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Abstract

Configurable software makes up most of the software in use
today. Configurability, i.e., the ability of software to be cus-
tomized without additional programming, is pervasive, and
due to the criticality of problems caused by misconfigura-
tion, it has been an active topic researched by investigators
in multiple, diverse areas. This broad reach of configurabil-
ity means that much of the literature and latest results are
dispersed, and researchers may not be collaborating or be
aware of similar problems and solutions in other domains.
We argue that this lack of a common ground leads to a missed
opportunity for synergy between research domains and the
synthesis of efforts to tackle configurability problems. In
short, configurability cuts across software as a whole and
needs to be treated as a first class programming element. To
provide a foundation for addressing these concerns we make
suggestions on how to bring the communities together and
propose a common model of configurability and a platform,
ACCORD, to facilitate collaboration among researchers and
practitioners.
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1 Introduction

Configurable software makes up most of the software in use
today. Developers typically expose sets of preferences (or
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configuration options) which can be selected and combined
in different ways, forming unique instances of the program
for each combination of settings. Configurable software can
be found in applications for a range of purposes, e.g. business,
science, entertainment, system administration, health, and
embedded devices [8, 9, 12, 16, 24, 25, 28, 31, 34, 42, 44, 53,
58, 63]. On one end of the spectrum, configuration options
may be manifested as user-facing settings such as turning
JavaScript on or off in a web browser while, on the other
end, it could involve a system builder selecting a driver or
protocol for a specific hardware sensor or an administrator
defining a set of allowable settings that are known to be
secure. Configurations can be defined in an ad-hoc manner
or in a more formal language, such as those used in Kconfig
or sendmail. It may also mean choosing specific devices
and tuning their settings in a mixed environment such as
the Internet of Things (IoT), file systems or even surgical
robots [36, 53].

In essence, configurability is pervasive. At the same time
this penchant for customization can have a large impact on
software quality across all stages of development, (e.g. design,
coding, testing, deployment, etc.) which means that config-
urability impacts software reliability, correctness, usability,
and security. As a case in point, security misconfiguration is
listed as number five in the Open Web Application Security
Project’s (OWASP) 2021 top ten list of the most critical se-
curity risks [46], up from sixth place in the last report from
2017. OWASP tracks security incidents across half a million
applications, and misconfiguration has one of the highest
incidence rates across applications, 4.5% on average, with
over two hundred thousand incidents in total.

The criticality of problems due to misconfigurations (a
general term we clarify later) along with the many facets
of software and its life cycle including requirements, devel-
opment, security and testing, and the fact that it is used in
most software domains, means it has been an active topic
researched by investigators in multiple, diverse areas such as
systems, networking, software engineering, programming
languages, machine learning, scientific computing, human
computer interaction, and more.

Figure 1 represents different facets (domain, stakeholder
and impact) of configurability. The first facet domain indi-
cates the reach of configurability into different application
sectors. Stakeholder captures the human facet: who is in-
teracting with and being impacted by configurability. And
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last impact shows the effect that configurability can have
on software (e.g. variable correctness or safety properties).
The combinatorics of combining these facets has meant an
explosion in research without a central core.

For instance, the software engineering community has
studied configuration faults [1, 4, 7, 20, 38, 39, 48, 50, 60-62]
and the need to reduce options for usability [4, 27, 28, 51, 58]
or to predict performance [3, 23, 26, 42, 52, 55], the security
community has looked at impacts on security [16, 19, 21, 40,
47,53, 56], the systems community has focused on problems
related to overall system configuration [10, 18, 49] and even
file storage [34].

* correctness

+ performance
X « safety
: busll)pless + security
mobile « usability
« parallel
« scientific
+ systems
+ learning
stakeholder
« developer
« end user
+ researcher
+ sys admin
« test engineer

Figure 1. Different facets of configurability. Domain includes
the application sector, stakeholders are those within the soft-
ware ecosystem who are impacted by configurability and
impact indicates the effect of varying configurations.

Additionally, there is research from the Human Computer
Interaction (or HCI) community [37, 59], and the scientific
community which impacts both performance and function-
ality of their tools [8, 29, 35]. Last, Artificial Intelligence
researchers have proposed different ways to achieve optimal
parameter tuning [5, 6, 30]. Despite our attempted survey
here, we admit we are most likely missing key contributions
to this field; it is simply too diverse.

