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This article is on estimation, identification, or learning dynamic models from measurement data in 
power systems. Dynamic models differ from static models. Static models reflect the input and output 
relationship regardless of evolving time. On the other hand, dynamic models associate the input and 
evolving time to the output.

Note that the three words, estimation, identification, and learning, describe similar notions and are 
interchangeable. The machine learning community prefers model learning, while the control community 
has a special name: system identification. Essentially, machine learning and system identification are all 
about inferring models from data. Both rely on optimization. The exact processes of the inference may 
vary from statistic modeling to deep learning neural network. This paper is not about the methodologies 
of the inference. Rather, it is about unique applications for deriving power system dynamic models.

Dynamic behaviors are difficult to capture, especially for the applications that are lacking analytic 
models. That is where data driven/machine learning techniques can play a critical role. Indeed, there is a 
long history of for power system engineers building dynamics model using data-driven approaches, well 
before machine learning is a popular term. New application of inverter-based resource (IBR) modeling 
adds more complexity due to underlying complex physics and strict non-disclosure requirements from 
original equipment manufacturers (OEM). Data driven/machine learning will play a much bigger role.

Data-driven modeling becomes an attractive option in scenarios where physical models are elusive. For 
example, suppose you want to represent the aggregated distributed energy resources at a transmission 
and distribution interface. One approach is to rely on the interface measurement data and produce a 
model that represents a mapping between inputs (e.g., voltage and frequency) and outputs (real and 
reactive power generation). Such a model may be represented using a neural network. On the other 
hand, neural networks are known to rely on massive data for training. What is more, these neural 
network representations are not useful for stability analysis. The grid industry uses the well-developed 
linear system analysis tools for stability analysis, for which, linear time-invariant models are preferred. 
Example of the analysis tools include PowerTech Labs' Small-Signal Analysis Tool: SSAT™. Many 
representations are indeed linear time-invariant models, e.g., a Laplace transfer function representing 
the current/voltage relationship, or admittance.

This article reviews data-driven dynamic modeling in power systems and lays out a forward look on an 
application with imminent importance for power systems with high penetrations of IBRs. Obtaining 
models of IBRs using measurement data is valuable because such models do not require proprietary 
inverter control information, which is unknown to grid operators. Acquiring IBR models from 
measurement data can greatly improve grid operators' capability in planning and operation.

We start with a brief introduction of measurement data and model classification, and then proceed to 
review the past grid industry experiences in extracting models from data. Five applications are 
presented:

• synchronous generator model parameter identification,
• aggregated load model parameter identification,
• reduced-order model identification for control design,
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• admittance model identification for subsynchronous resonance (SSR) screening, and
• electromechanical oscillation mode identification from phasor measurement unit (PMU) data.

The first two applications are different from the last three applications in terms of the outcomes of the 
estimation. The first two applications estimate model parameters. This means that the model structure 
is prior knowledge, and the estimation leads to model parameters. Compared to the last three 
applications, partial information of the estimation model is known, i.e., the model is a arav-box model. 
Thus, dynamic model parameter estimation problems are indeed gray-box model identification. On the 
other hand, if none of the model structure and parameters are known, the estimation leads to black-box 
models.

Finally, we discuss IBR model identification. The current practice of IBR model identification mainly 
focuses on obtaining frequency-domain admittance/impedance measurements using frequency scans. 
While normally admittance/impedance refers to 60 Hz impedance in power system operation, the 
admittance/impedance of this article refers to admittance/impedance over a frequency range. An 
admittance model describes the input/output relationship of voltage and current at an operating 
condition.

There are many ways to structure dynamic models from an input/output relation. Thus, a more 
challenging question is: Based on the frequency-domain measurements, can we design nonlinear 
dynamic models with known structures, or gray-box models? Can we figure out the parameters of the 
models? Readers can see that this modeling approach indeed incorporates the prior knowledge of 
physics and measurement data. The state-of-the-art admittance measurement technologies and the 
future areas for investigation will be presented.

