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Abstract

The paper considers reference governor design for a class of linear discrete-time systems with constraints given by polynomial inequalities
and constant reference commands. For such systems, we propose a novel algorithm to compute the maximal output admissible set. The
reference governor solves a constrained nonlinear minimization problem at the initialization and then uses a bisection algorithm at the
subsequent time steps. The effectiveness of the method is demonstrated by two numerical examples.
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1 Introduction

Reference governors are add-on schemes that, whenever pos-
sible, preserve the response of a nominal controller designed
by conventional control techniques [1] while ensuring that
output constraints are not violated. Conventional reference
governor schemes are based on the so called maximal output
admissible set (MOANS), i.e., the set of initial states and con-
stant reference commands for which the ensuing response
satisfies the constraints. Invariant inner approximations of
this set represented by a finite number of inequalities can be
easily computed when both the systems dynamics and out-
put constraints are linear.

Of particular importance in control theory is the case when
the nominal controller is based on feedback linearization
(see, e.g, [2,3]) and the nonlinear dynamics are rendered
linear by a coordinate transformation and an appropriately
defined feedback law. However, when input or output con-
straints are present, even if they were linear to start with,
they are generally transformed into nonlinear constraints on
the transformed coordinates. Nonlinear constraints are much
harder to manage with the reference governor techniques es-
pecially when they are not convex [4—6]. Therefore, in gen-
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eral, feedback linearization cannot be easily combined with
a conventional reference governor [1] which assumes a lin-
ear model and linear constraints.

In this paper, the problem of designing a reference gover-
nor for linear systems with polynomial constraints and con-
stant reference commands, r is addressed. For most of the
paper, r =0 is assumed and it is shown that the case r # 0
can be handled through coordinate change. The key idea is
to embed the linear system into another higher dimensional
linear system, the state of which, when correctly initialized,
encompasses the state of the original linear system plus its
higher order powers. Doing so, the polynomial inequality
constraints required to design a reference governor become
linear with respect to the extended state’s coordinates.

The contributions of this paper are as follows. Firstly, we
develop a procedure for computing the MOAS of a linear
system with polynomial constraints. It is shown that this set
is a subset of the MOAS for the aforementioned extended
linear system with linear constraints and that it is repre-
sentable by a finite number of inequalities under suitable
conditions. The second contribution of this paper is the de-
sign of the reference governor utilizing thereby computed
MOAS. This design, unlike conventional reference gover-
nors, exploits exponentially decaying reference dynamics
so that the trajectory cannot hit a non convex polynomial
constraint representing, e.g., an obstacle, and become stuck
there. Then, the reference governor computation reduces to
solving a constrained nonlinear minimization problem at the
initial time instant and then using a bisection algorithm at
the subsequent time instants. Finally, numerical examples
are reported to illustrate the proposed approach.
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2 Preliminaries and problem statement

We first review properties of the Kronecker product [7] and
then introduce the problem treated in this paper.

2.1 Kronecker products and polynomial systems base vec-
tors

The Kronecker product of matrices A and B is denoted by
A ® B. This product is non-commutative but associative and
has the following useful mixed product property: if A,B,C
and D are matrices of such size that one can form the matrix
products AB and CD, then

(AB®CD) = (A2 C)(B® D).

Given a vector x € R™ and p € N > 1, its powers xP® € RP/»
are defined recursively using the Kronecker product of two
column vectors

P® = (§l§x:x®( ® x> =xQ@(x®...(x®x)) (1)
—1.p

i i=1..p—1

= [xlx(p’lm xpxP=D® oy, x(p*l)®r. )

X

Since the product of two real numbers is commutative, it is
not difficult to see that the vector x*® possesses some redun-
dant terms. We use the notation x” to denote a base vector
containing all monomials )clll . Z’;‘ for which iy +...+1i,, =
p. Then, and as first remarked in [8], the dimension of the
non-redundant vector x” is given by

(ny+p—1)!