This broad reach of configurability means that much of the
literature and latest results for managing its complexity are
dispersed, and researchers or practitioners in these different
domains may not be collaborating, and/or may not aware of
similar problems and solutions in other domains. This can
lead both to duplication and missed opportunities to build
on state of the art solutions. In short, there is community
fragmentation; configurability isn’t seen as a first-class ele-
ment, but rather has become an ancillary, yet crosscutting
problem.

An exemplar of this fragmentation is its lack of an ACM
Content Classification System (CCS) category. CCS contains

260

Paul Gazzillo and Myra B. Cohen

“Software configuration management and version control sys-
tems” and “Software product lines” (one type of configurabil-
ity) [13], but configuration management has other meanings
and product lines encompass one particular paradigm of
configurability. Hence, someone trying to understand the
wide-ranging effects or research topics on configurability
cannot easily find all of this research.

We argue that this lack of a common ground leads to
a missed opportunity for synergy between research
domains and the synthesis of efforts to tackle config-
urability problems. We need a shared set of solutions.

In short, configurability cuts across software as a whole,
going beyond just software engineering. Key challenges we
face due to this fragmentation are (1) a lack of common
terms and definitions, (2) overlapping research efforts in
separate communities, (3) research venues without explicit
vehicles for sharing and collaboration on common problems,
and (4) solutions that are bespoke for each domain, losing
opportunities to build general solutions.

There are several benefits of incorporating configurabil-
ity into language design. Hence, we view the programming
languages community as an important part of this endeavor—
the opportunity to build practical and foundational solutions
for end-to-end configurability. While this alone will not solve
the problem, including configurability in language design
will (1) force designers and builders to consider configurabil-
ity from the beginning, (2) allow modeling languages that
are used to reason about the variability space to be leveraged,
and (3) add expressiveness that can be used by both static and
dynamic analyses to facilitate finding misconfiguration bugs,
which have become highly prevalent, yet are notoriously
difficult to find since they involve the interaction between
the language, build system, and other software infrastruc-
ture. Last, (4) performance (or other) metrics can be assigned
to code, models and intermediate representations, creating
end-to-end traceability.

To provide a foundation for addressing these concerns
we propose a common model and suggest a software de-
velopment paradigm that makes configurability first class
(Section 3), along with a platform to facilitate collaboration
among researchers and practitioners (Section 4).

2 Motivating Examples

We now illustrate how configurability interacts with soft-
ware using a security example. In this example, a fault in
the configuration code opens the application up to memory
leakage. Optionsbleed was an exploit in the Apache web-
server that “bleeds” arbitrary memory contents to a remote
attacker [15, 21]. It demonstrates how unexpected configura-
tion settings can lead to problems. This fault only manifests
when an administrator configures a restriction on which
HTTP methods are available to a client. The Limit directive
(Figure 2a) restricts access to the specified HTTP methods,
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a useful setting for securing a server. In this case, a restric-
tion was meant to be placed on PUT, DELETE, and BIND.
However, DELETE is incorrectly spelled as DELTE.

<Limit PUT DELTE BIND>
</Limit>

(a) The (mispelled) .htaccess file.

./configure --enable-dav

(b) The build option that compiles the WebDAV module.

a2enmod dav

(c) The tool that enables the WebDAV module.

Figure 2. The three separate configuration mechanisms in-
volved in Optionsbleed. Unless both (b) and (c) are config-
ured, (a)’s use of BIND will expose Optionsbleed.

But the validity of the HTTP method also depends on what
extensions have been configured into the server, e.g., BIND
is only available if WebDAV support is enabled by the build
configuration script (Figure 2b) and run-time configuration
tool (Figure 2c).

Each HTTP method can be enabled independently (and
combined arbitrarily), therefore we would consider each of
these a configuration option with the possible values of on or
off. Other configuration options can have multiple values, for
instance, if the various HTTP methods were exclusive and
only one could be selected at a time. In this system, providing
an unknown HTTP method (i.e. using the wrong spelling
for the method, e.g., DELTE, or if for any other reason the
extension is not actually built into the server code), causes
a use-after-free bug in the server’s HTTP method handling
code. Therefore, BIND also causes a use-after-free, but only
when WebDAYV is enabled, since it depends on WebDAV.

