of observables in the semiclassical regime. Second, in working with pure JT gravity, we re-
strict to a theory which is known to feature ensemble averaging, rendering the factorization
problem less mysterious than in theories where there is no obvious ensemble. In particular,
we would like to understand replica wormholes in higher-dimensional theories of gravity.

In the semiclassical regime, the contribution of replica wormholes to the generating
functional can be tractably investigated using a replica trick. This replica trick differs
substantially from the more familiar one for the von Neumann entropy, so we now briefly
review it. In a theory of gravity with Euclidean action I defined by a boundary geometry
or conformal geometry (B, h) (e.g. this may be an asymptotically AdS boundary), we
schematically denote the gravitational path integral by

P(B) =
∑
M

∫
DgDψ e−I[g,ψ], (1.1)
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where the sum is over manifolds M of different topologies with boundary B, the integral
is over metrics g on M inducing (B, h) on their boundary, and ψ represents any additional
matter fields.1 The aforementioned factorization puzzle arises from noting that the con-
tribution of different topologies to P(B) implies that P(Bn) 6= P(B)n, and hence P(B)
cannot be interpreted as the partition function Z(B) of a standard quantum system on B,
which would factorize on Bn. Instead, this observation suggests an interpretation of P(B)
as some coarse-graining (possibly an averaging) over quantum mechanical partition func-
tions defined by B:2

P(B) = Z(B). (1.2)

It prima facie appears that we are simply out of luck in any attempt to directly infer the
implications of replica wormholes on the generating functional: a naïve semiclassical com-
putation of the generating functional would just correspond to taking lnP(B) = lnZ(B);
the gravitational path integral here involves only a single boundary and thus no Euclidean
wormholes can be included.

However, lnZ(B) admits an alternative calculation via a replica trick:

lnZ(B) = lim
m→0

1
m

(Z(Bm)− 1) , (1.3)

where Bm is the union of m copies of the boundary B. The advantage of this rewriting is
that it immediately reveals an alternative semiclassical calculation in which replica worm-
holes could contribute to the generating functional: using (1.2), an “overline” of (1.3) gives

lnZ(B) = lim
m→0

1
m

(P(Bm)− 1) . (1.4)

While at the fine-grained quantum mechanical level the replica trick (1.3) for lnZ(B) is no
different from the direct calculation thereof, the calculations of lnZ(B) and lnZ(B) from
the gravitational path integral do not necessarily agree. This discrepancy is easiest to see
in the context where P(B) actually computes an ensemble average: in that case, lnZ(B)
— the so-called annealed generating functional, which we shall denote by ΓA — allows
the parameters of the ensemble to equilibrate with the dynamical fields, whereas lnZ(B)
— the quenched generating functional ΓQ — freezes the ensemble in each computation
of the generating functional before averaging. Since the parameters in such an ensemble
interpretation (to which we do not necessarily subscribe) are distinguished by the fact that
they are not dynamical, it is clearly the latter that is of physical relevance, and hence
the question of whether Euclidean wormholes contribute to the semiclassical generating
functional amounts to whether saddles with connected topologies exist and dominate over
their disconnected counterparts in the m→ 0 limit above.

This is what motivates our work in this paper: we look for replica wormholes that dom-
inate over the disconnected topology in a (strictly classical) saddle-point approximation.

1If matter fields are present, their boundary values should also be fixed.
2We will be agnostic on the precise protocol that produces Z(B) from Z(B), though in certain special

cases (such as pure JT gravity) it can be understood precisely; see e.g. [22, 25, 28–30, 35, 44, 46–51] for a
number of possible interpretations in more general contexts.
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The natural starting point is the gravitational replica trick technique of Lewkowycz and
Maldacena (LM) [16], which can be applied to explore the analytic continuation to small m
in the replica trick (1.4) for the generating functional. Recall that in a saddle-point ap-
proximation for P(Bm), this technique considers on-shell geometries (Mm, gm) with a Zm
symmetry. Quotienting by this symmetry produces a single-boundary “quotient” geome-
try (M̂m, ĝm) containing a (not necessarily connected) codimension-two conical defect with
opening angle 2π/m. This is analytically continued in m away from the integers (while still
imposing the equations of motion), giving an on-shell action Îm which can be used to ap-
proximate the path integral: P(Bm) ≈ e−mÎm . To compute, say, the von Neumann entropy,
the limit m → 1 is then taken in the corresponding replica trick; working perturbatively
about the m = 1 geometry then recovers the QES formula.

In the present context, the appropriate limit is m→ 0, which introduces a number of
subtleties not present in the computation of the von Neumann or Rényi entropies [16, 52]
(in which case m is a positive integer). First, as a consequence of the divergent conical
surplus in the m → 0 limit, there appears to be no m = 0 geometry about which we can
work perturbatively. Second, in contrast with the entropy replica trick, standard examples
of the quenched generating functional (e.g. spin glasses) often require replica symmetry
breaking (RSB). We may therefore expect the need for incorporating RSB when evaluating
the replica trick (1.4) in semiclassical gravity. We will anticipate this and include an
algorithmic way of breaking replica symmetry into our protocol for computing ΓQ; indeed,
this will prove to be necessary in the examples discussed below.

Our prescription for computing ΓQ from the gravitational replica trick is presented in
section 2. In short, the procedure consists of two steps:

1. First, we break replica symmetry by allowing for partially connected wormholes where
them boundaries cluster intom1-boundary wormholes, withm1 some divisor ofm, as
shown in figure 1. These wormholes have symmetry group (Zm1)m/m1×Sm/m1 , which
naturally interpolates between the Sm symmetry of the fully-disconnected phase and
the Zm one of the fully-connected wormhole. Quotienting by this symmetry group
gives a single-boundary geometry with conical defects of opening angle 2π/m1.

2. We then analytically continue m and m1 away from the integers and use (1.4) to
obtain a formula for the quenched generating functional:

ΓQ ≡ lnZ ≈ − min
m1∈[0,1]

Îm1 . (1.5)

In practice, evaluating the action Îm1 in order to compute ΓQ requires solving for the
quotient metric ĝm explicitly. In general theories of gravity this is a difficult task, but
it is simplified substantially in two-dimensional models. Consequently, in exploring the
contributions of replica wormholes to ΓQ we focus our attention on JT gravity and JT
gravity coupled to matter, in which ĝm describes a two-dimensional geometry of constant
negative curvature and hence the geometric degrees of freedom are simply the moduli in
the space of such geometries. In the quotient geometry, these moduli reduce to a single
degree of freedom that determines the proper distance D between the conical defects. This
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Figure 1. An illustration of the kinds of replica symmetry-breaking wormholes we allow in our
analysis of the replica trick (1.4). Here m = 12 and m1 = 4.

simplification makes an explicit construction of the quotient geometry tractable, and in
section 3 we discuss two methods of constructing it: we obtain ĝm either by patching
together appropriate regions of the Poincaré disk, or by solving the Liouville equation in
the presence of defects. The former method is very explicit, while the latter is more akin
to how we would need to proceed to obtain ĝm in higher dimensions.

With the quotient geometry constructed, we can then compute the quotient action Îm
in our specific models, which involves solving the equation of motion for the “boundary
degree of freedom” (i.e. the Schwarzian mode). This procedure is most straightforward in
pure JT, but as is well-known, Euclidean wormholes do not exist as saddles in pure JT
due to the tendency of the modulus D to “pinch off” the wormhole throats. Nevertheless,
it is possible to investigate the behavior of off-shell “constrained” wormholes in which D

is fixed by hand; we perform this investigation in section 4 as an illustrative example that
highlights the rather complicated structure of Îm at m < 1. In particular, the continuation
of Îm to complex m is an infinitely-sheeted Riemann surface, and the equations of motion
are crucial for determining which of these sheets gives the correct answer for Îm.

In order to stabilize the modulus D to get genuinely classical wormholes, however, we
need to support them by coupling JT to some matter. In section 5 we therefore couple JT
to a massless scalar field and construct the resulting action Îm. In order for the matter
field to exhibit a nontrivial stress tensor — as is necessary to stabilize the wormholes —
we turn on boundary sources for the matter field;3 these sources break the U(1) Euclidean
time-translation symmetry, so the states that we consider are not thermal states. Never-
theless, the parameter β that sets the length of the Euclidean time circle (i.e. the “inverse
temperature”) is a tunable boundary condition, and we find that at sufficiently small β−1

relative to the strength of our sources the matter is able to support classical wormholes.
In particular, these wormholes exist for m < 1. Moreover, these new saddles have smaller
action than the disconnected saddle that contributes to ΓA, which immediately suggests
that the quenched generating functional of JT gravity coupled to classical matter has a
phase in which it is dominated by replica wormholes. The inclusion of these wormholes
results in quantitatively and qualitatively different behavior of the quenched generating
functional ΓQ from its annealed counterpart ΓA.

3In higher dimensions, the importance of turning on matter sources to stabilize Euclidean wormholes
has been recently discussed by [53].
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Of course, whether or not these new saddles genuinely contribute to the quenched gen-
erating functional depends on their stability properties under a given definition of the path
integral. We find that while the disconnected saddle is stable against all Euclidean pertur-
bations, the new connected saddles at m < 1 (with lower action) are not: they are stable
when restricted to perturbations that admit a particular analytic continuation to (real)
Lorentzian time, but unstable to arbitrary Euclidean perturbations. Hence in a purely
Euclidean treatment that forgets about the Lorentzian origins of the theory, the quenched
generating functional appears to reproduce its annealed version; but in a treatment that
imposes a real Lorentzian section (or perhaps that rotates the contour of integration in the
path integral to an appropriately “Lorentzian” one), the quenched and annealed generating
functionals may differ at low temperatures. In fact, these statements appear to be robust
under quantum corrections: in section 6, we compute quantum corrections to the matter
action perturbatively around m = 1 and find that for m < 1 these quantum corrections
exhibit a stabilizing effect on the wormholes. This is to be contrasted with the situation
for m > 1, where a Casimir effect actually has a destabilizing influence [54–56].

These observations naturally prompt questions of how to determine what the “right”
saddles to include in the quenched generating functional are; while we do not answer this
question, we discuss some interesting facets and avenues of exploration in section 7.

2 The replica trick for the generating functional

Under the interpretation (1.2) of the gravitational path integral P(Bm), the replica
trick (1.4) is a trivial identity; its nontrivial content arises from how P(Bm), which is
only well-defined for integer m, is to be continued in m to a neighborhood of m = 0. In
general this analytic continuation is not unique and must be treated carefully. For instance,
if P(Bm) exhibits appropriate behavior in the right-half complex m plane, Carlson’s the-
orem can be used to ensure a unique analytic continuation; or if the “ensemble average”
genuinely corresponds to an average over an appropriate distribution of partition functions,
one could try to use Carleman’s condition in a similar way. However, these approaches are
often insufficient to provide a unique continuation to m = 0; see e.g. [31] for a discussion
of some of the difficulties involved.

Instead, a fruitful approach is to work in a saddle-point approximation wherein the
path integral P(Bm) is dominated by a single geometry obeying the saddle-point equations:
that is, the classical equations of motion. By continuing the equations of motion to non-
integer m in a controlled way, one obtains a unique analytic continuation of P(Bm) to
non-integer m which typically captures the correct physics. In condensed matter contexts,
the replica trick has been used in this way for decades; see e.g. [57]. In the gravitational
context, this analytic continuation of the equations of motion amounts to the Lewkowycz-
Maldacena (LM) construction for computing the von Neumann entropy gravitationally [16]
with some important differences that we now describe.

– 6 –
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2.1 The saddle-point approximation

Let us review the gravitational replica trick of LM, but adapted to (1.4) rather than to the
von Neumann entropy. The calculation is done in a saddle-point approximation, where the
path integral P(B) is approximated by the on-shell action of a classical solution:

P(B) ≈ e−I[gclas], (2.1)

where gclas solves the classical equations of motion (and we have suppressed any matter
fields ψ — they are treated classically in the same way as gravity, or semiclassically by
including the one-loop effective matter action to the above). Now, when B consists of
several disconnected regions, as in the replica trick (1.4), we should consider all possible
topologies of bulk manifold M and find the configuration with smallest action. In the case
of P(Bm), the m boundaries exhibit an Sm permutation symmetry. A common assumption
is that the on-shell bulk solution that approximates P(Bm) is highly symmetric as well.
We will review the construction of the gravitational replica with this in mind and leave all
discussion of further replica symmetry breaking — which is crucial for our construction —
to the subsequent section.

Let us first consider the maximally symmetric saddles, which are the disconnected
solutions. In these saddles, the bulk manifold M consists of m disconnected pieces that
“fill in” each boundary B. In this case the on-shell action is just mI[gm=1], where gm=1 is
the on-shell metric defined by a single boundary. The analytic continuation in m is then
trivial, and gives a contribution to the quenched generating functional of

ΓQ ≡ lnZ ⊃ −I[gm=1] = lnZ ≡ ΓA, (2.2)

where we identify the average of the partition function as Z ≈ e−I[gm=1]. This contribution
is just the annealed generating functional, and is the standard way of computing e.g. free
energies in gravitational theories.

The second type of saddle that is typically considered in this context is the wormhole
solution that connects various copies of B in an arrangement exhibiting a Zm symmetry, as
shown in the left diagram of figure 2. Denoting the metric on the fully-connected manifold
as gm, the on-shell action is simply I[gm]. In order to continue this on-shell action away from
integer m, the wormhole geometry is quotiented by the Zm symmetry, yielding a quotient
manifold M̂m with metric ĝm; the codimension-two surfaces of fixed points of the Zm
isometry in the full geometry become conical defects in (M̂m, ĝm) with opening angle 2π/m.
All m-dependence appears only in the opening angle about these defects, and so m can
be sensibly continued away from the integers while still imposing the equations of motion.
Note that ĝm does not solve the equations of motion obtained from the action I[g] at the
defects; one can either impose the equations of motion everywhere away from the defects,
or modify the action by the contribution of a cosmic brane with tension proportional
to 1 − 1/m sourcing the defects, as in [52]. Either way, the resulting contribution to the
quenched generating functional from this replica-symmetric saddle would be

ΓQ ⊃ lim
m→0

1
m

(
e−mI[ĝm] − 1

)
= − lim

m→0
Îm, (2.3)

– 7 –
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b b

Zm quotient

Figure 2. The LM construction used to obtain the analytic continuation in m for the replica
trick (1.4). Upon quotienting by Zm, the two black lines in the left diagram are stitched together
at the branch cut in the right diagram.

where we have introduced the shorthand notation Îm ≡ I[ĝm]. Note that we have left
the m → 0 limit explicit because it is not clear whether ĝ0 is a well-defined geometry. In
particular, while for m > 1 the conical defect is an angular deficit, for m < 1 the defect is
an excess, and in fact as m→ 0 the excess angle becomes arbitrarily large.4

The contribution (2.3) to ΓQ captures the effect of replica wormholes in the path
integral. If this contribution is subdominant to the conventional one (2.2) from the discon-
nected topology, then ΓQ simply reproduces the annealed calculationΓA. But if wormholes
dominate over the disconnected contribution,ΓQ and ΓA may differ substantially.

It is worth remarking on the differences between this procedure and the analogous one
for the von Neumann entropy. The first difference is clearly the number of replicas: in
the derivation of the RT/HRT formula for von Neumann entropy [58, 59], one ultimately
takes the m → 1 limit of Rényi entropies. This limit allows us to work perturbatively
around the “original geometry” m = 1 to derive a formula for the von Neumann entropy
that does not require an explicit construction of the quotient geometry ĝm. On the other
hand, our m→ 0 limit for ΓQ genuinely requires a computation ĝm well away from m = 1.
This is more akin to the gravitational computation of Rényi entropies [52], which requires
one to compute Îm at integer m > 1. The second difference is that in computations of
von Neumann (or Rényi) entropies in gravitational theories, correlations in the boundary
conditions of the gravitational path integral render the symmetry group of the boundary
to be Zm (e.g. in the derivation of the RT formula, B consists of an m-sheeted branched
cover whose branch points correspond to the entangling surface). Hence it is quite natural
to take the infilling bulk solution to share this Zm symmetry as well. On the other hand,
in the replica trick (1.4), the boundary Bm consists of m completely disconnected pieces
with symmetry group Sm. This symmetry is broken to Zm by the wormhole. In general we
expect that connected geometries that preserve the full Sm symmetry of the boundary do
not exist, so in this sense we may think of the wormhole as a kind of mild form of replica
symmetry breaking (RSB). But if some amount of breaking the Sm of the boundaries is
inherent to the wormholes, it is natural to wonder whether we can proceed further by
generalizing this breaking in a controlled way. Indeed it can, and incorporating such RSB
will be crucial to our later analysis. We now briefly discuss a form of “one-step gravitational
RSB” motivated by the structure of the Parisi ansatz for spin glasses [57].

4From the cosmological brane point of view, for m > 1 the brane tension Tm ∝ (1 − 1/m) is positive,
making it gravitationally attractive; for m < 1 the brane tension is negative, making it gravitationally
repulsive.
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Figure 3. An illustration of our replica symmetry-breaking wormholes; here m = 12 and m1 = 4,
giving a wormhole with m/m1 = 3 connected components.

2.2 Replica symmetry breaking

The one-step RSB procedure that we define incorporates wormholes that are not maximally
connected.5 For a given integer m, we take m1 to be a positive integer that divides m. We
then consider wormholes that connect the m boundaries into groups of m1, as illustrated
in figure 3 for the case m = 12, m1 = 4. Hence m1 is a parameter that encodes various
possible wormhole topologies, and so we should ultimately minimize the action with respect
to it to find the dominant contribution.

The bulk geometry consists of m/m1 disconnected pieces. Assuming that each of
these pieces has the same Zm1 symmetry discussed above, the symmetry group of the bulk
geometry is (Zm1)m/m1 × Sm/m1 , with the Sm/m1 factor corresponding to the freedom to
permute the disconnected pieces amongst each other. We may quotient the geometry by
this symmetry to conclude that the total on-shell action is mÎm1 . We may now analytically
continue m away from the integers. Because m1 was constrained to be a divisor of m,
continuing in m naturally leads us to continue in m1 as well. However, since m1 was
constrained to range between one and m, we preserve this constraint even after the analytic
continuation: that is, we take m1 to be an arbitrary real number in the range m1 ∈ [1,m].
Hence for arbitrary m, the path integral is approximated by

P(Bm) ≈ max
m1∈[1,m]

e−mÎm1 , (2.4)

and hence the replica trick (1.4) gives

ΓQ ≈ − min
m1∈[0,1]

Îm1 . (2.5)

Note that in taking the limit m → 0, we have maintained the constraint
that m1 ∈ [1,m] → [0, 1]. If the minimization is achieved by m1 = 1, then ΓQ co-
incides with the annealed result ΓA in (2.2); if the minimization is achieved by m1 = 0 (or
perhaps more carefully, in the limit m1 → 0), then we recover the quenched generating
functional (2.3) obtained from the completely connected wormholes. We interpret any
other value of m1 as breaking replica symmetry.

