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Abstract—The accuracy of many downstream machine learn-
ing algorithms is tied to the training data having uncorrelated
features. With the modern-day data often being streaming in
nature, geographically distributed, and having large dimensions,
it is paramount to apply both uncorrelated feature learning
and dimensionality reduction techniques in this scenario. Prin-
cipal Component Analysis (PCA) is a state-of-the-art tool that
simultaneously yields uncorrelated features and reduces data
dimensions by projecting data onto the eigenvectors of the
population covariance matrix. This paper introduces a novel algo-
rithm called Consensus-DIstributEd Generalized Oja (C-DIEGO),
which is based on Oja’s method, to estimate the dominant
eigenvector of a population covariance matrix in a distributed,
streaming setting. The algorithm considers a distributed network
of arbitrarily connected nodes without a central coordinator and
assumes data samples continuously arrive at the individual nodes
in a streaming manner. It is established in the paper that C-
DIEGO can achieve an order-optimal convergence rate if nodes
in the network are allowed to have enough consensus rounds per
algorithmic iteration. Numerical results are also reported in the
paper that showcase the efficacy of the proposed algorithm.

Index Terms—Dimension reduction, distributed learning, Oja’s
method, principal component analysis, streaming data

I. INTRODUCTION

Continuous learning from streaming data having uncor-
related features helps machine learning algorithms improve
their performance. The ever-increasing rate of streaming data
at geographically distributed nodes coupled with large data
dimensions is becoming a core challenge for algorithms that
store and process the data at a single computing node. In-
deed, collecting and processing a massive number of high-
dimensional samples at only one node is resource intensive.
This calls for data representation algorithms to be studied
under distributed settings where the streaming data can be
processed in real time at individual nodes.

Principal Component Analysis (PCA) is one of the pioneer
techniques that not only reduces the dimensions of the data but
also yields uncorrelated features [1]. Our focus in this paper
is on PCA from distributed streaming data, when there is no
central coordinator in the system.

PCA is a well-studied problem, and its adaption under the
streaming setting was first reported in the works of Krasulina
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[2] and Oja [3], who proposed stochastic methods that estimate
the top eigenvector of a population covariance matrix X.
In most applications, estimating the dominant eigenvector
is sufficient for data representation, provided there is an
eigengap A between the top two eigenvalues of 3. However,
these algorithms—being centralized solutions—can, at best,
converge to the top eigenvector in a streaming setting at
an asymptotic rate of O(1/+/t), where t is the time index
of algorithmic iteration. Obtaining finite sample convergence
rates for these algorithms has been an area of active research
[4], [5], where the rate is improved under different choices of
step size and the dependency on A is minimized.

Recently both Oja and Krasulina algorithms were studied
under distributed settings, and an increase in convergence rate
under the streaming data was provided. The rate improvement
is first seen in the works [6] and [7], where it is shown
that the sample complexity can be decreased by a factor
equal to the number of nodes N in a network. The proposed
algorithms in these works can provide convergence rates
on the order of O(1/4/Nt) under the assumption that a
network is Fully Connected (FC), where all nodes are able
to communicate with other nodes directly or through the
presence of a coordinator. However, no prior work has been
done that provides convergence guarantees on the order of
O(1/+/Nt) in a Non Fully Connected (NFC) network, where
the nodes are assumed to be arbitrarily connected without
the need of a central coordinator. This precludes the setup
in which processing nodes reach exact averaging using a
communication primitive such as A11Reduce [&].

In this paper, we propose a quasi-two-time scale algorithm,
termed Consensus-DIstributEd Generalized Oja (C-DIEGO),
that provides an order-optimal convergence rate of O(1/v/Nt)
for an NFC network. This rate is achieved under the assump-
tion that the per-iteration communication complexity of the
algorithm is O(T,;. log(Nt)), where the T),,;,. is the mixing
time of a Markov chain associated with the network topology.

