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ABSTRACT

The design automation of analog circuits is a longstanding chal-

lenge. This paper presents a reinforcement learning method en-

hanced by graph learning to automate the analog circuit parameter

optimization at the pre-layout stage, i.e., finding device parameters

to fulfill desired circuit specifications. Unlike all prior methods, our

approach is inspired by human experts who rely on domain knowl-

edge of analog circuit design (e.g., circuit topology and couplings

between circuit specifications) to tackle the problem. By originally

incorporating such key domain knowledge into policy training

with a multimodal network, the method best learns the complex

relations between circuit parameters and design targets, enabling

optimal decisions in the optimization process. Experimental re-

sults on exemplary circuits show it achieves human-level design

accuracy (∼99%) with 1.5× efficiency of existing best-performing

methods. Our method also shows better generalization ability to

unseen specifications and optimality in circuit performance opti-

mization. Moreover, it applies to design radio-frequency circuits on

emerging semiconductor technologies, breaking the limitations of

prior learning methods in designing conventional analog circuits.

1 INTRODUCTION

Analog circuits play the fundamental role in processing analog

signals and bridging the physical analog world and digital infor-

mation world. Unlike digital circuits following standard automated

design flows, analog circuit design relies on onerous human efforts

and lacks effective design automation techniques at all stages. Pre-

layout design is one key stage in analog circuit design flow. It can be

formulated as a parameter-to-specification (P2S) optimization prob-

lem, i.e., finding optimal device parameters (e.g., width and finger

number of transistors) to meet desired circuit specifications (e.g.,

power and bandwidth) based on a pre-determined circuit topology.

This problem is very challenging as it seeks optimum parameters

of diverse devices in a huge design space without exact rules.

Various automated techniques have been proposed for the P2S

problem, mainly falling into optimization/learning-based category.

Optimization methods, e.g., Bayesian Optimization [8] and Genetic

Algorithm [6], use corresponding algorithms to search for optimal

device parameters. They often suffer from several key issues, such

as divergence, and re-starting from scratch if any change is made on

given specifications. Learningmethods, i.e., supervised learning (SL)

methods [5, 10] and reinforcement learning (RL) methods [13, 16],

have emerged recently. They can achieve good convergence and

cover a huge design space once well trained. Despite the promise,

these learning methods are still unable to reach human-level design
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accuracy, i.e., ∼100%. SL methods learn the static mapping between

device parameters and circuit specifications. Due to the inherent

approximation errors, they cannot ensure high design accuracy and

endure weak generalization abilities with one-step inference. RL

methods learn a decision policy from state space of circuits to action

space of device parameters and are often superior to SL methods via

multi-step deployment. However, without incorporating sufficient

key state observations from environments into training, they fail to

accurately learn the complex relations between device parameters

and circuit specifications, leading to sub-optimal policies. More-

over, existing learning methods cannot be applied to design more

advanced analog circuits, e.g., radio-frequency (RF) circuits, which

require sophisticated time-consuming characterizations. Without

overcoming the issue, a much longer training time is needed by

them before used for inference/deployment.

In this paper, we propose a domain knowledge-infused RLmethod

to achieve human-level design accuracy and superior design effi-

ciency for analog and RF circuits. We are inspired by experienced

human designers who leverage the key domain knowledge, e.g.,

topologies of circuits and couplings of specifications, to derive de-

vice parameters. Particularly, they adopt a simplified circuit topol-

ogy of a circuit, carefully consider design trade-offs between spec-

ifications, and use tens/hundreds of iterative fine tunings to seek

the optimal circuit parameters. Our RL method infuses the key

domain knowledge into policy learning with a tailored multimodal

policy network composed of a graph neural network (GNN) and a

fully connected neural network (FCNN). The GNN is built upon the

topology of a given circuit. It can capture the underlying physics of

the circuit, e.g., device’s connections and interactions. The FCNN

extracts the complex couplings of circuit specifications. With such

a unique policy network, our RL agent learns the best policy and

makes optimal sequential decisions like a human expert to find

device parameters. Key contributions in the work are:

• This paper presents the first domain knowledge-infused RL

method to automate the P2S optimization of analog/RF cir-

cuit at the pre-layout level.

