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Abstract—In this letter, a generalized circuit representation
for a synchronous machine is presented. This circuit represents
voltage and current relationship and can be used for dynamic and
harmonic analysis. A distinct feature of the circuit is the use of
Laplace transform variable s, which simplifies both calculus and
frame conversion. Two derivation approaches are presented. The
first approach starts from a steady-state circuit representation,
while the second approach starts from the dq-frame dynamic
model of a synchronous generator. Both arrive at the same
representation.

Index Terms—Synchronous machines, dynamics, harmonics,
circuit representation

I. INTRODUCTION

TEINMETZ developed the steady-state induction machine
circuit representation in the early 20th century. This circuit

the sequence/harmonic components of the stator and field
currents can be found. In turn, the harmonic components of the
electromagnetic torque can be computed. Combined with the
swing dynamics, a first-order phasor-based dynamic model is
developed to simulate the staring process of a synchronous
machine. The simulation results have been compared with
those generated from an electromagnetic transient (EMT)
testbed. Comparison shows that the proposed circuit leads to
accurate torque and current computing results. The circuit is
useful for both dynamic analysis and harmonic analysis.

II. ApPrOACH |

A round rotor synchronous machine without the dc excita-
tion voltage source can be viewed as an inductor machine with

concisely describes the relationship among the stator/rotdfS rotor circuits’ two phases short circuited, while another left

voltage/current phasors and has been presented in classic
machine textbooks. Based on this circuit, the authors have
derived the generalized circuit for induction machines which
is applicable of dynamic analysis [1], The same circuit rep-
resentation was also found by use of the dq frame dynamic
model with flux linkages as state variables in [2],

In this letter, we further examine the generalized dynamic
circuit representation of a synchronous machine. Compared to
an induction machine, a synchronous machine can be viewed
as an induction machine with unbalanced rotor conditions.
During the starting process, a synchronous machine’s stator
circuit currents have not only fundamental components but
also harmonic components. The frequency of the harmonics
depends on the rotating speed.

In majority of the textbooks, a steady-state circuit repre-
sentation of a round rotor synchronous generator is simply a
Thevinin equivalent: a voltage source behind a synchronizing
reactance. This equivalent circuit assumes that the machine is
operating at the synchronous speed. Thus, slip representation
no longer exists. However, a diligent search by the authors
leads to the finding of a less known steady-state circuit
representation of a synchronous machine that is applicable at
any rotating speed. In 1950s, Garbarino and Gross examined
induction machines with unbalanced rotor conditions and
presented several circuit representations [3],

In this letter, this circuit will be further extended to a
generalized dynamic circuit for a synchronous machine. A
second derivation approach is also presented. This approach
starts from the dynamic model. It can be seen that both
arrive at the same circuit representation. Using this circuit
representation, for a given stator voltage and a given speed,
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open. The rotor’s terminal voltages and the currents have the
following relationship:

Fr,]m — Fr,cn: Ira T Irb — 0, Ire — 0' (1)

Applying the symmetrical component transform leads to the
following relationship for the sequence voltage and current
components.

F~ =Fr, I~ +Ir =O0. )

Thus, the positive- and the negative- sequence circuits are
interconnected at the rotor terminal as two parallel circuits.
This network representation is based on the view point of the
rotor. Hence, the perturbing frequency is the slip frequency
notated as for. To view the circuit from the stator side, we
may conduct impedance scaling and voltage scaling. Fig. |
presents the network viewed from the stator. This network
representation can be found in the 1950 paper by Garbarino
and Gross [3] (Fig. 3). A more detailed step-by-step derivation
procedure can be found in the authors’ work [4],

Fig. 1: The sequence network of an induction machine with its rotor circuits
phase b and phase ¢ short circuited while phase a left open.