Some comments are in order. First, though this procedure seems ad hoc (in particular,
the analytic continuation of m1 and its restriction to lie in the interval [1,m] even after

5The contributions of various topologies of off-shell wormholes to gravitational computations of von
Neumann entropy were considered in e.g. [8].
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continuing m to zero), it is precisely analogous to one-step RSB in spin glasses. As with
most instances of the replica trick, ultimately we should interpret (2.5) as a prescription
for computing the quenched generating functional, rather than as a derivation. Its
validity can only be determined on physical grounds. Second, values of m1 different
from m actually correspond to a larger symmetry group than that of the fully-connected
wormhole m1 = m, so what we are calling “replica symmetry breaking” can really be
thought of as a “symmetry enhancement” relative to the fully-connected wormhole.
Regardless, any value of m1 different from 1 still corresponds to a breaking of the Sm
symmetry of the boundaries. Finally, there is a potential subtlety: the action functional
could formally change signs for sufficiently small m. In that situation, presumably we
would need to maximize the action instead of minimizing it. This type of behavior is
characteristic of spin glasses, where the number of degrees of freedom formally becomes
negative in the m → 0 limit.6 Whether or not an analogous change of sign happens in
the gravitational contexts we are considering will presumably depend on the details of
the gravitational theory. At least for the theories we will consider later in this paper, this
phenomenon does not happen and we expect to need to minimize over m1.

As a final note, in many cases of interest one takes B to have topology Σ× S1, where
the circle S1 has length β. If all boundary sources exhibit a U(1) symmetry corresponding
to translations around the S1, Z(B) can be interpreted as a canonical partition function at
inverse temperature β, and the quenched generating functional is related to the quenched
free energy:

FQ ≡ −β−1ΓQ. (2.6)

However, in later sections we will consider boundary sources that break the U(1) isometry
of the boundary thermal circle. In such a case FQ no longer has an interpretation as the free
energy of a thermal state, and for this reason we restrict our investigation to the generating
functional ΓQ.

3 The quotient geometry in two dimensions

In certain two-dimensional asymptotically (nearly) AdS models of gravity like JT, the ge-
ometry has constant negative curvature. Moreover, in a classical (or semiclasscal) limit,
contributions from higher genera are suppressed. These simplfications render the construc-
tion of the quotient geometry (M̂m, ĝm) quite tractable, and we now describe it in this
context. In later sections we will rely on this construction to investigate the behavior of
the m→ 0 limit invoked in the computation of the quenched generating functional in pure
JT gravity and in JT gravity coupled to matter.

6More precisely, in a spin glass the degrees of freedom the action is to be extremized over are the
off-diagonal components of an m ×m correlation matrix qαβ encoding correlations between replicas. The
action takes the form of a sum over the components of qαβ , and the number of off-diagonal components
is m(m − 1)/2. When analytically continuing in m, one sets the off-diagonal components of qαβ to all
be equal to some q, giving the action an explicit overall factor of m(m − 1)/2, which becomes negative
when m < 1. Due to this change in the overall sign of the action, the physical minimization of the action
with respect to the individual components of qαβ corresponds to the maximization of the action with respect
to the degree of freedom q in the replica ansatz once m is taken less than one.
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γ
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α
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Figure 4. In two dimensions, the quotient space (M̂m, ĝm), shown left, can be mapped to the
unit disk in the complex plane with two conical defects on the real axis separated by a proper
distance D. The imaginary axis is a geodesic γ about which the geometry exhibits a reflection
symmetry. Quotienting by this symmetry gives the geometry M̂

(2)
m which contains only a single

defect; it corresponds to a portion of the Poincaré disk with a single defect bounded by a geodesic γ,
shown center. Unwrapping the defect by cutting along the jagged line turns M̂ (2)

m into a subregion of
the Poincaré disk (with no defect), shown right. The geodesic γ consists of two segments traversing
an angle α, related to D by (3.3).

It will be useful to describe two different ways of obtaining the quotient geometry.
The first exploits the fact that since ĝm has constant negative curvature, it is locally AdS2;
hence ĝm can be constructed by stitching together appropriate regions of exact AdS2,
i.e. patches of the Poincaré disk. This approach has the advantage of giving an exact and
explicit form of ĝm, but at the cost of requiring more than one coordinate chart to cover
the entire quotient manifold. On the other hand, the second approach is analogous to the
procedure in higher dimensions: we solve the equations of motion directly. In this case we
are only able to obtain an approximate solution for ĝm, but we are able to cover the entire
quotient manifold with just one coordinate chart. As we will see, the two constructions are
useful in different contexts.

3.1 Patchwise construction

In two dimensions, the quotient manifold has the topology of a disk with two conical
defects. Per the replica trick, the locations of these defects in the geometry should be fixed
dynamically. However, all but one degree of freedom in the locations of the defects can be
gauge-fixed: if we think of M̂m as a subset of the complex plane with the disk topology, the
automorphisms of M̂m can be used to fix three (real) degrees of freedom in the locations
of the defects. It is convenient to thus take M̂m to be the unit disk in the complex
plane and to place the defects on the real axis symmetrically about the origin, leaving the
proper distance D between them as the single dynamical degree of freedom, as shown on
the left of figure 4. Note that in this construction, the imaginary axis corresponds to a
geodesic γ about which the quotient geometry exhibits a Z2 reflection symmetry. There
is an additional Z2 reflection symmetry about the real axis, so we expect the quotient
geometry to exhibit a Z2 × Z2 symmetry.

Due to the reflection symmetry across γ, we may construct the quotient geometry
by stitching together the left and right halves of the disk along γ; each of these halves
corresponds to a geometry (M̂ (2)

m , ĝ
(2)
m ) that contains only a single conical defect and is
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bounded by a geodesic, as shown in the middle of figure 4. This geometry is simply a portion
of the Poincaré disk with a defect. We can then “unwrap” the defect by cutting M̂ (2)

m along
the indicated jagged line, ending up with the wedge-shaped region of the Poincaré disk
(with no defect) shown at right in figure 4.7 Concretely, in complex coordinates in which
the metric on the Poincaré disk takes the form

ds2 = 4 dz dz̄
(1− zz̄)2 , (3.1)

the two jagged lines are the rays Arg(z) = ±π/m, which are to be identified. Likewise, the
geodesic γ consists of two segments of the circles defined by∣∣∣z − e±iπ/m secα

∣∣∣ = tanα, (3.2)

with α a parameter that sets the size of these circles, related to the proper distance D
between the defects as

sinα = sech(D/2). (3.3)

Note that for m > 2, this construction implies that D is bounded from below: in order for
the geodesics that define γ to neither intersect one another nor exclude the origin, we must
have

0 < α < min
{
π

2 ,
π

m

}
. (3.4)

So the minimum proper distance between the defects is Dmin = 2 arcsech(sin(π/m))
when m > 2. More intuitively, for m > 2 the mass of the defect in the middle diagram
of figure 4 becomes sufficiently large that even when the geodesic γ orbits once around it,
it is only able to reach a closest approach distance of Dmin/2; achieving D < Dmin would
require γ to self-intersect.

It is worth noting that there is a qualitative difference in this construction between m ≥
1 and m < 1: for m ≥ 1, the opening angle 2π/m about the conical defects is less than (or
equal to) 2π, so M̂ (2)

m really is a subregion of the Poincaré disk, as shown in the left diagram
of figure 5. On the other hand, for m < 1 the opening angle 2π/m is greater than 2π, so
we must instead interpret M̂ (2)

m as being a subregion of a covering of the Poincaré disk —
in terms of the standard angular coordinate θ on the disk defined by z = reiθ, we no longer
identify θ with θ + 2π. This turns the disk into a Riemann surface with infinitely many
sheets, as shown in the right diagram of figure 5. In particular, M̂ (2)

m includes arbitrarily
many sheets of this Riemann surface as m→ 0.

The upshot is that this patchwise construction of (M̂m, ĝm) is very convenient in mod-
els that can be reduced to local boundary dynamics. In such cases we can use the near-
boundary behavior of ĝ(2)

m to construct a local boundary action, and then simply impose ap-
propriate boundary conditions at the (boundaries of the) geodesic γ at which the two copies

7An alternative way of deriving this construction is to switch the order of the quotients: start with the
original m-boundary geometry (Mm, gm) for integer m and first quotient by the Z2 symmetry that maps
the two fixed points of the replica symmetry to one another. The resulting geometry is the Poincaré disk
with m geodesic boundaries corresponding to the fixed points of the Z2, identical to the left diagram of
figure 22 in the appendix. Then quotienting by Zm immediately gives M̂ (2)

m in the form of the wedge shown
at right of figure 4.
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Figure 5. For m ≥ 1, the opening angle about the conical defects is smaller than 2π, so the mani-
fold M̂ (2)

m used in the construction of the quotion geometry consists of the wedge-shaped subregion
of the Poincaré disk shown at left (with the dot-dashed lines identified). But for m < 1, the opening
angle about the defect is greater than 2π, so to construct M̂ (2)

m we must “unwrap” the disk into an
infinitely-sheeted Riemann surface. M̂ (2)

m is then a subregion of this Riemann surface, shown at right.

of M̂ (2)
m are stitched together. We will use such a construction in section 4 to study pure

JT, as well as in appendix D to study a model of JT coupled to end-of-the-world branes.
However, in models that cannot be reduced to local boundary dynamics, as in the case

of JT coupled to a massless scalar that we study in section 5, the need to impose nontriv-
ial boundary conditions everywhere along the stitching geodesic γ makes this patchwise
construction less useful. For such cases, it is instead desirable to construct the quotient
geometry M̂m in a single coordinate chart. We turn to such a construction next.

3.2 Liouville construction

To construct the quotient geometry in a single coordinate chart, we take M̂m to be a sub-
region Ω of the complex plane with disk topology, with two points z1, z2 chosen to be the
locations of the conical defects. As remarked above, there is ample gauge freedom in these
choices which we must fix. In particular, we are free to conformally map Ω to any other re-
gion of the complex plane with disk topology, as well as to change the locations of z1 and z2
using automorphisms of Ω. Since such automorphisms contain three real degrees of free-
dom, the choice of Ω, z1, and z2 contains only a single real physical degree of freedom. For
instance, as in the left diagram of figure 4 we could take Ω to be the unit disk and set z1 =
−a, z2 = a with a ∈ (0, 1) the physical modulus that controls the proper distance between
the defects. For our purposes, it is instead convenient to take Ω to be the interior of an
ellipse with eccentricity ε with foci at z = ±1 and to place z1 and z2 at these foci, as shown
in the left diagram of figure 6. In this case the physical degree of freedom is ε ∈ (0, 1), with ε
near 0 and 1 corresponding to the defects being close together and far apart, respectively.
Also note that this choice of Ω naturally manifests the expected Z2 × Z2 symmetry of the
quotient geometry through the reflection symmetries across the principal axes of the ellipse.

The advantage of this choice of Ω is that it can easily be mapped to a coordinate
rectangle by converting to elliptic coordinates (ξ, φ) through

z = cosh u, u ≡ ξ + iφ. (3.5)
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z uz = cosh u
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Figure 6. The elliptical domain used in constructing the quotient geometry (left) and the rectangle
to which we map it (right); the marked points are the locations of the defects, placed at the
foci z = ±1 of the ellipse. The rectangle can be extended to an infinite strip (dashed lines)
containing infinitely many images of these defects.

In the original z plane, curves of constant ξ correspond to confocal ellipses of eccen-
tricity sech ξ with foci at z = ±1, while curves of constant φ correspond to confocal
hyperbolae with foci at z = ±1. Hence the ellipse Ω is mapped to the rectangular re-
gion φ ∈ [0, 2π), ξ ∈ [0, arcsech ε) and the defects are mapped to u = 0 and iπ, as shown in
the right diagram of figure 6. In what follows we will define ξ0 ≡ (2/π) arcsech ε, so that
the conformal boundary is at ξ = πξ0/2. Note that the map to the rectangle in the u plane
doubles the angle around the defects, so if the total angle around them was 2π/m in the
original ellipse, it is 4π/m in the rectangle.

With the quotient manifold thus fixed, we can solve for the quotient metric ĝm on it.
We work in conformal gauge in which the metric on the rectangle takes the form

ds2 = e2σ(u,ū) du dū. (3.6)

Since ĝm has constant curvature R = −2 everywhere except at the defects, the equation of
motion for σ is the Liouville equation [7]

− 4∂u∂ūσ + e2σ = 2π
(

1− 2
m

)
(δ0(u, ū) + δiπ(u, ū)) , (3.7)

where we define the complex delta function as δu∗(u, ū) ≡ δ(ξ − ξ∗)δ(φ − φ∗) (with u ≡
ξ + iφ and u∗ ≡ ξ∗ + iφ∗ as above). The delta functions on the right can be thought
of as contributions to the curvature localized to the defects; note that their strength is
proportional to 1−2/m due to the doubling of the angle in going to the rectangular domain.
As shown in appendix A, extending the problem to the entire strip ξ ∈ (−πξ0/2, πξ0/2), φ ∈
(−∞,∞) and defining σ̃ via

σ ≡ σ̃ + ln
( 1
ξ0

sec
(
u+ ū

2ξ0

))
+ H

ν
, (3.8)

where H ≡
∞∑

k=−∞
ln
∣∣∣∣tan

(
u− ikπ

2ξ0

)∣∣∣∣ and ν ≡ m

2−m, (3.9)
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the Liouville equation becomes

−
(
∂2
ξ + ∂2

φ

)
σ̃ + 1

ξ2
0

sec2
(
ξ

ξ0

)(
e2H/νe2σ̃ − 1

)
= 0, (3.10)

σ̃

(
ξ = ±πξ0

2 , φ

)
= 0, σ̃(ξ, φ+ 2π) = σ̃(ξ, φ). (3.11)

Although we are unable to solve for σ̃ analytically, in practice it is straightforward to
obtain σ̃ numerically as discussed in appendix B.1, and indeed we will make use of these
numerical solutions later. However, it is possible to construct an analytic approximation
for σ̃ which we will use extensively in section 5.

To obtain this approximate solution, we will work at small ξ0 and small ν — in fact,
it will be convenient to take the relative scaling of ν and ξ0 to be such that e−π/2ξ0 � ν.
If ξ0 is small, the sum defining H is rapidly convergent since the kth term is sharply peaked
around φ = kπ. Although (3.10) is not linear in H or σ̃, we consequently expect it to
approximately linearize. This motivates us to define

σ̃(ξ, φ) ≡
∞∑

k=−∞
f(ξ, φ− kπ) + δσ̃(ξ, φ), (3.12)

where f is a solution to

−
(
∂2
ξ + ∂2

φ

)
f + 1

ξ2
0

sec2
(
ξ

ξ0

)(∣∣∣∣tan
(
ξ + iφ

2ξ0

)∣∣∣∣2/ν e2f − 1
)

= 0, (3.13a)

f(±πξ0/2, φ) = 0, f(ξ, φ→ ±∞) = 0 (3.13b)

and δσ̃ is a correction term which must vanish at ξ = ±πξ0/2. Just as with each term
in H, we expect f to be sharply localized around φ = 0 at small ξ0.

If f localizes around φ = 0, then δσ̃ must be small. To see this, note that (3.10)
becomes

−(∂2
ξ + ∂2

φ)δσ̃ + 1
ξ2

0
sec2

(
ξ

ξ0

)exp

2
∞∑

k=−∞
F (ξ, φ− kπ)

 e2δσ̃ − 1 (3.14)

−
∞∑

k=−∞

(
e2F (ξ,φ−kπ) − 1

) = 0,

where we have defined

F (ξ, φ) ≡ 1
ν

ln
∣∣∣∣tan

(
ξ + iφ

2ξ0

)∣∣∣∣+ f(ξ, φ). (3.15)

Per our expectations on f , F should also be sharply peaked around φ = 0 when ξ0 is
small. Though (3.14) is an exact rewriting of the Liouville equation, in order to estimate
the magnitude of δσ̃ we may linearize in terms that are small. Without loss of generality
we restrict our attention to the region φ ∈ (−π/2, π/2], since we can extend the solution
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to the entire strip by symmetry about φ = kπ/2. In this region, F (ξ, φ − kπ) is small for
all k 6= 0, and hence (3.14) gives

ξ2
0 cos2

(
ξ

ξ0

)(
∂2
ξ + ∂2

φ

)
δσ̃−e2F (ξ,φ)

(
e2δσ̃ − 1

)
= 2

(
e2F (ξ,φ)+2δσ̃ − 1

)∑
k 6=0

F (ξ, φ−kπ)+· · · ,

(3.16)
where the dots denote subleading terms in F (ξ, φ − kπ) for k 6= 0. In the region φ ∈
(−π/2, π/2], the right-hand side is small; if it were to vanish, then clearly so would δσ̃.
Hence δσ̃ must be small, as claimed; linearizing in it, we find[
ξ2

0 cos2
(
ξ

ξ0

)(
∂2
ξ + ∂2

φ

)
− 2e2F (ξ,φ)

]
δσ̃ = 2

(
e2F (ξ,φ) − 1

)∑
k 6=0

F (ξ, φ− kπ) + · · · , (3.17)

where the dots now also include subleading terms in δσ̃. Consequently we expect the
magnitude of δσ̃ to scale like the magnitude of the source on the right-hand side.

All that remains is to solve (3.13) for f to construct the solution (3.12) and to quantify
the size of δσ̃ (as well as to verify the expectations that led to (3.17) in the first place). At
small ν, f can be constructed perturbatively in ν using a matched asymptotic expansion,
as shown in appendix A.1. We ultimately find that

f = − ln
[(1
y

+ ν

)
sinh y

]
+ y + ν (1 + y (1− coth y))

+ ν2

6
(
3y2 csch2 y + 2y3(1− coth y)− 3

)
+ ν3

3
(
1 + y3(1− coth3 y) + y4 csch2 y

)
+O(ν4), (3.18)

where y ≡ ν−1 sech(φ/ξ0) cos(ξ/ξ0) and the neglected terms are O(ν4) for all y ∈ (0, 1/ν).
It then follows that if e−π/2ξ0 � ν, the right-hand side of (3.17) — and hence also δσ̃ —
is O(ν−4e−2π/ξ0). We thus conclude that

σ̃approx(ξ, φ) =
∞∑

k=−∞
f(ξ, φ− kπ) (3.19)

with f given by (3.18)8 is a solution to the Liouville equation up to corrections of or-
der O(ν−4e−2π/ξ0). To verify the validity of this approximation, in figure 7 we com-
pare σ̃approx to the numerical solution σ̃num of (3.10) for ν = e−π/4ξ0 and ξ0 = 0.3, in which
case we should expect these solutions to agree to order O(ν3), as we find that they do.