A. Relation to Prior Work

The idea of decorrelation and compression of the data
samples using principal components dates back to the 1900s
when PCA was originally proposed [!]. It was further shown
that if data is streaming in nature, then one can estimate the top
eigenvector of 3 under certain statistical conditions on data



distribution [4]. This was first achieved in 1970 by Krauslina
[2], who proposed a stochastic approximation algorithm that
converges asymptotically to the top eigenvector. A similar
algorithm was later proposed in 1985 by Oja [3], which
was based on the Hebbian rule [9]. Extensions of the Oja
algorithm for multiple eigenvectors were first provided in [10].
Obtaining convergence rates under finite samples has always
been challenging. It was shown in [4] that one could achieve
a convergence rate of O(1/+/t) for both Krasulina and Oja
algorithms. This result was further improved by removing
the extra O(d°) multiplicative factor in the analysis of the
streaming Oja algorithm in [5], where d is the dimension of
the data samples. Other papers, including [1 1], [12], provided
convergence rates under finite samples in batch and mini-batch
settings, which are not fit for our case of streaming data.

Recently, PCA algorithms were proposed for the distributed
setting. These algorithms can be applied by splitting data either
i) by features or ii) by samples per node. In the former
case, each node has access to some subset of features of
one or more data samples, whereas in the latter case, each
node has access to one or more samples comprising of all
features. A detailed review of such algorithms for both types
is done in [I3]. One type of feature splitting-based PCA
method was proposed in [14], which extends the Oja algorithm
in a distributed setting. However, this result only provides
convergence guarantees in the asymptotic settings (f — 00).
There is a collection of papers that focus on sample-wise
data splitting methods of including, Cloud K-SVD [15], [16],
the orthogonal iteration-based solution [17], the Decentralized
Exact PCA (DEePCA) [18], and most recently FAST-PCA
[19], and Distributed Sanger Algorithm (DSA) [20]. While
these methods provide different results for estimates of either
the principal eigenspace, the top k eigenvectors (k > 1), or
only the dominant eigenvector, all of these methods either use
batch setting or mini-batch setting and are not well-suited for
our case of streaming data.

The increase in convergence rate by increasing the number
of nodes in a network in the streaming setting is first seen
in [6], which has extended the Krasulina algorithm to the
distributed setting and shown that the optimal convergence
rate of O(1/+/Nt) can be achieved after ¢ iterations under the
streaming setting. However, the analysis in this work assumes
an FC network. In this paper, we assume a sample-wise
splitting of data and provide convergence guarantees for the
Oja algorithm in distributed, streaming settings, and show that
the similar order-optimal rate of O(1/v/Nt) can be achieved
in an NFC network provided that the nodes perform enough
consensus rounds per algorithmic iteration .

B. Our Contributions

The first main contribution of this paper is a novel quasi-
two-time scale Consensus-DIstributEd Generalized Oja (C-
DIEGO) algorithm that estimates the dominant eigenvector
of 3 in a network of arbitrarily connected nodes under the
assumption that data samples are distributed and streaming
in nature. The algorithm achieves this by having multiple

consensus rounds per algorithmic iteration ¢. The second major
contribution of this paper is Theorem 1, which provides the
sample complexity error bound for the proposed algorithm in
an NFC network and shows that the order-optimal convergence
rate of O(1/v/Nt) can be achieved for distributed, streaming
PCA. Finally, we provide experimental results for the proposed
algorithm that corroborates our theoretical results.

C. Notation and Organization

We use standard notation for denoting scalars, vectors, and
matrices by lowercase, bold lowercase, and bold uppercase
letters, respectively. The notation a; ; denotes a vector at node
i and time ¢, whereas the superscript on a vector, as a(te),
denotes updates after t. rounds of consensus. In addition,
unless otherwise stated, all operator norms are denoted as |||,
and all vector I norms by ||-||. Finally, the symbol O denotes
the Big-O notation.

The rest of this paper is organized as follows: In Sec. II,
we formulate the problem of distributed streaming PCA. In
Sec. III, we introduce our C-DIEGO algorithm and provide
its convergence analysis. In Sec. IV, we provide numerical
results, and conclude in Sec. V. Finally, proof of the lemma
associated with our main result is provided in Appendix A.

II. PROBLEM FORMULATION

We consider a network of N geographically distributed
computational nodes arbitrarily connected in an undirected
graph G = (N, &), where N = {1,2,..., N} denotes the set
of N nodes and £ denotes edges in the graph with (i,5) € £
whenever there is a connection between node ¢ and node j. We
also assume that the network remains fixed for the duration
of our algorithm, and consider a sample-wise splitting of data
where each data sample x; ; € R? comprising of the set of
d features arrives at node i at every time ¢. We assume that
these data samples are drawn independently from a zero-mean
distribution having a covariance matrix X. This distribution is
assumed to remain fixed for the duration of our algorithm and
satisfies the following conditions [5]:

o Al: Hxi,txg:tHg < r almost surely.

o A2: |[E[(xi1x], — B)(xi0x], - 2)T]|, <o

PCA aims to find a low-dimensional subspace Y &
RI¥F d > k, for the data samples. Specifically, PCA captures
the maximum information in the data while decorrelating the
features, which we can write as X = Y7x, where X € R*
and Y has orthonormal columns. This is done by requiring
ExxT);; = E[YTxxTYT];; = 0,Vi # j, which is possible
only when Y contain the top k eigenvectors of 3.

