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ABSTRACT In Bacillus subtilis, master regulator SpoOA controls several cell-differentiation
pathways. Under moderate starvation, phosphorylated SpoOA (SpoOA~P) induces biofilm
formation by indirectly activating genes controlling matrix production in a subpopulation
of cells via an Sinl-SinR-SIrR network. Under severe starvation, SpoOA~P induces sporula-
tion by directly and indirectly regulating sporulation gene expression. However, what
determines the heterogeneity of individual cell fates is not fully understood. In particular,
it is still unclear why, despite being controlled by a single master regulator, biofilm matrix
production and sporulation seem mutually exclusive on a single-cell level. In this work,
with mathematical modeling, we showed that the fluctuations in the growth rate and
the intrinsic noise amplified by the bistability in the Sinl-SinR-SIrR network could explain
the single-cell distribution of matrix production. Moreover, we predicted an incoherent
feed-forward loop; the decrease in the cellular growth rate first activates matrix produc-
tion by increasing in SpoOA phosphorylation level but then represses it via changing the
relative concentrations of SinR and SIrR. Experimental data provide evidence to support
model predictions. In particular, we demonstrate how the degree to which matrix produc-
tion and sporulation appear mutually exclusive is affected by genetic perturbations.

IMPORTANCE The mechanisms of cell-fate decisions are fundamental to our understand-
ing of multicellular organisms and bacterial communities. However, even for the best-
studied model systems we still lack a complete picture of how phenotypic heterogeneity
of genetically identical cells is controlled. Here, using B. subtilis as a model system, we
employ a combination of mathematical modeling and experiments to explain the popula-
tion-level dynamics and single-cell level heterogeneity of matrix gene expression. The
results demonstrate how the two cell fates, biofilm matrix production and sporulation,
can appear mutually exclusive without explicitly inhibiting one another. Such a mecha-
nism could be used in a wide range of other biological systems.

KEYWORDS biofilms, biosystems, gene expression, stochasticity

o adapt to various environmental conditions, bacterial cells can differentiate

into different cell types (1). Bacillus subtilis is one of the best-understood model
systems for studying bacterial cell differentiation. Upon starvation, a subpopulation
of B. subtilis cells can differentiate into matrix producers, which secrete extracellular
biofilm matrix (2, 3). As a result, given the right environmental conditions, cells
encase themselves in the extracellular matrix and thereby form a biofilm (4). At later
stages of starvation, B. subtilis cells can further activate another cell differentiation
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FIG 1 Bistable expression of tapA is controlled by the SpoOA~P level via the Sinl-SinR-SIrR network. (A) The schematic of the Sinl-SinR-SIrR
network used in our model (see Materials and Methods for details). (B) Deterministic model of the network predicts the existence of two
steady states, namely, high (red) and low (blue), of the TapA steady-state concentration. At low SpoOA~P concentrations (unshaded region),
only a low steady state exists (monostability). At high SpoOA~P concentrations (shaded in gray), two stable steady states coexist in the
bistable region. Unstable steady state separating the two is show by dashed line. (C) Stochastic simulation of tapA expression as a function of
time was performed using the fixed SpoOA~P concentrations at low (0.05 wM, blue line, value from the monostable region in B) or at high
values (1 uM red line, value from the bistable region in B). The x and y axis indicate time (h), and TapA reporter levels are shown in the
number of molecule per cell(#/cell).

pathway and transition into spores (5). Notably, in biofilms, different cell types
coexist, forming a highly heterogeneous community (6, 7).

Both the matrix production and sporulation are activated by the same transcriptional mas-
ter regulator, SpoOA. Upon starvation, SpoOA is phosphorylated to become an active form as
a transcription factor (SpoOA~P) through a multicomponent phosphorelay composed of five
kinases on the top and two intermediate phosphotransferases (8, 9). Among five kinases, KinA
and KinC play major roles to control sporulation and biofilm formation, respectively (10-12).
The cellular concentration of SpoOA~P gradually increases in a pulsatile manner over the
course of starvation, leading to up-/downregulation of genes and operons having binding
sites (named 0A-box) for the phosphoproteins (10, 13-15). However, many of the OA boxes
deviate from the consensus sequence (5'-TGTCGAA-3’) (13). Thus, the binding affinity of
Spo0A~P to the 0A-box changes with the variation of the consensus sequence (10). The am-
plitude of SpoOA~P increases as starving cells accumulate KinA due to a decrease in growth
rate (11, 15). At early times of starvation, the relatively low concentrations of SpoOA~P prefer-
entially bind to the high-affinity 0A-boxes in the genes and operons involved in biofilm matrix
production. When starvation persists, the high dose of SpoOA~P occupies the weak-affinity
sites in the genes and operons involved in sporulation (10, 16).

While genes involved in sporulation are directly controlled by SpoOA~P, genes involved
in biofilm matrix production are controlled via an additional Sinl-SinR-SIrR network, which is
also under the control of SpoOA~P, leading to the expression of a set of genes and operons,
including the tapA (formerly named ygxM)-sipW-tasA operon and the eps operon (Fig. 1A)
(17, 18). At the top of the regulatory network, SpoOA~P activates the expression of sin/ (19).
Downstream of sinl, sinR is transcribed constitutively and independently (20). The activity of
SinR, a master regulator of biofilm matrix production, is regulated by two antagonists,
namely, Sinl and SIrR, that can form alternative complexes with SinR, preventing the forma-
tion of SinR, (the active tetramer form of SinR). On the one hand, the Sinl dimer (Sinl,) inter-
acts with the SinR dimer (SinR,) and forms an Sinl-SinR heterodimer (Sinl-SinR) (21). On the
other hand, SIrR dimer (SIrR,) associates with SinR, and forms an SIrR,-SinR, heterotetramer
(21-23). The expression of slrR is also repressed by SinR,, thereby resulting in a double-nega-
tive feedback loop between SinR and SIrR. This double-negative feedback loop between
SinR and SIrR forms a bistable switch and controls matrix production and cell chaining (24,
25). In this Sinl-SinR-SIFR network, SpoOA~P concentration serves as the input by directly
controlling Sinl expression. Therefore, the SpoOA and Sinl-SinR-SIrR network systems precisely
control the level of SinR during growth and starvation conditions. During growth under nutri-
ent-rich conditions, little if any SpoOA~P is present, and thus, the SpoOA-controlled Sinl, an
antagonist of the SinR transcription factor, is not expressed highly. As a result, the constitu-
tively expressed SinR represses a set of genes and operons involved in biofilm matrix
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production, including the tapA operon, allowing cells to grow (26). Upon starvation, relatively
low concentrations of SpoOA~P generated via the phosphorelay activate the expression of
Sinl (27), which in turn sequesters and thereby antagonizes SinR (17, 18). SinR is also seques-
tered by forming a SIrR,-SinR, heterotetramer during this period (21). When starvation per-
sists, cellular concentrations of SpoOA~P further increase with the decrease in cell growth
rate and directly stimulate the expression of genes involved in sporulation (13, 16, 28).

Intriguingly, despite being both activated by SpoOA~P, sporulation and matrix produc-
tion appear mutually exclusive, as the matrix production drops significantly in cells initiat-
ing sporulation (24, 29). As a result, the population-average biofilm matrix production level
decreases at the late stages of starvation (24). These observations are attributed to the
repression of Sinl expression by high Spo0OA~P levels and to the effect of sporulation initia-
tion on the gene dosage of sinR and sIrR (24). However, our recent results showed that arti-
ficially induced high SpoOA~P levels cannot repress the expression of matrix production
genes, which questions the explanation that high SpoOA~P levels and sporulation repress
matrix production (11). Therefore, the mechanisms of cell fate determination at late stages
of starvation are still not fully understood.