• This work proposes a unique multimodal policy network

made of a circuit topology-based GNN and an FCNN to infuse

key domain knowledge of circuit design into policy learning.

• The work also leverages transfer learning to notably acceler-

ate RF circuits’ design in a sophisticated and time-consuming

simulation environment with the learned experiences from

a coarse but time-efficient simulation environment.

• Experiments show the method achieves 99% design accuracy,

1.5× design efficiency of existing best-performing methods, a

stronger generalization ability to unseen specifications, and

better optimality in maximizing circuit’s figure-of-merit.

2 BACKGROUND

Reinforcement Learning (RL): As shown in Figure 1(a), RL is an

area of machine learning related to how an intelligent agent takes

actions to maximize the cumulative return based on observed states
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Figure 1: (a), A simplified illustration of RL. (b), A simplified illustra-

tion of a graph. Solid circles denote nodes and lines between circles

represent edges. The graph is processed by two GNNs: GCN and GAT.

from an environment . In each episode, the agent starts from an ini-

tial state. It then observes the state 𝑆𝑘 and takes an action𝐴𝑘 based

on a policy. Meanwhile, the environment updates a reward 𝑅𝑘+1
for that action and enters into a new state 𝑆𝑘+1. The agent iterates

through the episode with multiple steps, accumulating the reward

at each step to obtain the final return. With multiple episodes, the

agent improves its decision quality and finally finds a well-learned

policy to maximize the return. The policy would be deployed for

practical tasks, i.e., the agent follows the policy to finish a given task.

We apply RL to the P2S optimization of analog/RF circuits, which

can best mimic the dynamic design process of human experts.

Learning with Graph Neural Networks (GNNs): GNNs [4, 15]

directly learn the non-Euclidean data structure resembling a graph

as shown in Figure 1(b). The graph is represented as 𝐺 = (𝑉 , 𝐸)

with 𝑉 the set of node and 𝐸 the set of edge between connected

nodes. Assuming each node 𝑣𝑖 ∈ 𝑉 has an𝑚-dimensional vector

of features, all node features form an matrix 𝑋 ∈ R𝑛×𝑚 , 𝑛 = |𝑉 |.

A GNN takes in 𝑋 as inputs and uses the class of each node in a

graph or the class of an entire graph as labels. Graph convolutional

network (GCN) [4] and graph attention network (GAT) [15] are two

representative GNNs. Compared to GCN, GAT has a multi-head

attention mechanism on nodes as indicated in Figure 1(b) and can

better learn high-dimensional complex relations between nodes.

Circuit topology is a graph and can be processed by GNNs. A

prior RL method [16] uses GCN to process a circuit topology but

has two key issues. First, only a partial circuit topology is adopted

by excluding power supply and bias nodes which, however, are

the indispensable parts of a circuit graph. Second, the GCN node

features are all static technology information, such as threshold

voltage and electron mobility. Without including the essential dy-

namic (variable) device parameters into node features, it is hard to

learn the relations between device parameters and circuit specifica-

tions. There are also several SL methods applying GNN to physical

design [7, 11] and electro-magnetic simulation [17] of analog cir-

cuits. In contrast, our work harnesses GCN/GAT as a key part of

our RL policy network to capture the physics of a given circuit

topology, e.g., device’s parameters, connections, and interactions,

at the pre-layout stage. We show that a GAT with the multi-head

attention can better model a circuit topology than a GCN.

3 APPROACH

We target the P2S problem of analog/RF circuit design at the

pre-layout stage and propose an RL approach for it. Figure 2 shows

the proposed RL method with the following five key elements.