Six applications, shown in Figure 1, will be examined in this article.
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Figure 1 Measurement-based dynamic modeling: six applications. SSR stands for subsynchronous resonance. PMU stands for 
phasor-measurement unit.
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A Brief Classification of Measurement Data and Models
Measurement data can be expressed in the time domain or frequency domain. In power grids, digital 
fault recorders and PMUs capture time stamped (time-domain) dynamic response data. Frequency- 
domain data are usually produced via frequency scans, also known as the harmonic injection method. To 
measure admittance of a device, a test circuit is first built to connect the device to a controllable voltage 
source. A sinusoidal perturbation is injected into the input portal - the voltage source. The output port 
(the current's steady-state time-domain responses are processed via Fourier transform to extract the 
frequency components. Thus, the frequency response of the input/output system is measured at that 
frequency. This experiment can be repeated for a varying frequency.

We use a simple example of a series connected resistor-inductor-capacitor (RLC) circuit to illustrate the 
types of measurement data and the identified models. Figure 2 presents the procedure of estimating 
the parameters of the resistor R, the inductor L, and the capacitor C from time-domain dynamic 
response data. The time-domain dynamic response data are generated by a step change in the source 
voltage with the capacitor voltage measured at a sampling period of 0.001 s. White noise is imposed in 
the capacitor voltage measurement data to emulate the effect of noise in the measurement sensor.

The basic procedure is to first build a dynamic model to represent the RLC circuit. The parameters of the 
model are then tuned to match the estimated output with the measurement output. Figure 2 also 
presents the measured output data vs. the estimated output. The red line represents the estimated 
output based on an initial guess of RLC parameters while the blue line represents the estimated output 
based on the RLC parameters identified through a least squared error minimization procedure. The 
parameter set after optimization leads to a much better match degree with the original data.

This procedure of data-driven parameter estimation is an example of gray-box model identification. 
Note that the estimation model structure has been given as a second-order transfer function with its 
numerator and denominator coefficients associated with the RLC parameters.

Figure 2 Estimate model parameters (R, L, C) from time-domain measurement data. This application is an example of gray-box 
model identification.

Figure 3 presents the procedure of extracting an input/output model represented by a Laplace 
transform transfer function from the frequency-domain data. First, the source voltage is perturbed with 
a sinusoidal signal at a frequency with a known magnitude. The capacitor voltage is measured. A Fourier 
transform (a technique to transform a function of time to a function of frequency) is conducted on the 
measurement data to extract the complex Fourier coefficient or the phasor at that frequency. The ratio 
of the output phasor and the input phasor is then obtained for that frequency. This experiment is
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repeated for varying frequencies. Figure 3 also presents the resulting frequency response data. Data 
fitting of the frequency response measurements leads to a third-order transfer function describing the 
input and output relationship.

This procedure of directly fitting frequency-domain measurements to a third-order transfer function is 
an example of black-box model identification. The resulting transfer function does not give explicit 
information of the dynamic model structure. Coefficients of the numerator and the denominator of the 
transfer function do not associate with physical parameters of the RLC circuit.

Input/output transfer function

Figure 3 Procedure of extracting a transfer function from the frequency-domain measurements. This application is an example of 
black-box model identification.

Remark: This tutorial example demonstrates two types of measurement data for model identification: 
time-domain vs. frequency-domain, and two types of models to be estimated: gray-box vs. black-box.

Prior Experiences: Five Applications
Indeed, even before machine learning and system identification became popular terms, power system 
engineers have extensively employed measurement data for various usage. There are many past 
instances of using measurements to identify dynamic models. Five applications are presented:

• synchronous generator model identification
• aggregated load model identification
• reduced-order plant model identification for control design
• admittance model identification for SSR screening
• PMU data-based electromechanical oscillation mode identification

Synchronous generator model identification
After the invention of synchronous generators in the 1880s, a synchronous generator model relying on 
Park's transformation (a technology developed by R.H. Park to transform variables in ABC frame to 
variables expressed in a rotating rotor dq frame) was developed in the 1920s. In this representation, a 
solid rotor is represented by the rotor dq-axis circuits. Test procedures to obtain the dq-circuit 
parameters were designed after the 1920s. As a result, IEEE published standard 115 "Test Procedures
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for Synchronous Machines" in 1965 and revised the standard in 1983. Both transient response 
measurements from short-circuit tests and frequency response measurements have been used to find 
reactance and time constants. For example, a procedure relying on asymptotic approximation can be 
used to find the parameters of a transfer function from its frequency-domain response measurements. 
Curve fitting of frequency-domain data also may be used to find the transfer function. The parameters 
of the identified transfer function may be further mapped to the parameters with physical meaning.