4 Pure JT for general m

Section 3.1 described how to construct the two-dimensional quotient geometry of the replica
trick by identifying two copies of the Poincaré disk with defects, yielding a geometry that
depends onm and on the distance D between the defects. This construction will allow us to

8In principle we can obtain f to any desired order in ν, but for constructing (3.19) there is no point
computing f to higher order than the correction term δσ̃, i.e. to O(ν−4e−2π/ξ0 ) or higher.
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Figure 7. A comparison between the approximation σ̃approx and σ̃num. The top left shows σ̃num,
while from left to right and top to bottom the subsequent plots show σ̃num−σ̃approx with successively
higher-order terms in ν included in (3.18). Here we take ξ0 = 0.3 and ν = e−π/4ξ0 ≈ 0.07, so
that σ̃approx should agree with σ̃num up to corrections of order O(ν−4e−2π/ξ0) = O(ν4).

compute the effective classical action of pure JT gravity as a function of D at arbitrary m.
As noted above, this effective action should not exhibit any saddles for D except for m = 1,
and indeed as expected we do not find any classical wormhole solutions away from m = 1.
However, many of the surprising nontrivial features of the continuation to small m manifest
already in pure JT, and will thus be illuminating for the subsequent more complicated
model in section 5. In particular, the equations of motion are critical for obtaining a
single-valued analytic continuation to m < 1.

4.1 JT gravity in the boundary formalism

The tractability of pure JT stems largely from the fact that it can be reduced to the
dynamics of a Schwarzian theory describing the boundary of nearly-AdS2 space. This
same feature is what permits us to compute the action at general m. To do so, recall that
the Euclidean JT action on a manifold M is

IJT = −S0
4π

(∫
M
R+ 2

∫
∂M

K

)
− 1

2

∫
M
ϕ(R+ 2)−

∫
∂M

ϕ(K − 1), (4.1)

where K is the extrinsic curvature of the boundary curve ∂M and we have set the AdS
length to unity. The boundary conditions at ∂M are that

Length(∂M) = β

δ
, ϕ|∂M = 1

δ
, δ → 0. (4.2)

These boundary conditions allow us to define a renormalized proper length coordinate u
along ∂M through the condition that u/δ be a proper distance on ∂M . Integrating out the
dilaton ϕ as usual forces M to have constant negative curvature, reducing the partition
function to an integral over the moduli space of M and an integral over the shape of ∂M
— hereafter referred to as the boundary “wiggle”.
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To evaluate the effective action for general m, we now takeM to be the quotient geom-
etry M̂m. The action will depend on the modulus D and on the wiggle, which is encoded
in the embedding of ∂M in M̂m. To write this embedding explicitly, we proceed as follows.
Recall from figure 4 that M̂m can be constructed from two identical pieces M̂ (2)

m joined along
a geodesic γ. Since we expect an on-shell solution for the wiggle to be symmetric about γ,
we may restrict our attention to just a single copy of M̂ (2)

m . In terms of the complex coor-
dinate z defined by (3.1), we embed ∂M in M̂ (2)

m through the embedding z = R(u)eiΘ(u),
where R(u) is related to Θ(u) by the condition that u/δ be a proper distance along ∂M .9
Without loss of generality we also take ∂M to intersect γ at u = ±β/4. Then because M̂ (2)

m

is just a subregion of the Poincaré disk, the action on M̂m is the usual Schwarzian action:

Îm = m− 2
m

S0 +
∫ β/4

−β/4
du

[
Θ′′2
Θ′2 −Θ′2 − 2

(Θ′′
Θ′
)′]

, (4.3)

= m− 2
m

S0 − 2
∫ β/4

−β/4
du Sch (tan(Θ/2), u) , (4.4)

where Sch(f, u) ≡ (f ′′/f ′)′ − f ′′2/(2f ′2) is the Schwarzian derivative. However, our expec-
tation that ∂M be symmetric about γ requires γ and ∂M to intersect orthogonally, which
imposes nontrivial boundary conditions. A straightforward computation finds these to be

Θ (±β/4) = ±
(
π

m
− α

)
, Θ′′ (±β/4) = ∓ cotαΘ′ (±β/4)2 , (4.5)

where we recall that α is related to D via (3.3). Importantly, recall that in order to properly
accommodate the case m < 1, we must not identify Θ(u) and Θ(u) + 2π.

We now wish to put the wiggle Θ(u) on shell to obtain an effective action for α at
general m. Taking a variation of (4.3) yields the familiar equation of motion

(
1
Θ′
(Θ′′

Θ′
)′

+ Θ′
)′

= 0. (4.6)

From the structure of the equation of motion and boundary conditions, we expect any
solutions for Θ(u) to be odd in u. The general such odd solution is

tan
(Θ(u)

2

)
= a tan

(
bu

β

)
(4.7)

where a and b are arbitrary and will be fixed by the boundary conditions in (4.5). There
are two qualitatively different classes of solutions depending on whether a and b are both
real or both imaginary, so we discuss them separately.

9Explicitly,

R = 1−Θ′δ + Θ′2δ2

2 − Θ′′2

2Θ′ δ
3 +O(δ4).
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Exponential solutions. First consider the case that a and b are imaginary: take a = iai
and b = −ibi with ai and bi real, giving

tan
(Θ(u)

2

)
= ai tanh

(
biu

β

)
. (4.8)

Since Θ(u) must be monotonically increasing with u, ai and bi must have the same sign;
without loss of generality we take both to be positive. Then imposing the boundary condi-
tions (4.5), we find that when a solution for ai and bi exists it is always unique and given by

bi = 2 arccosh
(sin(π/m)

sinα

)
, ai = coth

(
bi
4

)
tan

(
π −mα

2m

)
. (4.9)

Thus these solutions only exist when sin(π/m)/ sinα ≥ 1. Moreover, note that the
right-hand side of (4.8) is a regular function of u ∈ (−∞,∞), while the left-hand side is
singular when Θ = π (mod 2π). Hence in order for solutions of this exponential type to be
smooth in u, we also require that π/m− α < π. From these two constraints on m and α,
we find that these classes of solutions always exist for m ≥ 2, never exist for m ≤ 1, and
exist for certain values of α but not others when 1 < m < 2.

Oscillatory solutions. Now take a = ar and b = br with ar and br real, giving the
general solution

tan
(Θ(u)

2

)
= ar tan

(
bru

β

)
. (4.10)

Again, monotonicity of Θ(u) allows us to restrict to positive ar and br. Now, note that
as Θ runs from zero to π/m−α, the left-hand side of this expression goes through N poles,
where

N ≡
⌊ 1

2m + π − α
2π

⌋
. (4.11)

To obtain a monotonic and smooth Θ(u), the right-hand side must go through the same
number of poles as u goes from zero to β/4, yielding a constraint on br:

br
2π ∈ (2N − 1, 2N + 1]. (4.12)

With this constraint in mind, we impose the boundary conditions (4.5); again we find that
when a solution exists it is unique and given by

br = 2(−1)b1/m−α/πc arccos
(sin(π/m)

sinα

)
+ 4πN, (4.13a)

ar = cot
(
br
4

)
tan

(
π −mα

2m

)
, (4.13b)

where the principal branch of the inverse cosine is understood. Consequently we conclude
that there is always a unique solution of this form whenever | sin(π/m)|/ sinα < 1.
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Figure 8. The on-shell quotient space action Îm[α] for pure JT, given in (4.14), as a function of 1/m
for various values of α: the blue, red, and orange curves (steepest to least steep) correspond to α =
π/12, π/4, and π/2; since α is required to be strictly less than π/2, the orange curve can be thought
of as a limiting case. Note that when m < 1, classical solutions for the wiggle do not always exist,
and hence there are “gaps” in which the on-shell action is not defined. Solutions always exist when-
ever 1/m is an integer, in which case they yield an action independent of α, while solutions never
exist for any value of α < π/2 when 1/m+1/2 is an integer. The inset zooms in on the region m > 1
and shows the action to the smallest value of 1/m consistent with the constraint α < min(π/2, π/m).

4.2 Effective action

Using the above solutions, it is straightforward to put the wiggle on shell and thereby
obtain an effective action for the modulus α. We find

Îm[α] = m− 2
m

S0 +


2b2i
β
, m > 1 and sin(π/m)

sinα ≥ 1,

−2b2r
β
,
| sin(π/m)|

sinα < 1,
(4.14)

with bi and br given by (4.9) and (4.13). As a check, note that for m = 1 we recover Î1 =
S0−2π2/β, which is the classical Schwarzian action of the disk [5, 60]. On the other hand,
for m = 2 and using (3.3) we obtain Î2 = 2D2/β, which is half the classical action of the
double-trumpet once we recognize D as half the length of the trumpet’s throat [6].

Note that when m > 1 we found saddles for the wiggle for all allowed values of α,
but for m < 1 we have found no solutions whenever | sin(π/m)|/ sinα > 1. Hence Îm[α]
is not defined for all m and α. In figure 8 we show Îm[α] as a function of m, giving
some indication of why this is the case: at a given value of α, as we decrease m we
eventually reach a branch point of the inverse cosine, after which a real solution ceases
to exist. Decreasing m further we reach new branch points at which solutions reappear.
The locations of these branch points depend on α, but it is clear from (4.14) that a
solution exists for all α whenever 1/m is an integer, and no solution exists for any values
of α whenever 1/m + 1/2 is an integer. It is also clear that at a fixed value of m, the
action Îm[α] is a monotonic function of α, and hence exhibits no saddles in α.
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Figure 9. The blue dashed lines show a cross-section through the Riemann surface obtained by
analytically continuing the effective action Îm[α] to all m; here we take α = π/4. We only plot
this Riemann surface where it takes on real values: in the “gaps” it is complex. This analytic
continuation of Îm[α] exhibits infinitely many branches of which only one, shown as a solid red line,
computes the correct action. The other branches correspond to violating the boundary conditions
by having the wiggle Θ(u) wrap around the circle too many or too few times.

Nevertheless, the analytic structure of Îm[α] highlights an important lesson: in the
spirit of the replica trick, one might have expected that knowledge of Îm[α] for any arbi-
trarily small interval in m should have allowed us to analytically continue to all m. In a
sense, this is indeed the case: for instance, knowing Îm[α] for m > 1 does allow us to ana-
lytically continue to m < 1. However, as shown in figure 9, this analytic continuation does
not give a single-valued function of m. Instead, it yields a Riemann surface with infinitely
many branches. In order to identify which, if any, of these branches correspond to the “cor-
rect” value of the action, we needed to make use of the equations of motion. The “other”
branches appearing in figure 9 are unphysical: they violate the constraint (4.12). We may
therefore interpret them as arising from having Θ(u) wrap around the circle too many or
too few times, corresponding to ∂M ending at different images of γ on the covering space of
the disk, as shown in figure 10. The upshot is that even working in a saddle-point approx-
imation, a mere analytic continuation from the on-shell action at m > 1 is not sufficient to
determine its correct behavior at m < 1: one needs to analytically continue the equations
of motion themselves to m < 1 in order to determine the correct analytic continuation.10

The attentive reader will note a potential concern here: even though there are no sad-
dles for the modulus α (except when 1/m is an integer), Îm[α] becomes arbitrarily negative
as m→ 0 whenever solutions exist. If we were to perform a saddle-point approximation for
the path integral over the wiggle but perform a full integral over α, we might conclude that

10A noteworthy exception is α = π/2. Although a regular wormhole geometry requires α < π/2 as a
strict inequality, the case α = π/2 can be understood as a limit in which the conical defects merge together,
analogous to the “double-cone” limit of the double-trumpet. In this case, classical solutions for the wiggle
exist for any m ≤ 2 and have the on-shell action Îm[α = π/2] = (1 − 2/m)S0 − 2π2(1 − 2/m)2/β; clearly
the analytic continuation of this function from any interval in m to all m is just itself, with no additional
structure appearing. As can be seen in figure 8, the correct branch of the Riemann surface for Îm[α] that
appears for α < π/2 is the one obtained via a smooth deformation away from Îm[α = π/2].
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Figure 10. On the covering of the disk, the geodesics γ that bound M̂
(2)
m have infinitely many

images (blue dashed lines). Anchoring the boundary wiggle ∂M to these images rather than to γ
gives unphysical solutions that wrap the circle too many or too few times; these additional solutions
correspond to the additional branches in figure 9.

the partition function on the quotient manifold should be dominated by small-m geometries
and hence exhibit a divergence in the m→ 0 limit of the replica trick. This would indicate
a complete failure of the replica trick (or a deep pathology of pure JT gravity). However, it
turns out that the saddles we have found for the wiggle are in fact unstable at sufficiently
small m, and hence they should not contribute to any saddle-point approximation, which
resolves this tension. We now discuss this stability analysis.

4.3 Stability analysis

To perform a stability analysis, we write Θ(u) = Θ̃(u) + ϑ(u) where Θ̃(u) is a solution
to the equations of motion. We restrict our analysis here to perturbations that preserve
not only the Z2 symmetry corresponding to reflecting across γ, but also the additional Z2
symmetry corresponding to reflections about the real z-axis in the left diagram of figure 4.
This latter symmetry amounts to taking u→ −u, and requires that Θ be odd in u. Then
expanding the boundary conditions (4.5) to linear order in ϑ, these symmetries require that

ϑ(0) = 0 = ϑ′′(0), ϑ(β/4) = 0, ϑ′′(β/4) = −2 cotα Θ̃′(β/4)ϑ′(β/4). (4.15)

Expanding the action to quadratic order in ϑ, we obtain

Îm[Θ] = Îm[Θ̃] + 2
∫ β/4

0
duϑLϑ+O(ϑ3), (4.16)

where the linear operator L is defined by

Lϑ ≡
(

Θ̃′ϑ′′ − 2Θ̃′′ϑ′

Θ̃′3

)′′
+
(

2Θ̃′Θ̃′′ϑ′′ − 3Θ̃′′2ϑ′

Θ̃′4
+ ϑ′

)′
. (4.17)

Note that L depends implicitly on m and α through its dependence on Θ̃.
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It is straightforward to check that L is self-adjoint (with respect to the usual L2 norm
on [0, β/4]) on the space of functions obeying the boundary conditions (4.15). Consequently
a solution Θ̃ to the equations of motion is a local minimum of the action if and only if
the spectrum of L is nonnegative. Because the background solutions Θ̃ are known analyt-
ically (when they exist), it is straightforward to compute the spectrum of L numerically
using standard pseudospectral collocation methods [61]. In figure 11 we show the small-
est eigenvalue λmin of L as a function of m for various values of α. As m is decreased at
fixed α, λmin remains positive until the first branch point of the action is reached and (real)
classical solutions stop existing. When solutions reappear at smaller values of m, λmin is
negative. This indicates that the branch of solutions that connects continuously to m > 1
is stable, but the solutions that appear at smaller m past the branch points are not. So as
advertised, we see that the saddles at small m that yield an arbitrarily large and negative
action should not be picked up in a saddle-point approximation, and there is no worry of
the replica trick giving a divergent m→ 0 contribution.

It is worth pausing to note the role of the Z2 × Z2 symmetry that we imposed at the
level of the stability analysis. Indeed, a careful reader might notice that λmin > 0 at m = 1,
despite the fact that for m = 1 we expect there should be three zero modes associated with
the SL(2,R) symmetry of the disk. The point is that these zero modes break the Z2 × Z2
symmetry that we have imposed and hence do not appear in our analysis. We can verify
this claim by breaking, for instance, the Z2 corresponding to reflection symmetry about
the real z-axis in the left diagram of figure 4. In repeating the stability analysis with this
symmetry removed, we find that L does indeed exhibit a zero mode at m = 1, and that
a negative mode appears for all m < 1. Breaking the other Z2 corresponding to reflection
symmetry across γ should recover the other two zero modes at m = 1. Thus we see that the
additional Z2×Z2 symmetry we have enforced has a stabilizing effect on the wiggle, stabiliz-
ing some of the m < 1 solutions that would have otherwise been unstable. This stabilizing
effect will be crucial in our next model, where we will find saddles for both the wiggle and
the modulus atm < 1 that are stable only if we restrict to Z2×Z2-symmetric configurations.

5 JT with a massless scalar

We now turn to our main model of interest: JT gravity coupled to a massless scalar. We
will take the scalar ψ to be real and minimally-coupled, so that the Euclidean action of
the theory is I = IJT + Imat where

Imat = 1
2

∫
M

(∇ψ)2. (5.1)

We can easily integrate out the scalar field by placing it on shell: since its equation of
motion is ∇2ψ = 0, the on-shell matter action just contributes a boundary term:

Imat = 1
2

∫
∂M

ψ na∇aψ, (5.2)

where na is the unit outward-pointing normal to ∂M .
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Figure 11. The lowest eigenvalue λmin of L as a function of m, with α = π/4. Note that λmin is
positive on the branch of solutions that continuously connects to m > 1, but then becomes negative
on the other branches at smaller m, indicating that these branches are all unstable.

In order to attempt to stabilize the replica wormholes at the classical level, we will
need to turn on sources for the scalar:

ψ|∂M = ψ∂(u), (5.3)

where the profile ψ∂(u) can be specified arbitrarily. Note that we will require this profile
to have nontrivial dependence on u: if it were a constant ψ∂ = c, then the equations of
motion for ψ would be solved by the constant solution ψ = c everywhere. Such a solution
gives a vanishing on-shell action (5.2) and reduces the total action to that of pure JT. But
if ψ∂(u) depends nontrivially on u, then the fact that the proper length u is defined by
the shape of the boundary wiggle means that the on-shell action (5.2) induces a nontrivial
coupling between the wiggle and the scalar. Our goal is now to understand this coupling
on the quotient geometry Îm and to show that it can provide the classical solutions for the
wiggle and modulus.

5.1 JT + scalar in the boundary formalism

Why not proceed as in pure JT by constructing the quotient manifold M̂m by taking two
identical subregions of the Poincaré disk and stitching them together along a geodesic γ?
The reason is that it is nontrivial to impose appropriate boundary conditions on ψ at γ,
which is required for the construction of a general solution to the equations of motion and
the subsequent evaluation of the on-shell matter action (5.2). Instead, it will be convenient
to work with a single coordinate chart on M̂m so that we may solve for ψ by imposing
only a Dirichlet condition on ∂M . We will use the elliptical coordinate chart introduced
in section 3.2, in terms of which the metric on M̂m can be written as

ds2 = e2σ(ξ,φ)
(
dξ2 + dφ2

)
, (5.4)

where recall ξ ∈ [0, πξ0/2), φ ∈ [0, 2π), the conical defects lie at (ξ, φ) = (0, 0) and (0, π),
and ∂M corresponds to ξ = πξ0/2. We must therefore express the JT and matter parts of
the action in this coordinate chart.
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JT action. To construct the JT part of the action in the elliptical coordinate chart, we
note that the near-boundary expansion of the metric takes the form

ds2 =
( 1

(πξ0/2− ξ)2 + g2(φ) +O
(
πξ0
2 − ξ

))(
dξ2 + dφ2

)
, (5.5)

where g2 can be extracted from the solutions to the Liouville equation constructed in
section 3.2:

g2(φ) = ∂2
ξ σ̃|ξ=πξ0/2 + 1

3ξ2
0
, (5.6)

where σ̃ is defined by (3.8). In particular, in the limit of small ξ0 and ν with e−π/2ξ0 � ν

(where ν ≡ m/(2−m)), (3.19) gives11

g2(φ) = −1 + 2ν
3ν2ξ2

0

∞∑
k=−∞

sech2
(
φ− kπ
ξ0

)
+ 1

3ξ2
0

+O(ν2, ν−6e−2π/ξ0). (5.7)

Interestingly, comparison with the numerical solutions to the Liouville equation shows that
this expression for g2 actually captures the φ-dependence of g2 exactly: that is, we find
that for all ν and ξ0,

g2(φ) = −1 + 2ν
3ν2ξ2

0

∞∑
k=−∞

sech2
(
φ− kπ
ξ0

)
+ C(ν, ξ0), (5.8)

where C(ν, ξ0) is independent of φ up to numerical resolution. We do not know of an
analytic argument for why this is the case, but in practice it means that we only need to
numerically solve the Liouville equation to extract the constant C(ν, ξ0), rather than the
entire functional form of g2(φ). We discuss the computation of C(ν, ξ0) and illustrate its
behavior in appendix B.1.

