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Abstract—In this letter, a generalized circuit representation 
for a synchronous machine is presented. This circuit represents 
voltage and current relationship and can be used for dynamic and 
harmonic analysis. A distinct feature of the circuit is the use of 
Laplace transform variable s, which simplifies both calculus and 
frame conversion. Two derivation approaches are presented. The 
first approach starts from a steady-state circuit representation, 
while the second approach starts from the dq-frame dynamic 
model of a synchronous generator. Both arrive at the same 
representation.

Index Terms—Synchronous machines, dynamics, harmonics, 
circuit representation

I. INTRODUCTION

STEINMETZ developed the steady-state induction machine 
circuit representation in the early 20th century. This circuit 
concisely describes the relationship among the stator/rotor 

voltage/current phasors and has been presented in classic 
machine textbooks. Based on this circuit, the authors have 
derived the generalized circuit for induction machines which 
is applicable of dynamic analysis [1], The same circuit rep­
resentation was also found by use of the dq frame dynamic 
model with flux linkages as state variables in [2],

In this letter, we further examine the generalized dynamic 
circuit representation of a synchronous machine. Compared to 
an induction machine, a synchronous machine can be viewed 
as an induction machine with unbalanced rotor conditions. 
During the starting process, a synchronous machine’s stator 
circuit currents have not only fundamental components but 
also harmonic components. The frequency of the harmonics 
depends on the rotating speed.

In majority of the textbooks, a steady-state circuit repre­
sentation of a round rotor synchronous generator is simply a 
Thevinin equivalent: a voltage source behind a synchronizing 
reactance. This equivalent circuit assumes that the machine is 
operating at the synchronous speed. Thus, slip representation 
no longer exists. However, a diligent search by the authors 
leads to the finding of a less known steady-state circuit 
representation of a synchronous machine that is applicable at 
any rotating speed. In 1950s, Garbarino and Gross examined 
induction machines with unbalanced rotor conditions and 
presented several circuit representations [3],

In this letter, this circuit will be further extended to a 
generalized dynamic circuit for a synchronous machine. A 
second derivation approach is also presented. This approach 
starts from the dynamic model. It can be seen that both 
arrive at the same circuit representation. Using this circuit 
representation, for a given stator voltage and a given speed,
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the sequence/harmonic components of the stator and field 
currents can be found. In turn, the harmonic components of the 
electromagnetic torque can be computed. Combined with the 
swing dynamics, a first-order phasor-based dynamic model is 
developed to simulate the staring process of a synchronous 
machine. The simulation results have been compared with 
those generated from an electromagnetic transient (EMT) 
testbed. Comparison shows that the proposed circuit leads to 
accurate torque and current computing results. The circuit is 
useful for both dynamic analysis and harmonic analysis.

II. Approach 1

A round rotor synchronous machine without the dc excita­
tion voltage source can be viewed as an inductor machine with 
its rotor circuits’ two phases short circuited, while another left 
open. The rotor’s terminal voltages and the currents have the 
following relationship:

Fr,bn — Fr,cn: Ira T Irb — 0, Ire — 0• (1)

Applying the symmetrical component transform leads to the 
following relationship for the sequence voltage and current 
components.

F^ = Fr , 1^ + Ir =0. (2)

Thus, the positive- and the negative- sequence circuits are 
interconnected at the rotor terminal as two parallel circuits. 
This network representation is based on the view point of the 
rotor. Hence, the perturbing frequency is the slip frequency 
notated as tor. To view the circuit from the stator side, we 
may conduct impedance scaling and voltage scaling. Fig. 1 
presents the network viewed from the stator. This network 
representation can be found in the 1950 paper by Garbarino 
and Gross [3] (Fig. 3). A more detailed step-by-step derivation 
procedure can be found in the authors’ work [4],

Fig. 1: The sequence network of an induction machine with its rotor circuits 
phase b and phase c short circuited while phase a left open.

This steady-state circuit is viewed from the stator’s side 
when the perturbing frequency is ivs, the synchronous fre­
quency. Thus, replacing jivs by s in the reactance represen­
tation, and replacing the slip by s~^m, where ivm is the 
rotor speed, we may quickly arrive at the dynamic circuit 
representation. If we notate the rotor resistance and inductance 
as a synchronous machine’s field resistance Rf and leakage
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inductance Lf, the final representation is shown in Fig. 3 in 
Section III.