Reward Function: The reward is directly related to the design

goal. We define the reward 𝑟𝑖 at each time step 𝑖 as

𝑟𝑖 = 𝑟, if 𝑟 < 0 or 𝑟𝑖 = 𝑅, if 𝑟 = 0, (1)

where 𝑟 =

∑𝑁−1
𝑗=0 min{(𝑔

𝑗
𝑖 − 𝑔

𝑗
∗)/(𝑔

𝑗
𝑖 + 𝑔

𝑗
∗), 0} is a normalized dif-

ference between the intermediate specifications 𝑔𝑖 and the given
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Figure 2: Overview of the RL method. The RL agent is based on an

actor-critic method. Our multimodal policy network consists of a

circuit-topology-based GNN and an FCNN. We use a two-stage Op-

Amp to show how to map a circuit topology into a graph.

specifications 𝑔∗. The upper bound of 𝑟 is set to be 0 to avoid over-

optimizing the parameters once the given specifications are reached.

All 𝑁 specifications are equally important. We also give a large

reward (i.e., 𝑅 = 10) to encourage the agent if the design goals are

reached at some step. The episode return 𝑅𝑠0,𝑔∗ of searching optimal

device parameters for the given goals 𝑔∗ starting from an initial

state 𝑠0, is the accumulated reward of all steps: 𝑅𝑠0,𝑔∗ =
∑
𝑖=0 𝑟𝑖 . Our

goal is to train a good policy to maximize 𝑅𝑠0,𝑔∗ .

Action Representation: Inspired by human designers who iterate

with fine-grained tuning steps to find optimal device parameters,

we use discrete action space to tune device parameters. For each

tunable parameter 𝑥 of a device (e.g., width and finger number of

transistors), there are three possible actions at each step: increasing

(𝑥 +�𝑥 ), keeping (𝑥 +0), or decreasing (𝑥−�𝑥 ) the parameter, where

“�𝑥" is the smallest unit to update the parameter within its bound

[𝑥min, 𝑥max]. Assuming total 𝑀 device parameters, the output of

the policy network is an𝑀 × 3 probability distribution matrix with

each row corresponding to a parameter. The action is taken based

on the probability distribution.

Environment:A circuit design environment is used in this work. It

consists of a given circuit netlist, an industrial circuit simulator, such

as Cadence Spectre or Keysight Advanced Design system (ADS)

(for high-frequency RF circuits), and a data processing module

(DPM). As shown in Figure 2, the simulator obtains intermediate

circuit specifications at each time step. The DPM then deals with

the simulated results to feed back a reward to the agent using Eq. (1).

Meanwhile, it updates the device parameters to rewrite the circuit

netlist based on the actions from the agent.

State Representation: Capturing critical and adequate domain

knowledge from the environment is key to training a good RL agent.

In a circuit design environment, the circuit itself and the intermedi-

ate specifications are the main domain observations. In our work,

we for the first time adopt these two key practical observations to

represent each state 𝑠𝑖 . We use a graph𝐺 (𝑉 , 𝐸) to model the circuit

based on its topology, where each node in set 𝑉 is a device and the

connections between devices form the edge set 𝐸. We also treat the

power supply (𝑉P), ground (𝑉GND), and other DC bias voltages as

extra nodes. Figure 2 takes a two-stage operational amplifier (Op-

Amp) as an example to show the mapping between its topology
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and the graph. For a circuit with 𝑛 nodes, the state for the 𝑘th node

is defined as its node feature (𝑡, �𝑝), where 𝑡 is the binary represen-

tation of the node type and �𝑝 is the parameter vector of the node.