To generate time-domain short-circuit transient response data and frequency-domain reactance data, 
requires testing a generator offline. For example, to obtain frequency responses, the rotor shaft of a 
generator is kept standing still while the AC side is connected to a voltage source with a varying 
frequency. Current phasor at that frequency needs to be extracted to generate a frequency response 
plot of the reactance. This probing method uses frequency scans. Later, methods using online 
measurement data for model parameter identification have also been proposed and implemented.

This application of generator model parameter identification is gray-box model identification. The 
parameters identified are associated to a known model structure.

Aggregated load model identification
At a bulk power system level, load modeling deals with aggregated load modeling so that the 
performance of the computer model matches field measurements. Organizations responsible for 
reliable system operation around the world have load modeling task forces.

Before 1990, loads were represented by static models in computer software package. For example, the 
ZIP model assumes the total real power consumption of aggregated loads is a combination of constant 
impedance, constant current and constant power components. Starting from the late 1980s, dynamic 
load models were developed to improve system modeling accuracy. Time-domain data have been used 
to identify load models.

A research project was carried out to model loads located at the Panchiao substation's 69 kV level in the 
Taiwan power system in the 1990s. It is demonstrated that first-order representation of voltage and real 
power relationship cannot lead to a good match with the field measurement of 5-second data 
before/after a single-phase fault. Higher-order models (second and third) significantly improved the 
match degree. The key parts of model identification included determining transfer function structure 
based on prior knowledge, converting the transfer function to its discrete-time prediction error model, 
obtaining measurement data, and conducting curve fitting.

Other load model representations are also available, e.g., an induction motor parallel with a resistor- 
capacitor circuit. Measurement data are used to find the induction motor parameters and the resistor- 
capacitor circuit parameters.

This application of load model parameter identification is also gray-box model identification. The 
parameters identified are associated with known model structures.

Reduced-order model identification for control design
Besides modeling, another category of application of measurement data is the development of a 
reduced-order dynamic model for control design. The control design problem could be to design a
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power system stabilizer for a synchronous generator's excitation system or a clamping control for a 
flexible alternating current transmission system device.

For any control design problem, the plant model describing the input/output relationship is a necessity. 
Usually, a reduced-order plant model is desired. How do we find the plant model? The measurement- 
based approach is to perturb the original system's input and record the output data. From either the 
time-domain data or the frequency-domain data, the input/output plant model can be found.

For example, in a power system stabilizer design, the plant model has an input as the reference order of 
the voltage regulator and the output as the generator speed. The input can be perturbed with an 
impulse signal and the output response will be recorded. Subspace methods, e.g., eigensystem 
realization algorithm, may be used to process the output data and lead to a reduced-order plant model. 
Based on the plant model, a controller modulating the voltage regulator's reference with the generator 
speed as the input can be designed and tested for the closed-loop system performance.

Eigensystem realization algorithm can be traced back to the seminal state space model realization 
theory established by Ho and Kalman in 1960s. The core message of the theory is that the dynamic 
response data can be stacked properly to form a data Hankel matrix. This data Hankel is associated with 
the state-space model's system matrices. Factorizing the Hankel matrix via singular value decomposition 
leads to the system matrices. From there, a state-space model that matches the input and the output 
relationship can be recovered. Furthermore, with the system matrices known, the eigenvalues of the 
system are also known. This feature has been used in the fifth application: PMU data-based oscillation 
mode identification. This algorithm can be viewed as an inference algorithm of unsupervised learning 
that relates data to model and has the capability of filtering out noise using singular value 
decomposition.