This steady-state circuit is viewed from the stator’s side
when the perturbing frequency is ivs, the synchronous fre-
quency. Thus, replacing jivs by s in the reactance represen-
tation, and replacing the slip by s—"m, where ivm is the
rotor speed, we may quickly arrive at the dynamic circuit
representation. If we notate the rotor resistance and inductance
as a synchronous machine’s field resistance Rf and leakage



inductance L;, the final representation is shown in Fig. 3 in
Section III.

This derivation philosophy is to treat the steady-state circuit
representation as a special case of the generalized dynamic
circuit when the stator side’s perturbation frequency is w;.
On the other hand, in the dynamic circuit, jws can all be
replaced by the Laplace transform variable s. Hence, the
stator leakage reactance, the rotor leakage reactance and the
magnetizing reactance, such as jw,Lis, jwsLip and jwsLy,
can be expressed as sL;s, sL;y and sL,,. In the steady-state
circuit, the equivalent rotor resistance R, /slip is tricky to be
converted to a dynamic impedance. A close examination of
the slip leads to the following discovery [1].
=1L lip(s) = 1 - L
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Hence, ﬁ = R,.

slip s —jwm

Thus, a steady-state circuit representation can be converted to
a generalized dynamic circuit.

III. APPROACH 2

We now examine a synchronous generator with an excitation
circuit. The dynamic model in time domain is presented as
follows. First, the relationship of the stator voltages, the stator
currents, and the stator flux is expressed in (3).

0g = —igRs — WmAg + Mgy vy = —igRs + wmAa + Xy (3)

where the flux linkages are related to the dq stator current and
the excitation current ¢4 as follows.

Ad = (L + Lis)(—iq) + Limdisas
)‘q - (Lmq + LlS)(_iq) @

Next, for the rotor excitation circuit, the voltage and current
relationship is:.

Vfq = idef —+ )\.fd7 ®))

where )\fd = Lmd(_id) + (Lmd + Llf)ifd.

For generalized circuit representation, we aim to present
the voltage and current relationship explicitly. The dynamic
model ((3) and (5)) do not meet the requirement since the
speed voltage terms is related to the flux linkages. To get rid
of the speed voltages, we seek to use complex vector in the
Laplace domain. From (3), it can be found that

Vi(s) = —=RsI1(s) + (s + jwm)A1(s) (6)
Va(s) = —Rsla(s) + (s — jwm)Aa(s) (7

where I (s) = fa(s) +7f4(s), Fo(s) = fals) — jfq(s), with
I being the complex vector V, I or A, and f being v, i, or
A

A. Physical meaning of the complex vectors Iy (s) and F5(s)

Harnefors initiated the use of complex vector in the anal-
ysis of dg-frame converter control [5] and this concept has
been used extensively in the literature of power electronics
control. Among them, asymmetrical-dynamics-induced mirror
frequency has been discussed in [6], [7]. In this letter, the
prime and mirror frequency components will be expressed
more concisely using the Laplace transform variable s.

Suppose that the dg-frame currents iq(¢) and iq(t) viewed
from the rotor are sinusoidal signals with a frequency of w.,..
The machine has a rotating speed of w,,. The d-axis current
ig creates two space vectors, one at the frequency of w, +
wmy, = ws and the other at the frequency of —w, + w,, =
2wy, — ws. Similarly, the g-axis current i, also create two
space vectors of the two frequencies. Hence, in the stator side,
the stator current should have two harmonic components: the
primary component at ws and the mirror frequency component
at 2w,, —ws. Only if the two signals have the same magnitudes
and 14 lags 4 by 90 degree, the two space vectors at the mirror
frequency are canceled by each other with the stator currents
having only w; component.