This is a classic case of a misconfiguration and is due to
the fact that the developer did not add code to ensure that
the user can only select valid configuration values. The chal-
lenge is that the absolute choice of values is dynamic and
dependent on other aspects of the system; it is hard for the
developer to encode all options and easily validate a user’s
choice. Ironically, security best practices recommend dis-
abling unneeded features to reduce the attack surface [46],
which in this case increases the possibility of triggering the
leak. This illustrates the need to identify and constrain con-
figuration options just as one would when performing type
checking.

Since it triggers a use-after-free, Optionsbleed is in some
sense just a traditional software fault. It is sometimes also
called a feature interaction, or simply an interaction fault,
another confusion in the broader community. This fault only
exists in the software under certain configuration settings,
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hence we use the term misconfiguration. Without the miscon-
figuration, there is no code path that an attacker could ever
use to trigger the bug. This distinction is subtle: a traditional
fault is a fault because the software violates the specified
behavior of the program; in this case, accessing the memory
of freed pointers is a typically a violation of correctness. On
the other hand, the only reason the fault is feasible is because
of a configuration setting that is not supposed to be possible,
i.e., referring to an non-existent HT'TP method.

To further tease out the distinction between configuration-
related faults, we can look at how a developer fixes the prob-
lem. Do they just modify the program code? Do they update
the installation instructions or modify the build system to
make such configuration settings impossible to make? For
Optionsbleed, of course, modifying the pointer-handling
code to prevent the use of the dangling pointer would close
the leak. But the problem of misconfiguration would still
remain: how should the software behave when given an
unsupported HTTP method? If the build and configuration
system enforced explicit specifications of what configuration
settings are valid, then the vulnerability would not have been
reachable in the first place.

To see this in another context, take the SSH daemon root
port privilege escalation vulnerability [14]. This case in-
volves two configurable options, one to run the daemon
as root and one to allow forwarding to a local socket. Both
features work correctly independently. When used together,
however, this leads to a privilege escalation since users can
run programs as root, a non-functional program fault. This
fault relies on a security policy or an oracle to validate the
correct privileges. Without an explicit specification of what
configurations are secure, the consequences of their unex-
pected combination are difficult to reason about. While the
developer could have decided that the configuration was
permissible and rely on the user to harden their daemon,
the developer instead decided that combining these options
should not be allowed by any user, i.e., a misconfiguration,
because of the security implications citesshbug.

2.1 Configuration Options as Program Values

These misconfigurations might have been framed as tradi-
tional program correctness or security properties, where
configuration options are just program inputs. But config-
uration systems are not always implemented in the same
language as the software itself (or in a programming lan-
guage at all): configuration systems may involve compile-
time metaprogramming, i.e., macros or conditional compi-
lation. Moreover, configuration options may be persistent
across an entire system of separate programs and devices,
such as UNIX environment variables.

Therefore, we define configuration options as typically
long-lived, global values for an entire software system that
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are set once and either retain the same value during exe-
cution (in the case of Optionsbleed) or changed via a well-
defined settings menu in interactive programs.

A configuration option is then a special kind of program
value that exists outside of any particular program and may
affect program behavior by altering what the program is
versus what the program does during a particular execution.
In this way, configuration options can turn an individual
program into a family of closely related programs.

This leads us to posit that configuration options and their
specifications, are distinct, first-class concepts in software
engineering. While there is overlap between software and con-
figuration specification, we believe there is a benefit to provid-
ing developers with methods to make this distinction explicit
in their software.

The activity of defining software configurations is com-
mon and distinct enough, the problem space is unique enough,
and the potential benefits are strong enough to warrant pro-
viding developers these tools for defining and implementing
their software configurations. Akin to types, first-class ob-
jects, or first-class functions, first-class configuration options
provide developer a way to explicitly specify software config-
urations and to give researchers information about developer
intent when designing algorithms, analyses, tools, etc.

3 Towards a Common Ground

To help describe the disparate communities affected by con-
figurability and who are working on related challenges, we
present a model that encompasses a wide range of research
on configurability and translates across domains. There are
multiple views of configurable software, including the layers
of configurable software itself, what parts of the software
development lifecycle are involved in them, and what kinds
of faults emerge from configurable software.