This application of reduced-order model identification is black-box model identification. Here, the 
input/output relationship is identified. The internal model structure is still unknown.

Admittance model identification for subsynchronous resonance screening 
Stability analysis via frequency-domain models has a history dating back to the 1970s in both power 
electronics and power systems communities. In the power electronics community, initial use of 
impedance models for DC circuit stability analysis started in 1976. In the power systems community, dq 
admittance-based subsynchronous resonance stability analysis started also in 1970s after the Mohave 
power plant subsynchornous resonance events in Nevada. For these events, a synchronous generator 
radially connected to a series compensated line experienced oscillations in its torque shaft, causing shaft 
damage. The torsional oscillations were triggered by the electric network resonance due to the 
interaction of the series capacitor and the line inductance. When the frequency of the electric network 
resonance is complementary to the frequency of a torsional model, i.e., the sum of the two frequencies 
is 60 Hz, torsional oscillations may become severe.

Compared to the DC circuit analysis dealing with a single-input and single-output system, stability 
analysis in power systems usually deal with three-phase systems. Modeling a three-phase system in a 
rotating dq-frame can greatly simplify the resulting model. Indeed, one of the most influential modeling 
technologies of power systems is Park's transformation, which converts variables in ABC frame to those 
the rotor dq-frame. As a result, a synchronous generator model is expressed from the perspective of the 
rotating rotor frame. Besides generators, other components of the power systems may also be 
expressed in a dq frame for simplicity. Thus, dq-frame models are preferred in stability analysis.
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For subsynchronous resonance analysis, a circuit of a generator with series-compensated 
interconnection can be converted to a two-input and two-output feedback system. The forward unit is 
the line's admittance in the dq frame while the feedback unit is the generator's impedance in the dq 
frame. Stability analysis can then be carried out by examining the feedback system via well- established 
multi-input and multi-output frequency-domain system analysis theories.

To obtain the generator and network impedance from computer simulation, frequency scans have since 
been popularly used in subsynchronous resonance studies. Recently, frequency scans have been used in 
wind farm subsynchronous resonance screening in electromagnetic transient simulation software 
environments by the grid operating industry. In the power electronics field, obtaining dq 
impedance/admittance frequency-domain measurement through hardware set up, perturbation signal 
injection, and measurement processing has been a research topic.

Frequency scans lead to frequency-domain measurement. A benefit of frequency-domain measurement 
is its use for stability analysis. Either open-loop system Bode plots or Nyquist plots can be plotted and 
stability prediction can be made. On the other hand, those diagrams have disadvantages compared to 
closed-loop system eigenvalues. An eigenvalue, in the form of a complex number, gives direct indication 
of stability of a dynamic system. The real part of an eigenvalue must be less than zero for a system to be 
stable and the imaginary part of an eigenvalue implicates the oscillation frequency. Thus, eigenvalues 
directly tell if the system is stable or not and what the system's oscillation modes are. For 
subsynchronous resonance stability analysis, a generator or transmission system's frequency-domain 
admittance/impedance measurements have to be fitted into a model in the form of a transfer function 
matrix. From there, eigenvalue calculation is possible. In fact, though it seems trivial to arrive at 
eigenvalues after obtaining the admittance measurements of subsystems, it is to be noted that the 
frequency-domain data fitting technology was not available in 1970s. This technology is available only 
after 2000. Without frequency-domain data fitting, it is difficult to identify models and compute 
eigenvalues from measurements.

This application of admittance model identification is to identify a black-box model describing the 
terminal voltage and current relationship only. The resulting model does not lead to further information 
on generator model structure.

PMU data-based oscillation mode identification
PMU data is being used for oscillation mode identification. In 2012, IEEE Power and Energy Task Force of 
Identification of Electromechanical Modes published a report, "Identification of electromechanical 
modes in power systems." The electromechanical modes are in the range of a fraction to several Hz. This 
report presents a perspective on using different identification methods for finding oscillation mode 
frequency, damping ratio, and mode shape based on PMU data with a sampling rate of 30-60 Hz.