Understanding cell fate decision in the biofilm matrix production is possible only on
the level of individual B. subtilis cells since the expression of biofilm matrix genes is highly
heterogeneous (30, 31). This heterogeneity can result from variability in gene expression
due to changes in global physiological parameters (extrinsic noise) and fluctuations at the
level of individual genes amplified by local gene regulatory mechanisms (intrinsic noise).
Our recent work showed that heterogeneity in matrix production is regulated through the
effects of two different kinases (11). In particular, we showed that KinC reduces single-cell
heterogeneity of SpoOA~P resultant from the extrinsic noise in cellular growth rate and
thereby increases the fraction of cells that activate matrix production (11). However, the
results also suggest that noise in growth rate is not sufficient to fully explain the single-cell
distribution of matrix-production gene expression (11).

In this work, using stochastic modeling, we investigate how the extrinsic noise in
growth rate and intrinsic noise in the Sinl-SinR-SIrR network affect the distribution of
matrix-producing cells at different times poststarvation. Furthermore, we use our mod-
els to uncover the competing effects of the slowdown of growth rate on the Sinl-SinR-
SIrR network. This model is used to explain the dynamics of biofilm matrix production
under different genetic perturbations and to investigate why biofilm matrix production
and sporulation appear mutually exclusive on a single-cell level. Experimental tests of
the model predictions confirm the proposed mechanisms of cell-fate control.

RESULTS

An increase in SpoOA~P is necessary but not sufficient for matrix production.
Previously, assuming a deterministic relationship between SpoOA~P levels and tapA
expression, we failed to quantitatively match the single-cell distribution of matrix pro-
duction (11). In particular, the model predicted that the fraction of matrix-producing
cells is higher than the experimentally observed fraction (11). Since the fluctuations in
the Sinl-SinR-SIrR network are known to affect matrix production (25, 30), we hypothe-
sized that stochastic properties of the Sinl-SinR-SIrR network that controls the relation-
ship between Spo0OA~P levels and tapA expression could reduce the fraction of ma-
trix-producing cells. To test this hypothesis, we constructed a detailed mathematical
model of this network and used it to examine the relationship between Spo0OA~P lev-
els and TapA reporter concentration in deterministic and stochastic simulations.

The schematics of the modeled network shown in Fig. 1A include transcriptional and
posttranslational interactions between Sinl, SinR, and SIrR (see Materials and Methods for
details). However, the significance of the double-negative feedback loop between SinR
and SIrR on matrix production is unclear. To answer this question, we first investigated
how the steady-state concentration of TapA is affected by the SpoOA~P level via the Sinl-
SinR-SIrR network. As Fig. 1B shows, our model with the deterministic simulations demon-
strated that, when SpoOA~P level is low, the system has only one stable steady state
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(Fig. 1B, blue solid line) in which tapA expression is not activated and TapA concentration
is low. When the SpoOA~P level is higher than a threshold, a matrix-production-on steady
state appears (Fig. 1B, red solid line) and the system shows bistability. If we further increase
Spo0A~P concentration (>0.4 wM), the steady-state value of TapA would not change
much (Fig. 1B, red solid line). This result can be explained in that the expression of Sinl
requires only a low threshold of SpoOA~P (10); when SpoOA~P goes higher, the expres-
sion of Sinl would be saturated and cannot be further increased. Thus, the activation of
Spo0A~P is necessary but not sufficient for matrix production; when the SpoOA~P level is
lower than the threshold, the tapA cannot be activated, and when the SpoOA~P level is
higher than the threshold, both the high and the low tapA expression states are present. In
the latter regime, the expression is hysteretic in our deterministic simulations, i.e., cells
starting with a high level of tapA expression remain high, whereas cells starting with a low
level will remain low.

To test the possibility of switching between steady states, we constructed a sto-
chastic version of the network (see Materials and Methods for details) and conducted a
stochastic simulation of the model for fixed low (0.05 xM) and high (1 ©M) SpoOA~P
levels, i.e., in the monostable and bistable conditions for the deterministic model. As
Fig. 1C shows, for a high SpoOA~P concentration, the tapA expression could be acti-
vated in a stochastic manner (red line); whereas, for low a SpoOA~P concentration, the
tapA expression remains around the low level (blue line). The results demonstrated
that fluctuations of the Sinl-SinR-SIrR network can lead to stochastic activation of tapA
expression but only if SpoOA~P is sufficiently high. In other words, high SpoOA~P is
necessary but not sufficient for tapA expression.

Extrinsic noise in growth rate and intrinsic noise in the Sinl-SinR-SIrR network
can explain the individual-cell distribution of matrix gene expression. SpoOA~P
levels increase with the slowdown of cell growth rate during nutrient starvation (15,
28, 32, 33). Thus, next, we investigated whether the combination of the intrinsic noise
in the Sinl-SinR-SIrR network and the fluctuations of growth rate can explain the sin-
gle-cell-level heterogeneity of tapA expression. To reproduce the single-cell-level distri-
bution of tapA expression in a starving community, following our previous work (11),
we used a Moser-type model (34) to describe the dynamics of the population-average
growth rate (Fig. 2A, solid line). We also assumed that the cell generation time follows
a normal distribution with a coefficient of variation (CV) of 0.25. The shaded area in
Fig. 2A shows the range of the growth rate in ~70% of cells (+¢). It was shown that
the distribution of single-cell SpoOA~P concentrations could be sufficiently explained
by the fluctuations in the growth rate (15). Thus, we assumed that the SpoOA~P level
is determined by the growth rate, so the noise in the SpoOA~P level originates fully
from the growth rate fluctuations. Using the same model in our previous work (11), we
predicted how the SpoOA~P levels change with the growth rate in the wild-type (WT)
strain and the strain harboring the deletion of kinA (AkinA) and kinC (AkinC) that were
shown to affect tapA expression dynamics (Fig. 2B). Based on the dynamics and fluctu-
ation of the growth rate, we modeled the dynamics and distribution of SpoOA~P levels
in different strains (Fig. 2C).

Furthermore, to investigate the single-cell-level heterogeneity of tapA expression,
we performed stochastic simulations of the Sinl-SinR-SIrR network for different cell lin-
eages in parallel (see Materials and Methods for details). To this end, SpoOA~P levels
were used as the input and were sampled from the predicted distribution. Then, we
calculated the distribution of tapA expression levels at different times (after 4, 6, 8, and
12 h of culture, denoted as T4, T6, T8, and T12, respectively) in each of the three strains
(WT, AkinA, and AkinC). By comparing the results of the model (Fig. 2D) with the exper-
imental data (see Fig. S1 in the supplemental material) from our previous work (24), we
can conclude that the shape of predicted distributions qualitatively matches those
experimentally measured. Importantly, unlike the model that did not explicitly account
for bistability and intrinsic noise in the Sinl-SinR-SIrR network (11), our new model cor-
rectly predicts that the majority of cells have very low tapA expression (the first bin of
the histogram in two-dimensions [2D]). The fraction of cells with very low tapA
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FIG 2 Heterogeneity of tapA expression is controlled by growth rate and the Sinl-SinR-SIrR network. (A) The dynamics and fluctuation
(shaded area shows = o region) of growth rate (y axis) over time (x axis) were predicted by a Moser-type model (34). (B) Model-predicted
Spo0A~P concertation (y axis) as a function of the growth rate (x axis) in the WT, AkinC, and AkinA strains. (C) Predicted SpoOA~P
dynamics and fluctuations as a function of time (shaded area shows = o region) in the WT, AkinC, and AkinA strains. (D) Prediction of
single-cell distribution of tapA expression at T4, T6, T8, and T12 (i.e, 4 h, 6 h, 8 h, and 12 h, respectively) in the WT, AkinC, and AkinA
strains using the results of C as an input to the stochastic model of the Sinl-SinR-SIrR network. Population mean levels of tapA expression
(number of TapA molecules/cell) are indicated in each panel. Note that the maximum value for the first bin is indicated in the broken y

axis with the same scale for the remaining bins used in each panel.

expression (the first bin) is correctly predicted to decrease with time and to be larger
in the AkinC strain than in the WT strain. Furthermore, the model also predicts the frac-
tion of cells that do not activate matrix production to be smaller in the AkinA strain
than in the WT. Therefore, the results shown in Fig. 2 suggest that changes in the tapA
expression distributions in single cells are changed with time and genetic perturba-
tions can be explained through the effects of noise in growth rate and in the gene
expression of Sinl-SinR-SIrR network. Thus, the model suggests the mechanisms behind
the observed dynamics.