Figure 3 presents the ideas of configurability using this
model. In the middle is the configurable software itself, viewed
here as taking a set of configuration options (also called fea-
tures, settings, etc.) and producing a system of software
variants, one for each software component in an entire sys-
tem. For instance, a web service may consist of a configured
kernel, webserver, and application, and an IoT system may
consist of a number of different smart devices configured for
a specific type of home. We identify four main components
that group together the many manifestations of configurable
software: User and developer specifications, the configu-
ration implementation, and the program code itself. This
grouping covers many widely-varying kinds of configurable
software. For instance, specifications may be formal feature
models, UNIX-style . conf files, or just informal README
files. We separate user and developer specifications, because
users may have their own constraints on what are their ac-
ceptable configurations that developers still allow for other
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users. For instance, an operating system developer may per-
mit any kind of password policy, while one particular system
administrator (here a user of the system software) may im-
pose their own password policies.

The configuration implementation component refers to
how configuration options are used to select a program vari-
ant. These may be implemented with compile-time tech-
niques, such as Makefiles in C software, or run-time tech-
niques such as feature flags in Firefox. Finally, the program
code is the part of the software that is oblivious to config-
urability. It is the set of all possible variants that the config-
uration implementation chooses from. With compile-time
configurability, the program code may be in a different lan-
guage from the configuration implementation, e.g., C versus
Makefiles. But the two might also be blended, as in the case
of Firefox, where the distinction is only captured in the con-
trol flow of developer-defined configuration options versus
program input like the search bar.

Each of these groupings corresponds to some phase(s) of
the typical software development lifecycle. The specification
components are usually in the realm of requirements engi-
neering, while the configuration implementation and pro-
gramming are part of development. Maintenance spans spec-
ifications and implementation, since fixing bugs or adding
features may involve modifying either. Testing spans nearly
the entire stack: configuration testing might read the spec-
ifications to devise tests, unit testing might only involve
program code, and system testing might use the deployed
software variant.

3.1 Explaining Misconfigurations using the Model

This model provides a common ground for translating work
on configurable software, because each grouping maps to
the many research and industry efforts on configurable soft-
ware. For instance, research on configuration testing algo-
rithms can apply to any configuration specifications, be they
compile-time or run-time. Performance testing in the biol-
ogy domain can benefit from techniques developed in the
feature-oriented software domain and vice-versa.

In addition to providing a common ground for translation
across domains, our model also provides a more specific ex-
planation of misconfiguration bugs. Misconfiguration bugs
are currently a hodge-podge of various kinds of software
faults [45], for instance, a NULL pointer error in the Linux
kernel source that occurs only under x86, when NUMA and
PCI are enabled [1, 2] or a build that fails to compile. A
misconfiguration is used for any fault, security problem, or
performance issue with a wide variety of differing exam-
ples, such as a failure to change a default password or a
complex interaction between differing configuration options
as in SSHD privilege escalation. They can also be ordinary-
seeming faults such as a divide by zero, but one that can only
be triggered under specific configurations.
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Figure 3. Configurable software components, faults, and lifecycle phases.

Table 1. Examples of configuration-related bugs.

Example Model Component

Fault Type Fault Description

Plaintext logging [11, 32, 57] User specifications

Configuration violates user’s
own policies

User configuration misuse

sshd privilege escalation [14] Developer specifications

Configuration should never be
permitted

Software configuration misuse

Unimplemented Firefox option [4]

Configuration implementation

Configuration implementation Program code is missing

bug

Kernel panic in a variation [1,2]  Program code

Table 1 lists different misconfiguration faults, a descrip-
tion, an example, and what component of the Common
Model in Figure 3 it corresponds to. A user configuration
misuse is a violation of the user’s own configuration speci-
fication. For example, when Facebook, Twitter, and others
inadvertently left plaintext logging on their development
servers, they violated their own security policies [11, 32, 57].
The fix may not involve removing these options from the
web server software, since such logging is still useful for
development servers; it is a violation of the software user’s
specification, not the developer’s.

The SSHD privilege fault [14] is an example of a fault in
the developer’s specification. Since the developer decided
that the combination of options should never be permissible
by any user, the fix was made in the configuration checking
code that all user’s of the software are subjected to, rather
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Correctness of the variant is
violated

Variability bug

than advising user’s to avoid the options via a hardening
guide or configuration checker.