This derivation philosophy is to treat the steady-state circuit 
representation as a special case of the generalized dynamic 
circuit when the stator side’s perturbation frequency is ws. 
On the other hand, in the dynamic circuit, jws can all be 
replaced by the Laplace transform variable s. Hence, the 
stator leakage reactance, the rotor leakage reactance and the 
magnetizing reactance, such as jwsLis, jwsLf and jusLm 
can be expressed as sLis, sLif and sLm. In the steady-state 
circuit, the equivalent rotor resistance Rr / slip is tricky to be 
converted to a dynamic impedance. A close examination of 
the slip leads to the following discovery [1].

slip =1 _ ^ = 1 _ , =^ slip(s) = 1 - ^.
W jW s

Hence,
2 Rr s
slip s - jw 2Rr,

Rs
1 — 2slip s — j 2^^

-Rs.

Thus, a steady-state circuit representation can be converted to 
a generalized dynamic circuit.

s

III. Approach 2

We now examine a synchronous generator with an excitation 
circuit. The dynamic model in time domain is presented as 
follows. First, the relationship of the stator voltages, the stator 
currents, and the stator flux is expressed in (3).

vd = —idRs — WmAq + Ad, Vq = —iq Rs + WmAd + Aq (3)

where the flux linkages are related to the dq stator current and 
the excitation current ifd as follows.

Ad = (Lmd + Lis)(—id) + Lmdifd,
Aq = (Lmq + Lis)(—iq) (4)

Next, for the rotor excitation circuit, the voltage and current 
relationship is:.

vfd = ifdRf + Af d, (5)

where Afd = Lmd( id) + (Lmd + Lif )ifd.
For generalized circuit representation, we aim to present 

the voltage and current relationship explicitly. The dynamic 
model ((3) and (5)) do not meet the requirement since the 
speed voltage terms is related to the flux linkages. To get rid 
of the speed voltages, we seek to use complex vector in the 
Laplace domain. From (3), it can be found that

V1(s) = —Rsll(s) + (s + jwm)A1(s) (6)
V2(s) = —Rs^2(s) + (s — jwm)A 2(s) (7)

where Fi(s) = fd(s) + j'fq(s), Fg(s) = fd(s) — j'fq(s), with 
F being the complex vector V, I or A, and f being v, i, or 
A.

A. Physical meaning of the complex vectors F1(s) and F2(s)
Harnefors initiated the use of complex vector in the anal­

ysis of dq-frame converter control [5] and this concept has 
been used extensively in the literature of power electronics 
control. Among them, asymmetrical-dynamics-induced mirror 
frequency has been discussed in [6], [7]. In this letter, the 
prime and mirror frequency components will be expressed 
more concisely using the Laplace transform variable s.

Suppose that the dq-frame currents id(t) and iq(t) viewed 
from the rotor are sinusoidal signals with a frequency of wr. 
The machine has a rotating speed of wm. The d-axis current 
id creates two space vectors, one at the frequency of wr + 

= ws and the other at the frequency of — wr + =
2wm — ws. Similarly, the q-axis current iq also create two 
space vectors of the two frequencies. Hence, in the stator side, 
the stator current should have two harmonic components: the 
primary component at ws and the mirror frequency component 
at 2wm — ws. Only if the two signals have the same magnitudes 
and iq lags id by 90 degree, the two space vectors at the mirror 
frequency are canceled by each other with the stator currents 
having only ws component.

The space vector formed by the three-phase currents (no­
tated as i(t)) has the following relationship with id(t) and 
iq(t): i(t) = (id(t) + jiq(t))ejWm4. Notate the analytic form 
of id(t) as id(t) and the analytical form of iq(t) as iq(t). Then 
the space vector i(t) can be written as:

/ \
2 (id(t) + j'*q+ 2 (id(t) +
2-----------------------.-------------------------- ' 2--------- .-------------------------- '

\ ii(t) /

(8)

Note that i d(t), iq(t), and Ii(t) are analytic signals with 
a frequency of wr, while id(t), i*(t), and d|(t) are analytic 
signals with a frequency of — wr. Both I1(t) and I2(t) are 
analytical signals with a frequency of wr. In the Laplace 
domain, it can be seen that

A(s) = *d(s)+ j'*q (s), 12(s)= *d(s) — j'*q (s). (9)

Remark: Therefore, the complex vectors represent the pri­
mary frequency component and the conjugate of the mirror 
frequency component, viewed in the rotor frame.

Furthermore, the primary frequency component, notated as 
i1 viewed from the stator frame has the following relationship 
with Ii(s):

i1 (s + jwm) = 71 (s) or i1(s) = 71 (s jwm).

The mirror-frequency component’s conjugate, notated as i2 has 
the following time-domain format /2(t)e-jWmt. Hence, their 
Laplace-domain expressions are related as

I2(s) = i2(s — jwm) , =^ 72(s — jwm) = i2(s — j 2wm).