To understand how the fraction of matrix-producers changes with time, we note
that under starvation conditions, the average cellular growth rate decreases with time
(Fig. 2A) and, as a result, based on the previously developed models of phosphorelay
(15), cellular SpoOA~P levels increase with time for all the strains (Fig. 2C). However, as
predicted by our model (Fig. 1), the activation of SpoOA is a permissive signal but not
an instructive one for matrix production. Thus it is the intrinsic noise of the Sinl-SinR-
SIrR network ensures that cells transition to the matrix-expressing state. A decrease in
the fraction of cells not expressing tapA with time (Fig. 2D, WT [T4 to T8], and note the
change in the y axis scale in each panel) can be explained by (i) the increase in
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the number of cells with sufficient SpoOA~P and (ii) the increased chance that gene
expression fluctuation of sufficient magnitude to activate the Sinl-SinR-SIrR switch will
occur. In support of the latter mechanism, our simulation showed that the single-cell distri-
bution of tapA expression is not in a steady state; when we fixed the growth condition at
T6 and ran the simulation for a longer time, the fraction of tapA-expressing cells would
increase further (see Fig. S5 in the supplemental material). Notably, the mean level of tapA
expression and the fraction of cells that activated tapA in our model are predicted to be
lower at T12 than those at T8 for all the strains. This effect is observed even though we do
not introduce the repression of sin/ by high levels of SpoOA~P in our model. The mecha-
nism of this decrease is investigated in the next section.

To understand the effects of KinA and KinC on matrix production, we note that in the
AkinA strain, SpoOA~P level is lower than in the WT strain (Fig. 2C, after T5), so the proba-
bility of expressing tapA is also lower in the AkinA strain than that in the WT strain (Fig. 2D,
WT versus AkinA, note the change in y axis scale in each panel). In the AkinC strain, the
SpoOA~P level was lower than in the WT strain at early times, such as T4 (Fig. 2C), so the
probability of expressing tapA was also lower in the AkinC strain than in the WT strain
(Fig. 2D, note the change in y axis scale in each panel). These effects can all be explained
by a smaller fraction of cells with a SpoOA~P level above the permissive threshold.
However, our previous work (11) demonstrated that at later times KinC acts as a phos-
phate-group sink and its deletion would increase SpoOA~P at a later time (Fig. 2C).
Nevertheless, the fraction of cells not expressing tapA remains lower in the AkinC strain at
T6 to T12. This effect is related to the ability of KinC to reduce single-cell heterogeneity of
Spo0A~P due to fluctuations of cell growth (extrinsic noise) investigated in our previous
publication (11).

Slowdown of cellular growth has two opposing effects on the Sinl-SinR-SIrR
network. Our model shows the decrease of tapA expression at T12 for all the strains con-
sidered (Fig. 2D, T12). For wild-type cells, this result is consistent with previous experimen-
tal observations (24). We, therefore, set to understand the mechanisms of the decrease in
tapA expression at late times in our model. A previous study suggested that the observed
decrease of tapA expression under prolonged starvation is associated with (i) the decreased
levels of Sinl due to the direct repression of sin/ by high levels of SpoOA~P and (ii)
increased levels of SinR over SIrR due to changes in gene dosage during sporulation (24).
Both mechanisms result in the increased active SinR (SinR, tetramer), leading to the repres-
sion of tapA expression. However, in our model, neither the repression of Sinl expression
by high SpoOA~P levels nor the sporulation process was explicitly included. Instead, gene
dosages and protein concentrations change as a function of cellular growth rate. This find-
ing indicates the slowdown of the growth rate can somehow negatively regulate tapA
expression via the Sinl-SinR-SIrR network.

In our model, growth rate affected cellular protein concentrations mainly by affect-
ing their dilution rate. For stable proteins like SinR, the effective degradation rate (the
sum of the degradation rate and dilution rate caused by growth) is dominated by the
dilution rate, and the slowdown of growth will lead to increases in their concentra-
tions. In contrast, SIrR is known to be quickly degraded in vivo (35), so the change in
growth rate has a relatively small effect on the effective degradation rate (Fig. 3A). In
addition, our model suggested that the SinR/SIrR ratio is controlled by the gene dos-
age effect related to the position of the genes on chromosomal DNA (24), as was the
case for KinA and SpoOF (14, 15, 32). In general, gene distance from the origin of chro-
mosome replication (oriC) influences gene copy number in a periodical manner during
the growth cycle of a bacterial cell (36). During DNA replication (C-period) (see Fig. S2A in
the supplemental material), genes proximal to oriC (ori) are replicated first and will have a
higher gene dosage relative to the genes proximal to the replication terminus (ter) (Fig. S2B
and Q). After replication is complete, the gene dosage returns to a 1:1 ratio. A slowdown of
growth has a greater effect on the cell cycle period than on the C-period and thereby
increases the duration of the period during which there is no active DNA replication, result-
ing in a 1:1 gene dosage (Fig. S2). Therefore, cells growing slower are expected on average
to have less excess in gene dosage for ori-proximal genes. In the case of the Sinl-SinR-SIrR
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growth rate. (A) Changes in the predicted ratio of the total concentrations of SinR to SIrR as a
function of growth rate in the absence of transcriptional regulation. The inset illustrates degradation
rates of SIrR and SinR and their gene positions on the chromosome. (B) Bifurcation between mono-
(clear) and bistability (shaded) of tapA expression state controlled by SpoOA~P level (y axis) and
growth rate (x axis) via the Sinl-SinR-SIrR network. (C) High (red) and low (blue) steady states of TapA
concentration as a function of growth rate at the fixed 2 uM SpoOA~P condition as indicated with
the dashed line in B. The shaded region shows a bistable region in which a high TapA-expressing
state is possible (red). Decrease of the growth rate outside the bistable region lead to switch into
deactivated tapA expression state (blue line). (D) The proposed feed-forward network showing how
growth rate regulates biofilm matrix production via the Sinl-SinR-SIrR network.

network, slfR is located at the origin proximal region, while sin/ and sinR genes are at the ori-
gin distal region. Thus, when cells grow rapidly, the dosage of slrR exceeds those of sinl and
sinR for a longer part of a cell cycle leading to a higher slrR production rate. However, when
the growth rate slows down, cell cycle-averaged excess gene dosage for slrR is smaller than
that when the growth rate is fast; the relative production rate of sinR to slrR increases with
growth slowdown. In summary, different protein degradation rates and different gene posi-
tions cause the ratio of SinR and SIrR to increase with a decreasing growth rate (Fig. 3A).

To understand this effect in our model, we first used a deterministic model of the Sinl-
SinR-SIrR network and computed a bifurcation diagram, i.e., the plot that illustrates how
the region of bistability changes in response to independently changing SpoOA~P concen-
tration and the growth rate (Fig. 3B). The result indicated that bistability (and existence
tapA expression state) requires the SpoOA~P level to be higher than a threshold (as we
saw in Fig. 1B) and the growth rate to be not too slow (shaded region in Fig. 3B). If we fixed
Spo0A~P at a relatively high level (Fig. 3B, dashed line), the system is bistable but only at
high growth rates (Fig. 3C). As growth slows down, there will be an insufficient amount of
Sinl and SIrR to fully inhibit the activity of SinR (Fig. 3A). As a result, the system would enter
the monostable region and the matrix-production-on state (Fig. 3C, red solid line) would
disappear, i.e., tapA will be repressed. Stochastic simulation under fixed growth rates and
Spo0A~P levels confirmed that bistability only exists when both the SpoOA~P level and
the growth rate are high enough (see Fig. S3 in the supplemental material).
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FIG 4 Repression of tapA expression caused by a slowdown of growth rate. (A) Predicted changes in SpoOA~P concentration as a
function of growth rate in the WT, AkinA, AkinC, and Asda strains superimposed on Fig. 3B displaying bifurcation (dashed line)
between mono- (clear) and bistability (shaded) of tapA expression state controlled via the Sinl-SinR-SIrR network. (B) Stochastic
simulation of tapA expression dynamics in the WT, AkinA, AkinC, and Asda strains. The x and y axis indicate time (h) and population-
averaged (mean of n = 1,000 simulations) tapA expression levels (number of molecules/cell), respectively. (C) Experimentally
measured tapA expression at a population level in the WT, AkinA, AkinC, and Asda strains. Culture samples were collected at the
indicated times (x axis) after the start of incubation and assayed for B-galactosidase activity from PtapA-lacZ (Miller units [MU], y
axis). The mean activities of three independent experiments are shown with standard deviations as error bars.