We may now construct the boundary JT action: we embed ∂M in M̂m through the
embeddings (ξ, φ) = (X(u),Φ(u)), where as before the requirement that u/δ be a proper
length along ∂M relates the embeddings through

X(u) = πξ0
2 − Φ′(u) δ − g2(Φ(u))Φ′(u)4 + Φ′′(u)2

2Φ′(u) δ3 +O(δ4). (5.9)

In terms of these embeddings, the dynamical part of the JT action becomes

−
∫
∂M

ϕ(K − 1) = 1
2

∫ β

0
du

(
Φ′′(u)2

Φ′(u)2 + 3g2(Φ(u))Φ′(u)2
)
, (5.10)

= 1
2

∫ 2π

0
dφ

(
u′′(φ)2

u′(φ)3 + 3g2(φ)
u′(φ)

)
, (5.11)

11More compactly, we note that
∞∑

k=−∞

sech2
(
φ− kπ
ξ0

)
= ξ2

0 ∂
2
φ log

(
ϑ2
(
iφ/ξ0, e

π/ξ0
))
,

where ϑ2(z, q) =
∑∞

n=−∞ q(n+1/2)2
e(2n+1)iz is the Jacobi theta function of the second kind.
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where we have written the second line in terms of the inverse function u(φ) defined
by Φ(u(φ)) = φ, the existence of which is guaranteed by the requirement that Φ(u) be
monotonic in u. Note that Φ now wraps once around the ellipse: Φ(u + β) = Φ(u) + 2π,
or u(φ+ 2π) = u(φ) + β.

Matter action. To compute the contribution of the scalar to the action for the wiggle,
we make use of the fact that the scalar field is a CFT, allowing us to compute the classical
action (5.2) in any choice of conformal frame. A natural such choice is given by taking the
conformal factor σ = 0, thereby putting the scalar on a strip:

ds2 = dξ2 + dφ2, ξ ∈ [0, πξ0/2), φ ∈ [0, 2π). (5.12)

Because this domain is conformal to half of the double-trumpet, in principle we could pro-
ceed as in e.g. [50, 62] and express ψ as an integral against a bulk-to-boundary propagator
on the double-trumpet with appropriate replica symmetry imposed to relate the boundary
conditions on the two ends. In practice, for implementing the numerical methods described
in appendix B, it is more convenient to directly solve the Laplace equation for ψ via Fourier
series by constructing a solution subject to appropriate boundary conditions:

• Periodicity in φ: ψ(ξ, φ+ 2π) = ψ(ξ, φ).

• Smoothness at ξ = 0 when conformally mapped back to the ellipse:12

∂pξψ(0, φ) = (−1)p∂pξψ(0,−φ) ∀p ∈ Z≥0

• Scalar sources: ψ(πξ0/2, φ) = ψ∂(u(φ)).

The general solution to the Laplace equation on this domain satisfying the first two bound-
ary conditions is given by

ψ(ξ, φ) =
∞∑

k=−∞
(ak cosh(kξ) + ibk sinh(kξ)) eikφ, (5.13)

where the coefficients ak and bk are real and obey ak = a−k, bk = b−k. These coefficients
can be determined by imposing the Dirichlet condition at ξ = πξ0/2:

ak cosh(kπξ0/2) + ibk sinh(kπξ0/2) = 1
2π

∫ 2π

0
dφψ∂(u(φ))e−ikφ. (5.14)

12The reader may be concerned that the demand that ψ be regular on the ellipse excludes solutions
where ψ is regular on the full wormhole geometry Mm but singular at the conical defects in M̂m. But this is
not the case: because classical solutions for ψ are harmonic, smooth solutions on Mm must also be smooth
on M̂m. One way to see this is to consider an arbitrary Zm-invariant holomorphic function f on the Poincaré
disk (3.1), which must have an expansion in powers of zm. Taking a quotient z → z1/m to go to the Poincaré
disk with a defect, one finds that f has a standard expansion in integer powers of z, which is regular. This
analysis applies locally near any defect, and since the real and imaginary parts of f are harmonic, we
conclude that any Zm-invariant harmonic function on Mm must be regular on M̂m, including at the defects.
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Using these relations to express (5.13) in terms of ψ∂(u(φ)), we ultimately find that the
on-shell action (5.2) takes the form of a smearing of ψ∂(u(φ)):

Îmat = 1
2

∫ 2π

0
dφ dφ̃ ψ∂(u(φ))ψ∂(u(φ̃))G(φ, φ̃), (5.15)

where

G(φ, φ̃) ≡ 1
π

∞∑
k=1

k

[
tanh

(
kπξ0

2

)
cos(kφ) cos(kφ̃) + coth

(
kπξ0

2

)
sin(kφ) sin(kφ̃)

]
. (5.16)

Note that G(φ, φ̃) is essentially the boundary-to-boundary propagator for ψ. As written,
the sum defining G(φ, φ̃) is not convergent for all φ and φ̃ due to contact terms; for the
purposes of evaluating the action, G(φ, φ̃) should be understood distributionally. For com-
puting the matter two-point function, G(φ, φ̃) should instead be renormalized appropriately.

Boundary action and equations of motion. Putting these results together, we find
that integrating out the scalar field ψ leaves us with the boundary action

Îm = −S0
ν

+ 1
2

∫ 2π

0
dφ

(
u′′(φ)2

u′(φ)3 + 3g2(φ)
u′(φ) +

∫ 2π

0
dφ̃ ψ∂(u(φ))ψ∂(u(φ̃))G(φ, φ̃)

)
, (5.17)

which we have expressed entirely in terms of the inverse wiggle u(φ). Due to the nonlocality
of the matter part of the action, the resulting equation of motion for u(φ) is an integro-
differential equation:((

u′′(φ)
u′(φ)3

)′
+ 3(u′′(φ)2 + u′(φ)2g2(φ))

2u′(φ)4

)′
+ ψ̇∂(u(φ))

∫ 2π

0
dφ̃ ψ∂(u(φ̃))G(φ, φ̃) = 0, (5.18)

where ψ̇∂ ≡ dψ∂/du.
We will also need to perform a stability analysis of the solutions to (5.18), which is

done as in pure JT: we write the wiggle as u(φ) = ũ(φ) + κ(φ), where ũ(φ) solves the
equation of motion. Expanding the action to quadratic order in κ, we obtain

Îm[u] = Îm[ũ] + 1
2

∫ 2π

0
dφκLκ+O(κ3), (5.19)

where now the fluctuation operator L is

Lκ(φ) ≡
(
κ′′(φ)
ũ′(φ)3 −

3ũ′′(φ)κ′(φ)
ũ′(φ)4

)′′
+ 3

(
ũ′′(φ)κ′′(φ)
ũ′(φ)4 −

(
g2(φ)
ũ′(φ)3 + 2ũ′′(φ)2

ũ′(φ)5

)
κ′(φ)

)′

+
∫ 2π

0
dφ̃
[
ψ̈∂(ũ(φ))ψ∂(ũ(φ̃))κ(φ) + ψ̇∂(ũ(φ))ψ̇∂(ũ(φ̃))κ(φ̃)

]
G(φ, φ̃), (5.20)

where ψ̈∂ ≡ d2ψ∂/du
2. It is straightforward to verify that L is self-adjoint (with respect

to the usual L2 norm on [0, 2π]) on the space of functions periodic in φ with period 2π,
and hence a saddle ũ is a local minimum of the action if and only if the spectrum of L is
nonnegative.
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5.2 Stabilizing the double-trumpet

For general ψ∂ , (5.18) cannot be solved analytically; we will require a numerical solution.
However, for m = 1 and m = 2, it is possible to obtain analytic solutions by looking
for bulk solutions for the dilaton Φ and reconstructing the corresponding behavior of the
boundary wiggle u(φ). We discuss the construction of these bulk solutions in appendix C;
here we simply exhibit them in order to study the effect of turning on the CFT sources.
In particular, we will show that taking the amplitude of the boundary source ψ∂ large
enough allows us to stabilize the double-trumpet, and moreover that the double-trumpet
dominates over the disk at sufficiently small temperatures.

The solutions constructed in appendix C correspond to the family of boundary profiles

ψ∂(u) = J cos
(2πnu

β

)√ 1 +A

1 +A cos(4πnu/β) , (5.21)

with boundary wiggle given by

tan
(2πnu(φ)

β

)
=
√

1 +A

1−A tan(nφ), (5.22)

where J and A ∈ (−1, 1) are arbitrary constants and n is an arbitrary positive integer. This
class of profiles and form of the wiggle is tractable because ψ∂(u(φ)) = J cos(nφ), so the
smearing of ψ∂ against G(φ, φ̃) is straightforward to compute. Saddles (for both the wiggle
and the modulus ξ0) are then obtained through an appropriate choice of A. For instance,
for m = 2, we have g2(φ) = 1/(3ξ2

0), and hence the action of the wiggle profile (5.22) is

Î2 = n2

β

[
2π2(4 + 1/(nξ0)2)√

1−A2
− 8π2 + πβJ2

2n tanh
(
nπξ0

2

)]
. (5.23)

For a given choice of A, the wiggle equation of motion is only satisfied for particular values ξ∗
of the modulus ξ0: evaluating (5.18) on (5.21) and (5.22), we obtain the constraint

1√
1−A2

=
√

1 +
(

βJ2/n

8π(4 + 1/(nξ∗)2) coth(nπξ∗/2)

)2
. (5.24)

However, if we wish to find a saddle to the full path integral rather than just for the
integral over the boundary wiggle, we must further require that ξ∗ be a stationary point
with respect to ξ0 of the action (5.23). This requirement gives

1√
1−A2

= n2ξ3
∗βJ

2

16 cosh2(nπξ∗/2)
. (5.25)

Hence by simultaneously solving (5.24) and (5.25) for A and ξ∗, we can obtain a boundary
profile that gives rise to a classical saddle for both the wiggle u(φ) and the modulus ξ0. It
is straightforward to see that such a saddle can only exist when βJ2/n is sufficiently large:
any ξ∗ that simultaneously satisfies (5.24) and (5.25) obeys f(nξ∗) = n2/(β2J4), where

f(x) ≡
(

x3

16 cosh2(πx/2)

)2

− 1
(8π(4 + 1/x2) coth(πx/2))2 . (5.26)
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f(x) has a global maximum at xmax ≈ 0.93, where it attains the value fmax ≈ 4.7×10−5, so
saddles for ξ0 exist if and only if

√
βJ ≥ f

−1/4
max
√
n ≈ 12

√
n. So turning on matter sources

with sufficiently large amplitude, or taking the temperature sufficiently small, can give rise
to classical saddles for the double-trumpet.

While the approach just described allows us to find simultaneous saddles for both
the wiggle and the modulus, for the purposes of a stability analysis it is illuminating to
construct the effective action Î2[ξ0] for the modulus obtained by only putting the wiggle
on shell. To do so, we consider a family of boundary sources ψ∂(u) of the form (5.21)
with A = A∗(βJ2/n), where

A∗(y) ≡

1 +

8π
(
4 + 1

x∗(y)2

)
coth

(
πx∗(y)

2

)
y

2
−1/2

, (5.27a)

x∗(y) ≡

xmax, y < f−1/2
max ,

smallest positive solution of y2f(x) = 1, y ≥ f−1/2
max .

(5.27b)

This form of A ensures that (5.24) is satisfied (and hence (5.22) is a solution to the equa-
tion of motion) when nξ0 = x∗(βJ2/n), which for

√
βJ ≥ f

−1/4
max
√
n corresponds to the

location ξ∗ of a saddle in ξ0. We will also take n = 2 in order to ensure that ψ∂(u) is
symmetric about u = 0 and u = β/4.

With such a profile, the equation of motion (5.18) cannot be solved analytically for
general ξ0 (except, by construction, for the special case nξ0 = x∗(βJ2/n)), so we must
proceed numerically. The details of the numerical computation are presented in appendix B,
and the resulting action Î2[ξ0] is shown in figure 12. When J = 0, we recover the pure
JT trumpet action Î2[ξ0] = 2π2/(ξ2

0β) = b2/(2β), where b = 2π/ξ0 is the circumference of
the trumpet throat. At sufficiently small values of

√
βJ , the action remains a monotonic

function of ξ0, exhibiting no saddles in ξ0. When
√
βJ becomes sufficiently large, two

saddles in ξ0 appear, with one stable and the other unstable with respect to perturbations
in ξ0. At these intermediate values of

√
βJ , the stable saddle does not globally minimize

the action: it corresponds to a metastable solution. Further increasing
√
βJ , however,

decreases the action of the stable saddle until it becomes a global minimum in ξ0.
We might expect that this global minimum of Î2[ξ0] should dominate the path integral.

This well may be the case, but a stability analysis indicates a subtlety: not all of the saddles
obtained for the wiggle are stable. Restricting our consideration to perturbations that
preserve the Z2 × Z2 symmetry, the solid blue curves in figure 12 correspond to solutions
for which the fluctuation operator L defined in (5.20) has a nonnegative spectrum, while
the dashed red curves correspond to solutions for which L exhibits a negative eigenvalue.
So although for large

√
βJ the stable saddles are global minima of the effective action Î2[ξ0]

obtained by keeping the wiggle on shell, it is conceivable that off-shell configurations of the
wiggle could decrease the action below that of these putative global minima. We have not
investigated this possibility further, but for now we assume that the m = 2 path integral
can be approximated by this new global minimum of the effective action Î2[ξ0], when the
minimum exists.
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Figure 12. The effective action Î2[ξ0] obtained by placing the wiggle on shell, with boundary matter
profile (5.21) with n = 2 and A given by (5.27); note that we plot the action as a function of the ec-
centricity sech(πξ0/2) of the elliptical domain. From left to right and top to bottom, we show

√
βJ =

0, 10, 17, 18, 22, and 30. We plot the action as a solid blue curve where the spectrum of L (on the
space of perturbations that preserve the Z2×Z2 symmetry) is nonnegative, and as a dashed red curve
when L has a negative eigenvalue. The orange dots show the action (5.23) when ξ0 = x∗(βJ2/2)/2,
for which the wiggle (5.22) with A given by (5.27) satisfies the equation of motion (5.18).

If the double-trumpet can be stabilized, can it ever dominate over the disk in a compu-
tation of, say, Z2? Such dominance could only ever occur in a classical limit if J and β scale
appropriately with S0, since otherwise the topological part of the action will trivially cause
the disk to dominate. This is analogous to the need for the matter partition function to be
of order eS0 in models of black hole evaporation before wormholes can start to dominate
after the Page time [7, 8]. Indeed, we find that with an appropriate scaling of J and β

with S0, an exchange of dominance between the disk and the double-trumpet can occur:
in figure 13 we show the difference Î1− Î2 between the actions of the disk and the trumpet
for various values of J/

√
S0. At values of J/

√
S0 around order unity or smaller, this differ-

ence is everywhere-negative, so the disk always dominates. But at larger values of J/
√
S0,

this difference becomes positive at sufficiently large values of
√
βJ , indicating that the

double-trumpet dominates at sufficiently low temperatures. This transition requires the
amplitude J to scale with S0 like J &

√
S0, so at fixed J/

√
S0 the temperatures at which

the double-trumpet dominates (when it does at all) scale with S0 like T . S0 . This be-
havior is analogous to the results of [54, 62], where a phase transition between the disk and
the double-trumpet was induced by turning on constant but complex sources for a massless
scalar. Here we see that such a transition can be supported with real, replica-symmetric
sources with nontrivial Euclidean time dependence. It is this nontrivial Euclidean time de-
pendence that induces the stress tensor necessary to stabilize the wormhole (non-constant
boundary sources are also key to the higher-dimensional constructions of [53]).
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Figure 13. The difference Î1 − Î2 between the on-shell actions of the disk and the trumpet
obtained by putting both the wiggle and the modulus ξ0 on shell. The boundary matter profile
is (5.21) with n = 2 and A given by (5.27); the corresponding trumpet action Î2 is given by (5.23)
with ξ0 = x∗(βJ2/2)/2, while the disk action Î1 is computed numerically. The blue, red, and orange
curves correspond to J/

√
S0 = 0, 4, and 6; the orange curve becomes positive at large enough

√
βJ ,

indicating dominance of the double-trumpet over the disk. No saddles for Î2 exist to the left of the
dashed black line.

5.3 Wormholes for m < 1

Having discussed the special cases m = 1 and m = 2, we now turn our investigation to
the saddles at m < 1 that appear in the replica trick. The first distinction to note with
them > 1 case is that the topological part of the action is monotonically decreasing with m.
Consequently, taking S0 large at fixed β and ψ∂ will always cause the disk to win out over
the m > 1 wormholes; this was the reason that we needed to scale J and β with S0 in the
previous section to get the double-trumpet to dominate over the disk. However, for this
same reason, taking S0 large will always cause the disk to be subdominant to any saddles
at m < 1. Hence if there are any saddles at m < 1 at all, they will always dominate over
the disk in a classical limit S0 →∞ with β and ψ∂ kept fixed. Thus we only need to look
for stable saddles at m < 1, without needing to worry about their dominance over the disk.