Pl =D)L ©)

o(ny,p) =

For example, when n, = p = 2, we have x = [x1,x]7,
K¢ = 2 xxg,05,x0x1])7 and x? = [x2,x1x2,23])7. Fol-
lowing [9], one can recursively compute the matrices
M, (ny, p) € ROCwP)XPn and M, (n,, p) € RP*00op) that
determine the relation between the power vector with and
without redundant terms:

xP = Mc(n)mp)xp®a X = Me(”mp)xp-

2.2  Problem statement

Consider a linear (pre-stabilized) discrete-time system with
the model given by

x(k+1) = Ax(k) + Bv(k), 4)

where x € R™ is the state, v € R™ is the reference governor
output, and A is a Schur matrix. Let x, := [xT vT]T € R

be the state and reference vector. The system (4) is subject
to n. polynomial constraints, which are expressed as

p .
file)) =Y cijx] <hi, ie€{l,....nc}, 6)
j=1

where the row matrices c; ; are in R!*®(%+m.J) In this paper,
we propose a reference governor strategy to ensure that the
polynomial constraints (5) of a pre-stabilized linear system
(4) are satisfied for all times while the reference governor
output, v(k), tends to the desired reference r = 0.

Remark 1 If r is constant and different from 0, one can
perform a change of coordinates and then apply the proposed
method to the error system between x and the equilibrium
point X defined by X = AX+ Br, where X exists and is unique
since A is a Schur matrix. The polynomial constraints are
reformulated in the error system coordinates as well before
applying the proposed method. a

3 Reference governor design

Given that the desired reference is r(k) = 0, we consider the
input into (4), v(k), being generated by:

v(k+1) = Bv(k), (6)
where 8 €]0,1[. Then, x, evolves according to

xp(k+1) = Px, (k), (7

A

where & = is a Schur matrix since 8 €]0, 1[.

On‘,,nx Inv

Conventional reference governors for linear systems with
linear constraints are based on the offline computation of
a finitely determined inner approximation to the MOAS,
called O. [1]. Then the reference v is updated on-line sub-
ject to the constraint (x(k),v) € O. In the scalar reference
governor case, the computational effort is generally small.
The objective of this section is to extend these ideas to lin-
ear systems subjected to polynomial inequality constraints
and propose procedures

e to compute (off-line) the MOAS O.. for system (7) with
constraints (5), and
e to update the reference governor online based on this set.

Remark 2 Note that in the conventional reference and com-
mand governors [1], B = 1 is allowed. However, 8 < 1 is
also used in [10] to handle time-varying reference com-
mands and/or constraints, and non-constant reference evo-
lution over prediction horizon is also assumed in extended
command governor schemes [1]. Here, choosing 3 in ]0, 1|
helps ensure that v(k) — r = 0 as k — oo, which is other-
wise difficult to guarantee if constraints are not convex as
in cases treated in [4-6]. 2



3.1 Maximal output admissible set computation

For system (7) subject to constraints (5), the MOAS is de-
fined as

Owx = {x,(0): fi(xy(k)) <hji=1,...,nc,k=0,1,...},

(®)
where x, (k) is the state response of (7) at time instant k cor-
responding to the initial state x, (0). We call O x (and other
MOASSs in the sequel) finitely determined if the recursive
procedure for its construction in [11] finitely terminates (i.e.,
there exists t* such that O, x = O;41 x for all t > t* where
O; x corresponds to imposing constraints on predicted re-
sponse in (8) only for k =0, --- ,¢); in this case, O x is rep-
resentable by a finite number of inequality constraints. Note
that the converse property does not hold, in general.

Remark 3 As @ in (7) is Schur, the MOAS is computed in
the sequel without requiring inner approximation [11]. 4

Let p be given and consider the following state augmenta-
tion:
T
X, = [xv 2. x{,’} .

v

Let j € {1,...,p} and observe that:

x€(k+1)
(@ (k)
(

xi(k+1)

~—

M (ny+ny,p
M. (ny+ny,p
M. (ny+ 1y, p) (@1, ;@)% (k)

= M (ny+ ny, ) (®iz1,;9)Me (ny +ny, j)x5 (k)

= ®/xd (k), )

|
S~—

—

1.e., the extended state vector of all monomials can be lin-
early propagated. Before stating our main result, we require
the following two lemmas.