In light of these results, we propose that the growth rate affects tapA via two opposing
mechanisms acting on the Sinl-SinR-SIrR network (Fig. 3D). On the one hand, by regulating
the upstream phosphorelay network, the slowdown of growth rate raises the SpoOA~P
level via increasing the KinA level (15) and thereby activates Sinl expression (27). This pro-
cess would lead to sequestration of SinR into the Sinl-SinR complex and lead to derepres-
sion of tapA. On the other hand, the slowdown of growth directly increases the relative
concentration of SinR to SIrR, decreasing the amount of SinR sequestered in the SIrR,-SinR,
complex. This effect leads to an increase in the free and active SinR, form, resulting in the
repression of tapA. In other words, there is an incoherent feed-forward loop between the
growth slowdown and tapA expression, and this motif is known to produce nonmonotonic
dynamics of gene expression (37, 38).

Note that, experimentally, SpoOA~P concentration and the growth rate are not inde-
pendent and a slowdown of growth results in the increase of SpoOA~P (15). Explicitly testing
the above incoherent feed-forward hypothesis, therefore, requires data on genetic perturba-
tions that affect the SpoOA~P concentration, e.g., those affecting phosphorelay and pertur-
bations affecting growth dynamics (i.e, how cell growth rate changes with time).

Slowdown of growth rate directs the decrease of matrix gene expression at
late stages of growth. To validate the above-proposed model that the slowdown of
growth rate is the main reason for the decrease of tapA expression at late times, we predicted
the dynamics of tapA expression levels under different genetic perturbations that change the
dynamics of Spo0A~P levels. To this end, in addition to the WT and the strains harboring the
deletion of two phosphorelay kinases (AkinA and AkinC) considered in Fig. 2, we also investi-
gated the effects of Sda, an inhibitor of KinA by forming an inactive complex Sda-KinA (39).
Deletion of sda (Asda) is expected to raise SpoOA~P levels as a result of increased KinA activ-
ity, leading to promoted sporulation (39, 40), whereas deletion of kinA (AkinA) will do the op-
posite since it is the major sporulation kinase (9, 12). Given the ability of KinC to serve as a
phosphate sink, i.e, by removing a phosphoryl group from SpoOA~P, we expect that the
AkinC strain would display higher SpoOA~P levels (Fig. 2C) and sporulation frequencies (11).
Therefore, investigating these strains may allow us to separate the effects of SpoOA~P con-
centration and the growth rate on matrix production.

Using a deterministic model of phosphorelay from our prior work (11, 14, 32), we deter-
mined SpoOA~P concentration as a function of the growth rate in each of the above
strains. As Fig. 4A shows, for all of the strains, SpoOA~P increased with a decrease in
growth rate. As expected, SpoOA~P levels in the WT strain were higher than in those in
the AkinA strain but lower than those in the Asda strain. In the AkinC strain, SpoOA~P lev-
els were lower than in the WT strain under high growth rates at early times of culture.
However, SpoOA~P levels became higher in the AkinC strain than in the WT strain under
low growth rates at later times of culture. Superimposing these trajectories on the
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bifurcation diagram, one can note that all of these values left the bistable region at around
the same value of growth rate, due to the bistability region boundary being nearly vertical
(Fig. 4A, dashed line). Therefore, we expect that tapA expression would decline at around
the same growth rate in all three strains despite distinct that SpoOA~P dynamics can be
seen in each of them. Assuming that growth-rate dynamics are the same for all strains (11),
we can use the stochastic simulation of the model to predict tapA expression. The results pre-
dicted that in all of the strains, tapA expression decreased at about the same time (~10 h)
(Fig. 4B). Alternatively, if the hypothesis that the high SpoOA~P levels leading to sporulation
drive the decrease of tapA expression is correct (24), our simulations would expect very differ-
ent times of the peaks of tapA expression in those strains (see Fig. S4 in the supplemental
material). Critically, in the AkinA strain, since the SpoOA~P level would not go beyond the
sporulation threshold and thus the sporulation efficiency is very low (12), we predicted the
decrease of tapA expression to happen later (Fig. S4).

To test the prediction that the decrease of tapA expression occurs simultaneously in all
strains (WT and deletion mutants), we performed experimental measurements of tapA
expression dynamics in those strains with a 3-galactosidase (/3-gal) reporter. In the results
shown in Fig. 4C, the peak of tapA expression occurred at 8 to 10 h in the tested strains
except for the AkinC strain where the peak is slightly earlier (6 to 7 h). Notably and similarly
to the other strains tested, the decrease in tapA expression after 9 to ~10 h was observed
in the AkinA strain where little sporulation is triggered (Fig. 4C). These results support our
hypothesis that the decrease of tapA expression is due to the slowdown of growth rate,
rather than the high SpoOA~P levels or the sporulation. Thus, these data are qualitatively
consistent with the idea that the incoherent feed-forward-loop mechanism through the
Sinl-SinR-SIrR network is important to control tapA expression.

Even though our model supports general trends in the observed tapA dynamics,
the experimental results in the AkinC strain showed that the tapA expression peaked
at around 6 to 7 h and then decreased earlier than in the other strains (Fig. 4C). These
experimental data were slightly different from the modeling data (Fig. 4B). Moreover,
the experimental data showed that, in the Asda strain, the tapA expression decreases
much more rapidly (Fig. 4C) than predicted (Fig. 4B). These inconsistencies may be due
to the early onset of sporulation in the AkinC and Asda strains (11). Spore formation
may repress the oA-dependent tapA expression and/or interfere with B-galactosidase
activities due to the reduced o* activity during sporulation (41). These effects were not
considered in the model.

To further understand the factors contributing to the decrease of tapA expression
in population-average assays, we used our model to calculate the fraction of tapA-
expressing cells and the mean TapA level of the expressing cells (see Fig. S7 in the sup-
plemental material). Due to the global effects of a growth slowdown, the mean TapA
level of tapA-expressing cells increases with time in all the strains (Fig. S7C). The frac-
tion of tapA-expressing cells (Fig. S7B) shows a similar trend as the overall tapA expres-
sion level (Fig. S7A), except that the peak of the tapA-expressing cell fraction comes
earlier than the overall tapA expression. These results show that the decrease of tapA
expression at late times and the differences in TapA dynamics in different strains are
affected mainly by the change of the tapA-expressing cell fraction; meanwhile, the
increase of TapA level in tapA-expressing cells compensates for the decrease of the
tapA-expressing cell fraction and postpone the decrease of the overall tapA expression
level.

Perturbation to cell growth rate alters matrix gene expression dynamics. The
results thus far indicated that perturbing the SpoOA~P dynamics does not significantly
affect the time when tapA expression peaks. However, if our hypothesis is correct that
the slowdown of growth rate is the main reason for the decrease of tapA expression,
we expect that a change in growth dynamics would shift the time of tapA expression
peak. To demonstrate this shift with our model, we used alternative growth rate dy-
namics as inputs to our model (Fig. 5A). Stochastic simulation of the model predicted
that if the growth rate slows down more rapidly (Fig. 5A, red curve), the tapA
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FIG 5 The dynamics of matrix gene expression under different growth dynamics. (A) Stochastic simulation of
growth rate (y axis) as a function of time (x axis) under normal (black) and slow (red) growth conditions.
When different growth dynamics depicted in A were used as an input in our stochastic simulations, the
model predicted stochastic simulation of tapA expression (mean number of TapA molecule per cell, y axis) as
a function of time (x axis) under normal (black) and slow (red) growth conditions (B). (C, D) Experimentally
measured expression of tapA (C) and epsA (D) at a population level in the WT cells grown in normal (black)
and nitrogen-reduced (reduced to 1/10 of the normal level, red) MSgg media. Culture samples were collected
at the indicated times (x axis) after the start of incubation and assayed for B-galactosidase activity from
PtapA-lacZ (Miller units [MU], y axis). The mean activities of three independent experiments are shown with
standard deviations.

expression would start to decrease earlier and the resulting maximum tapA expression
level would also be significantly lower than the unperturbed cell growth rate dynamics
(Fig. 5B).