Our analysis will be entirely numerical, so for simplicity we now fix the matter sources
to be the lowest nontrivial Fourier mode on the thermal circle compatible with our as-
sumed Z2 × Z2 symmetry:

ψ∂(u) = J cos
(4πu

β

)
. (5.28)

Again we leave the numerical details to appendix B. At relatively small values of
√
βJ , we

do not find any stable saddles at any m. In figure 14 we show the effective action Îm[ξ0]
with

√
βJ = 10 for several values of m. This effective action is either monotonic in ξ0,

exhibiting no saddles for the modulus, or may exhibit a stable saddle for ξ0 which is however
unstable to perturbations of the wiggle, as in the fourth plot in the figure. Note that
solutions do not exist for all ξ0: the wiggle becomes singular at sufficiently small ξ0 = ξend
below which we found no more solutions. This behavior is qualitatively analogous to what
we observed in pure JT in section 4: on-shell solutions for the wiggle did not exist for all α.
In that case, the end points at which solutions stopped existing corresponded to branch
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Figure 14. The effective action Îm[ξ0] of JT + CFT with boundary source given by (5.28) with√
βJ = 10. From left to right and top to bottom we show ν = 0.9, 0.8, 0.7, 0.34, 0.3, 0.27,

corresponding to m ≈ 0.95, 0.89, 0.82, 0.51, 0.46, 0.43. Points correspond to numerical data; curves
are drawn to guide the eye. Blue points connected by solid lines indicate that the spectrum of L
is nonnegative; red points connected by dashed lines indicate that L has a negative eigenvalue. No
stable saddles for both ξ0 and the wiggle are present.

points of the Riemann surface for the analytic continuation of Îm[α] to complex m (and α).
The endpoints ξend shown in figure 14 may play the same role: they may be branch points
of the analytic continuation of Îm[ξ0] to complex m and ξ0.

Increasing
√
βJ turns out to change the story substantially, however: in figure 15 we

show Îm[ξ0] with
√
βJ = 20. We are still unable to find on-shell solutions for the wiggle

for all ξ0, but we also find two independent branches of solutions, with one unstable and
the other stable. For ν & 1/3 (or m & 1/2), these branches meet at a zero mode at which
the wiggle is regular. As ν is decreased below 1/3, the zero mode becomes singular and
the two branches separate, with each one terminating at a singular endpoint analogous to
those in figure 14. The key feature of these two branches is that because one is stable, we
need only find a stable saddle in ξ0 to deduce the existence of a stable wormhole. And
indeed, such a saddle exists, as seen in the fourth plot in the figure. Interestingly, this
saddle does not persist to smaller m: as can be seen in the last two plots of the figure,
when ν is decreased below 1/3 and the branches separate, the saddle vanishes. We are
unable to find additional stable saddles by further decreasing ν. This qualitative behavior
is independent of the value of

√
βJ up to the largest value

√
βJ = 25 for which we have

constructed solutions. The upshot is that at sufficiently large
√
βJ , stable classical replica

wormholes exist at m < 1, but only down to around m ≈ 1/2.
Before examining the on-shell action of these wormholes in more detail, let us pause to

note that requiring the Z2 × Z2 symmetry was crucial to finding stable saddles. For refer-
ence, in figure 16 we show the lowest eigenvalue of L when the parity of the perturbations
about φ = 0 and φ = π/2 is modified. Only for perturbations odd about φ = 0 (correspond-
ing to the shape of ∂M being symmetric about the major axis of the ellipse) is one of the
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Figure 15. The effective action Îm[ξ0] of JT + CFT with boundary source given by (5.28) with√
βJ = 20. From left to right and top to bottom we show ν = 0.9, 0.7, 0.5, 0.34, 0.3, 0.27,

corresponding to m ≈ 0.95, 0.82, 0.67, 0.51, 0.46, 0.43. Points correspond to numerical data; curves
are drawn to guide the eye. Blue points connected by solid lines (lowermost curves) indicate that
the spectrum of L is nonnegative; red points connected by dashed lines (uppermost curves) indicate
that L has a negative eigenvalue. For all ν shown here there are two branches of solutions, with
one stable and the other unstable; for ν > 1/3 (m > 1/2) these branches meet at a zero mode, but
for ν < 1/3 these branches cease to join. Note that there is a stable saddle in fourth plot.

branches of solutions stable at the saddle for ξ0, giving a stable wormhole. This symmetry
about φ = 0 is necessary for a real Lorentzian continuation obtained by cutting the ellipse
across its major axis. So the stability of these wormholes — and consequently whether the
quenched and annealed generating functionals ΓQ and ΓA differ — depends crucially on
whether we demand that perturbations about the saddle admit a real Lorentzian section
that contains the defects. Note that it is crucial that the Lorentzian section contain the
defects: a real Lorentzian geometry could also be generated by cutting the ellipse about its
minor axis, but requiring reality of such a section is not sufficient to stabilize the wormholes.

How should the need for such a real Lorentzian section be interpreted? If the path
integral is to be understood as a purely Euclidean object completely removed from any
Lorentzian underpinning, then there is no reason to impose any such condition. In this case,
our saddles are simply unstable and never contribute to the quenched generating functional.
But this interpretation is rather odd: after all, we are ultimately interested in theories with
a Lorentzian counterpart, and moreover to even make the JT Euclidean path integral well-
defined in the first place the dilaton ϕ needs to be Wick rotated to an imaginary contour:
a strictly Euclidean definition of the JT path integral is manifestly divergent. In addition,
there is the question of which Z2 symmetry to preserve; that is, which of the principal axes
of the ellipse should correspond to the “t = 0” slice of the Lorentzian section. Comparison
with other replica tricks make it natural to require the conical defects to live on this t = 0
slice: for example, in the LM construction of von Neumann entropy, it is the m→ 1 limit of
the conical defects that turns into the minimal or QES surfaces in the RT or QES formulas.
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Figure 16. The lowest eigenvalue λmin of the fluctuation operator L under different parities of the
perturbation ν(φ) defined in (5.20); here we show

√
βJ = 20 and ν = 0.34, i.e. the fourth plot in

figure 15. The left (right) plots take ν(φ) to be odd (even) about φ = 0, while the top (bottom)
plots take ν(φ) to be odd (even) about φ = π/2. The colors label the two branches shown in
figure 15; note that ν(φ) needs to be odd about φ = 0 for at least one of the branches to be stable
at the location of the saddle in ξ0. This corresponds to the boundary curve ∂M being even about
the major axis of the ellipse.

In order for these surfaces to live in the Lorentzian section, the t = 0 Lorentzian slice of the
quotient geometry must therefore contain the conical defects. Ultimately, whether or not
the new saddles should genuinely contribute to ΓQ will depends on the desired properties
of the theory; we will revisit this question in section 7.

As a final note, the need to study the m < 1 wormholes completely numerically
somewhat obstructs the origin of the new branch of solutions and renders it difficult to
completely scan the parameter space in a controlled way. To shed some light into the
qualitative features exhibited by figures 14 and 15, in appendix D we study a simpler
model of JT gravity coupled to end-of-the-world branes, similar to that considered in [8].
This model can be studied analytically (up to a single transcendental equation), and we
find that turning on a brane tension gives rise to stable wormholes for m > 1 and to
two branches of solutions for the wiggle when m < 1, as we have seen in JT coupled to a
massless scalar. However, it does not exhibit the stable wormholes at m < 1 we have found,
so it is not sufficiently rich to exhibit our desired behavior. Nevertheless, it is instructive
in showing explicitly why two branches of solutions for the wiggle can exist when m < 1.

5.4 It was the best of saddles, it was the worst of saddles

Assuming that we restrict to perturbations with a real Lorentzian section in the sense dis-
cussed above (in particular, with the defects contained on the moment of time symmetry of
the Lorentzian section), we may now compute the saddle-point approximation of the effec-
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Figure 17. The on-shell action Îm obtained by putting both the wiggle and the modulus on shell;
from uppermost to lowermost, the curves correspond to

√
βJ = 25, 23, 20, 18, and 15. Note that

the stable saddles we have found do not persist below m = 1/2, marked as a dashed black line, and
we are unable to find further saddles at smaller values of m. For sufficiently large values of

√
βJ

saddles exist in the entire region m ∈ (1/2, 1]; decreasing
√
βJ shrinks the region in m in which

saddles exist, until for
√
βJ . 15 we find no saddles at all for m < 1 (the isolated points on the

right-hand side of the plot are the m = 1 solutions, which exist for any value of
√
βJ).

tive action Îm by putting the modulus on-shell, and consequently obtain ΓQ. The action Îm
as a function of m is shown in figure 17. Besides the aforementioned fact that the saddles,
when they exist, do not appear to persist belowm ≈ 1/2 (at least in the parameter space we
have been able to probe numerically), an additional noteworthy feature is that for interme-
diate values of

√
βJ these saddles also do not extend all the way to m = 1: there can be an

isolated interval of saddles for 1/2 < m < mmax < 1. Regardless, the upshot is that in the
classical S0 →∞ limit in which the dominance of geometries is controlled solely by the topo-
logical term in the action, the replica trick (2.5) gives the quenched generating functional

ΓQ = −Î1/2. (5.29)

We should of course be clear that our numerics are unable to determine that solutions
stop existing precisely at m = 1/2, so the above equality should really be understood as
taking the limit towards the leftmost endpoint of the curves shown in figure 17.

An outstanding question worth considering is whether the minimization involved in
the one-step RSB prescription is justified in the present context, given that the minimum
of Îm at m = 1/2 is not a local minimum, but rather a global extremum at the boundary
of the space of solutions: that is, m1 = 1/2 is not a saddle of Îm1 . To some extent an
answer to this question requires a more comprehensive understanding of the replica trick,
but there is no obvious need for the minimization over m1 in the replica trick to be treated
on the same footing as the other saddles. Some intuition can be obtained from going back
to the original wormhole geometries with integer m ≥ 1. In these geometries, m1 is only
allowed to take on a discrete set of values (namely, the divisors of m), and a dominant
solution is found by minimizing m1 over this discrete set; there is no sense in which we
can look for “saddles” of m1. When m, and consequently m1, are continued away from
the integers in the replica trick, it is reasonable to expect that the minimization over m1
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Figure 18. The low-temperature quenched and annealed generating functionals ΓQ (blue points)
and ΓA (red line). From left to right, the plots correspond to J/

√
S0 = 0.1, 1, and 10. The error

bars on the blue points are a rough estimate of the uncertainty introduced in extrapolating the
data to m = 1/2 as required in (5.29).

should remain a mere global minimization with no requirement that m1 be a saddle. (Put
differently: we must look for saddles in the wiggle and the modulus ξ0 because these are
degrees of freedom we integrate over in the path integral, and we approximate this integral
by a saddle-point approximation. On the other hand, m1 represents degrees of freedom
that are summed over in the path integral, i.e. different topologies, so we only need to
minimize with respect to m1 with no need for a saddle.)

With this interpretation understood, we can now compare the quenched and annealed
generating functionals using these new saddles at m = 1/2: we show ΓQ and ΓA in figure 18
as functions of the “temperature” T ≡ 1/β (though recall that these are not thermal
states). Since our data is consistent with stable saddles for m < 1 existing to arbitrarily
low temperatures, we expect ΓQ and ΓA to continue to be distinct down to T = 0; figure 18
merely displays our results to the lowest temperatures for which we have generated data.
On the other hand, the apparent lack of stable saddles with m < 1 at high temperatures
implies that the only saddle that can contribute to ΓQ is the disk, and so we would expect
that at temperatures higher than those shown in figure 18, ΓQ = ΓA. But if this were
the case, it is clear from the figure that ΓQ would be discontinuous at this transition
temperature, which is pathological behavior! This discontinuity stems from the fact that
the m = 1/2 saddles that contribute to ΓQ do not smoothly exchange dominance with
the m = 1 saddle that defines ΓA, but rather they dominate immediately as soon as they
start existing. What are we to make of this apparent discontinuity?

One possibility is to object to the m < 1 saddles in the first place: after all, if we
modify our stability criterion to require that saddles be stable under any real Euclidean
perturbation, rather than just perturbations that admit a real Lorentzian section, then
the m < 1 saddles are unstable. Without this stability condition, we would thus trivially
find that ΓQ = ΓA at all temperatures. However, we have discussed above our reasoning
for taking the requirement of stability under real Lorentzian perturbations seriously, so we
do not find this objection compelling. What we deem more likely is that the story so far
is incomplete: as alluded to earlier, the structure of solutions to the equations of motion
of the JT + CFT model at m < 1 is richer than one might have otherwise expected, and
unfortunately a numerical analysis cannot ensure that we have found all relevant saddles.
It may be that there are additional saddles we have missed at smaller values of

√
βJ that
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allow FQ to transition continuously to FA at high temperatures. In fact, there could even
be additional saddles that are not captured by our one-step RSB ansatz. As we will see in
section 6, it may even be that quantum effects are needed to give rise to new semiclassical
saddles, which may then yield a continuous ΓQ. Or perhaps, since our states are far from
thermal there is no reason to require ΓQ to be continuous after all, and the discontinuity
is simply an interesting quirk of the theory.

Because of this incompleteness, we remain agnostic on what the “correct” answer for
the quenched generating functional is. We claim that our main finding is not the particular
functional form of ΓQ shown in figure 18, but rather the existence of new saddles at m < 1
whose stability properties depend crucially on whether or not perturbations about them
are required to admit a real Lorentzian continuation. Additional investigation, either into
the space of saddles, the structure of the replica trick, or non-gravitational models of JT
+ matter, is needed to determine what the right answer for ΓQ actually is.

6 Quantum corrections: the adventures of operator twist

To assess whether our purely classical results are robust to semiclassical corrections, we
now investigate the effect of turning on quantum corrections to the scalar field. Because
the scalar only couples to the wiggle through the boundary sources ψ∂ , and because these
sources have already been incorporated into the classical analysis, excitations of the scalar
about its classical background will obey homogeneous Dirichlet boundary conditions. Such
quantum excitations will not couple to the wiggle, so we need only concern ourselves with
the coupling to the modulus. To do so, we construct the effective matter action

Îquant[gm] = − 1
m

lnZquant[gm], (6.1)

where Zquant[gm] is the scalar partition function on the wormhole geometry gm, which will
depend on the modulus D. Note that we have included the prefactor of 1/m to match
conventions with the classical quotient action Îm.

After going to the quotient space, this partition function is computed in a standard
way [63] by inserting appropriate twist operators at the locations of the conical defects:

Zquant[gm] =
∫
DψΣ(p1)Σ∗(p2)e−Imat[ĝm] ≡ Zquant[ĝm]〈Σ(p1)Σ∗(p2)〉, (6.2)

where p1 and p2 are the locations of the conical defects, Σ and Σ∗ are the twist and anti-
twist operators, which identify fields in the clockwise and anti-clockwise directions between
the different Riemann sheets of the m-copy replica manifold, and the normalization fac-
tor Zquant[ĝm] is the matter partition function on the quotient geometry (with no twist oper-
ator insertions). Because the massless scalar is a CFT, the partition function Zquant[ĝm] can
be computed straightforwardly from the conformal anomaly

∫
R[ĝm], which is topological

and hence independent of the modulusD (though it will depend onm). Thus the normaliza-
tion factor only adds anm-dependent additive constant to Îquant, so it can safely be ignored.
Instead, all nontrivial dependence on D is contained in the correlator 〈Σ(p1)Σ∗(p2)〉.
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In order to compute Zquant, we will make two simplifications. First, we will work
perturbatively about m = 1, since this is the regime in which the correlator 〈ΣΣ∗〉 is most
tractable. Second, we will work in the limit of a CFT with large central charge. This limit
is compatible with the regime in which our classical m < 1 saddles exist in the following
sense. In section 5 we worked with a single scalar field (central charge c = 1 in appropriate
conventions) with boundary sources with amplitude J , giving an on-shell classical action
proportional to J2. But we could equally well have worked with, say, many independent
scalar fields with total central charge c, giving an on-shell classical action proportional
to cJ2. Consequently, the results of section 5.3 can be interpreted as showing that m < 1
saddles can be supported by a large-c CFT as long as cJ2 is sufficiently large relative to 1/β.

With these assumptions understood, we turn to computing 〈ΣΣ∗〉. To do so, we first
take the quotient geometry to be the unit disk with the defects located at z± = ±a, as in
the left diagram of figure 4. Here a is the modulus that sets the proper distance D between
the defects. The metric takes the form

ds2 = e2σ(z,z̄)dz dz̄ = 4
(1− zz̄)2 (1 +O(ε)) dz dz̄, (6.3)

where we have defined ε ≡ 1 −m. We then map the disk to the upper half-plane via the
Möbius transformation z = (1 + iw)/(i+ w), giving the metric

ds2 = 1
4 e

2σ(z,z̄)|z − i|4dw dw̄. (6.4)

Since the twist operators are primaries with scaling dimension [63]13

∆m = c

12

(
m− 1

m

)
= − c6 ε+O(ε2), (6.5)

the two-point function of twist operators on the quotient geometry ĝm can be related
to that on the flat upper half-plane by a standard scaling under Weyl and conformal
transformations:

〈Σ(a)Σ∗(−a)〉 =
(1

4 e
σ(a,a)+σ(−a,−a)(1 + a2)2

)−∆m

〈Σ(w+)Σ∗(w−)〉UHP, (6.6)

=
[
1 + c

3 ln
(

1 + a2

1− a2

)
ε+O(ε2)

]
〈Σ(w+)Σ∗(w−)〉UHP, (6.7)

where w± = (1∓ ia)/(±a− i) are the locations of the twist operator insertions in the upper
half-plane.

We thus need only to compute the correlator 〈Σ(w+)Σ∗(w−)〉UHP on the (flat) upper
half-plane. This setting corresponds to working in a boundary CFT (BCFT); this will typi-
cally induce excitations on the boundary due to the breaking of full conformal symmetry, as
realized by the presence of a bulk to boundary OPE. To evaluate 〈Σ(w+)Σ∗(w−)〉UHP, we

13Note that we are analytically continuing the scaling dimension from m > 1 down to m < 1, which
should be valid since we are only interested in the behavior in a neighborhood of m = 1 and we expect the
scaling dimension to be analytic in m at m = 1. Analogous arguments apply for the rest of this section.
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can therefore follow [64]. The basic idea is that the product Σ(w+)Σ∗(w−) can be expanded
in terms of an OPE. Because we have a BCFT, there are two channels the OPE can be ex-
panded in. The first of these is the boundary channel, where we expand each bulk operator
in terms of a bulk to boundary OPE, corresponding to the boundary operator spectrum of
the bulk operator. This would convert the twist two-point function into a sum over bound-
ary two-point functions. There is also a bulk channel in which we expand the product of
bulk operators in terms of a bulk OPE; in this channel the two-point function becomes a
sum over bulk one-point functions. In general, these two channels are only valid in their
respective OPE limits: the boundary channel is valid when the twist operators are brought
closer to the boundary than they are to each other, while the bulk channel is valid when the
twist operators are brought closer to each other than they are to the boundary. However,
if we work in the c→∞ limit then we can use the channels for all values of η ∈ [0, 1], with
the two channels exchanging dominance at some η∗, where η is the cross-ratio:

η ≡ (w+ − w+)(w− − w−)
(w+ − w−)(w− − w+) =

(
1− a2

1 + a2

)2

. (6.8)

Moreover, we can approximate the OPE expansion in a given channel by the identity
block of that channel.