The space vector formed by the three-phase currents (no-
tated as 4(¢)) has the following relationship with i4(#) and
ig(t): i(t) = (ia(t) + Jig(t))e? ™. Notate the analytic form
of iq(t) as i4(t) and the analytical form of i,(t) as 1,(t). Then
the space vector i(¢) can be written as:

> 1

i) = | 5 Gatt) + 77a(0) +

(1a(t) + 375 (1) | €™ (®)
13(2)
Note that 7q(t), iy(t), and I;(t) are analytic signals with
a frequency of w,, while 15(¢), 1 (t), and I3(t) are analytic
signals with a frequency of —w,. Both [1(¢) and I»(t) are
analytical signals with a frequency of w,. In the Laplace
domain, it can be seen that
I1(s) = ial(s) + Jig(s), Ia(s) = ia(s) = jig(s).  (9)
Remark: Therefore, the complex vectors represent the pri-
mary frequency component and the conjugate of the mirror
frequency component, viewed in the rotor frame.
Furthermore, the primary frequency component, notated as

11 viewed from the stator frame has the following relationship
with [ (8 )I

i1(8 + jwm) = 11(s), 01 i1(8) = I1(s — jwm, ).

The mirror-frequency component’s conjugate, notated as 4o has
the following time-domain format [5(¢)e~7“=* Hence, their
Laplace-domain expressions are related as

Il(t)

Is(s) =ia(s — jwm), = l2(8 — jwm) = ia(s — j2wn, ).

B. Generalized circuit development

For simplicity, round rotor structure is assumed and the dg-
axis inductances are the same: Ly,q = Lyq = Ly,. The flux
linkages and the currents have the following relationship.

A . L., + Lis 0 -1 Ly | .
IR P [



Fig. 2: Circuit representation of a round rotor synchronous machine, (a) Step 1. (b) Step 2.
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Fig. 3: Circuit representation of a round rotor synchronous machine without excitation voltage source.

It can be seen that the excitation current contributes to both
flux linkage complex vectors. On the other hand, (5) is still
expressed by the d-axis flux linkage Afd- We will express Xfd
by use of the complex vectors of the current.

Xfd=Lm A+ fLm + Lipifd, (1)

== 2Afd = Lm (—I\ — 12) + 2(Lm + Lip)ifd (12)

Thus, the flux linkage linked with the excitation circuit has
contributions from the two current complex vectors and the
excitation current.

Based on the above relationship, we may construct a circuit
representing the formation of the three flux linkages first: stator
flux linkage’s complex vectors and the rotor excitation field
flux linkage Xfd- The circuit is shown in Fig. 2(a), where both
—/\ and ifd contribute to A%, and both —J2 and ifd contribute
to A2,

Since the induced voltage from A% is sAi, it has to be
amplified to times to be connected to Vi(s) through
the resistor Rs. Similarly, the induced voltage from A2 is
SA2. This voltage has to be amplified by s—"m times to be
connected to V2(s). Two transformer like symbols are used
to represent the amplification. These two symbols represent
voltage changes from one side to another. The currents at the
two sides keep the same.

In step 2, the input voltage is viewed from the stator and
notated as v\ (s). Note that v\(s) = Vi(s — jecm). We will
replace s by s —jujm in Fig. 2(a). In turn, the previous circuit
components viewed from the rotor frame have their s replaced
by s —jicm. For the rightmost part of the circuit, the terminal
voltage and currents are u2(s — j2ujrn) and z2(s — j2ujrn).

In the last step, the two transformer like symbols are taken
out. The excitation voltage Vfd is assumed to be 0. The middle
part of the circuit between the two transformers has every
impedance scaled by s _iu . This scaling effort makes sure

that the voltages at the two sides of the first transformer are
now the same while the current is kept intact. For the rightmost
part of the circuit, the scaling factor is . The resulting
circuit is Fig. 3. It can be seen that while all inductance has
its impedance represented as s, the rotor resistance and the
stator resistance in the mirror-frequency domain are scaled by
and

If the perturbation frequency is the synchronous frequency
Wg, we may replace s by jzzs. The equivalent rotor resistance
now becomes and the stator resistance in the mirror-
frequency domain is 251y 1. We can see that the resulting
steady-state circuit is the same as that in Fig. 1.

In short, a synchronous generator can be viewed as a two-
port circuit connecting the primary frequency components with
the mirror-frequency components.