If time-domain dynamic response data is viewed as the impulse responses of a dynamic system 
describing the entire power grid, the Laplace transform of the time-domain data represents the 
resulting input-output model. Oscillation modes are associated with the poles of the Laplace domain 
expression or the dynamic system's eigenvalues. Subspace methods, e.g., eigensystem realization 
algorithm, may be used to form a data Hankel matrix, further extract the system matrices for eigenvalue 
computing. From the eigenvalues, the oscillation modes, damping ratio, and frequencies are found. 
PMU-based oscillation mode identification is a mature technology. For example, several utilities have 
real-time mode analyzers available to process PMU data.
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The models identified in this application are black-box models because only the input/output 
relationship is used and there is no imposed structure to the model.

Summary of the Five Applications and Recent Progress in Gray-Box 
Model Identification

As a summary, for the five applications, three of them, i.e., finding reduced-order models for control 
design, finding dq admittance for SSR stability analysis, and PMU-based electromechanical oscillation 
mode identification, are related to identifying black-box models from measurement data. Those models 
describe the input/output relationship only. The internal structure and parameters of the system under 
investigation are not imposed as for a gray-box model. The technology of black-box model identification 
is mature as we have seen real-world applications in these areas. The black-box models are all linear 
models.

On the other hand, gray-box model identification is actively under investigation. The first two 
applications- identifying generator reactance and time constants and identifying parameters for load 
modeling- belong to the category of gray-box model identification. For those applications, prior 
knowledge of internal physics must be combined with measurement-based learning to achieve the goal 
of model identification. The models can be nonlinear.

The main issue of gray-box identification is that measurement data may not contain sufficient 
information on parameters. This leads to ill-conditioned estimation problems. If this is the case, the 
estimation problem can be formulated to estimate a subset of the parameters. Algorithm-wise, 
convergence and local optimum are the main issues for nonlinear optimization problems. For parameter 
estimation, local optimum means the identified parameters may be far from the true parameters. The 
resulting estimated output may have a poor matching degree with the measured output. Therefore, 
many efforts have been devoted to refining the optimization problem formulation.

Optimization is one of the key technologies in gray-box identification. A significant achievement in 
recent years is the adoption of convex programming techniques into optimization problem formulation 
and solving. A benefit of convex optimization is that the solution to a convex optimization problem is the 
global optimum, i.e., the identified parameters are guaranteed to lead to the best match.

IBR modeling: A forward look
The sixth application is data-driven IBR modeling. We use a 2.3-MVA inverter as an example to 
demonstrate the state-of-the-art technology in black-box model identification, and we give our 
perspective on challenges to be tackled in IBR model identification.

Dq Admittance Model Identification
For IBRs, dq admittance measurement technology is a mature technology. The measurement capability 
can be realized in software as well as hardware experiments with the availability of advanced high- 
power converters and medium voltage sensors.
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Figure 4 Measurement test bed for a 2.3-MVA inverter. PCC stands for point of common coupling.

Figure 4 shows a measurement test bed set up at the National Renewable Energy Laboratory's Flatiron 
campus in Colorado, United States. A critical component of the test bed is the 7 MVA-13.2 kV 
controllable grid interface (CGI). CGI essentially works as a grid-forming converter. It draws electricity 
from a utility grid and acts as a controllable voltage source. When an IBR is connected through a step-up 
transformer to a CGI, it can be configured to operate at a certain operating condition. The CGI can 
produce a harmonic voltage source superimposed to its 60 Hz voltage source. This harmonic voltage 
source's frequency can vary. Thus, frequency scans can be conducted using CGI.

For this test bed, the model to be identified describes the relationship between the two inputs (the dq- 
axis voltages) and the two outputs (the dq-axis currents), as shown in Figure 4. This model is called dq 
admittance and it is a two-by-two matrix in Laplace domain. The four components of the dq admittance 
matrix are; Ydd, Ydq, Yqd, and Yqq.

Figure 5 presents the photos of the CGI and medium-voltage sensing equipment at National Renewable 
Energy Laboratory.
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Figure 5 CGI and sensors. Source: Mark McDade, NREL.