This calculation of 〈Σ(w+)Σ∗(w−)〉UHP in the c→∞ limit was done explicitly in [64]
to linear order in ε, and yields

〈Σ(w+)Σ∗(w−)〉UHP = 1− εc

6 (2 ln εUV − ln min(η, 1− η)) +O(ε2), (6.9)

where εUV is a cutoff that regulates the region around the operator insertions. Conse-
quently, using (6.7), (6.1), and (6.2) we obtain the matter effective action

Îquant
m [a] = −c(m− 1)

3 max
(

0, ln
(

1− a2

2a

))
+O(m− 1)2, (6.10)

up to overall additive constants independent of a. This action is shown in figure 19.
Note that for a >

√
2 − 1, Îquant

m [a] is independent of a: this is to be expected from the
fact that a >

√
2 − 1 corresponds to the boundary OPE channel η < 1/2 in which the

two-point function is dominated by the proximity of the twist operators to the boundary
rather than to each other. When mapped back to hyperbolic space the distance from the
twist operators to the boundary is renormalized to a constant, and hence we expect that
correlators dominated by this channel should be independent of a.

For m > 1, Îquant
m [a] is negatively divergent at a = 0. For the double-trumpet

case m = 2, this behavior (exhibited by bosonic matter) is well-understood and is due
to a divergent Casimir energy as the throat of the wormhole pinches off. This divergence
is extremely destabilizing: the quantum effective action is unbounded below, suggesting
that a classically-stable double-trumpet cannot remain globally stable under the inclusion
of semiclassical effects; see e.g. [55, 65]. The action (6.10) suggests that this destabiliz-
ing Casimir energy persists for wormholes with m > 1, and presumably means that any
classical saddles with m > 1 do not remain well-defined saddles of a semiclassical theory
(though they may remain metastable).
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Figure 19. The large-c, leading-order in m− 1 behavior of the quantum effective action Iquant
m [a]

for m < 1 (up to various additive constants that we have ignored). Note the divergence at a = 0
due to a Casimir effect.

However, for the m < 1 wormholes relevant to the quenched generating func-
tional ΓQ, Îquant

m is positively divergent at a = 0. Hence quantum effects do not render
these wormholes pathologically unstable. Whether or not a classical saddle remains stable
under the inclusion of quantum corrections then depends on the details of the combined
action Îm[a] + Îquant

m [a]. For instance, a classical saddle at some a >
√

2− 1 will remain a
semiclassical saddle, but a classical saddle at a <

√
2 − 1 may or may not remain a semi-

classical saddle. Conversely, it is possible for semiclassical saddles to appear even when no
classical ones existed: for example, if dÎm/da > 0 for all a, then no classical saddles exist,
but the fact that dÎquant

m /da → −∞ at a = 0 (and that dÎquant
m /da = 0 for a >

√
2 − 1)

is sufficient to ensure that a semiclassical saddle will exist. Indeed, using the fact that a
is roughly inversely related to the parameter ξ0 used in earlier sections, it is tantalizing
to note that of the plots shown in figures 14 and 15, dÎm/da > 0 on all branches with no
stable modulus but with a stable wiggle. Hence it is entirely possible that semiclassical
effects will stabilize some of the classically unstable wormholes we have looked at — this
may even be sufficient to remedy the apparent discontinuity of ΓQ in figure 18.

Investigating these possibilities in more detail will require us to construct the quantum
effective action away from a neighborhood of m = 1, which we leave to future work. The
upshot is that the same quantum effects that manifest pathologies in m > 1 wormholes
seem to be benign, or even beneficial, in the m < 1 wormholes necessary to construct the
quenched generating functional.

7 Discussion: great expectations

We have investigated the potential contributions of connected saddles to the quenched
generating functional ΓQ in the semiclassical approximation by developing an LM-inspired
procedure for replica symmetry breaking that admits continuation to zero replicas. Using
this technology, we have shown that in a model of JT gravity coupled to a massless scalar,
a computation of ΓQ reveals the existence of a new on-shell wormhole that dominates over
the usual disconnected contribution that gives the annealed result ΓA. This new wormhole
is unstable to arbitrary Euclidean perturbations, but it is stabilized by restricting to per-
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turbations that admit a real Lorentzian section with a moment of time symmetry on which
the conical defects live. Moreover, we have shown that quantum effects do not destabilize
this wormhole in the same way that they destabilize conventional wormholes with m > 1, at
least when working perturbatively about m = 1. In fact, they may even have a stabilizing
influence, potentially making semiclassical saddles appear where no classical ones existed.

It is not clear whether the (in)stability of the new saddle is a feature or a problem.
On the one hand, the Euclidean gravitational path integral is notorious for its superior
intelligence compared with its Lorentzian counterpart, as manifested in e.g. computations
of the black hole entropy by Gibbons and Hawking [66]. Perhaps, then, we should take a
purely Euclidean perspective, excluding saddles like the connected one we have found that
are unstable under some Euclidean perturbations. On the other hand, due to the conformal
mode problem, a strictly Euclidean gravitational path integral is in fact divergent (and in
JT gravity, inconsistent with canonical quantization): the contour of integration of the
conformal mode (or, in JT gravity, the dilaton) needs to be Wick rotated to the imaginary
axis to give sensible results. Perhaps this is a hint that a Lorentzian treatment is more
fundamental after all, as suggested in [67]. If so, then only behavior under Lorentzian
perturbations is relevant, and the quenched generating functional should be dominated by
the connected saddle after all.

Ultimately, whether or not the new saddle should contribute to ΓQ should be diagnosed
by whether its inclusion yields the desired physics. In prior discussions of replica worm-
holes, arguments against the inclusion of Euclidean wormholes were countered by appeal to
unitarity. Is there an analogous fundamental physical guiding principle that justifies (or ex-
cludes) these wormholes from contributing to the replica trick (2.5) for ΓQ? Unfortunately,
any such principle is not immediately evident. Because the states that we consider are not
thermal due to matter sources that break the U(1) Euclidean time-translation symmetry,
the generating functional is no longer required to obey typical constraints of thermal states.
Some other constraints do exist of course: for instance, correlation functions computed
from the generating functional must satisfy a number of properties, from large-distance (or
late-time) behavior to triangle inequalities. Some of these are manifest already semiclassi-
cally, while others (e.g. very late-time recurrences) are expected to be inherited from the
microscopic, nonperturbative description. An investigation of whether or not these con-
straints are satisfied by certain saddles requires an analysis of observables computed from
the generating functional. For instance, [12] found that a full nonperturbative calculation
of correlation functions in JT gravity reproduces the correct late time recurrences predicted
in [68]; the problem — often dubbed the Maldacena information paradox — is that the
standard semiclassical gravity calculation predicts no late time recurrences. It would be
interesting to investigate whether replica wormhole contributions to the generating func-
tional can resolve this tension in a similar way to how connected topologies resolved the
tension between the Page and Hawking calculations of the entropy of Hawking radiation.

Alternatively, some guidance could be provided by appealing to dual models. For
example, pure JT gravity is dual to a double-scaling limit of a matrix model; such models
give nonperturbative completions of JT that can be used to explicitly compute the quenched
generating functional and confirm that it differs from its annealed counterpart at low
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temperatures [37–45]. Is there an analogous dual to JT gravity coupled to matter that
would allow us to compute the quenched free energy directly — without reference to replica
tricks or wormholes — in a semiclassical limit? For example, are there sources we could turn
on in the SYK model that would approximately reproduce, in an appropriate low-energy
limit, the Schwarzian theory of JT coupled to matter? If so, then an explicit computation
of the quenched generating functional should reveal whether or not our prescription for
computing ΓQ via the replica trick should include contributions from the new saddles we
have found.

Identifying the contributing saddle to the generating functional is part of a larger
quest to understand the rigorous underpinning of the gravitational path integral in general.
Without a guiding principle such as unitarity for the von Neumann entropy to help us in
picking the correct saddle for ΓQ, for now we simply raise this question and bring up
the possibility of future investigations into stability of saddles as a potential avenue for
furthering our understanding of the gravitational path integral.
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A Liouville equation

In this appendix we fill in some of the details omitted from section 3.2. On the rectangular
domain shown in figure 6, the conformal factor σ obeys the Liouville equation (3.7) subject
to the requirements that σ diverge at the conformal boundary ξ = πξ0/2; that φ = 0
and φ = 2π be identified; and that σ be continuous in the interior of the ellipse in the z
plane. This last condition imposes boundary conditions at the ξ = 0 edge of the coordinate
rectangle, which is mapped to a double-cover of the line segment connecting z = ±1: it
requires that for all nonnegative integer p,

∂pξσ(ξ = 0, φ) = (−1)p∂pξσ(ξ = 0,−φ). (A.1)

These various boundary conditions make it convenient to extend σ from the coordinate
rectangle to the infinite strip ξ ∈ (−πξ0/2, πξ0/2), φ ∈ (−∞,∞). The point is that the Z2×
Z2 symmetry of the ellipse implies that on the strip σ is symmetric about the lines ξ = 0
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and φ = kπ/2 for all integer k, which is sufficient to ensure that σ is appropriately periodic
in φ and that it obeys (A.1). Since the strip contains infinitely many images of the foci
at z = ±1 under the map (3.5), the Liouville equation takes the form14

− 4∂u∂ūσ + e2σ = −2π
ν

∞∑
k=−∞

δikπ(u, ū), (A.2)

where recall that ν ≡ m/(2−m). It is convenient to absorb the singularities, both from the
delta functions and the boundary condition at the conformal boundary, into σ by defining

σ ≡ σ̃ + ln
( 1
ξ0

sec
(
u+ ū

2ξ0

))
+ 1
ν

∞∑
k=−∞

Gikπ(u, ū), (A.3)

where Gu∗(u, ū) is a Green’s function of the Laplacian. The Green’s function term absorbs
the delta functions in (A.2), while the logarithmic term ensures that σ diverges at the
conformal boundary if σ̃ is regular there. Its particular form is chosen to be the conformal
factor of the double-trumpet, so that for m = 2 (or ν →∞) the Liouville equation is solved
by σ̃ = 0.

It is in fact convenient to take Gu∗ to be the Dirichlet Green’s function on the strip:

4∂u∂ūGu∗(u, ū) = 2πδu∗(u, ū), Gu∗

(
±πξ0

2 + iφ,±πξ0
2 − iφ

)
= 0. (A.4)

An explicit form of Gu∗ can be obtained by starting with the Dirichlet Green’s function on
the upper half-plane, Gw∗(w,w) = ln |(w − w∗)/(w − w∗)|, and then mapping the upper
half-plane to the strip via w = ie−iu/ξ0 , yielding

Gu∗(u, ū) = ln

∣∣∣∣∣∣
sin
(
u−u∗
2ξ0

)
cos

(
u+ū∗
2ξ0

)
∣∣∣∣∣∣ . (A.5)

The Liouville equation consequently yields (3.10). Moreover, since by construction H

vanishes at the conformal boundary ξ = πξ0/2, regularity of σ̃ in fact requires that σ̃
vanish there, giving the boundary conditions (3.11).

A.1 Approximate solutions

To construct the function f defined by (3.13), first note that (3.13) can be reduced to an
ODE: exchanging ξ for a new variable x ≡ sech(φ/ξ0) cos(ξ/ξ0) ∈ (0, 1), we obtain[

x2(x2 − 1)∂2
x + 2x3∂x + ξ0x

2 cosh2
(
φ

ξ0

)(
2x tanh

(
φ

ξ0

)
∂x∂φ − ∂2

φ

)]
f

+
(1− x

1 + x

)1/ν
e2f − 1 = 0, (A.6)

while the boundary conditions require f(x = 0, φ) = 0 and that f be regular at x = 1.
Consequently it is consistent to take f to be a function of x only, satisfying(

x2(x2 − 1)∂2
x + 2x3∂x

)
f +

(1− x
1 + x

)1/ν
e2f − 1 = 0. (A.7)

14The infinite delta functions effectively ensure that the problem has the desired periodicity in φ.

– 43 –



J
H
E
P
1
1
(
2
0
2
2
)
1
1
0

We now take ν to be small to construct a solution to this equation. In such a case, two
scaling regimes emerge depending on the behavior of ((1 − x)/(1 + x))1/ν : when x/ν is
large, ((1−x)/(1+x))1/ν is nonperturbatively small in ν, while when x/ν is order unity or
smaller, ((1−x)/(1 +x))1/ν can be expanded perturbatively in ν. We can therefore obtain
a solution for f perturbatively in ν by performing a matched asymptotic expansion: we
solve for f in these two regimes and match the solutions together.

Large x/ν corresponds to the interior of the quotient geometry; in this regime, the
penultimate term in (A.7) can be ignored, leaving simply(

x2(x2 − 1)∂2
x + 2x3∂x

)
fint − 1 = 0. (A.8)

Requiring that fint be regular at x = 1 gives the family of solutions

fint(x) = C + ln
(

x

1 + x

)
, (A.9)

where C is an arbitrary constant (that may depend on ν). On the other hand, x/ν of
order unity or smaller corresponds to a thin layer near the conformal boundary. Here we
define y ≡ x/ν and expand (A.7) in ν at fixed y:

(
−y2∂2

y + ν2y3
(
y∂2

y + 2∂y
))
fbndry +

(
1− 2y3

3 ν2 +O(ν4)
)
e2(fbndry−y) − 1 = 0. (A.10)

We then look for solutions order-by-order in ν by writing

fbndry(y) =
∞∑
n=0

νnfn(y). (A.11)

Plugging this expansion into (A.10) and imposing the boundary condition fbndry(0) = 0
allows us to solve for the fn order-by-order. For example, to O(ν) we have

f0 = y − ln
(sinh(α0y)

α0y

)
, f1 = α1 (α0y coth(α0y)− 1) , (A.12)

where α0 > 0 and α1 are arbitrary constants (independent of ν). One obtains a new
constant αn at each order in ν.

The constants of integration C and αn are fixed by matching the solutions fint
and fbndry in the overlap region: that is, we require that the expansion of fint(x) at
small x = νy agree with the expansion of fbndry(y) at large y. To O(ν), the relevant
expansions are

fint = C + ln ν + ln y − νy +O(ν2), (A.13)
fbndry = y(1− α0) + ln y + ln(2α0) + να1 (α0y − 1) +O(ν2, e−α0y), (A.14)

and hence matching order-by-order in y and ν gives α0 = 1, α1 = −1, and C = ln(2/ν) +
ν + O(ν2). We can then form a composite solution by superimposing the interior and
near-boundary solutions:

f = fint + fbndry − foverlap, (A.15)
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where foverlap is the common behavior shared by fint and fbndry in the matching region.
Proceeding in this manner up to order ν3 ultimately yields (3.18) in the main text. To
then compute the magnitude of δσ̃, we use (3.18) to quantify the falloff of F outside the
interval φ ∈ (−π/2, π/2): for φ outside this interval, y is O(ν−1e−|φ|/ξ0), which is small
if e−π/2ξ0 � ν. Expanding F at small y gives F = O(y2), which leads to the right-hand
side of (3.17) being O(ν−4e−2π/ξ0), as claimed.

B Numerical details

In this appendix we briefly go into some details on the numerical approaches we use both
in solving the Liouville equation for the conformal factor σ as in solving the equation of
motion (5.18) for the boundary wiggle in JT coupled to a massless scalar field. For a more
detailed description of some of the pseudospectral discretization methods we implement,
as well as of the Newton-Raphson method for solving nonlinear problems, see e.g. [61, 69].

B.1 Liouville equation

We are interested in solving the Liouville equation (3.10), which we reproduce here for
convenience:

−
(
∂2
ξ + ∂2

φ

)
σ̃ + 1

ξ2
0

sec2
(
ξ

ξ0

)(
e2H(ξ,φ)/νe2σ̃ − 1

)
= 0, (B.1)

where H(ξ, φ) is defined in (3.9). The coordinate domain corresponding to the ellipse is
given by ξ ∈ [0, πξ0/2), φ ∈ [0, 2π), and we require σ̃|ξ=πξ0/2 = 0 and for σ̃ to be regular ev-
erywhere in the interior of the ellipse except potentially at the foci (ξ, φ) = (0, 0) and (0, π).
In fact, since we expect σ̃ to be symmetric about the major and minor axes of the ellipse, it
suffices to instead solve the equation on just the quarter-ellipse ξ ∈ [0, πξ0/2), φ ∈ [0, π/2].
Symmetry about the major axis of the ellipse is imposed by Neumann boundary conditions
at φ = 0 and ξ = 0, while symmetry about the minor axis is impose by a Neumann
condition at φ = π/2, so the boundary conditions on the computational domain are

∂ξσ̃|ξ=0 = 0, σ̃|ξ=πξ0/2 = 0, ∂φσ̃|φ=0 = 0, ∂φσ̃|φ=π/2 = 0. (B.2)

We are thus left with a nonlinear elliptic boundary-value problem which can be solved
by standard methods; we implement a Newton-Raphson nonlinear problem solver after
discretization using pseudospectral methods with Chebyshev grids in both the ξ and φ

directions. For the data discussed below, we used a grid size of 100 points in ξ and 101
points in φ, which is sufficient to reach machine precision except at very small values of ν
and ξ0, where large gradients make the numerics poorly-behaved.

Once a solution for σ̃ has been obtained, we can extract the near-boundary metric
function g2(φ) appearing in (5.5):

g2(φ) = ∂2
ξ σ̃|ξ=πξ0/2 + 1

3ξ2
0
. (B.3)

As discussed in section 5.1, comparison between our numerical results and analytic approx-
imations reveals that

g2(φ) = −1 + 2ν
3ν2ξ2

0

∞∑
k=−∞

sech2
(
φ− kπ
ξ0

)
+ C(ν, ξ0), (B.4)
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Figure 20. The quantity ∆ illustrating the φ-independence of C(ν, ξ0); ∆ . 10−7 in almost
the entire parameter range, consistent with ∆ = 0 within the resolution of our numerics. The
apparent spike in ∆ appears around a region where C(ν, ξ0) vanishes, and where ∆ is consequently
a poor diagnostic of the φ-independence of C(ν, ξ0). Nevertheless, even in that region ∆ never
exceeds 10−2 or so.

where C(ν, ξ0) is independent of φ to within the accuracy of our numerics. In particular, the
difference between the analytic approximation (3.19) and the numerical solution of (3.11)
does exhibit nontrivial dependence on φ, as can be seen in the final plot of figure 7; it is
only in g2(φ) that the difference becomes independent of φ. In figure 20 we show the φ-
independence of C(ν, ξ0) by plotting the relative difference

∆ ≡ 1−

min
φ

gnum
2 (φ) + 1 + 2ν

3ν2ξ2
0

∞∑
k=−∞

sech2
(
φ− kπ
ξ0

)
max
φ

gnum
2 (φ) + 1 + 2ν

3ν2ξ2
0

∞∑
k=−∞

sech2
(
φ− kπ
ξ0

) , (B.5)

where gnum
2 (φ) is extracted from the numerical solutions of the Liouville equation

via (B.3). ∆ is order 10−7 or smaller in the entire parameter range (except for a narrow
region around where C(ν, ξ0) vanishes, where ∆ is consequently a poor diagnostic of
the φ-independence of C(ν, ξ0)). This is a consistent with a value of ∆ = 0 to the
resolution of our numerics, and hence with C(ν, ξ0) being independent of φ. Because
numerical errors in our computation of σ̃ (and hence gnum

2 ) are largest near φ = 0, in
practice we determine C(ν, ξ0) by evaluating at φ = π/2:

C(ν, ξ0) = gnum
2 (π/2) + 1 + 2ν

3ν2ξ2
0

∞∑
k=−∞

sech2
((2k − 1)π

2ξ0

)
. (B.6)

As a check, we may compare the behavior of C(ν, ξ0) extracted from the numerics with
the analytic approximations in various limiting cases. For example, when ξ0 and ν are small
with e−π/4ξ0 . ν, we have that C(ν, ξ0) = 1/(3ξ2

0) + O(ν2); likewise we have C(ν, ξ0) =
1/(3ξ2

0) exactly when m = 2 (corresponding to ν = ∞); and in the limit ξ0 → ∞ we
have C(ν, ξ0)→ −1/(3ν2). Figure 21 shows the difference C(ν, ξ0)− 1/(3ξ2

0); as expected,
it is very small (in fact, limited by machine precision) at small ξ0. In fact, the quality of
the approximation is much better than would be expected from the analytic arguments:
even at values of ν of order unity, C(ν, ξ0)− 1/(3ξ2

0) becomes arbitrarily small at small ξ0.
Evidently the analytic approximation for g2 is much better than that for σ̄.
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Figure 21. The difference C(ν, ξ0) − 1/(3ξ2
0), expected to be small when ν is large, and also

when ξ0 and ν are small with e−π/4ξ0 . ν. This difference becomes very small at small ξ0, where
it is eventually limited by machine precision. Points colored in blue (red) lie within (outside) the
region e−π/4ξ0 < ν.