Thus, the goal of PCA is to find the eigenvectors of 3.
However, true knowledge of X is unknown in reality, and
estimating eigenvectors using the batch sample covariance
matrix is not practical given the nature of data being distributed
and streaming. In the streaming setting, the aim is to have
an algorithm with O(d) computational complexity that up-
dates the eigenvector estimate upon receiving the newest data
sample. Therefore, we need stochastic PCA algorithms that



can estimate eigenvectors in a distributed streaming setting.
We propose the C-DIEGO algorithm for this purpose, which
is a stochastic PCA algorithm that estimates the dominant
eigenvector of 3, denoted as qi, when data is streaming and
distributed. The algorithm comes with convergence guarantees
for the eigenvector estimate at node ¢ after ¢ iterations.

Algorithm 1 Consensus-DIstributEd Generalized Oja (C-
DIEGO) Algorithm

Input: Incoming data at NV nodes {Xi,t}ili1 at time ¢ generated
from a fixed distribution of mean p = 0 and covariance matrix
3., a step size sequence {a; € R, }, doubly stochastic weight
matrix W, and total number of consensus rounds 7. > 1.

Initialize: All nodes are initialized with vy € R? generated

randomly over a unit sphere: ||vq|| =1
1: fort=1,2,..., do
2: (In Parallel) Node ¢ receives the data sample x; ; and

computes the Oja’s correction §; 4
Vie{l,2,...,N},

3: fort.=1,2,...,T. do

Vie{1,2,...,N}, &)« > wyeli

T
i (Xi,txi,tvi’tfl)

JEN;
4: end for
(Te)
5: it — 7[“,7«’6(31]1
6: Vit %Vivt_lﬁ’()étci’t Vie {1,2,,N}
Vi, .
7 vil(_m VZE{].,Q,...,N}
8: end for
Return: An estimate v;; of q; is returned, 1 =1,2,..., N.

III. PROPOSED ALGORITHM: CONSENSUS-DISTRIBUTED
GENERALIZED OJA (C-DIEGO)

We begin with the setup of arbitrarily connected nodes
in a network, where it is assumed that no node is isolated,
and the network lacks a central coordinator. We next define
N :={j: (i,j) € E} U{i} to be the neighborhood of node i
(including itself). The proposed algorithm C-DIEGO is given
in Algorithm 1, in which v; ; denotes the eigenvector estimate
at node 1 after ¢ algorithmic iterations.

In the algorithm, first all nodes are initialized with the same
(unit-norm) vector vo. Next, data samples x;; arrive at each
node ¢ (Step 2), and the nodes simultaneously compute their
respective local Oja’s correction terms &, ,’s that need to be
combined for updates to the prior eigenvector estimates v; ;’s.
This is followed by an inexact consensus averaging among
the &, ,’s (Steps 3-4), which involves the use of a doubly
stochastic weight matrix W that adheres to the topology of
our graph G. The 4,j entry of the W matrix is denoted by
w;j, where w;; = 0 (whenever) (i, j) ¢ €.

Note that Steps 3—4 of Algorithm 1 correspond to an inexact
averaging of the £, ,’s at each node 7 because of the nodes
having a finite number of consensus communication rounds 7},
with their neighbors, where ¢. € N is the index of consensus

iteration. Indeed, if 7. — oo then WTe — %IIT, where 1
is an all-ones vector. This implies that exact averaging of the
&, +’s is possible among the nodes provided infinite consensus
rounds are performed, but this is not feasible in practice.

Next, all nodes in the network normalize their respective in-
(Te)

= W, where e; := [1,0,...,0]7,
and []; denotes the i'" entry of a vector. This is followed
by the local updates of the estimates (Step 6), and a final
normalization in Step 7. The algorithm then repeats the process
till convergence.