The resulting dq admittance of the IBR viewed at the measurement point is shown in Figure 6. The 
measurement test bed is configured so that the IBR works in four operating conditions expressed by real 
power and reactive power in p.u. The base power is 1 MVA.
Case 1: real power at 0 MW and reactive power at 0 MVAr
Case 2: real power at 500 kW or 0.5 p.u. (-6 dB), reactive power at 0 MVAr
Case 3: real power at 0 MW and reactive power at 500 kVAr or 0.5 p.u. (-6 dB)
Case 4: real power at 1 MW (0 dB) and reactive power at 0 MVAr.

At each operating condition, about 40 sinusoidal injection experiments are conducted. For each 
sinusoidal injection experiment, injection in the d-axis voltage is first conducted and the resulting dq- 
axis current measurements are collected. Fourier transform is then applied to the steady-state time- 
domain data to find the phasors. From there, the first column admittance components Ydd(f) and Yqd(f) 
are found. Next, injection in the q-axis voltage is conducted and the second column admittance Ydq(f) 
and Yqq(f) are found. From the frequency-domain measurement, we may apply frequency-domain data 
fitting methods and obtain a black-box model. This step is necessary if we aim to have an s-domain 
admittance for eigenvalue analysis, which can lead to an overall picture of the system modes.

The data in Figure 6 have been fitted using a frequency-domain data fitting package, and the 
comparison of the frequency responses of the model vs. the measurements are shown in Figure 7(a). 
The figure shows that data fitting leads to a high matching degree in the studied frequency spectrum. 
One more comparison can be made: the step responses of the physical device vs. the model. Figure 7(b) 
presents the comparison under two step changes in dq-axis voltages: 10% or 20%. The physical device 
and the model have very similar step responses.

Another admittance model identification technology is to use time-domain step responses. Converting 
the step responses into s-domain expressions and assembling lead to an s-domain dq admittance model 
directly. In real-world applications, step response data are polluted with noises. The resulting model 
may not be accurate in the high-frequency range or when the measurement data have small values.

Remark: The frequency scan and frequency-domain data fitting are two mature technologies and can be 
employed to for IBR's dq admittance model identification.
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Figure 6 Dq admittance of a 2.3-MVA inverter under four operating conditions. Black: Case 1; Blue: Case 2; Green: Case 3; Red: 
Case 4. Case 1: real power at 0 MW and reactive power at 0 MVAr. Case 2: real power at 500 kW or 0.5 p.u. (-6 dB), reactive 
power at 0 MVAr. Case 3: real power at 0 MW and reactive power at 500 kVAr or 0.5 p.u. (-6 dB). Case 4: real power at 1 MW (0 
dB) and reactive power at 0 MVAr.
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Figure 7(a) Frequency-domain data fitting results. Solid blue line: model. Black crosses: measurements. Operating condition: 
case 3 where P =0 MW, Q =500 kVar. (b) Comparison of the step response of the identified black-box model versus the time- 
domain measurements

The admittance model identified is a linear model associated with an operating condition. An IBR may 
have a variety of operating conditions. Thus, one challenge is how to find any admittance model 
associated with a random operating condition. A straightforward solution is to build a nonlinear model 
that can reflect the operating condition. This approach is the gray-box modeling approach: building the
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model structure based on the first principle and prior knowledge while estimating the model parameters 
using measurement data. On the other hand, IBR gray-box model identification is a more challenging 
problem in both IBR dynamic model building perspective and mathematic optimization problem solving 
perspective.

Challenges in gray-box model identification
Using the 2.3-MVA inverter as an example, we will further demonstrate how to use the black-box model 
to speculate the inverter control structure and parameters. As the first step, the control structure needs 
to be specified. In this case, two types of popular control structures are examined. Figure 8 presents the 
converter control structures and a comparison of the frequency responses of the two models vs. the 
measurements.