The unimplemented configuration option in Firefox is an
example of a bug in the code that implements configuration
options, since the program code was available and the con-
figuration option was selectable, but the connection between
the two was broken by the implementation; the code was
had been deleted [4].

Finally, bugs in the program code are essentially indis-
tinguishable from conventional bugs that occur when there
is no configurability. For instance, the kernel panic in this
example was caused by a NULL pointer error in the pro-
gram code [1, 2]. The selection of options was correct, the
implementation chose the right program code, but the imple-
mentation of the program had a bug. Sometimes, such bugs
are called variability bugs, not because they are caused by
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the configurability of the system, but because they may only
appear in some configurations of the software.

4 Bringing the Communities Together

The use of configurable software is only increasing and the
gaps between researchers and practitioners affected by con-
figurability will likely only grow. Our goal is to bring together
the multiple affected communities to foster collaboration,
share solutions, and increase awareness. Collectively, we
can advance the state of the art in configurability research
and practice, create stronger communities, and maximize the
safety and reliability of configurable software.

To facilitate collaboration, we present ACCORD, A Com-
munity for Configurability Open Research and Development.
ACCORD is a framework meant to enable shared infras-
tructure with community contributions and solutions. As
a framework it can be instantiated in multiple ways, such
as via online repositories, shared communication channels,
and increased interaction between research communities.
Over time we envision ACCORD cultivating a common lexi-
con that embodies configurability, providing a way to share
tools and best practices, and housing examples of potential
faults or pitfalls (configuration smells) in different domains,
along with solutions to avoid those pitfalls, i.e. configuration
patterns.

Possible mechanisms to achieve the objectives of ACCORD
are to host workshops co-located in conferences on the af-
fected domains, e.g., systems, bioinformatics, etc., to host a
shared, online repository for tools, patterns and best prac-
tices, and to organize a periodic summit with representatives
from the affected domains.

For instance, if IDEs are built with configurability in mind,
then documentation and traceability can be easily imple-
mented. And when we denote a variable as a configuration
option, why not enforce its relationships and dependencies
across the system as we would a type in any other program?
Going one step further, as we utilize common unit testing
frameworks, they could provide automated parameterization
based on those documented configuration options. But these
kinds of solutions take a community, as we will need tools
that are not bespoke or programming language dependent,
but that work across multiple languages and generalize to
different domains, each of which has its own notion and way
of viewing and using configurations.

Figure 4 illustrates the connection between some of the
communities affected by configurability and a proposed col-
laborative platform, for instance the programming languages
community for building domain-specific languages and new
high-level typing constructs, the software engineering com-
munity for creating develop tools, and other communities
such as artificial intelligence, networking, and systems. We
also include stakeholders such as educators and industry
partners, who are also important for adoption and training.
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The ACCORD community would host repositories of domain
specific programming languages, tools, models, faults, and
labeled data for research on configurability which can be
widely used. It has the potential to cross the research dis-
cipline divide across key communities where research on
configurability has been flourishing, e.g. software engineer-
ing, systems, and programming languages.

To make ACCORD succeed, we need common conceptual
foundations so that researchers from multiple disciplines can
more easily work together and exchange ideas. For instance,
elevating configuration options to first-class language con-
structs will provide explicit, machine-readable expressions
of configurability. But this effort requires care to not only
add configurability features to languages, but to provide
tool support for existing configurable software, research the
ramifications of the design, and integrate first-class config-
urability into existing software processes for both computer
scientists and researchers in other fields using software, e.g.,
bioinformatics.

To provide the foundation for common research efforts,
we propose research tasks for making configurability a first-
class construct, with a shared set of artifacts for use in collab-
orative research, promotion of configurability, and education.
For example, we can extend existing languages by adding
formally-defined comments containing configuration option
declarations with their dependency constraints, e.g., javadoc,
pydoc, etc.

By extending automated documentation engines that sup-
port code analysis, this approach provides a basis for build-
ing tooling for several phases of the software development
lifecycle, such as combinatorial configuration testing, type-
checking, etc. This approach provides a platform for explor-
ing configuration as a first-class construct that can be used
to inform future language- and tool-design decisions for
integrating software configurability into software tooling.