Note that Steps 3—5 lead to a major source of error in the C-
DIEGO algorithm. To see this, consider a hypothetical version
of the C-DIEGO algorithm where, instead of Steps 3-5,
nodes use a message passing interface (MPI) communication
primitive such as A11Reduce [8] to reach exact averaging
of the §;,’s. In this scenario, we have w;; = 1/N for all
edges of the graph, and the eigenvector estimate at each
node will be the same, ie., v;; = v, Let us call this
estimate as exact averaging estimate. Since all nodes have
the same estimate in this case, so we drop the subscript
in v;; and denote the exact averaging estimate by Vv, after
t iterations. Clearly we have an error between exact and
inexact averaging estimat(eg )within each iteration ¢, denoted

(e

as €1 = Zf\; it — ﬁ Handling of this error is the

key in proving the bound between eigenvector estimates of
exact averaging and inexact averaging.

Our eventual goal is to establish convergence of the eigen-
vector estimate in the case of inexact averaging, denoted by
Vi, to the true eigenvector of X denoted as q;.

exact averages as (;

Remark 1. The normalization by [WZXe;]; in Step 5 is
compensated by the normalization in Step 7, and thereby the
output result is always a unit-norm vector. This normalization
aids us in the convergence analysis of our algorithm.

A. Convergence Analysis

We now investigate the error achieved by the quasi-two-time
scale C-DIEGO algorithm between the top eigenvector q; of
3 and the estimate available at node v, after ¢ iterations.
The ensuing analysis shows that the optimal convergence rate
can be achieved without requiring infinite consensus rounds.
Specifically, we prove that if O(T},;, log(Nt)) consensus
rounds are performed per algorithmic iteration ¢ then con-
vergence is guaranteed at a sub-linear rate of O(1/v/Nt),
which is optimal. The following theorem summarizes this
contribution.

Theorem 1. Consider the covariance matrix ¥ = E[x; ;x] ]
having dominant eigenvector 1 and eigenvalues A1 > Mg >
... > Ay, and let 7 denote the Euler constant and C' be an ab-
solute constant. Suppose assumptions A1 and A2 are satisfied,

_ T (v+AD)n*
then for n > 0.5, f = 20 max (()\1_”/\2), i) log(152) )

p € (0,1], and a step size of oy = m the following
holds after t iterations with probability 1 — p:

[ max larar — vieviyll, <



C"log(1/p) B\ (B +1)22
P (d(t> +Ntﬂ2<2n1><A1Az)2>

(1)

N 2rn ( t N ~>
BN — ) \B )
provided that number of the consensus iterations within each
algorithmic iteration t satisfies T, = O(T ;. log(Nt)).

Theorem 1 provides a bound on the sample complexity
of the error between the dominant eigenvector q; and the
estimate v, ; available at node 4 after ¢ iterations in an NFC
network. The quantity 7},,;, in the theorem is the mixing time
of the Markov chain associated with the doubly stochastic
weight matrix W of the graph G defined as [21]:
eiTWt—iﬂ” <;} )

Tmim: inf <t:
- Imax m{ N

i=1,...,N teN

The bound is expressed as a subspace difference and is a
function of two different errors: ) the error due to the cen-
tralized Oja’s solution, which decays at a rate of O(1/v/Nt),
and 47) the error due to the quasi-two-time scale nature of the
algorithm. The proof of Theorem 1 relies on two lemmas. The
first lemma provides the error bound between q; and v, and
is stated as follows.

Lemma 1. Fix some p € (0,1] and let o = m

2 2
where 7 > 0.5, 8 = 20max (()\12’7)\2), (Al—;;)g?ég)?1+ﬁ%)>’
and \; denotes the ith largest eigenvalue of . Then assuming
Al and A2 hold, and under the case when exact averaging of
&, +’s is possible in Algorithm 1, the eigenvector estimate \7
at every node converges to qy after t iterations in the sense
that

sinz(ql,ﬂ) <
C'log(1/p) AN v(B+ 1)%n?
e (d (7) + v =it = w) -

with probability at least 1 — p, where C' is an absolute
constant.

The proof of Lemma 1 is provided in [7, Chapter 5]. This
lemma shows that the rate increase of /N is achieved if the
Oja algorithm runs in a distributed streaming setting within
an FC network where exact averaging is possible. We now
provide the second lemma, which bounds the error at node
1 between the eigenvector estimates corresponding to an FC
network (ideal case) and an NFC network (our setting) after
t algorithmic iterations provided that in both topologies, the
algorithm is initialized with the same eigenvector estimate.