IV. CASE STUDY: STARTING A SYNCHRONOUS MACHINE

The proposed circuit can be used to build a simulation
model of starting a sychronous machine from standstill. Both
the excitation voltage source Vfd and the mechanical torque
Tm are set to 0. Based on the circuit in Fig. 3, at any given
speed and for a given stator voltage, the stator current phasors
and the field current phasors can be found by ignoring the
EMT dynamics. Furthermore, the torque can be computed
from these current phasors. The average torque is expressed
as follows:

JAm)\
— j2kAn)]*)

2~em,avg -“mlmag (i\(s) [lfd (<S

(13)

where s is evaluated at the nominal frequency of 377 rad/s.
During starting process, the torque has both a dc component
and a harmonic component. Since we are interested in the
dynamics of accelerating a machine, we may compute only the
useful torque, i.e., the average torque, for electromechanical



Rf=2.45 Rf=0.70

Rf=0.4667

Fig. 4: Comparison of the simulation results of the phasor model (blue lines) and the EMT testbed (orange lines) for three scenarios of different field
resistance. (1) Full speed is achieved. (2) The machine achieves full speed after staggering at half speed. (3) The machine achieves only half speed. The
machine parameters in p.u.: stator resistor, leakage, dg mutual inductance and inertia: 0.2917, 0.0113, 3.0314, 3.0314, 0.1492; rotor resistance and leakage:

0.4667, 0.0490.

dynamics simulation. Combined with the circuit analysis and
torque computing, the swing equation can be integrated and
dynamic simulation results are produced based on this first-
order model. For comparison, an EMT testbed with a generator
model from the MATLAB/Simscape library is also built. The
machine’s d-axis has a held winding and a damping winding
and its g-axis has two damping windings. Thus, the generator
model contains both the first-order swing dynamics and the
sixth-order electromagnetic dynamics. For a fair comparison,
the impedances of three damping windings in the EMT model
have been increased to large numbers.

Three cases are examined for a varying held resistance.
When Rf = 245 p.., the machine can be accelerated
from standstill to the full speed. When Rf = 0.7 p.u., the
machine can still be accelerated from standstill to the full
speed. However, in between, it staggered at half of the full
speed for a while. When Rf = 0.4667 p.u., the machine can
only be accelerated to 51% of the full speed. The last case
demonstrates the Goerge’s phenomenon [8].

Fig. 4 shows the simulation results. The phasor model has
the machine speed, the average torque, and the held current’s
phasor’s magnitude exported. From the EMT testbed, the
measured torque has to be passed to a second-order low-pass
filter first to have its dc component, or the average torque
taken out. This filtered torque will be compared with the
average torque from the phasor model. The measured held
current from the EMT testbed is sinusoidal and with a varying
frequency, while the phasor model exports the held current
phasor’s magnitude. These two are plotted together.

From the comparison of Fig. 4, we can see that even we
ignored the electromagnetic dynamic in the phasor model, the
phasor model with only hrst-order swing dynamics included
can accurately capture the machine electromechanical behav-
ior. In addition, the computed average torque and the held
current phasor can also accurately reflect the true values in
general.

In addition, harmonic analysis can be carried out using the
circuit at two conditions: (i) at the beginning of the starting

process when the mechanical speed is still 0, and (ii)) at
the steady-state condition of Goerge’s phenomenon when the
machine’s speed keeps at 0.51 p.u. The results from the phasor
model have all been verified using the measurements from the
EMT testbed. In summary, the circuit gives accurate harmonic
component analysis results.

V. CONCLUSION

We present a generalized circuit representation for a syn-
chronous machine suitable for dynamic and harmonic analysis.
This representation takes the full advantage of the Laplace
transform variable s in dealing with frame conversion and
calculus. The resulting circuit representation of a synchronous
machine is a two-port circuit connecting the stator’s primary
frequency components with the stator’s mirror-frequency com-
ponents. This circuit can also be viewed as a model repre-
senting the relationship of dynamic phasors of the primary
frequency components and the mirror-frequency components.
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