For transistors, the parameters are the width (𝑥W) and the finger

number (𝑥F) while for capacitors, resistors, and inductors, the pa-

rameter is the scalar value of each device. The parameter for power

supply (ground or DC bias) is a voltage of 𝑉P (0 for 𝑉GND or 𝑉bias,𝑘
for bias node 𝑘). Zero padding is used to ensure that the length of �𝑝

for each node is the same. For a circuit with five different types of

devices, two power nodes, one bias, the state of an N-type transistor

is [0, 0, 1, 𝑥W, 𝑥F]. We also create a vector to represent intermediate

specifications. For example, to design the Op-Amp, the state vector

of specifications is expressed as [𝐺, 𝐵, 𝑃𝑀, 𝑃] which are gain (𝐺),

bandwidth (𝐵), phase margin (𝑃𝑀), and power consumption (𝑃 ).

Agent: To incorporate the key domain knowledge into agent train-

ing such that it can make human-level decisions, we propose a

novel multimodal policy network for the agent based on actor-critic

method [9] as shown in Figure 2. It consists of a circuit topology-

based GNN and a fully connected neural network (FCNN), which

is termed GNN-FC-based policy network. The GNN is to distill the

underlying physics (e.g., device’s types, parameters, and interac-

tions) of a circuit graph into low-dimensional vector embedding.

While the FCNN takes the design goals as inputs to extract their

coupled relations, i.e., design trade-offs. The graph embedding and

the FCNN embedding are then concatenated for further processing

by the final fully-connected (FC) layers to update the actions.

We use GCN [4] and GAT [15] to learn the embedding of circuit-

level physical features respectively from the circuit graph 𝐺 =

(𝑉 , 𝐸). As an example, we show how to build the GCN below.

GAT [15] can also be built similarly which is not elaborated here.

The node features of the (𝑙 + 1)th layer in the GCN are obtained as

𝐻 𝑙+1
= 𝑓 (𝐻 𝑙 , 𝐴∗) = 𝜎 (𝐴∗𝐻 𝑙𝑊 𝑙 ) . (2)

Here, 𝐻 𝑙 ∈ R𝑛×𝑚𝑙 is the node feature matrix of the 𝑙 th layer (𝑛:

number of nodes, 𝑚𝑙 : feature dimension per node in the layer).

𝐻0
= 𝑋 is the initial input node feature matrix.𝑊 𝑙 is a weight

matrix which combines the aggregated node features and pass

them into a learnable layer (i.e, the 𝑙 th layer) with a non-linear

activation function𝜎 (i.e., tanh in our work).𝐴∗ is thematrix used to

aggregate the neighbourhood features for a node, which is defined

as: 𝐴∗
= 𝐷̂−1/2𝐴𝐷̂−1/2, 𝐴 = 𝐴 + 𝐼 . Here, 𝐴 is the adjacent matrix

of the circuit graph; 𝐼 is an identity matrix; 𝐷̂ is the diagonal node

degree matrix of 𝐴. Using 𝐴∗ for aggregation is straightforward, as

a device in a circuit graph is directly affected by its neighbors. By

stacking multiple GCN layers, one device can receive information

from farther devices that do not have a direct connection with it.

Combining the GNN, FCNN, and FC forms our policy network

𝜋𝜃 (𝑎 |𝑠) parameterized by 𝜃 = {𝑊GNN,𝑊FCNN,𝑊FC} with𝑊GNN,

𝑊FCNN, and𝑊FC the learnable parameters of the GNN, FCNN and

FC. The value network preserves the same structure as the policy

network except of the last layer. It evaluates the actor’s decision

quality by yielding an estimation of the expected reward,𝑄 , for the

current policy execution. The objective function of the problem can

be formally defined as 𝐽 (𝜃,𝐺) = 1/𝐻 ·
∑
𝑔∼𝐺 E𝑔,𝑠∼𝜋𝜃 [𝑅𝑠,𝑔]. Here, 𝐻

is the the space size of all desired specifications 𝐺 and 𝑅𝑠,𝑔 is the

episode reward. Our goal is to make the RL agent gain rich circuit

design experiences by interacting with the environment. Given

Algorithm 1 Proximal Policy Optimization (PPO) Optimization

1: Input: initial policy parameters 𝜃0 and initial value function parameters 𝜙0

2: for 𝑘 = 0, 1, 2, · · · do
3: Collect a set of trajectories/episodes D𝑘 = {𝜏𝑖 } by running policy 𝜋𝑘 = 𝜃𝑘

in the circuit design environment.