To test this prediction experimentally, we artificially changed cell growth rate by reducing
the nitrogen source (diluted glutamate by 10 times) in minimal salts glycerol glutamate
(MSgg) medium (modified MSgg medium, see Materials and Methods). Under culture condi-
tions in the modified MSgg medium, the nitrogen source would be depleted faster and,
therefore, cell growth would slow down earlier than in the original MSgg medium. As Fig. 5C
shows, in the cells grown in the modified MSgg medium, the decrease of tapA expression
happens much earlier and the peak value becomes much lower than in the cells grown in
the original MSgg, which is consistent with the model prediction (Fig. 5B). To further verify
that the slowdown of growth rate is the main reason for the decrease of matrix gene expres-
sion, we examined another matrix gene, epsA, which is also under the control of the Sinl-
SinR-SIrR network. As shown in Fig. 5D, the trends of epsA expression under two different
conditions were qualitatively similar to those of the tapA expression. These results further
support our hypothesis that the slowdown of growth is the primary reason for the decrease
of matrix gene expression at the late stages of starvation.

Slowdown of cell growth leads to mutually exclusive cell fates. Since our model
explains the population-level decrease of tapA expression at late times, we hypothe-
sized that it can also explain why sporulation and biofilm matrix production appear
mutually exclusive on a single-cell level. To test this hypothesis, we predicted the tapA
expression and sporulation levels in single cells of the WT, Asda, and AkinC strains,
using stochastically various but on average slowing cell growth dynamics (Fig. 2A) as
an input. Following our previous study (16), cells displaying high-threshold SpoOA~P
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FIG 6 Acceleration of SpoOA~P dynamics decrease mutual exclusiveness of sporulation and matrix production.
(A) Stochastic simulation of tapA expression in sporulating cells (spo; slow growth); nonsporulating cells (non-
spo; fast growth); and all cells in the WT, Asda, and AkinC strains. (B) Fluorescent images of the WT, Asda, and
AkinC cells harboring both the GFP-LCN (unstable GFP) reporter under the control of tapA promoter (PtapA-gfp-
Icn) and the mCherry reporter under the control of the spollQ promoter (PspollQ-mCherry). Cells were cultured in
MSgg medium and processed for imaging at 8 h after the start of culture. Cells displaying both GFP (tapA
expression) and mCherry (spollQ expression for sporulation) are indicated with arrows. Scale bar: 5 um. (C) The
experimentally measured fraction of cells expressing tapA in sporulating (spo) cells; nonsporulating (non-spo)
cells; and all cells in WT, Asda, and AkinC strains. Error bars indicate standard deviation for n = 9 images taken
from 3 independent cultures for each strain.

levels were considered sporulating. The fraction of tapA-expressing cells between spor-
ulating (spo) and nonsporulating (non-spo) cells at T8 was then calculated by simula-
tion (Fig. 6A). These results showed that, in the WT strain, about 19% (0.19) of nonspor-
ulating (non-spo) cells activate tapA expression, but this fraction is only 9% (0.09) for
sporulating cells (spo) (Fig. 6A). These results were qualitatively consistent with the
published experimental results of reference 24, which indicates that our model can
also explain single-cell distributions of matrix production and sporulation. Thus, our
model predicts that mutual exclusiveness can be explained by the repression of matrix
production at the low growth rate at which WT cells initiate sporulation.

Furthermore, we can use our model to predict how genetic perturbation in phos-
phorelay affects mutual exclusiveness. Notably, our results indicated that the fraction
of tapA-expressing cells increased more in the Asda strain than that in the WT strain
(0.35 versus 0.17) (Fig. 6A). However, when the increase in tapA-expressing cells in the
Asda versus WT strains is broken down by sporulation status, we note that this increase
was larger in the sporulating cells (~3-fold, from 0.09 to 0.27) than in nonsporulating
cells (less than 2-fold, from 0.19 to 0.36) (Fig. 6A). On the other hand, in the AkinC
strain, the fraction of tapA-expressing cells was much lower than in the WT strain (0.17
versus 0.04) (Fig. 6A). This decrease in the fraction of tapA-expressing cells is about the
same fold in the sporulating cells (~4-fold) and in nonsporulating cells (~4.3-fold)
(Fig. 6A). These simulation results predict that the deletion of sda (Asda) not only
increases the overall fraction of tapA-expressing cells but also increases the fraction of
the cells that both activate tapA expression and sporulation. On the other hand, the
deletion of kinC (AkinC) decreases the fraction of tapA-expressing cells among
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sporulating cells, as well as all the cells. In other words, the deletion of sda (Asda)
would “weaken” the apparent mutual exclusiveness of matrix production and sporula-
tion, while the deletion of kinC (AkinC) would affect it only slightly.

To verify these predictions, we experimentally measured tapA expression (with PtapA-
GFP) and sporulation (with forespore-specific SpollQ expression using PspollQ-mCherry) in
the WT, Asda, and AkinC strains at single-cell levels. We used a fluorescent reporter encod-
ing a proteolytically unstable GFP-LCN to monitor tapA expression by minimizing the pa-
rameter of GFP stability (with PtapA-gfp-LCN) (24, 42). To determine which cells are sporulat-
ing, we counted cells expressing forespore-specific mCherry driven by the spollQ promoter
since spollQ is expressed only during sporulation in the forespore (43) (see Supplemental
Methods for details). Fluorescent images of the cells cultured in MSgg were taken at 8 h
(Fig. 6B). Then, using a GFP threshold, we calculated the fraction of tapA-expressing cells in
sporulating and nonsporulating cells for each strain (Fig. 6C). Among all cells, the overall
fraction of tapA-expressing cells in the WT strain (0.23) was lower than that in the Asda
strain (0.43) but higher than that in the AkinC strain (0.03) (Fig. 6C). Moreover, in all of these
strains, this fraction of tapA-expressing cells was higher in nonsporulating cells than in spor-
ulating cells (Fig. 6C); the difference in the fraction between sporulating and nonsporulating
cells is statistically significant for WT (P = 4e-5) and for AkinC (P = 0.03) but not for Asda (P =
0.14). Furthermore, when we compared the sporulating (spo) and nonsporulating (non-spo)
cells, the fold change in the fractions of tapA-expressing cells was smaller in the Asda (non-
spo/spo, 0.42/041 = 1.01) than in the AkinC (non-spo/spo, 0.04/0.03 = 1.3) and WT (non-
spo/spo, 0.19/0.09 = 2.1) strains. In comparison to the WT, weakening of mutual exclusive-
ness is statistically significant for Asda (fold change in fraction of tapA-expressing cells
between non-spo and spo cells is larger in WT than in Asda, P = 1e-7) but not statistically
significant in AkinC (P = 0.09). These experimental results were qualitatively consistent with
the model predictions (Fig. 6A).