B.2 Boundary wiggle

In our study of JT gravity coupled to a CFT, we must solve the equation of motion (5.18)
and find the lowest eigenvalue of the fluctuation operator L defined in (5.20). The
equation of motion for u(φ) is nonlinear, so we solve it using a standard Newton-Raphson
method. We will not discuss this method further, except to note that the basin of
attraction for solutions of (5.18) is relatively small, so in practice we need to implement
a damped Newton-Raphson iterative scheme in order to achieve convergence. Likewise,
the discretization of the “local” parts of the equation of motion and fluctuation operator
can be performed using standard methods, which we will also avoid discussing in any
detail. Instead, here we will focus on discretization of the more uncommon “nonlocal”
parts of (5.18) and (5.20) defined by a smearing against the kernel G(φ, φ̃): that is, the
discretization of the linear operator G defined by

(Gf)(φ) =
∫ 2π

0
dφ̃G(φ, φ̃)f(φ̃), (B.7)

where G(φ, φ̃) is defined in (5.16) and f(φ) is a periodic function of φ. We implement two
approaches using pseudospectral methods on either a Fourier or a Chebyshev grid.

Fourier discretization. Because the functions in which we are interested are periodic
in φ, it is perhaps most natural to work on an evenly-spaced grid: that is, we discretize
the domain into N grid points φj = 2πj/N for j = 1, . . . , N and work with the discrete
values fj = f(φj). We take N to be even. We then consider the discrete Fourier and
inverse Fourier transforms of fj , constructed by restricting wave numbers to just a single
copy of the Brillouin zone:

f̂k = 1
N

N∑
j=1

fj e
−ikφj , fj =

N/2∑′

k=−N/2
f̂k e

ikφj , ∀j, k ∈ Z, (B.8)

where the prime on the second sum indicates that the terms at k = ±N/2 are to be
multiplied by one half to compensate for the fact that the wave numbers k = −N/2
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and k = N/2 should be identified. To compute the discretization of G, we first consider
the approximant

p(φ) =
N/2∑′

k=−N/2
f̂k e

ikφ, (B.9)

which by construction satisfies p(φj) = fj . We then compute the action of G on p(φ),
evaluate the result at the grid points φ = φj , and express the results in terms of fj to
obtain a matrix representation of G. This procedure automatically truncates the Fourier
series that defines G(φ, φ̃), and we find (Gf)(φi) = ∑N

j=1 Gijfj where

Gij ≡
2
N

N/2∑′

k=1
k

[
tanh

(
kπξ0

2

)
cos(kφi) cos(kφj) + coth

(
kπξ0

2

)
sin(kφi) sin(kφj)

]
, (B.10)

with the prime still denoting that the term k = N/2 is multiplied by a factor of one half.
By construction, this discretization of G (as well as the analogous discretizations of the
derivative operators d/dφ, d2/dφ2, etc.) is exact when acting on any Fourier mode with
wave number up to N/2.

In practice, we expect solutions for the boundary wiggle to be symmetric about the axes
of the ellipse, which in terms of u(φ) corresponds to u′(φ) being even in φ at φ = 0 and π/2,
assuming u(φ = 0) = 0. Likewise, we expect eigenfunctions of the fluctuation operator L
to have definite parity about φ = 0 and π/2. It is numerically economical to exploit
these symmetries by working on only the quarter-ellipse φ ∈ [0, π/2], which effectively
improves our numerical resolution at fixed grid size by a factor of four: a grid size of nφ
(including φ = 0) on the quarter-ellipse corresponds to a grid size of N = 4(nφ−1) around
the full ellipse. Doing so is straightforward: for example, if a function f(φ) is symmetric
about φ = 0 and π/2, we have that fN−i = fN/2−i = fi. Under the assumption of such a
symmetry, any N ×N matrix acting on fi for i = 1, . . . , N can be expressed as an nφ×nφ
matrix acting on fi for i = 0, . . . , nφ − 1 (where f0 ≡ fN ). Consequently we restrict our
attention to the quarter-ellipse.

We work with grid sizes up to nφ = 500 (corresponding to keeping Fourier modes up
to wave number k = 998). However, in certain regions of parameter space, the wiggle
function u(φ) exhibits large gradients near the computational boundaries φ = 0 and φ =
π/2 which even such a large grid has difficulty resolving. Rather than continuing to increase
the grid size, in such cases we implement discretization based on a Chebyshev grid, which
naturally clusters more grid points near the computational boundaries and is much more
effective at resolving large gradients there with smaller grid sizes.

Chebyshev discretization. To implement pseudospectral methods on the quarter-
ellipse with a Chebyshev grid, we could proceed directly by truncating the sum defin-
ing G(φ, φ̃) and then using Clenshaw-Curtis quadrature to compute the integral defining
the operator G. However, unlike the case of Fourier discretization just described, with a
Chebyshev grid there is no natural rule for how to truncate the sum defining G(φ, φ̃), so one
would need to introduce an additional parameter to capture this order of truncation. Con-
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sequently, we find it more convenient to rewrite G(φ, φ̃) as a much more rapidly-converging
sum using Poisson summation.

To do so, we write G(φ, φ̃) in the form

G(φ, φ̃) ≡ 1
2π

∞∑
k=−∞

[(
k tanh

(
kπξ0

2

)
− |k|

)
cos(kφ) cos(kφ̃) (B.11)

+
(
k coth

(
kπξ0

2

)
− |k|

)
sin(kφ) sin(kφ̃)

]
+ 1

2π

∞∑
k=−∞

|k|eik(φ−φ̃).

The first sum converges exponentially in k, so we may freely use the Poisson summation for-
mula on it. The second sum is not convergent but is still a well-defined distribution: noting
that the Fourier transform of |x| is D2

ω ln |ω|/(2π2) with Dω a distributional derivative,15

the Poisson summation formula gives the distributional relation

1
2π

∞∑
k=−∞

|k|eik(φ−φ̃) = 1
π

∞∑
k=−∞

D2
φ̃

ln
∣∣∣φ̃− φ+ 2kπ

∣∣∣ ; (B.12)

the right-hand sum is convergent (it is (1/π)D2
φ̃

ln | sin((φ̃− φ)/2)|). Consequently we find

G(φ, φ̃) = 1
π

∞∑
k=−∞

D2
φ̃

ln
∣∣∣∣∣1− e−(φ̃−φ+2kπ)/ξ0

1 + e−(φ̃+φ+2kπ)/ξ0

∣∣∣∣∣ , (B.13)

so the action of G on a test function is

(Gf)(φ) = 2φ
πξ0

f ′(0) + 1
π

∞∑
k=−∞

∫ 2π

0
dφ̃ f ′′(φ̃) ln

∣∣∣∣∣1− e−(φ̃−φ+2kπ)/ξ0

1 + e−(φ̃+φ+2kπ)/ξ0

∣∣∣∣∣ . (B.14)

The terms in the sum are O(e−2π|k|/ξ0) at large |k|, so the sum is rapidly convergent.
However, the integrand of the k = 0 term is singular at φ̃ = φ, so we cannot yet straight-
forwardly discretize this expression for G. Instead we integrate by parts to obtain

(Gf)(φ) = 2φ
πξ0

f ′(0)− πξ0
2 f ′′(0)

+
∞∑

k=−∞

[4φ
ξ0
f ′′(0)H(−k)−

∫ 2π

0
dφ̃ f ′′′(φ̃)Ĝ3(φ, φ̃+ 2kπ)

]
, (B.15)

where H(x) is the Heaviside step function (with the convention H(0) = 0) and we have
defined

Ĝ3(φ, φ̃) ≡ ξ0
π

Re
[
Li2

(
e−(φ̃−φ)/ξ0

)
− Li2

(
−e−(φ̃+φ)/ξ0

)]
, (B.16)

15That is, Dnω ln |ω| is a homogeneous distribution of degree −n. Essentially, when integrated against a
test function one integrates by parts “ignoring the singularity”: e.g. for a, b 6= 0,∫ b

a

dω f(ω)Dω ln |ω| ≡ [f(ω) ln |ω|]ba −
∫ b

a

dω f ′(ω) ln |ω| = PV
∫ b

a

dω
f(ω)
ω

,∫ b

a

dω f(ω)D2
ω ln |ω| ≡

[
f(ω)
ω

]b
a

−
[
f ′(ω) ln |ω|

]b
a

+
∫ b

a

dω f ′′(ω) ln |ω|,

where PV denotes the Cauchy principal value.
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with Li2(z) the dilogarithm. The dilogarithm is a continuous function on the real line, and
hence the integrand is everywhere-finite, as desired. Moreover, note that in integrating
by parts, we included a nonzero constant of integration to ensure that the sum is rapidly
convergent: as can be verified using the asymptotics of the dilogarithm, the terms of this
sum also decay like e−2π|k|/ξ0 at large |k|. In practice we find that truncating to |k| ≤ 15
is more than sufficient for obtaining accurate results for all the values of ξ0 we consider
(i.e. up to ξ0 = 10). To discretize G on the quarter-ellipse, we impose appropriate parity
of f(φ) across φ = 0 and φ = π/2, which allows us to evaluate all integrals on the re-
duced domain φ ∈ [0, π/2]. We then discretize the integrals in (B.15) via Clenshaw-Curtis
quadrature on a Chebyshev grid on this domain.

It should be noted that the price we pay for reexpressing G in the form (B.15) is the loss
of spectral accuracy due to the need to integrate the dilogarithm Li2(z) through its non-
analytic behavior at z = 1. Nevertheless, in practice we find that in this new formulation,
a Chebyshev grid of size 201 on the quarter-ellipse is sufficient to comfortably resolve the
large gradients in u(φ) near φ = 0 and φ = π/2.

C Bulk solutions to JT + scalar for m = 1 and 2

In this appendix we explain how to obtain the analytic solutions (5.22) for the wiggle
which satisfy the equations of motion with the matter sources given by (5.21) (under an
appropriate choice of A) on the Poincaré disk an on the double-trumpet. The idea is to
solve the bulk problem by constructing a solution for the dilaton Φ and the scalar ψ on
the disk or the double-trumpet, and from this bulk solution to then extract the boundary
quantities u(φ) and ψ∂(u).

C.1 General dilaton solution

We begin by constructing a general solution to the JT + matter equations of motion on
any portion of a Riemann surface of constant negative curvature that can be covered with
a single coordinate chart, and with arbitrary conserved matter stress tensor. With bulk
action I = IJT + Imat, the equation of motion for the metric gives

−∇a∇bΦ + Φgab = Tab − Tgab, (C.1)

where Tab is the stress tensor obtained from the matter action Imat (and T is its trace).
We solve (C.1) in conformal gauge, in which the metric takes the form

ds2 = e2σdz dz̄ (C.2)

where σ(z, z̄) solves the Liouville equation (except for potentially at isolated conical de-
fects). Conservation of the stress tensor yields

∂z̄Tzz + e2σ∂z
(
e−2σTzz̄

)
= 0, (C.3)
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and likewise with z ↔ z̄. In this conformal gauge, (C.1) gives

−∂z∂zΦ + 2∂zσ∂zΦ = Tzz, (C.4a)

−∂z∂z̄Φ + 1
2e

2σΦ = −Tzz̄, (C.4b)

−∂z̄∂z̄Φ + 2∂z̄σ∂z̄Φ = Tz̄z̄, (C.4c)

which can be integrated explicitly. To do so, we first integrate (C.4a) to get

Φ(z, z̄) = A(z̄) +
∫ z

z0
dw e2σ(w,z̄)

[
B(z̄)−

∫ w

z0
du e−2σ(u,z̄)Tzz(u, z̄)

]
, (C.5)

where A and B are arbitrary antiholomorphic functions and the integrals are contour
integrals that start at an arbitrary point z0 and end at z (avoiding conical defects if there
are any). We can relate A and B by inserting this solution into (C.4b), which gives

A(z̄) = 2B′(z̄)− s1(z̄)B(z̄)− T1(z̄), (C.6)

where we have defined the antiholomorphic functions

s1(z̄) ≡ −4∂z̄σ +
∫ z

z0
dw e2σ(w,z̄), (C.7a)

T1(z̄) ≡ 2e−2σTzz̄ + 4∂z̄σ
∫ z

z0
dw e−2σ(w,z̄)Tzz(w, z̄)

+
∫ z

z0
dw

[
2∂z̄

(
e−2σ(w,z̄)Tzz(w, z̄)

)
− e2σ(w,z̄)

∫ w

z0
du e−2σ(u,z̄)Tzz(u, z̄)

]
; (C.7b)

the fact that these are antiholomorphic follows from the Liouville equation and the con-
servation of the stress tensor. Consequently we may evaluate them at any value of z;
choosing z = z0 gives the simpler expressions

s1(z̄) = −4∂z̄σ(z0, z̄), T1(z̄) = 2e−2σ(z0,z̄)Tzz̄(z0, z̄). (C.8)

Finally, using (C.6) in (C.4c) yields a third-order differential equation for B:

− 2B′′′(z̄) + s2(z̄)B′(z̄) + 1
2s
′
2(z̄)B(z̄) + T2(z̄) = 0, (C.9)

where we have introduced the additional antiholomorphic functions

s2(z̄) ≡ 8
(
(∂z̄σ)2 − ∂2

z̄σ
)
, (C.10)

T2(z̄) ≡ e2σ∂z̄

[
e−2σ

(
T ′1 +

∫ z

z0
dw ∂z̄

(
e2σ(w,z̄)

∫ w

z0
du e−2σ(u,z̄)Tzz(u, z̄)

))]
− Tz̄z̄; (C.11)

as with s1 and T1, one can verify that s2 and T2 are antiholomorphic using the Liouville
equation and the conservation of the stress tensor. So we may again evaluate these functions
at z = z0, which gives the relations

s2 = 2s′1 + s2
1
2 , T2 = T ′′1 + 1

2 s1T ′1 − Tz̄z̄(z0, z̄). (C.12)

– 51 –



J
H
E
P
1
1
(
2
0
2
2
)
1
1
0

Using these and (C.6) we may express (C.9) entirely in terms of A:

−A′′ − s1
2 A′ − Tz̄z̄(z0, z̄) = 0. (C.13)

Using (C.8) this can be integrated to give

A(z̄) = c1 +
∫ z̄

z̄0
dw̄ e2σ(z0,w̄)

[
c2 −

∫ w̄

z̄0
dū e−2σ(z0,ū)Tz̄z̄(z0, ū)

]
, (C.14)

where c1, c2, and z̄0 are arbitrary (complex) constants. Finally, we then integrate (C.6) to
obtain

B(z̄) = e−2σ(z0,z̄)
[
c3 + 1

2

∫ z̄

z̄0
dw̄ e2σ(z0,w̄) (A(w̄) + T1(w̄))

]
, (C.15)

where c3 is another arbitrary complex constant. Consequently, equation (C.5) with A

and B given by (C.14) and (C.15) is the general solution for the dilaton for arbitrary σ and
matter stress tensor. Note that any changes to z0 and z̄0 can be reabsorbed into the ci, so
there are only three independent degrees of freedom in this solution.

When the matter is classical and conformal, Tzz̄ = 0, and hence Tzz and Tz̄z̄ are
holomorphic and antiholomorphic, respectively. This simplification, along with use of the
Liouville equation, allows us to integrate (C.5) to obtain

Φ = 4e−2σ(z0,z̄)
[
c̃3 + 2c̃1∂zσ + 4c̃2∂

2
zσ − 2∂z(e−2σ∂z(e2σF ))

]∣∣∣
z=z0

(∂z̄σ(z, z̄)− ∂z̄σ(z0, z̄))

+ c̃1 + 4c̃2∂zσ(z0, z̄)− 2e−2σ(z0,z̄) ∂z
(
e2σF

)∣∣∣
z=z0

− 2e−2σ(z,z̄)∂z̄
(
e2σF

)
, (C.16)

where the c̃i are constants and we have defined

F (z, z̄) ≡
∫ z

z0
dw e−2σ(w,z̄)Tzz(w), F (z, z̄) ≡

∫ z̄

z̄0
dw̄ e−2σ(z,w̄)Tz̄z̄(w̄). (C.17)

We’d now like to use this expression to solve for the dilaton in the presence of conformal
matter on the Poincaré disk and the double-trumpet. For the real massless scalar field ψ,
the equation of motion ∇2ψ = 0 is solved by

ψ(z, z̄) = f(z) + f̄(z̄) (C.18)

for an arbitrary holomorphic function f , and the corresponding components of the stress
tensor are Tzz = (f ′)2 and Tz̄z̄ = (f̄ ′)2. In principle we should determine f by imposing
Dirichlet boundary conditions at ∂M , but for our purposes in this section we will instead
choose f and then determine the corresponding boundary conditions from it.