4: Compute rewards 𝑅̂𝑡 for the trajectories/episodes.

5: Compute advantage estimates, 𝐴̂𝑡 based on the current value function𝑉𝜙𝑘 .

6: Update the policy bymaximizing the PPO-clip objective in Eq. (3), via stochastic
gradient ascent with Adam [3].

7: Fit value function by regression on mean-squared error:

𝜙𝑘+1 = argmin 1/( |D𝑘 |𝑇 ) ·
∑

𝜏∈D𝑘

∑𝑇

𝑡=0
(𝑉𝜙 (𝑠𝑡 ) − 𝑅̂𝑡 )

2,

via stochastic gradient ascent with Adam [3].

8: end for

the cumulative reward for each episode, we use Proximal Policy

Optimization (PPO) [12] to update the parameters of the policy

network as shown in Algorithm 1 with a clipped objective below:

𝐿CLIP (𝜃 ) = Ê𝑖 [min(𝑏𝑖 (𝜃 ), clip(𝑏𝑖 (𝜃 ), 1 − 𝜖, 1 + 𝜖))𝐴𝑖 ], (3)

where Ê𝑖 represents the expected value at time step 𝑖; 𝑏𝑖 is the

probability ratio of the new policy and the old policy, and 𝐴𝑖 is the

estimated advantage at time step 𝑖 .

Transfer Learning:We use transfer learning to speed up RF circuit

design. Generally, AC and DC simulations are sufficient to obtain

all intermediate specifications 𝑔𝑖 at time step 𝑖 for low-frequency

analog circuits (e.g., two-stage Op-Amps). Such simulations are fast

within tens of milliseconds in Cadence Spectre without delaying the

learning of RL agents. However, RF circuits (e.g., RF power ampli-

fiers) often need more sophisticated simulations to obtain accurate

intermediate specifications which is timing-consuming. Typically,

one uses Harmonic Balance (HB) simulation (∼1 minute/round in

ADS) to attain intermediate specifications. It significantly delays

the reward calculation and training of RL agents. To tackle the issue,

fast (∼1 second) but rough DC simulation is used to replace HB

simulation. It can obtain the not-very-accurate intermediate speci-

fications for the quick approximation of the reward. Our analyses

show that the approximated rewards are often in ±10% error range

compared to the ones obtained from the HB simulation. Therefore,

the learning process is remarkably speeded up. However, during

the deployment stage for design automation, we still use HB simula-

tion to guarantee the design quality and reliability. In this way, the

learned experiences from a coarse simulation environment can be

accurately transferred into a fine simulation environment as veri-

fied by our results. We think this may be due to the fact that a coarse

design environment also provides sufficient information for the RL

agent to learn the complicated relation between the device parame-

ters and specifications. For other advanced analog circuits, similar

approximated rewards can also be obtained correspondingly.

4 EXPERIMENTS

Two circuits are used for evaluations. One is the CMOS two-stage

Op-Amp as shown in Figure 2, which is a standard benchmark taken

by prior methods [6, 8, 13, 16]. The other one is a gallium nitride

(GaN) RF power amplifier (PA) [2] whose schematic is shown in Fig-

ure 4. GaN is a promising alternative for conventional CMOS tech-

nology and for high-frequency power electronic applications [14].
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Table 1: Design space of device parameters and sampling space of desired specifications of two circuit benchmarks.