To summarize, our results provide another way to explain the apparent mutually exclu-
sive cell fates between biofilm matrix production and sporulation. At later stages of starva-
tion, a slowdown of growth rate leads to an increase in sporulation probability. Meanwhile,
the probability of tapA expression would decrease due to the effect of slow growth on the
SinR/SIrR ratio, leading to increased SinR. As a result, the probability that a sporulating cell
also activates tapA expression is low, so the sporulation and matrix production appear as
mutually exclusive cell fates. In the Asda strain, due to higher SpoOA~P levels with
increased KinA activity, the fraction of the tapA-expressing cells is higher than that in the
WT strain (Fig. 6). Moreover, in the Asda strain, the threshold of growth rate for sporulation
is lower, and thus, the sporulation happens earlier than in the WT strain. As a result, the
increase of the fraction of tapA-expressing cells in the Asda strain is more significant in
sporulating cells than in nonsporulating cells. As our previous work shows (11), in the
AkinC strain, SpoOA~P levels are lower than in the WT strain at early times of starvation, so
the fraction of the tapA-expressing cells is lower than that in the WT strain (Fig. 6).
Moreover, KinC acts as a sink of phosphoryl groups in the slow-growing cells in a culture
population (11). As a result, sporulation happens earlier in the AkinC strain with increased
levels of SpoOA~P at relatively early times of starvation. The acceleration of sporulation in
the AkinC strain, therefore, is similar in the mechanism but weaker than that in the Asda
strain. As a result, the deletion of kinC (AkinC) only slightly “weakens” the mutual exclusive-
ness of matrix production and sporulation.

DISCUSSION

In a community of B. subtilis cells, at the onset of starvation, a subset of cells activates
matrix production, leading to biofilm formation. However, at later stages of starvation, cells
stop producing matrix and initiate sporulation. The master regulator SpoOA and the Sinl-
SinR-SIrR network play a critical role in the regulation of biofilm matrix production (18, 25,
44). In this work, we showed that the cellular growth rate would affect matrix production
via an incoherent feed-forward loop (Fig. 3D). On the one hand, the slowdown of growth
rate activates matrix production via an increase of SpoOA~P level and induction of Sinl. On
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the other hand, the slowdown of growth represses matrix production by affecting the dos-
age between SinR and SIrR.

At the early stages of starvation, the slowdown of growth rate leads to the increase
of Spo0OA~P concentration via its effect on KinA concentration and the DNA replication
cycle (14, 32). Our previous work shows that the noise of growth rate would affect the
distribution of SpoOA~P in a culture population and thereby affects the heterogeneity
of tapA-expressing cells in a culture population (11). Here, our model predicts that
SpoOA~P is necessary for the expression of matrix genes, but it is not sufficient for the
activation of matrix production (Fig. 2C). When SpoOA~P is low, the Sinl-SinR-SIrR net-
work only has a high-SinR-low-SIrR steady state, and tapA expression cannot be acti-
vated due to repression by SinR. When SpoOA~P increases, the Sinl-SinR-SIrR network
enters the bistable region (Fig. 2C), so the tapA expression could be activated by
decreasing the SinR level via the stochastic fluctuations in the Sinl-SinR-SIrR network.
The bistability of the Sinl-SinR-SIrR network ensures that only a subset of cells can acti-
vate matrix production, reducing the cost of matrix production and saving resources
as a division of labor strategy (45, 46). The fluctuations in the Sinl-SinR-SIrR network
were known to be critical for determining the transition between the matrix-producing
state and non-matrix-producing states (25, 30). Our model qualitatively reproduces the
distribution of tapA expression in individual cells (Fig. 1D; Fig. S1), indicating that the
heterogeneity of matrix production in a starving community could be explained mostly
by the noise in the growth rate and the fluctuations in the Sinl-SinR-SIrR network.

At late stages of growth, activation of Sinl expression by the SpoOA~P level would
be saturated (27). The slowdown of growth rate at late stages affects matrix production
mainly through the cellular concentration of SinR and SIrR (Fig. 3). Due to different
gene locations of sinR and slrR and different protein stability of their gene products
(Fig. 3A), changes in growth rate cause a DNA-replication-associated gene dosage
effect (Fig. S2B and Q). As a result, when the growth rate slows down, the concentra-
tion of SinR increases faster than that of SIrR, and eventually, the free and active form
of SinR represses tapA expression at late times (Fig. 3C and D). Similar effects of growth
rate can be found in other bacterial models of cellular regulatory networks (47-50).

Previously, it has been demonstrated that cells entering sporulation stop tapA expres-
sion (24). To explain this mutual relationship between sporulation and matrix production,
the following two mechanisms have been proposed: first, high SpoOA~P levels negatively
affect Sinl expression and eventually repress matrix production, and second, the change in
the gene dosage between SinR and SIrR during sporulation also represses matrix produc-
tion (24). Following this explanation, we would expect that the tapA expression would start
to decrease earlier in the Asda strain because the SpoOA~P level increases more rapidly
and the sporulation starts earlier than in the WT strain (Fig. S3). On the other hand, in the
AkinA strain, the SpoOA~P level is too low to trigger sporulation; thus, we would expect
that the tapA expression would start to decrease at later times in the AkinA strain than that
in the WT strain (Fig. S3). As Fig. 4 shows, however, our data show that the tapA expression
would start to decrease at about the same time in the WT, AkinA, and Asda strains.
Moreover, we showed that perturbing growth dynamics can change the time when tapA
starts to decrease (Fig. 5). Our model also successfully explains conditions under which bio-
film matrix production and sporulation appear mutually exclusive, which is consistent with
experimental results (Fig. 6). The model suggests that, rather than sporulation and asym-
metric division as proposed in the previous study (24), the slowdown of growth rate is a
major control mechanism to change the dosage of SinR and SIrR, eventually leading to
repression of tapA expression.

In summary, our results provide a system-level understanding of the role of growth
rate in controlling biofilm matrix production. By controlling the SpoOA~P level and the
dosage of SinR and SIrR, the slowdown of growth rate regulates biofilm matrix produc-
tion via an incoherent-feed-forward network. This proposed model explains the popu-
lation-level dynamics and single-cell-level heterogeneity of matrix gene expression.
Specifically, our study reveals that mutually exclusive cell fates between biofilm matrix
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production and sporulation can be generated by incoherent feed-forward regulatory
networks. This network motif defines a signal-window (or a time-window for a time-de-
pendent signal) during which matrix production is possible. Therefore, other cell fates
that are activated by the same signal but with a threshold outside this window, e.g.,
sporulation, will occur only in the cells that are not expressing matrix. In other words,
the cell fates appear mutually exclusive without explicitly inhibiting one another. Such
a mechanism can be advantageous for cell survival under unforeseen conditions as a
bet-hedging (51) or division of labor (45, 46) strategy and could be applicable in a
wide range of other biological systems.

MATERIALS AND METHODS

Computational modeling methods. (i) Modeling the effect of growth rate on the gene copy
number. Under our experimental conditions, the growth rate is relatively slow, so the multifork replica-
tion is not considered. For simplicity, we assume that the replication starts right after cell division and
the replication has a constant speed. Thus, the time before the replication of a certain gene is given by
t = p7., where p represents the position of the gene, i.e., the normalized distance between the gene and
the replication origin (P = 0 corresponds to the replication origin, and P = 1 corresponds to the replica-
tion terminus), and 7. is the length of the C period. In the stochastic model, this time is explicitly
included; the gene copy number is doubled at this specific time (Fig. S2B and C). In the deterministic
model, following our previous work (11), we used an approximated average copy number:

n= 2(1’71'/70\')

where 7, = In(2)/u is the length of the cell cycle. Following our previous model (15), we assume that
7. is phenomenologically related to the growth rate u as 7. = 0.78[h] + 0.15/u (Fig. S2A). The positions
of the genes involved in this work were shown in Table S2 in the supplemental material based on the
data taken from the Biocyc database (52).

(ii) Modeling the growth dynamics and heterogeneity. Following our previous work (2), we used
a Moser-type model (8) to describe the growth dynamics:

dc k N kyN"™
7:C< i - : > (1)

a
dt NI+ K;’ll Nh2 + K{xz

dN k N kgN"™

- = ¢ hlg w Y hzd ) @

dt N+ K N2 + K

Here, C denotes the cell density in the units of OD and N denotes nutrient density in arbitrary units.
The parameters include k, and k, which are the maximum growth rate and death/sporulation rate,
respectively; K, (K,) and h, (h,) are the half-saturation concentrations and Hill coefficients of cell growth
and death (sporulation); y is the yield coefficient; ¢ is the fraction of the nutrient released by cell death/
sporulation. The initial value of N was normalized to 1 and then K (K,) was fitted. To be consistent with
the experiment, C(0) = 0.1. The parameters used for the original growth dynamics and alternative growth
dynamics (Fig. 4A) parameters were shown in Table S1 in the supplemental material.