Lemma 1 if ® is a Schur matrix then &/ is a Schur matrix
for all j € N*.

Proof. The proof follows from the fact that ® is Schur if
and only if x, = 0 is a globally asymptotically stable equi-
librium of (7). As a consequence, for all j € N*, xj =01is a
globally asymptotically stable equilibrium of (9), which in
turn implies that &/ is a Schur matrix. (]
Let

&7 =diag(®’,je{1,....p}) , Hz=[h...h,]", (10)
Cz= (Ci-,j)izl:n(;,jzl:d(nx-knv,p)a (11)

and consider the following extended system:
Z(k+1)=d,Z(k) (12)

where Z; € ROUw+m.)) and where Z = zl,....Z]]" €

REj=1..p (1) g subject to the constraints,

CzZ < Hj. 13)

Remark 4 Consider a particular initial condition for (12)
given by Z;(0) = Z;(0) = x,(0) for all i € {2,...,p}. Then
Zi (k) = x,(k) for all k> 0, i.e., Z;(k) evolves according
to our model (7). Furthermore, Z;(k) = Z; (k)" for all k >0
and i =1,---,p. In this case, fi(x,(k)) = CzZ(k) for all k,
i.e., the polynomial constraints (5) exactly match the linear
constraints (13). Thus adding polynomial constraints is an
operation very similar to adding linear constraints, except
that we had first to specify a basis to represent the polynomial
constraint as linear constraints. For Z; € R*™_ define

o(z1)=1z{,(z})",....2)"]".
The above discussion implies that

@(P*Z)) = DLo(Z))
for all Z;. J

In the sequel, we propose to compute the MOAS of our ex-
tended linear system; a subset (cross section) of this MOAS
then provides the exact MOAS of the original system (7)
with polynomial constraints (5).

Theorem 1 The set O..z = {Z(0) : Cz®4Z(0) < Hy, k=
0,1,...} is forward invariant. Furthermore, if &z is a Schur
matrix and the set {Z : CzZ < Hz} is compact with the
origin in the interior, then Owz is nonempty and finitely
determined.

Proof. The proof follows immediately from the results in
[11] applied to the case when the system output is the full
state (hence observability condition of [11] is automatically
verified). U

Note that Oz is the MOAS of the extended system ne-
glecting the requirements that Z' = Z{. Now we establish

and exploit the relation between O, 7 and O x suggested
by Remark 4.

Theorem 2 Let ®; be a Schur matrix and the set
{Z: CzZ < Hz} be a compact set with the origin in the
interior. Then O x, the MOAS of (7)-(5), is representable
by a finite number of inequalities and is forward invariant.

Proof. Based on Remark 4, Ow x = {Z; e R™ : @(Z;) €
O z}. Theorem 1, under our assumptions, implies that Oz
is finitely determined; hence O.. x is representable by a fi-
nite number of inequalities. Furthermore, by Theorem 1,
O 7 is forward invariant. Now Z; € O« x implies @(Z;) €
O 7 and, by Remark 4 and forward invariance of Oz,
O(D*Z)) = D4 9(Z)) € 0. 7 implying P*Z; € O.. x thereby
demonstrating the forward invariance of O x. O
Theorem 2 requires that the set {Z: CzZ < Hz} be com-
pact. This property may not hold when the dimension of Z is
large and the number of constraints n, is small. It turns out
the result of Theorem 2 still holds if (13) restricts Z; = C}Z
to a compact set:



Theorem 3 Let C, and G be such that CzZ < Hy implies
GLCLZ < H} while the pair (®,C) is observable and the set
{Y: GLY < HL} is compact with the origin in the interior.
Then O x is representable by a finite number of inequalities
and is forward invariant.