C.2 Poincaré disk

The Poincaré disk is given by conformal factor σ = ln(2/(1 − zz̄)), with z covering the
unit disk. We take the scalar field to be given by (C.18) with f(z) = Jzn/2 for positive
integer n. Then (C.16) with z0 = z̄0 = 0 gives the general solution

Φ =
α1(1 + r2) + 2r(α2 cos θ + α3 sin θ) + nJ2r2n

4

(
r2

2n+1 −
1

2n−1

)
cos(2nθ)

1− r2 , (C.19)
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where the αi are real and we have converted to the usual polar coordinates using z = reiθ.
We expect the boundary conditions (4.2) to constrain the αi, but we also expect there to
be residual freedom in these constants due to the SL(2,R) symmetry of the Poincaré disk.
So for the purposes of constructing a particular solution, we set α2 = 0 = α3. Then the
boundary condition Φ|∂M = 1/δ gives an embedding of the boundary ∂M :

r = 1− Φ0(θ) δ +O(δ)2, where Φ0(θ) = α1 −
nJ2

4(4n2 − 1) cos(2nθ). (C.20)

With this embedding we may fix α1 by imposing the requirement that the length of ∂M
be β/δ:

β =
∫ 2π

0

dθ

Φ0(θ) ⇒ α1 = 2π
β

√
1 +

(
nβJ2

8π(4n2 − 1)

)2
. (C.21)

Finally, we may define the proper length coordinate u along ∂M using du = dθ/Φ0(θ),
which gives the wiggle function u(θ) (5.22) with

A =

1 +
(

8π(4n2 − 1)
nβJ2

)2
−1/2

. (C.22)

Likewise, the boundary profile of the scalar is given simply by ψ|∂M = J cos(nθ), which
written in terms of u takes the form (5.21).

These solutions solve the equation of motion (5.18) in the boundary formalism. This
can be verified most easily by noting that when m = 1, the conical defects vanish and
hence the on-shell action should be independent of ξ0. For simplicity we can therefore
work purely in the ξ0 →∞ limit of the action (5.17) in which the ellipse degenerates into
the Poincaré disk (with no defects). In this ξ0 →∞ limit with m = 1, we have

g2(φ)→ −1
3 , G(φ, φ̃)→ 1

2π

∞∑
k=−∞

|k|eik(φ−φ̃). (C.23)

We then find that the equation of motion (5.18) is satisfied by (5.22) if

1√
1−A2

=
√

1 +
(

nβJ2

8π(4n2 − 1)

)2
; (C.24)

this agrees precisely with the expression (C.22) obtained from the bulk solutions. The
action of the wiggle profile (5.22) is

Î1 = −S0 + 1
β

[
2π2(4n2 − 1)√

1−A2
− 8π2n2 + πnβJ2

2

]
, (C.25)

which recovers the pure JT Schwarzian result Î1 = −S0 − 2π2/β when J = 0.
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C.3 Double-trumpet

To treat the double-trumpet, we will work on the quotient space (i.e. the single trumpet)
with appropriate regularity conditions imposed to ensure smoothness of the scalar and the
dilaton on the quotient geometry. The conformal factor on the trumpet is

σ = ln
[ 1
ξ0

sec
(
z + z̄

2ξ0

)]
, (C.26)

with z ≡ ξ+iφ covering the strip Re (z) ∈ [0, πξ0/2), Im (z) ∈ [0, 2π). A wormhole solution
will involve fixing not just the dilaton Φ, but also ξ0, which sets the size of the wormhole.
We take the scalar field to be given by (C.18) with

f(z) = J cosh(nz)
2 cosh(nπξ0/2) (C.27)

for positive integer n; this choice ensures that ψ obeys all the regularity conditions discussed
in section 5.1. Using (C.16) with z0 = z̄0 = 0, we find that imposing these same regularity
conditions on Φ fixes the three constants c̃i uniquely, leaving the solution

Φ = nJ2ξ0

4 cosh2(nπξ0/2)

[
n

(
ξ0 + ξ tan

(
ξ

ξ0

))
− cos(2nφ)

1 + 4n2ξ2
0

(
nξ0 cosh(2nξ) + 1

2 sinh(2nξ) tan
(
ξ

ξ0

))]
. (C.28)

Again we impose the boundary condition Φ|∂M = 1/δ to obtain an embedding of ∂M :

ξ = πξ0
2 − Φ0(φ) δ +O(δ2), (C.29)

where
Φ0(φ) = nJ2ξ2

0
8 cosh2(nπξ0/2)

(
nπξ0 −

cos(2nφ) sinh(nπξ0)
1 + 4n2ξ2

0

)
. (C.30)

We must have Φ0(φ) > 0 for all φ, but Φ0(0) becomes negative at large ξ0; hence solutions
only exist when ξ0 is sufficiently small.16 Requiring that the length of ∂M be β/δ then
fixes the allowed values ξ∗ of ξ0 in terms of J and n:

β =
∫ 2π

0

dφ

Φ0(φ) ⇒ βJ2

n
= 16 cosh2(nπξ∗/2)

n3ξ3
∗

√
1−

(
sinh(nπξ∗)

nπξ∗(1+4n2ξ2
∗)

)2
. (C.31)

Again we may define the proper length coordinate u along ∂M using du = dφ/Φ0(φ), which
gives the wiggle function u(φ) (5.22) with

A = sinh(nπξ∗)
nπξ∗(1 + 4n2ξ2

∗)
. (C.32)

The boundary profile of the scalar is given simply by ψ|∂M = J cos(nφ), which written in
terms of u takes the form (5.21).

16Specifically, when nξ0 < x∗, where x∗ ≈ 1.36 is the positive solution of πx(1 + 4x2) = sinh(πx).
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It is straightforward to check that (C.31) and (C.32) satisfy (5.24) and (5.25), so again
we confirm that the solutions obtained using the bulk and boundary formalisms coincide.
In particular, the need for

√
βJ to be sufficiently large in order for solutions to exist can

be inferred from (C.31): in the region where the right-hand side is real, it has a global
minimum at nξ∗ ≈ 0.93 where it attains the value ≈ 146. Hence solutions for ξ0 only exist
when

√
βJ ≥

√
βJmin ≈ 12

√
n, just as we found in section 5.2.

D JT + branes

In this appendix we discuss a model of JT gravity coupled to end-of-the-world (EOW)
branes. This model is effectively a classical version of that considered in [8], except that we
do not give the branes any internal degrees of freedom. Our purpose is illustrative: though
we do not find stable wormholes at m < 1, we will see very clearly that for m < 1 multiple
branches of solutions for the wiggle can appear in a way analogous to the more involved
model studied in section 5.

D.1 Boundary action

The JT + brane model has the Euclidean action

Ibrane = IJT + µ

∫
B
ds, (D.1)

where B is an EOW brane anchored to the boundary ∂M and µ > 0 is its tension. With m
boundaries, the geometry M consists of the Poincaré disk with m geodesic “bites” removed
corresponding to the location of m disconnected portions of B, as shown in figure 22. The
boundary ∂M consists of m disconnected pieces anchored to B, and we take the length of
each of these pieces of ∂M to be β/δ. After quotienting by the Zm replica symmetry, it
is clear that the quotient space geometry M̂m is in fact identical to (a single copy of) the
geometry M̂ (2)

m discussed in section 4.1. Consequently, the JT part of the quotient action
takes half its value in pure JT after the replacement β → 2β:

Îm = m− 2
2m S0 −

∫ β/2

−β/2
du Sch

(
tan

(Θ
2

)
, u

)
+ µLength(B). (D.2)

(Hence the case µ = 0 can be thought of as a quotient of pure JT by a Z2 symmetry about
the geodesic B.) To put the brane on-shell, we must compute its length up to the cutoff
boundary ∂M . From figure 22, it is clear that B is diffeomorphic to a geodesic on the
Poincaré disk sweeping out an angle 2α on the boundary. Moreover, footnote 9 relating
the embedding functions Θ(u) and R(u) indicates that this geodesic is cut off by ∂M at
the radial cutoffs R± = 1−Θ′(±β/2) δ+O(δ2). The length of B up to these cutoffs is then

Length(B) = ln
(
β2

δ2

)
− ln

(
4β2Θ′(β/2)Θ′(−β/2)

sin2 α

)
+O(δ). (D.3)

The first term is the expected UV divergent piece, and it can be cancelled out by adding
an appropriate counterterm such as −2µ ln(βΦ)|∂M to the action. After this cancellation,
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2α
α

B

Zm quotient

2π
m

Figure 22. For positive integer m, the genus-zero wormhole geometry corresponding to the JT
+ brane model consists of the Poincaré disk with m geodesic “bites” B removed, shown at left.
The quotient geometry is shown at right; the dot-dashed radial lines are identified, so the two
half-geodesics correspond to a single copy of one of the branes B. This quotient geometry coincides
with the geometry M̂ (2)

m shown in figure 4.

the renormalized action for the wiggle is

Îm = m− 2
2m S0 −

∫ β/2

−β/2
du Sch

(
tan

(Θ
2

)
, u

)
− µ ln

(
4β2Θ′(β/2)Θ′(−β/2)

sin2 α

)
. (D.4)

We must next determine the boundary conditions to impose on the wiggle Θ(u). One
condition is fixed as in pure JT by requiring that Θ(u) wrap around the entire boundary
of M̂ (2)

m , while another will stem from fixing the angle at which ∂M intersects B. One way
to infer this latter boundary condition is to treat the brane as a particle of mass µ which
scatters with the boundary trajectory ∂M and impose conservation of the SL(2,R) charges
in this scattering process, as discussed in [70, 71]. Alternatively, we may impose the bound-
ary condition na∇aΦ|B = µ (with na a unit outward-pointing normal to B) on the dilaton
in the bulk [8] and convert it to the desired constraint on the intersection of ∂M and B. Ul-
timately we find that n·u = µδ+O(δ2), where na and ua are outward-pointing unit normals
to B and ∂M .17 This constraint ultimately leads to the wiggle boundary conditions

Θ (±β/2) = ±
(
π

m
− α

)
, Θ′′ (±β/2) = ∓

(
cotαΘ′ (±β/2)2 − µΘ′ (±β/2)

)
. (D.5)

Finally, we will ultimately need to investigate the stability of the wiggle. As usual, we
restrict to perturbations that exhibit a Z2 symmetry corresponding to reflection about u =
0. The stability analysis proceeds just as in the pure JT case discussed in section 4.3: we
write Θ = Θ̃ + ϑ with Θ̃ a solution to the equations of motion and expand the action to
second order in ϑ. The resulting fluctuation operator L is identical to the one for pure

17One way of determining this condition explicitly is to work on the Poincaré disk, placing the brane on
the axis θ = ±π/2, and considering the family of dilaton solutions

Φ = (1 + r2
0)(1 + r2)− 4r0r cos θ
(1− r2

0)(1− r2)

which are obtained from the “standard” solution Φ = (1 + r2)/(1 − r2) by translating the origin to the
right a coordinate distance r0 using an SL(2,R) transformation. r0 and µ can be related using the bulk
boundary condition na∇aΦ|B = 2r0/(1−r2

0) = µ, while it is easy to verify that where the level sets Φ = 1/δ
intersect the brane, they satisfy n · u = 2r0δ/(1 − r2

0) + O(δ2) = µδ + O(δ2). This is a local condition on
the intersection of ∂M and B, and hence it must hold in any other geometry as well.
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JT (4.17), except that it acts on the space of functions obeying the boundary conditions

ϑ(0) = 0 = ϑ′′(0), ϑ(β/2) = 0, ϑ′′(β/2) = −
(
2 cotα Θ̃′(β/2)− µ

)
ϑ′(β/2). (D.6)

Hence a solution Θ̃ is stable if and only if the spectrum of L is nonnegative on the space of
functions obeying these boundary conditions. We compute the spectrum of L numerically
as described in appendix B.

D.2 Saddles

We now look for saddles of the action (D.4). As in the main text, we proceed by first
looking for saddles for the wiggle Θ(u) at fixed modulus α and then evaluate the action on
these saddles to obtain an effective action Îm[α] for α, which we then examine to look for
saddles for α.

Saddles for the wiggle. With the boundary conditions (D.5), the variational problem
for the action (D.4) is well-posed and leads to the same equation of motion (4.6) we obtained
in pure JT. Since the boundary conditions (D.5) are odd in u, we may again consider the
most general odd solution:

tan
(Θ(u)

2

)
= a tan

(
bu

2β

)
(D.7)

(the extra factor of 2 on the right-hand side relative to (4.7) is inserted for convenience to
account for the relative factor of 2 in β between pure JT and the JT + brane model). The
constants a and b are determined by imposing the boundary conditions (D.5) just as in
pure JT. In short, we first take a = iai and b = −ibi with ai and bi both real and positive.
Then solutions can only exist when π/m− α < π in which case ai and bi must satisfy

cosh
(
bi
2

)
+ βµ

bi
sinh

(
bi
2

)
= sin(π/m)

sinα , (D.8a)

ai = coth
(
bi
4

)
tan

(
π −mα

2m

)
. (D.8b)

On the other hand, taking a = ar and b = br with ar and br both real and positive, we find
that solutions must satisfy

cos
(
br
2

)
+ βµ

br
sin
(
br
2

)
= sin(π/m)

sinα , (D.9a)

br
2π ∈

(2N, 2N + 1] if tan
(
π−mα

2m
)
> 0,

(2N − 1, 2N) if tan
(
π−mα

2m
)
< 0,

N ≡
⌊ 1

2m + π − α
2π

⌋
, (D.9b)

ar = cot
(
br
4

)
tan

(
π −mα

2m

)
. (D.9c)

It is now straightforward to see how turning on a brane can give rise to new branches
of solutions. For any value of µ, the left-hand side of (D.8a) is monotonic in bi > 0, so when
solutions of exponential type exist (i.e. when π/m−α < π and sin(π/m)/ sinα > 1+µβ/2),
then precisely one solution exists. Similarly, for µ = 0 the left-hand side of (D.9a) is
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Figure 23. Graphical solutions of (D.9) for br when m < 1. The solid blue curves and the dashed
red lines show the left- and right-hand sides of (D.9a), respectively, while the shaded region is the
interval satisfying (D.9b); hence solutions of (D.9) correspond to intersections of the blue and red
lines in the shaded regions. All three plots take βµ = 10 and m = 0.45, while from left to right we
show α = π/8, π/5, and π/3. At small α there are no solutions; as α grows, two solutions appear
at a common value of br and branch apart; as α grows further, the larger of the two solutions
disappears abruptly as the region satisfying (D.9b) changes.

monotonic in br in the interval allowed by the constraint (D.9b), so again at most one
solution of oscillatory type can exist (and it is given by the pure JT solution (4.13)).
However, for µ 6= 0 the left-hand side of (D.9a) is not in general monotonic in the interval
allowed by (D.9b), and consequently may admit an additional solution. In figure 23 we
graphically illustrate the structure of solutions for br for various values of α, showing how
zero, one, or two solutions may exist.

Saddles for the modulus. Putting the wiggle on-shell, we are left with an effective
action Îm[α] for α:

Îm[α] = m− 2
2m S0 +


b2i
2β − 2µ ln

( 2bi
sinh(bi/2)

sin(π/m− α)
sinα

)
, exponential,

− b
2
r

2β − 2µ ln
( 2br

sin(br/2)
sin(π/m− α)

sinα

)
, oscillatory,

(D.10)

with bi and br implicit functions of α (as well as m and βµ) through (D.8) and (D.9).
When m ≥ 1, we always have N = 0 and sin(π/m)/ sinα ≥ 0 for any allowed α, from

which it follows that precisely one solution will exist for any allowed value of α or µ. Fig-
ure 24 shows Îm[α] for various values of βµ and m. Note that for any nonzero βµ there is a
local minimum, meaning that the modulus is stabilized. Moreover, we have verified that the
spectrum of L is nonnegative for all of these solutions, so we conclude that turning on the
EOW branes stabilizes the wormholes when m > 1 (though the wormholes do not appear to
dominate over the disk: it is clear from figure 24 that the on-shell action Îm[αmin] evaluated
at the saddle αmin grows with m). On the other hand, the behavior of Îm[α] when m < 1
is quite different. It is clear from (D.9) that Îm[α] is single-valued and independent of α
whenever 1/m is an integer, just as in pure JT. For intermediate values of 1/m, there are
instead always two branches of Îm[α], as shown in figure 25 for βµ = 10; see also figure 26
(the behavior for other nonzero values of βµ is analogous). These branches can exhibit
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Figure 24. The effective action Îm[α] for various values of m > 1 and βµ. From left to right we
show m = 3/2, 2, and 4, while the blue, red, and orange curves (uppermost to lowermost within
each plot) correspond to βµ = 0, 5, and 10, respectively. Note that for any m > 1 and βµ 6= 0, Îm[α]
exhibits a local minimum in α. The spectrum of L is also nonnegative on all of these solutions, so
these minima in α correspond to stable wormholes.

0.0 0.2 0.4 0.6 0.8 1.0

-200

-150

-100

-50

0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

-200

-150

-100

-50

0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 25. The effective action Îm[α] for various values of m ≤ 1 with βµ = 10. From left to right
and top to bottom, we show 1/m = 1, 1.2, 1.4, 1.6, 1.8, and 2. Except for when 1/m is an integer,
there are two branches: on the ones drawn as solid blue curves, the spectrum of L is nonnegative,
while on the dashed red curves L has a negative eigenvalue. Note that although there are some
saddles for α, these saddles are all unstable, either to perturbations of α (as on the solid blue branch
in the second plot) or of the wiggle (as in the dashed red branch in the fifth plot). The behavior
for larger 1/m is analogous, except that all of the solutions for the wiggle are unstable.

either stable, unstable, or no saddles in α. However, any stable saddles for α coincide with
unstable saddles for the wiggle; conversely, the branches of solutions on which the wiggle
is stable (which only exist for m ≥ 1/2) only exhibit unstable saddles for the modulus.
Hence this classical JT+brane model does not admit any stable wormholes for m < 1.

Just as in pure JT, the branches in figures 25 and 26 that appear to simply end are
indicative of additional sheets of the analytic continuation of Îm[α] to complex m (and
complex α, if desired). This analytic continuation is obtained by inverting (D.9a) for br
ignoring the constraint (D.9b); the inverse function br(sin(π/m)/ sinα) is a meromorphic
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Figure 26. The effective action Îm[α] as a function of m for βµ = 10 and various values of α; from
left to right we show α = π/5, 3π/10, and 2π/5. On the solid blue branch(es) the spectrum of L is
nonnegative; on the dashed red branches L has a negative eigenvalue.

function ofm whose Riemann surface contains infinitely many sheets, and the action (D.10)
is infinitely-sheeted as well. Hence we can attribute the ends of the “branches to nowhere” in
figures 25 and 26 as stemming from the constraint (D.9b) that fixes the allowed branches of
this Riemann surface. The upshot is that as in pure JT, imposing the equations of motions
is crucial to constraining the allowed behavior of the analytic continuation of Îm: merely
continuing a portion of the action (from, say,m > 1) to allm without invoking the equations
of motion is insufficient to uniquely fix the allowed behavior of the action at m < 1.

(It is also worth noting that the endpoints of the “branches to nowhere” in figures 25
and 26 correspond to singular solutions for the wiggle, which can be seen as follows. As
the graphical analysis in figure 23 indicates, as α and/or m are varied a single branch of
solutions can end when the allowed interval for br (D.9b) changes due to a change in the sign
of tan((π−mα)/2m). On this branch, br/2π is not an integer as this transition is reached,
so from (D.9c) and (D.10) we conclude that ar either vanishes or diverges there while the
action remains finite. Hence these endpoints correspond to singular configurations of the
wiggle with finite action.)
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