Circuit types Two-stage Op-Amp RF PA
Implementation technology 45 nm CMOS 150 nm GaN

# of device parameters 2 · 7 + 1 = 15 2 · 7 = 14
Parameter constraints

(Design space)
Width (𝜇m)
[1, 100]

# of fingers
[2, 32]

capacitance (pF)
[0.1, 10]

Width (𝜇m)
[16, 100]

# of fingers
1, 2, ..., 16

Desired specifications
(Sampling space)

Gain (𝐺 )
[300, 500]

Bandwidth (𝐵)
[106, 2.5 · 107 ] Hz

Phase margin (𝑃𝑀)
[55◦, 60◦ ]

Power consumption (𝑃 )
[10−4, 10−2 ] W

Power efficiency (𝐸)
[50%, 60%]

Output power (𝑃 )
[2, 3] W
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Figure 3: Comparing RL-based methods and optimization-based methods in the P2S problem with ours. Two rows correspond to the two-stage

Op-Amp and the RF PA. All results of RL methods are based on 6 random seeds.
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Figure 4: Schematic of the RF PA [2] which consists of a driver stage

(D1∼D5 and DF) and a power amplifying transistor (M1).

The design space of device parameters and the sampling space of

desired specifications for the two circuits are listed in Table 1.

We adopt prior methods, i.e., Genetic Algorithm [6], Bayesian

Optimization [8], and RL methods [13, 16] as our baselines. These

prior arts focus on two problems, i.e., P2S optimization [6, 13] and

figure-of-merit (FoM) optimization [8, 16]. The prior RL methods

exclude the key domain knowledge into policy learning and are not

capable of designing RF circuits. Baseline A (i.e., prior work [13])

simply observes intermediate and given specifications from the

environment and vectorizes them to train a feedforward policy net-

work. Baseline B (i.e., prior work [16]) uses all static semiconductor

technology information as observations to train a partial circuit

topology-based GCN as the policy. Such a method is often found

to be divergent during training. For conservative comparisons, we

interpret and implement these RL arts [13, 16] with our method.

First, we use the GCN design in our policy network as a more

advanced implementation for the Baseline B. Note that our GCN

design is not only built upon a full circuit topology but also uses

the essential dynamic (variable) device parameters as node features

to better learn the relations between device parameters and circuit

specifications. Second, we build these RL baselines with the PPO

technique [12] and discrete action space as done in our work as well

as the transfer leaning technique to enable them to design RF cir-

cuits. Our methods have two versions: GCN-FC policy and GAT-FC

policy as GCN and GAT are respectively used as the GNN to capture

the underlying physics of a full circuit topology. We build circuit

graphs using Deep Graph Library [1] and implement all methods

with PyTorch. We use equal amount of network parameters and the

same set-ups for each baseline. All our experiments are performed

on an 8-core Intel CPU. Moreover, surprised learning method [10]

and a GAT-based implementation of Baseline B are also used as

auxiliary comparisons with our method, whose training results are

not shown in the paper but summarized in Table 2.

P2S Optimization: Figure 3 shows the training curves (i.e., mean

episode reward, mean episode length, and deployment accuracy)

of different RL methods for the P2S optimization. The maximum

episode length for each Op-Amp agent (RF PA agent) is set to be 50

(30). The total episodes used to train the two RL agents are chosen

to be 3.5 · 104 and 3.5 · 103, respectively. As observed, our method

achieves higher reward (first column), shorter mean episode length

(second column), and higher deployment accuracy (third column)

than all RL baselines. Policy deployment applies a trained policy to

automatically find the device parameters for given specifications.

Each point in Figure 3 (third column) comes from deploying each RL

agent for 200 groups of randomly sampled specifications in Table 1.

Given the desired circuit specifications, Genetic algorithm [6]

and Bayesian Optimization [8] use algorithms to guide the search-

ing process by maximizing 𝑟 in Eq. (1) without training. The last

column in Figure 3 shows the optimization curves. However, they

cannot leverage transfer learning and have to use HB simulation to

ensure design quality, which is time-consuming. We observe that

Genetic Algorithm (Bayesian Optimization) often requires ∼400

(∼100) steps/simulations to find optimal device parameters, incur-

ring long run-time delay. Moreover, due to the limitations, such as

being stuck at a local optimum and even divergence, the algorithm

cannot guarantee the correctness of each design. Based on 30-group

random experiments, the design accuracy is 76.7% (83.7%) for the

Genetic Algorithm (Bayesian Optimization).
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Figure 5: Deployment examples of the trained RL agent attempting

to reach one group of the target specifications for each circuit.