Proof. Fromresults in [11], the set O z, = {Z; : GLCL®*Z; <
H}, k=0,1,...} is compact and defined by a finite number
of linear inequalities. Clearly, Ow x C Owz,. Let C,, Hy
be such that Z; € Oz, implies Cz0(Z1) < Hz and the set
{Z: C;zZ < Hz} is compact with zero in the interior. Now
augment the inequalities C;Z < Hy to (13) and compute the

corresponding
H
21 k=0,1,...%.
Hy

00072 = {Z

By Theorem 1, O, 7 is finitely determined. By construc-
tion, OOOZ has the same cross section as O 7, i.€., O x =
{Z1: 9(Z1) € O, 7} Indeed, if 9(Z1) € O, 7, then 9(Z,) €
Ow 7 and Z; € O« x. Vice versa if Z; € O x, then (p(Zl) S
Owz and Cz®49(Z)) = C20(P*Z)) < Hz given that P¥Z; €
Owx C Owyz, for all k due to forward invariance of O x.
Thus @(Z;) € O 7. [

Cz

PLz <
|’

Remark 5 The proof of Theorem 3 leads to a procedure
to compute O x. First, linear constraints on Z; are found
in such a way that the corresponding O.. 7, is compact and
finitely determined. Such linear constraints can be a com-
bination of linear constraints on only Z; from (13) and re-
dundant linear constraints overbounding possible values of
Z; as constrained by (13). These linear constraints on Z;
then induce linear constraints overbounding possible values
of the extended state Z (as Z = ¢(Z;)); the latter linear con-
straints are added-in when computing O, ;. Finally, O x is
defined by the condition ¢(Z;) € O, 7. 4

3.2 Reference governor update

Let O x be the MOAS (8) considered in the previous sub-
section. Given an initial state x(0), v(0) is computed so that
(x(0),v) € O x, €.8., as a solution to the following opti-
mization problem:

Minimize vTv subject to (x(0),v) € Owx.  (14)
Then, the reference to be applied at time k > 0 is:
v(k) = Bv(k—1)+A(k)(0— Bv(k—1)) (15)

where A (k) € [0,1]. The scalar variable A (k) can be deter-
mined using a bisection algorithm such that

A(k) = )Lm[%x”/'t subject to (x(k),B(1 —A)v(k—1)) € Owx.
€,
(16)

Note that given the feasibility of A =0 in (16), i.e., of
v = Bv(k—1) with B €]0,1] (due to our construction of
MOAS), it immediately follows that v(k), x(k) tend to O as
k — oo as long as v(0) is found such that (x(0),v(0)) € O x.
The preview time of the bisection algorithm does not need
to be "heuristically’ chosen since it is directly applied to the
set of inequalities that defines the MOAS O., x. To reduce
the computational burden and thus facilitate the practical
application of the proposed method, we suggest to calculate
’off-line” both the MOAS and the initial value v(0) for a grid
of initial states. Doing so, only a simple bisection algorithm
needs to be run ’on-line’ to solve the optimization problem
(16).

4 Numerical examples
4.1 Stall prevention of a civil aircraft

We consider the following aircraft longitudinal dynamics
model based on [12] with cos(¢) approximated by 1:

d d
= —71L(0c)+ 72u7 Lia)=ly+Lo—ho,

where di = 4m, dy = 42m, J = 4.5 x 10°Nm?, Iy = 2.5 x
10°N, I} = 8.6 x 10N /rad and 13 = 4.35 x 10’N /rad’.
The angle of attack o is constrained by the stall limit as

—0.2 x 155 < a < 14.7 x qgsrad. The control input is the

elevator force u and must satisfy |u| < 4.10° N.