Following our previous work (11), we assume that the distribution of generation times (T(y() of B.
subtilis cells could be approximated by a normal distribution with CV = 0.25. The generation times of
daughter cells were sampled from this distribution at the time of division with. The mean generation
time is calculated based on the mean growth rate determined via the growth dynamics model, i.e.,

keN(£)™

—L 3
N(t)" + K @

w(t) =

To avoid unrealistically high growth rates, we discarded the generation times below 0.2 h.

(iii) The model of the Sinl-SinR-SIrR network. The model of the Sinl-SinR-SIrR network contains
the transcription, translation, and posttranslation reactions of Sinl, SinR, and SIrR. SinR binds to specific
DNA sequences as a tetramer (21). Following reference 53, we assumed that SinR is in the equilibrium
between the tetramer and dimer. Sinl is in the equilibrium between the monomer and dimer, and Sinl
dimer could bind to the SinR dimer and form a heterodimer (21, 53). The molecular basis of the binding
between SIrR and SinR is not clear. For simplicity, following reference 21, we assumed that SIrR is pre-
dominately dimeric and SIrR dimer binds to SinR dimer forming a heterotetramer.

The kinetic parameters of the protein-protein interactions between Sinl, SinR, and SIrR were esti-
mated from in vitro experiments (23, 53). Moreover, SIrR is known to be quickly degraded in vivo; the
degradation rate of SIrR was set to 0.6 h™' (35). The degradation rate of other stable proteins was set to
0.2 h™' (54) The transcription and translation of Sinl, SinR, SIrR, and TapA were explicitly included. The
relative transcription rates were chosen to ensure the bifurcation diagram resulted in the transitions
from monostable to bistable regime come at the realistic growth rate and SpoOA~P level (Fig. 2). The
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absolute values of transcription rates for each mRNA were set to get the appropriate level of noise in
stochastic simulations to enable stochastic activation and deactivation of matrix production in the bista-
ble regime. Most half-lives of mRNA in B. subtilis are about 3 to 7 min (55). In this model, the degradation
rates of all mRNAs were set to 8.3 h™' (5-min half-life). Following reference 48, we assumed that the
translation rate is independent of the growth rate. For simplicity, the translation rates of all the proteins
were set to 200 h™', similar to reference 56. The transcription rate of the TapA-GFP reporter was esti-
mated by comparing the gfp-reporter fluorescent intensity between PtapA-gfp and kinA-gfp fusion (28)
and the gfp-reporter fluorescent intensity. The reactions and parameters used in this model are listed in
Table S2.

(iv) Deterministic simulation of the model of the Sinl-SinR-SIrR network. To get the steady-state
concentration of the species in the Sinl-SinR-SIrR network (Fig. 1B, Fig. 3C), we solved the system numeri-
cally. The bistability of the system is determined by the number of the solutions for steady-states in nu-
merical integration. The bifurcation graphs (Fig. 3B, Fig. 4A) were generated by numerically integrating
the system with parameter continuation of growth rate and SpoOA~P level.

To qualitatively predict the dynamics of the tapA expression level using a traditional model (Fig. S4),
we assume that high SpoOA~P concentration represses tapA expression with a Hill function:

[Spo0A~P]" Kz
[SpoOA~P]™ + K/ [SpoOA~P]™ + K/

Praps X

Here, we set nyy = 1.5, n, = 8, Ky = 0.15, and K, = 0.8.

(v) Stochastic simulation of the model of Sinl-SinR-SIrR network. We modified a Python module
stochpy (57) to simulate the model described in section “The model of the Sinl-SinR-SIrR network” using
the next-reaction algorithm (58). The parameters for stochastic simulation (Table S2) were converted
from the parameters for a deterministic model assuming the cell volume is 4 fL (28).

To capture the decrease of growth rate during starvation, we simulated cell cycles separately. At the
beginning of each cell cycle, the duration of the cell cycle, 7, was sampled from a normal distribution
determined by the current simulation time t. For simplicity, we assumed that the noise in the growth
rate is independent of the noise in the Sinl-SinR-SIrR system and the growth rate remains constant dur-
ing the same cell cycle. Once the duration of the cell cycle 7, is sampled, the SpoOA~P level was then
calculated for different strains based on the growth rate [u = In (2)/7-Cyc] using the deterministic model
described in our previous work (Fig. 2B) (2). The stochastic simulation was then performed from t to t +
T, At the end of each cell cycle, the cell volume was partitioned evenly, and the species were bino-
mially distributed between both daughter cells. Then one of the daughter cells was selected for the sim-
ulation of the next cell cycle, and the simulation time was updated as t =t + 7. Then the simulation
was performed iteratively on the new cell cycle until the simulation time reached a certain threshold.
The iterative simulation process was illustrated in Fig. S6A in the supplemental material.

To accurately simulate the effect of growth rate on the gene dosage, gene replication was explicitly
included in the model. The replication times of genes were calculated with the model described above in
section “(i) Modeling the effect of growth rate on the gene copy number” at such times, the copy number of
genes was doubled. At the beginning of the new cell cycle, the copy number of each gene was reset to 1.

The population growth rate was assumed to be a function of the simulation time. According to
Equation 1, we set time-dependent growth rate as in Equation 3. We assumed that the duration of cell
cycles exists at time t and follows a normal distribution with the mean = In(2)/u(t) and the coefficient of
variation (std/mean), CV = 0.25. Our simulation determines 7 at the beginning of the cell cycle. Thus,
the cell cycles existing at time t would start prior to t. As the result, the mean duration of cell cycles start-
ing at time t, should correspond to the mean duration of cell cycles existing at a later time t > t.. To cor-
rect for this offset, we phenomenologically introduced a time-shift term in the 7, calculation as follows:

In(2) . eln(2)
Tcyc(t)ZM(t+8t)7 t= /Jv(t)

We run the stochastic simulation of the cell cycle duration for 500 cell lineages to reproduce the dy-
namics population growth rate. The population growth rate at time t is given by the average growth
rate of all the cell cycles existing at time t. As Fig. S6B shows, € is set to 0.2 to get a good phenomeno-
logical approximation.

(vi) Single-cell sporulation and matrix expression. According to reference 15, the sporulation probabil-
ity of B. subtilis cells is highly correlated with growth rate and SpoOA~P level. To predict the fraction of tapA-
expressing cells in sporulating and nonsporulating cells (Fig. 6A), we consider the cells with growth rates
lower than a threshold (0.17 h™") to be “sporulating cells” (15). The cells with a TapA amount in excess of 500
molecules (corresponds to the first bin in Fig. 2D) were considered “tapA-expressing cells.” All the cells at T8
are labeled as spo/non-spo and TapA on/off and were counted (Fig. 6A).

To get the distribution of TapA levels at different times (Fig. 2D), for each strain, we performed 1,000
runs of stochastic simulation for each strain. To test the behavior of the system under certain conditions
(Fig. S3), the model is simulated with a fixed SpoOA~P level and growth rate. For each condition, the
model is simulated for a long time (>200 h), and SinR and SIrR levels are sampled at an arithmetic
sequence of time points with a common difference of 0.5 h.

(vii) Simulations used to produce computational figures.

e Fig. S2 was generated by modeling the effect of growth rate on the gene copy number (section
“Modeling the effect of growth rate on the gene copy number”).
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Fig. 2A and 5A were generated by modeling the growth dynamics and heterogeneity (section
“Modeling the growth dynamics and heterogeneity”).

Fig. 2B and C and 4A (lines) and Fig. S4B were generated by the deterministic model of phosphorelay (11).
The reactions and parameters in this model can be found in Table S1 of reference 11. To simulate the
gene deletion mutant, the production rate of the corresponding protein was set to zero. To simulate the
dynamics as a function of time, results of Fig. 2A were employed.