The comparison shows that the our methods achieve the highest

design efficiency (with fewer deployment steps per episode, ∼20

steps for Op-Amp and ∼15 steps for RF-PA) and human-level design

accuracy (higher policy deployment accuracy, 99%) for both circuits

design. Particularly, we also note that the GAT-FC-based policy is

superior to the GCN-FC-based policy. Such a comparison shows

that circuit topology is an important ingredient in RL-based pol-

icy learning. And a better circuit topology modeling method, that

is using GAT with the multi-head attention mechanism to learn

higher-dimensional interactions among circuitry nodes, can further

improve the performance of a policy.

Automated Design with Policy Deployment:We take our GCN-

FC-based policy as an example to show the deployment process.

Figure 5 illustrates the deployment where RL agents automatically

find optimal device parameters for a group of randomly sampled

specifications (the horizontal dashed lines in each sub figure). The

sampled desired specifications for the two-stage Op-Amp are gain

(𝐺 = 350), bandwidth (𝐵 = 1.8 · 107 Hz), phase margin (𝑃𝑀 = 55◦),

and power consumption (𝑃 = 4 · 10−3 W). And for the RF PA, they

are output power (𝑃 = 2.5 W), and power efficiency (𝐸 = 57%).

Note that the smaller the power consumption is, the better the

performance is. At the initial state, the intermediate specifications

('-axis of each sub-figure) often deviate a lot from the desired ones.

As the deployment continues, they get closer to the desired ones by

following the trained policy. An interesting phenomenon here is

that when some specification is first achieved, the RL agent will not

over-optimize it too much but instead try to optimize the remaining

ones. For example, the gain of the two-stage Op-Amp is first attained

at the 14th deployment step. In the following steps, the RL agent

focuses on optimizing phase margin and bandwidth. The similar

analysis also applies to the design of the RF PA. We also analyze a

few failed cases where our trained policy cannot converge to the
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Figure 6: Generalization examples of the trainedRL agent attempting

to reach one group of the unseen new specifications for each circuit.

optimal device parameters. We observe that in these cases, some

specifications can converge to a neighborhood of the desired ones,

but after which they deviate a bit from the goal. Fortunately, we

find that by slightly tuning the device parameters with manual

effort at that particular step, the design goal is also easily achieved.

In this way, the design accuracy can be improved to 100%. These

results show that human designers can still greatly benefit from

the trained policy, if used as an efficient warm-start for the manual

tuning, even if an automated deployment fails.

Generalization to Unseen Specifications: We also evaluate the

generalization ability of our GCN-FC-based policy by deploying

it with unseen specifications out of the sampling space in Table 1.

Figure 6 shows such an example, where the horizontal dashed lines

denote these unseen specifications: gain (𝐺 = 225), bandwidth (𝐵 =

2.6 · 107 Hz), phase margin (𝑃𝑀 = 65◦), power consumption (𝑃 =

6 · 10−3 W) for the two-stage Op-Amp; output power (𝑃 = 2.9 W),

and power efficiency (𝐸 = 69%) for the RF PA. Compared to policy

deploymentwith the specifications coming from the sampling space,

the deployment with unseen specifications usually requires more

search steps. For example, the generalization for the RF PA needs

49 steps to achieve the design goals while 11 steps are enough for

the normal deployment in Figure 5. This is because that unseen

specifications are beyond the scope of training datasets, thereby

demandingmore steps to reach optimal parameters.We also analyze

the generalization ability of baseline methods (not shown here) and

find that they often do not generalize well as ours even with a

higher number of search steps. The better generalization ability

of ours is attributed to the fact that it is capable of capturing key

domain knowledge from state space, hence can better apply the

learned experiences to unseen specifications at the inference time.