Applying the dynamic inversion, u = —k, (& +v) — kg0 +
S-L(@) where k, = 5.2 x 107, kg = 7.6 x 10°, and discretiz-
ing the system with the sampling period 7; = 0.01s, we
obtain the (pre-stabilized) second order model (4) with

4| 09814 00072] - Tooise
~3.3347 0.4940 |’ 3.3347|

This system is linear but the input inequality constraints are
polynomial of order 3. Considering the extended state x,
and v defined by (6) with f = .98, we compute the MOAS
Oz, in Remark 5 only considering the linear constraint on
o in this case. The MOAS O 7, is finitely determined in
t* =75 iterations of algorithm in [11] and is defined by 105
non-redundant linear inequalities. As this set is compact, we
can compute bounds on all the components of the extended
state and confirm, following Remark 5, that MOAS O,, 5 is
representable by a finite number of inequalities. In fact, the
Oz is determined in t* = 46 iterations and is defined by
304 non-redundant linear inequalities. Figure 1 illustrates
the constrained outputs responses obtained using (in blue)
or not using (in magenta) the proposed reference governor
when 0/(0) = 14 deg and &(0) =0 deg/s. In the absence of
a reference governor, the control input limits are violated.
However, all the output constraints are satisfied with the
implementation of the proposed reference governor strategy.



The projection of the MOAS set on the (¢, ¢&) plane gives the
set of initial conditions from which the state can be stabilized
while respecting both the linear and polynomial constraints.
Figure 2 shows this set and used a grid to calculate it. The
constrained nonlinear minimization problem was solved at
each point of the grid to determine whether or not the point
belongs to this set.

-
(&)}
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ENINY
~

0 0.2 0.4 0.6 0.8 1 1.2
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Fig. 1. Constrained outputs. Red: upper and lower limits. Magenta:
when one applies the dynamic inversion without any reference
governor, that is when v = r = (. Blue: when one uses the proposed
reference governor. Dashed blue: evolution of the reference v(k)
of the reference governor. Dashed green: desired angle of attack.
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Fig. 2. Projection of the MOAS set

4.2 Obstacle avoidance in the 2D plane

The second numerical example shows the method’s applica-
bility to a controlled system subject to a non-convex poly-
nomial constraint. We consider ¥ = u where x,u € R2. This
system is pre-stabilized using u = —x —2x+v where v is the
reference governor input. Then, we discretize it with sam-
pling period T; = 0.1s. The linear constraints are |x| < 20 and
| < 5. The nonlinear constraint (x —Xops)7 (X — Xpps) > 12,

is used to avoid a circular obstacle located at x,p; = [10;0]
with a radius r,,; = 2. Considering the extended state x,
and v defined by (6) with B = .98, we first compute the
MOAS O.. z,. This set is finitely determined in ¢* = 15 iter-
ations and is defined by 108 non-redundant linear inequali-
ties. Then, O., 7 is determined when we extend the state and
add the nonlinear constraint. Here, O.. 7 is determined in
t* = 343 iterations and is defined by 863 non-redundant lin-
ear inequalities. Figure 3 illustrates the obstacle avoidance
realized with the proposed reference governor strategy for
several initial conditions x(0) and when x(0) = [0;0]. Figure
4 shows the evolution of the reference input vector used in
this case. For example, when x(0) = [12;—.01], x first fol-
lows the obstacle’s boundary before reaching the origin. It
should be noted that the proposed strategy does not use any
waypoint [5] nor does it create a navigation field [6].

Fig. 3. Illustration of the obstacle avoidance. Red: obstacle. Dashed
blue: without any reference governor, that is to say when v =r=0.
Blue: when one uses the proposed reference governor.
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time(s)

Fig. 4. Time evolution of the reference governor.



5 Concluding remarks

The developments in this paper are based on the observation
that the propagation of some polynomial constraints through
a LTI system can be accomplished by propagating some lin-
ear constraints through a higher dimensional LTI system.
This permits extending the design of conventional reference
governors to the class of LTI systems with polynomial con-
straints. Numerical results were reported to demonstrate the
simplicity and practicality of the proposed method.
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