Lemma 2. Consider all nodes to have been initialized with
vo and suppose the eigenvalues of X satisfies \1 > Ao. Then
under assumptions A1 and A2 and for any § > 0, the following

holds true:
[Ve = viel < _ N (t + >
t Lt = ()\1_/\2) B v

“)

rn (v+A%)n?
()\17)\2) ) (}\17}\2)2 log(lJrligo)

where 3 = 20max (
the Euler constant.

) and 7 is

The proof of this lemma is provided in Appendix A. By
choosing § = 1/(Nt)%, Lemma 2 allows us to have the
same error decay rate as of Lemma | and thus to make the
convergence rate of the order of O(1/+/Nt) for both errors. By
using this choice of § and the modified consensus averaging
[22, Theorem 5], we obtain the optimal consensus rounds of
T, = O(T iz log(Nt)). We now use Lemma 1 and Lemma 2
to prove the main result of this paper.

Proof of Theorem 1. Let v, denote the eigenvector estimate
within C-DIEGO at time ¢ when exact averaging is utilized
in place of Steps 3-5. Then from Lemma | and applying the
fact that quqlT - @ﬁt||2 = | sin @, where 6 = Z(q1,V), we
have:

|araf —viv/ |, <

Crlog(1/p) [, (B 2 N v(B +1)2n?
p3 t NtB2(2n —1)(A1 — A2)2 )’
4)
Next, using the fact that ||aa” — bbT||2 < 2|la — b]|, from
Lemma 2, we have:
~~ 20N t
HVtV? —Vi,tVZ:tHQ < ﬁ (5 +’7) (6)

Next for a given node i, we have from triangle inequality:

Jarat —vieviy|, <

||Q1q{ — VtV;THQ + Hﬂ@rf — Viytvg:tH2 .

)
Using (5) and (6) in (7) completes the proof. |

IV. NUMERICAL RESULTS

In this section, we demonstrate the convergence behavior
of C-DIEGO through numerical experiments. We generate an
undirected connected network of N nodes for each experiment
using the Erd6s-Rényi model with parameter p. The weight
matrix W is generated using the Metropolis-Hastings algo-
rithm [23], in which the weights computed for each edge use
the following local degree rule:

1
max{di, dj} ’

where d; and d; denote the degree of node i and node j,
respectively. We further use the following error metric to
compute the error between the eigenvector estimate at node
i at time t and the true eigenvector q; of 3 to comply with
our analysis:

®)

w;j =

(via1)?
1= vgjtvi,t ©)

max

€it =
’ i=1,2,...,N

This error metric computes the sine angle between q; and
v;+ and is a standard used in convergence analysis for PCA
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Fig. 1: Average error for different values of T, and A for both synthetic and real-world data.

algorithms. The maximum number of consensus rounds is
taken to be T, = Tynix¢log(Nt), which we define as our
optimal T,. We set the tuning parameter ¢ = 3/2 for all our
experiments, and T,,,;, is computed using the rule defined in
(2). We provide experimental results with both synthetic data
and real-world MNIST dataset.

A. Experiments using Synthetic Data

In synthetic data experiments, we generate an undirected
Erd6s-Rényi graph of NV = 40 nodes with parameter p = 0.1.
The data samples at each node x;; having d = 20 dimen-
sions are generated using a zero-mean multivariate Gaussian
distribution with covariance matrix 3 with a pre-defined
eigengap A = A\; — Ag. At every iteration ¢, the error is
computed using the metric defined in (9), the results are further
averaged over 50 Monte-Carlo trials, and the step size is set
as qp = %, where o = 0.05 is chosen after cross-validation.
Figure la shows the experimental results for different values
of T, under fixed A = 0.68. We can see that for optimal
T., the gap between the error of the NFC and FC graphs
vanishes. Moreover, the slope at the tail of the FC and NFC
curve is —0.51, which coincides with our analysis. Next, we
provide an additional experiment illustrating the impact of
A on convergence behavior in Figure 1b. We performed this
experiment by generating an Erdds-Rényi graph of N = 40
nodes with parameter p = 0.1. The optimal 7. = 153, and
we can observe that the convergence is better when the A is
larger, which coincides with our theoretical results.