B. Generalized circuit development
For simplicity, round rotor structure is assumed and the dq- 

axis inductances are the same: Lmd = Lmq = Lm. The flux 
linkages and the currents have the following relationship.

A1 Lm + Li s 0 — h
A2 0 Lm + Li s —12

Lm
Lm ifd (10)
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Fig. 2: Circuit representation of a round rotor synchronous machine, (a) Step 1. (b) Step 2.
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Fig. 3: Circuit representation of a round rotor synchronous machine without excitation voltage source.

It can be seen that the excitation current contributes to both 
flux linkage complex vectors. On the other hand, (5) is still 
expressed by the d-axis flux linkage Afd- We will express Xfd 
by use of the complex vectors of the current.

Xfd = Lm ^ I ^ + {Lm + Lif)ifd, (11)

=> 2Afd = Lm (—1\ — 12) + 2(Lm + Lif)ifd. (12)

Thus, the flux linkage linked with the excitation circuit has 
contributions from the two current complex vectors and the 
excitation current.

Based on the above relationship, we may construct a circuit 
representing the formation of the three flux linkages first: stator 
flux linkage’s complex vectors and the rotor excitation field 
flux linkage Xfd- The circuit is shown in Fig. 2(a), where both 
—I\ and ifd contribute to A%, and both — J2 and ifd contribute 
to A2.

Since the induced voltage from A% is sAi, it has to be 
amplified to times to be connected to Vi(s) through
the resistor Rs. Similarly, the induced voltage from A2 is 
sA2. This voltage has to be amplified by s~^m times to be 
connected to V2(s). Two transformer like symbols are used 
to represent the amplification. These two symbols represent 
voltage changes from one side to another. The currents at the 
two sides keep the same.

In step 2, the input voltage is viewed from the stator and 
notated as v\ (s). Note that v\(s) = Vi(s - jccm). We will 
replace s by s — jujm in Fig. 2(a). In turn, the previous circuit 
components viewed from the rotor frame have their s replaced 
by s — jicm. For the rightmost part of the circuit, the terminal 
voltage and currents are u2(s — j2ujrn) and z2(s — j2ujrn).

In the last step, the two transformer like symbols are taken 
out. The excitation voltage Vfd is assumed to be 0. The middle 
part of the circuit between the two transformers has every 
impedance scaled by s_s.u . This scaling effort makes sure

that the voltages at the two sides of the first transformer are 
now the same while the current is kept intact. For the rightmost 
part of the circuit, the scaling factor is . The resulting
circuit is Fig. 3. It can be seen that while all inductance has 
its impedance represented as sL, the rotor resistance and the 
stator resistance in the mirror-frequency domain are scaled by 

and
If the perturbation frequency is the synchronous frequency 

Wg, we may replace s by jus. The equivalent rotor resistance 
now becomes and the stator resistance in the mirror- 
frequency domain is 2sl^)s_1. We can see that the resulting 
steady-state circuit is the same as that in Fig. 1.

In short, a synchronous generator can be viewed as a two- 
port circuit connecting the primary frequency components with 
the mirror-frequency components.

IV. Case study: Starting a synchronous machine

The proposed circuit can be used to build a simulation 
model of starting a sychronous machine from standstill. Both 
the excitation voltage source Vfd and the mechanical torque 
Tm are set to 0. Based on the circuit in Fig. 3, at any given 
speed and for a given stator voltage, the stator current phasors 
and the field current phasors can be found by ignoring the 
EMT dynamics. Furthermore, the torque can be computed 
from these current phasors. The average torque is expressed 
as follows:

2~em,avg -^mlmag (i\(s) [i fd (<S j^m)\ "f"

— j2kAn)]*) (13)

where s is evaluated at the nominal frequency of 377 rad/s.
During starting process, the torque has both a dc component 

and a harmonic component. Since we are interested in the 
dynamics of accelerating a machine, we may compute only the 
useful torque, i.e., the average torque, for electromechanical
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Rf = 2.45 Rf = 0.70 Rf = 0.4667

Fig. 4: Comparison of the simulation results of the phasor model (blue lines) and the EMT testbed (orange lines) for three scenarios of different field 
resistance. (1) Full speed is achieved. (2) The machine achieves full speed after staggering at half speed. (3) The machine achieves only half speed. The 
machine parameters in p.u.: stator resistor, leakage, dq mutual inductance and inertia: 0.2917, 0.0113, 3.0314, 3.0314, 0.1492; rotor resistance and leakage: 
0.4667, 0.0490.

dynamics simulation. Combined with the circuit analysis and 
torque computing, the swing equation can be integrated and 
dynamic simulation results are produced based on this first- 
order model. For comparison, an EMT testbed with a generator 
model from the MATLAB/Simscape library is also built. The 
machine’s d-axis has a held winding and a damping winding 
and its g-axis has two damping windings. Thus, the generator 
model contains both the first-order swing dynamics and the 
sixth-order electromagnetic dynamics. For a fair comparison, 
the impedances of three damping windings in the EMT model 
have been increased to large numbers.