Fig. 1B; 3A, B, and C; and 4A (shading) and Fig. S4C were generated by solving the deterministic
model of the Sinl-SinR-SIrR network (section “Deterministic simulation of the model of the Sinl-
SinR-SIrR network”) for fixed values of SpoOA~P and/or for growth rate as indicated. To emphasize
the effect of growth rate on the SinR/SIrR ratio (Fig. 3A), the repression of SIrR expression by SinR
was not modeled.

Fig. 1C and Fig. S3 were generated by stochastic simulation of the SinI-SinR-SIrR network (Table S2)
for a fixed value of SpoOA~P as indicated.

Fig. 2D, 4B, 5B, and 6A and Fig. S5 and S7 were generated by stochastic simulation of the Sinl-SinR-
SIrR network with stochastic and time-varying growth rates as described in section “Single-cell
sporulation and matrix expression.” The cell fates for Fig. 6A are determined as described in section
“Simulations used to produce computational figures.”

Strains, plasmids, and oligonucleotide DNAs. The strains, plasmids, and oligonucleotide DNAs
used are listed in Table S3 in the supplemental material. B. subtilis strains used in this work are isogenic
derivatives of the undomesticated and competent DK1042 (59). DK1042 is a derivative of strain NCIB
3610 forming a biofilm matrix (60). All mutant strains of B. subtilis were constructed by transformation
with either chromosomal DNA or plasmid DNA as described by Harwood and Cutting (61). The standard
recombinant DNA techniques, including plasmid DNA construction and isolation using Escherichia coli
DH5a were performed as described by Sambrook and Russell (62). Plasmid pMF523 (amyE:PspollQ-
mCherry spc) was constructed by ligating the PCR fragment containing the spollQ promoter and the cod-
ing region of mCherry into pDG1730 (63). The spollQ promoter region was amplified by PCR with primers
omf42 and omf43 using chromosomal DNA from B. subtilis PY79 as the template. The mCherry coding
region was amplified by PCR with primers om87 and om88 using pDR201 (64) as the template. The two
PCR products were recovered from the agarose gel and purified using the gel extraction kit (Qiagen).
The purified PspollQ DNA fragment was digested with EcoRI and Hindlll. The purified mCherry DNA frag-
ment was digested with Hindlll and BamHI. The digested DNA fragments were purified by the PCR purifi-
cation kit (Qiagen). The purified spollQ promoter and mCherry DNA fragments were mixed and ligated
with pDG1730 digested with EcoRl and BamHI. The resulting plasmid was integrated into the amyE locus
of the B. subtilis chromosomal DNA by double-crossover homologous recombination. Plasmid pMF1154
(thrC::PtapA-gfp-Icn erm) was constructed by ligating the PCR fragment containing the tapA promoter
and the coding region of GFP-LCN into pDG1664 (63). The tapA promoter region was prepared from
PMF712 with EcoRl and Hindlll digestion (12). The digested DNA fragment containing the tapA promoter
was recovered from the agarose gel and purified using the gel extraction kit (Qiagen). The GFP coding
region was amplified by PCR with primers omf316 and om528 using pMF719 (thrC::PtapA-gfp erm) as the
template (11). The PCR product containing gfp-lcn was recovered from the agarose gel and purified
using the gel extraction kit (Qiagen). The purified PCR product was digested with Hindlll and BamHI and
purified by the PCR purification kit (Qiagen). The purified tapA promoter and gfp-lcn DNA fragments
were mixed and ligated with pDG1664 digested with EcoRl and BamHI. The resulting plasmid was inte-
grated into the thrC locus of the B. subtilis chromosomal DNA by double-crossover homologous recom-
bination. Plasmid pMF713 (amyE::PepsA-lacZ spc) was constructed by ligating the PCR fragment contain-
ing the epsA promoter and pDG1728 (63). The epsA promoter region was amplified by PCR with primers
om210 and om211 using chromosomal DNA from B. subtilis PY79 as the template. The PCR product was
recovered from the agarose gel and purified using the gel extraction kit (Qiagen). The purified DNA frag-
ment was digested with EcoRI and Hindlll. The digested DNA fragment was purified by the PCR purifica-
tion kit (Qiagen). The purified DNA fragment was ligated with pDG1728 digested with EcoRI and Hindlll.

Media and culture conditions. Lysogeny broth (LB) medium (62) was used for routine growth of E.
coli and B. subtilis. Minimal salts glycerol glutamate (MSgg) medium was used for biofilm matrix produc-
tion and sporulation of B. subtilis (2). For nitrogen-depleted MSgg medium, t-glutamate was 10-fold
diluted (0.05% final concentration, relative to the original 0.5% final concentrations). Cells were cultured
with shaking (150 rpm) overnight in LB (5 mL) at 28°C. The overnight culture was transferred to fresh LB
(10 mL) to an optical density at 600 nm (ODy,,) of 0.05. The fresh culture was incubated at 37°C with
shaking (150 rpm) to the mid-log phase (OD,, ~ 0.5) to synchronize cell growth. Then, the fresh culture
was transferred to MSgg (20 mL) to an ODy,, of 0.05 and incubated in a culture flask at 37°C with shaking
(150 rpm). Culture samples were collected at the indicated time points and assayed for a specific activity
of a B-galactosidase reporter or processed for microscopy. Cell growth in liquid media was measured
using a spectrophotometer by reading the OD,,. Strains harboring reporter genes at the nonessential
thrC locus were supplemented with 1 mg mL™" of L-threonine in the MSgg medium. When making solid
agar medium, 1.5% (wt/vol) agar was included. Antibiotics were used for the selection of transformants
at the following concentrations: 10 ug mL™~" of tetracycline, 100 ug mL™" of spectinomycin, 20 ug mL™"
of kanamycin, 5 ug mL~" of chloramphenicol, and 1 ug mL™" of erythromycin.

B-Galactosidase assay. B. subtilis undomesticated strains were grown in a liquid medium as
described in the above section “Media and culture conditions.” Samples were collected at indicated time
points, and B-galactosidase assays were performed as described previously (11). The mean activities of
at least three independent experiments are shown with standard deviations.
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Microscopy analysis. Cells collected at the specified times were spotted onto MSgg medium containing
1% (wt/vol) agarose (ISC Bioexpress; E-3119-500) in a Gene Frame chamber (Thermo Scientific; AB-0577; 65 mL,
1.5 by 1.6 cm) and covered by a cover glass. The cell samples were examined immediately using a fluorescence
microscope (Olympus; model BX61) with an Olympus UPlanFL N 100x microscope objective. GFP and mCherry
fluorescence were visualized using Chroma 41017 and Olympus U-MWG2 filter sets, respectively. Typical expo-
sure times were 200 ms. The microscope system was operated using SlideBook image analysis software
(Intelligent Imaging Innovations, Inc), and the resulting images were processed as described previously (11).
Representative images are shown. GFP and mCherry channels are shown in green and magenta pseudocolors,
respectively. Using the same method as those in reference 11, we segmented the cells and calculated the pixel-
wise mean fluorescence intensity of GFP and mCherry for each cell. For each image, the pixel-wise mean GFP/
mCherry intensity of the no-cell area was calculated as background. The cells with PtapA activity significantly
higher than the background were considered “tapA-expressing cells,” and the cells with PspollQ activity signifi-
cantly higher than the background were considered “sporulating cells.” For each strain, 3 parallel experiments
for each strain were performed and 3 images containing between 600 and 1,600 cells in the field of view were
analyzed to determine the fraction of cells with each reporter activated. The fractions of tapA-expressing cells
were calculated with standard deviation of measurements from 9 images shown as error bars on Fig. 6. The
fold change for the tapA fraction between sporulating (spo) and nonsporulating (non-spo) cells were calculated
for each image. Then a two-sample t test was performed to compare data from pairs of strains (n = 9 data
points for each group), and the resulting P values are listed in Results.
Data availability. Parameters used for simulations are included in Table S1 and S2. The code and
data used in this work can be found online at https://doi.org/10.5281/zenodo.7544671.
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