B. Experiments using Real-World Data

In this section, we demonstrate the performance of our
algorithm using real-world data. For this purpose, we choose
the MNIST dataset of handwritten images [24]. Each sample
of this dataset has d = 784 dimensions, and the total number
of samples is n = 60,000. We generate an undirected Erdds-
Rényi graph of N = 10 nodes with parameter p = 0.1. As
the distribution of the MNIST dataset is unknown, we use
the batch method estimate of q; using the sample covariance
matrix for our algorithm performance. The results are averaged
over 50 Monte-Carlo trials, where random shuffling of data is

performed in each trial. After cross-validation, the initial step
size is set as a = 0.01. The results are shown in Figure Ic,
and we can observe the best performance is achieved when
the optimal 7 is used in an NFC graph.

V. CONCLUSION

In this paper, we have proposed a new quasi two-time scale
distributed algorithm based on the Oja algorithm termed C-
DIEGO that guarantees the order-optimal convergence rate for
the dominant eigenvector of the population covariance matrix
in a non-fully connected network in which samples arrive
in a streaming manner. Theoretical analysis of our algorithm
shows that we can recover the same convergence rate of a
fully connected network provided O(T,,;, log(Nt)) consensus
rounds are performed in each algorithmic iteration ¢, and our
experimental results confirm the efficacy of our analysis. The
generalization of this analysis to the top k eigenvectors is a
promising future direction for this work.

APPENDIX A
PROOF OF LEMMA 2

In order to prove Lemma 2, we first prove a supporting
Lemma 3, which bounds the consensus error at each node 3.
Lemma 3 uses the following proposition from the literature
that characterizes the convergence behavior of vector consen-
sus averaging as a function of the number of consensus rounds.

Proposition 1. [22, Theorem 5] Define Eg“) € R ¢
be a vector at node i after T, consensus rounds for i €
{1,2,..., N}, where the initial value at each node is given by
&1 Let &, = 010, €17, and define ¢, = 211 1€17)], where
|a| denotes the element-wise absolute value of a. For any
§ >0 and T, = O(Tyniz log 6~ 1), the approximation error of

(Te) _ , ‘
—ctH <o ¢i||, vi

averaging consensus satisfies Wieel:
- i

We now state and prove Lemma 3, which uses Proposition 1:

Lemma 3. Let the output of Step 5 of Algorithm 1 in
the case of exact averaging to be (, and in the case of
inexact averaging, denote the output to be ;. Then from



Proposition 1 and under the assumption Al, the following is
true at any time t:

¢, —¢ (10)

Proof. The error due to finite consensus at node ¢ after ¢

i’tH < Nr.

iterations is €;; = ¢, — ¢; ;. Then,
B N E(T)
HCt_Ci,tH = géi,t_m (11)
N
> gl (12)
=1
d N 1/2
SOVN (DD Ig[RIP (13)
k;l =1 1/2
= VN (Y& (14)
l;1 1/2
= VN (Y xiaxFiviaa| (15)
l;1 1/2
< VN [N [[xiexD s Vit (16)
=1
< N7 (17)

where (12) follows from Proposition 1, we apply Cauchy-
Schwarz inequality in (13), and Oja’s correction term in
(15), and finally (16) follows from the fact that ||Ax| <
Al [ =

We are now ready to prove our main Lemma 2.

Proof. Consider all nodes to have been initialized with vy. We
first prove that the following holds after ¢ iterations:

¢
Ve — Vil < 5N7“Zozi.

(18)
i=1
To this end, notice that at ¢t = 1, we have:
V1 = Vil = ||vo + 1y — vo + a1, || (19)
= ||ea(¢y = ¢in)|| < arNér, (20)

where (20) follows from Lemma 3. Now assuming (18) holds
at t = k — 1, then at ¢ = k& we have:

Ve = Vigll = ||[Vie1 + anCp — vip—1 —owiil| @D
< Ve — v k—1||+ozk||Ck—CikH (22)
k—1
< 5N7‘Z% + apdNr = 5Nr2a“ (23)
i=1 i=1
which proves (18). Now plugging o; = W—AZW in (18)
and the fact that 3"!_, «; is a partial harmonic series we have:
N SNrn ( t ~>
Vi—Vitl]| = ——= [log(1+ =)+ 24
|| t ,tH (Al _ )\2) g( B) ’y ( )

ONTY
Gowmtl) o
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