Three cases are examined for a varying held resistance. 
When Rf = 2.45 p.u., the machine can be accelerated 
from standstill to the full speed. When Rf = 0.7 p.u., the 
machine can still be accelerated from standstill to the full 
speed. However, in between, it staggered at half of the full 
speed for a while. When Rf = 0.4667 p.u., the machine can 
only be accelerated to 51% of the full speed. The last case 
demonstrates the Goerge’s phenomenon [8].

Fig. 4 shows the simulation results. The phasor model has 
the machine speed, the average torque, and the held current’s 
phasor’s magnitude exported. From the EMT testbed, the 
measured torque has to be passed to a second-order low-pass 
filter first to have its dc component, or the average torque 
taken out. This filtered torque will be compared with the 
average torque from the phasor model. The measured held 
current from the EMT testbed is sinusoidal and with a varying 
frequency, while the phasor model exports the held current 
phasor’s magnitude. These two are plotted together.

From the comparison of Fig. 4, we can see that even we 
ignored the electromagnetic dynamic in the phasor model, the 
phasor model with only hrst-order swing dynamics included 
can accurately capture the machine electromechanical behav­
ior. In addition, the computed average torque and the held 
current phasor can also accurately reflect the true values in 
general.

In addition, harmonic analysis can be carried out using the 
circuit at two conditions: (i) at the beginning of the starting

process when the mechanical speed is still 0, and (ii) at 
the steady-state condition of Goerge’s phenomenon when the 
machine’s speed keeps at 0.51 p.u. The results from the phasor 
model have all been verified using the measurements from the 
EMT testbed. In summary, the circuit gives accurate harmonic 
component analysis results.

V. Conclusion

We present a generalized circuit representation for a syn­
chronous machine suitable for dynamic and harmonic analysis. 
This representation takes the full advantage of the Laplace 
transform variable s in dealing with frame conversion and 
calculus. The resulting circuit representation of a synchronous 
machine is a two-port circuit connecting the stator’s primary 
frequency components with the stator’s mirror-frequency com­
ponents. This circuit can also be viewed as a model repre­
senting the relationship of dynamic phasors of the primary 
frequency components and the mirror-frequency components.

References

[1] L. Fan and Z. Miao, “Nyquist-stability-criterion-based ssr explanation for 
type-3 wind generators,” vol. 27, no. 3, pp. 807-809, 2012.

[2] Z. Miao, “Impedance-model-based ssr analysis for type 3 wind generator 
and series-compensated network,” IEEE Transactions on Energy Conver­
sion, vol. 27, no. 4, pp. 984-991, 2012.

[3] H. L. Garbarino and E. T. Gross, “The goerges phenomenon-induction 
motors with unbalanced rotor impedances,” Transactions of the American 
Institute of Electrical Engineers, vol. 69, no. 2, pp. 1569-1575, 1950.

[4] R. Kar, Z. Miao, and L. Fan, “Circuit analysis of goerges phenomenon 
in a three-phase induction machine,” in IEEE Power & Energy Society 
General Meeting (PESGM), 2022, pp. 1-5.

[5] L. Harnefors, “Modeling of three-phase dynamic systems using complex 
transfer functions and transfer matrices,” IEEE Transactions on Industrial 
Electronics, vol. 54, no. 4, pp. 2239-2248, 2007.

[6] A. Rygg, M. Molinas, C. Zhang, and X. Cai, “A modified sequence- 
domain impedance definition and its equivalence to the dq-domain 
impedance definition for the stability analysis of ac power electronic 
systems,” IEEE Journal of Emerging and Selected Topics in Power 
Electronics, vol. 4, no. 4, pp. 1383-1396, 2016.

[7] X. Wang, L. Harnefors, and E Blaabjerg, “Unified impedance model of 
grid-connected voltage-source converters,” IEEE Transactions on Power 
Electronics, vol. 33, no. 2, pp. 1775-1787, 2017.

[8] H. Gorges, “fiber Drehstrommotoren mit verminderter Tourenzahl,” Elek- 
trotech. Z, vol. 17, p. 192, 1896.