FoM Optimization:We also compare all methods in optimizing

FoM by using the RF PA as an example. To apply the methods to this
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Table 2: Comparison summarization of di�erent design automation methods.

Methods Sufficient key domain knowledge (?)
P2S optimization FoM optimization

Design accuracy
Mean # of design steps FoM value

Two-stage Op-Amp RF PA RF PA

Genetic Algorithm [6] NO 76.7% 370 389 2.53
Bayesian Optimization [8] NO 83.7% 86 105 2.61
Supervised learning [10] NO 79% 1 1 N/A

RL method (Baseline A) [13] NO 92% 27 23a 2.92a

RL method (Baseline B) [16] NOb 84% (87%) 32 (31) 25 (23)a 2.81 (2.86)a

Our RL method
YES: Full circuit topology +
Specification couplings

GCN + FCNN 98% 24 19 3.18
GAT + FCNN 99% 21 16 3.25

a They originally cannot design RF circuits. We leverage our transferring learning technique to enable them to design RF circuits.
b Implemented with our GCN (GAT) part: full circuit topology + device parameters as key node features.
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Figure 7: Comparing FoM optimization between di�erent methods.

All results of RL methods are reported based on 6 random seeds.

problem, we use the FoM definition [8] of RF PAs, i.e., 𝑟𝑖 = 𝑃𝑖 +3 ·𝐸𝑖
to revise the reward function in Eq. (1). Here, 𝑃𝑖 , 𝐸𝑖 are the in-

termediate specifications at time step 𝑖 . In the training, we use

references 𝑃� , 𝐸� for normalization, i.e., 𝑟𝑖 = (𝑃𝑖 − 𝑃� )/(𝑃𝑖 + 𝑃� ) +

3 · (𝐸𝑖 − 𝐸� )/(𝐸𝑖 + 𝐸� ). For each RL method, we train the corre-

sponding RL agent with 3.5 × 103 episodes. Figure 7 shows the

optimization curves of all methods. Our methods (GAT-FC/GCN-

FC) obtains a higher FoM and the GAT-FC-based policy attains the

highest one, showing the superiority of our methods.

Comparison Summarization:We summarize the comparisons in

Table 2. In tackling the P2S optimization, our method achieves the

highest design accuracy. Optimization methods [6, 8] cannot ensure

a high design accuracy because of their limitations, e.g., being stuck

at a local optimum (caused by non convexity) or divergence of the

algorithms. Due to the inherent approximation errors, SL meth-

ods [10] suffer from a low design accuracy. RL methods [13, 16]

excluding the key domain knowledge cannot reach the human-level

design accuracy as ours. Due to such limitations, these methods

show a weaker generalization ability than ours, either. Despite not

excelling the design efficiency of SL methods with one-step predic-

tion, once trained our method uses fewer steps to find the optimal

device parameters for the same desired specifications, improving

the design efficiency by average 1.5× compared to the prior RL

methods [13, 16] and average 10× compared to optimization meth-

ods [6, 8]. In the application of FoM optimization, our method also

achieves higher FoM value than prior RL methods and optimiza-

tion methods. In summary, our RL method inspired by key domain

knowledge of analog circuit design and human-like multiple tuning

steps achieves the best balance between the design accuracy and

efficiency as well as the best optimality.

5 CONCLUSION

We have shown a deep learningmethod for the automated design

of analog circuits. The key property of our framework is to incorpo-

rate domain knowledge of practical analog circuit design (i.e., the

underlying physical topology of a given circuit and the trade-offs

between specifications) into the newly proposed combined GNN

(GCN/GAT)-FC-based multimodal policy network. We show that

such a method is superior to other methods without such consider-

ations in designing various analog circuits with higher accuracy,

efficiency, and optimality. We expect that our method will assist

IC industry to accelerate the analog/RF chip design, with artificial

agents that master massive circuitry optimization experiences via

continuous learning.
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