In both models, the converter controls have the same goal of real power and reactive power following. 
Both employ a cascaded control structure: outer controls to track real and reactive power, while the 
inner controls to track current orders. The two models differ in the inner current control structure. The 
dq-frame control has its inner current control implemented in a dq frame. That is, the phase current 
measurements are first converted to a dq frame. This dq frame has a rotating speed of the nominal 
frequency at steady state. When projected to the dq frame, periodic signals with the nominal frequency 
become dc signals. The proportional integral (PI) control units are known for their capability of achieving 
zero inputs at steady sate. Therefore, they can force the dq-axis current measurements to follow the 
current orders generated by the outer controls. The stationary-frame control has its inner current 
control implemented in a stationary frame. In this frame, currents are still periodic. To track a current 
order, proportional resonant (PR) control units are employed to ensure the error between the 
measurement and the order achieving zero at the nominal frequency.

Comparison of the dq admittance of the 2.3-MW inverter v.s. the two models shows that the second 
model results in better matching for the diagonal components Ydd and Yqq. Specifically, for the dd 
component, a large mismatch is observed in the range of 1-100 Hz if the dq-frame control is assumed.
On the other hand, the 2.3-MW inverter and the model match pretty well in the range of 0.1-100 Hz, if 
the stationary-frame control is assumed.

Refining the model structure and parameter tuning are the next steps. Specifically, parameter tuning 
can be achieved using an automatic procedure instead of manual tuning. To achieve automatic tuning, 
optimization problem formulation and solving becomes an immediate task.

From this 2.3-MW inverter example, we may see that mainly there are two challenges: model design 
and customized model parameter estimation algorithm design.
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Challenge 1: IBR model structure design
In the past decade, a set of generic models for IBRs have been developed by Western Electricity 
Coordinating Council's model validation subcommittee for grid dynamic assessment. These models are 
suitable for power system transient simulation studies with numerical integration time steps in the 
range of 1 to 5 milli-seconds. Such models are based on quasi-steady-state positive-sequence phasors 
and usually do not include fast electromagnetic transient dynamics and fast inverter current controls.

To have models accommodating for a wide range of operating conditions, including unbalance, fast 
dynamics, and weak grid conditions, IBR models including electromagnetic transients and fast controls 
are desired. For the grid industry, this is an ongoing research and development area. For example,
CIGRE C4.60 working group aims to design generic electromagnetic transient models of IBRs with 
transparent IBR control structures.

Because state variables are time-varying at the fundamental frequency in the ABC domain, it is very 
difficult to derive linear models in ABC frame. Linear time-invariant models are preferred since as they 
are suitable for small-signal analysis. Therefore, modeling efforts are required to convert a model in ABC 
frame to a model with its state variables constant at steady state. This type of nonlinear models can be 
easily linearized via numerical methods for linear time-invariant model extraction.

Besides the aforementioned technical challenges in modeling, another significant technical gap of 
designing transparent models is that the IBR controls are proprietary information of OEM. Strict 
nondisclosure requirements are imposed by OEMs, which makes any model design a challenging task.
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Thus, efforts must be made to standardize IBR control to better define their dynamics and support gray- 
box modeling. Currently, there are ongoing efforts in the grid industry, e.g., IEEE P2800 working group 
aiming to set up the minimum technical requirements for IBRs.

Challenge 2: Customized model parameter estimation algorithm design
The second challenge lies in model parameter estimation algorithm design. This requires familiarity with 
the domain knowledge of IBR power electronic converter control and various mathematical methods 
relying on linear algebra and optimization. We may leverage many recent advancements in computing 
for the purpose of IBR model parameter estimation. In this area, many optimization solvers and 
platforms have been developed and for free use, e.g., nonlinear optimization solvers such as I PORT, 
optimization problem formulation interfaces such as YALMIP and CVX for MATLAB and JuMP for Julia.

Conclusion
In summary, data-driven dynamic model building has a long history of applications in power systems. As 
early as in the 1960s, measurements have been used to identify a synchronous generators' dq reactance 
and time constants. For the current power grids with high penetrations of IBRs, the power system 
community once again is examining data-driven dynamic modeling for IBRs. Compared to the previous 
century, we now have better hardware equipment to conduct experiments, thanks to the advancements 
in power electronics. We also have better computing tools, thanks to the advancements in operations 
research, system identification, and machine learning.
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