If we focus on existing solutions for configurability, they
are simply not enough. For instance #ifdef's, while used
extensively for configurability, are not part of the actual C
language [22]. Variability calculus [17] provides fundamen-
tal constructs for variability, but it is not at the right level
of abstraction for most working on configurability. Javadoc
provides automated documentation but lacks a way to an-
notate or indicate configurations as other automated docu-
mentation systems, e.g. doxygen [54], do for other program
symbols. Instead we need novel, high-level annotations and
type systems to bring configurability to the forefront.

4.1 Enabling New Research

By building cross-discipline shareable artifacts, we hope AC-
CORD will lead to novel research directions. For instance,
the systems community will be able to leverage results from
software testing and validation to improve system reliabil-
ity. It will allow systems researchers to build more formal
approaches based on the software engineering work. At the
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Figure 4. A Community for Configurability Open Research and Development

same time, the software engineering community will have
access to larger, more realistic applications with domain
knowledge and a better understanding of realistic workloads
and use cases. They will also need to consider scalability in
ways that they may not have previously considered, as well
as issues such as parallelism and threading. By involving
the programming languages community, common languages
and classifications of types of configuration faults (as well
as mitigation by type) will be enabled.

In the security community, research on topics such as
debloating to reduce attack surfaces, security analysis (like
testing/debugging), and reverse engineering of configuration
code will be able to leverage current tools and data sets for
experimentation. In general all of the research communities
will benefit from reuse and not having to reinvent similar
solutions. Take for instance, the area of parameter tuning for
machine learning software (one possible community for AC-
CORD). While hyper-parameters are specific to parameters
of the machine learning models, and may not be considered
traditional configuration options, the use of several opti-
mization techniques such as grid-search, and the ability to
reuse configuration predictions via transfer learning, can
benefit researchers in other software domains. At the same
time, there are configurable options (not related to hyper-
parameters) which behave in a similar way to configuration
options in traditional configurable systems and can lead to
misconfigurations.

Besides the ability to quickly build on techniques across
domains, we plan to build training materials and provide
tools that can be used generally for all domains. We provide
more concrete examples below of ways that ACCORD can
help the larger community.

Programming Language Researchers. Program-
ming language researchers will be able to help make
configurations a first-class construct using a common
model that can be used to inform future language- and

tool-design decisions for integrating software config-
urability into software tooling.

Systems Builders. This can be a catalyst to improve
research from multiple domains; e.g., the systems engi-
neer could utilize predictive models to help pre-screen
their system to find areas of concern in a more scalable
way. But the tools may not scale to larger systems, driv-
ing software engineering researchers to develop better
and more scalable predictive approaches. Systems engi-
neers could utilize configuration localization research
to help identify the root causes of faults they find,
while the software engineers would need to expand
these techniques, for instance, to handle dependencies.
Having a domain-specific language will allow easier
entry into this area and create more cross-fertilization.
Security Engineers. Take an Apache web server mis-
configuration which exposes server memory to an at-
tacker that is caused by unchecked configuration files
and interactions between software features. By build-
ing a community repository for software configuration
models, security engineers can pose new configura-
tion problems and leverage configuration testing tools,
while software engineering researchers can develop
newer and better models and apply them to critical
systems software.

Software Engineers. Software engineers who build
tools for sampling configuration spaces will have ac-
cess to real-world models and constraints so that they
can validate the scalability and usefulness of their tools.
The existence of benchmarks of programs and artifacts
will allow them to compare techniques on a wide range
of software systems.

4.2 An Example of Collaboration

While ACCORD is still a vision, we present a real use-case
with an industrial partner of the first author to motivate the
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potential benefits for an interdisciplinary approach to solv-
ing problems related to configurability. The work began with
new techniques for producing more accurate models of the
Linux kernel build system. We developed an algorithm and
tool to collect a logical model of the configuration specifica-
tions from build system code automatically [44]. In order to
improve the model, we collaborated with other software en-
gineering researchers to apply the model to a configuration
optimization problem [43].

Having a public, reusable modeling artifact enabled re-
search and technology transfer with several other groups
across research areas and industry. The first application was
to systems software testing. This was a collaboration with
testing and analysis researchers, where the tool was repur-
posed for generating build system configurations to find
bugs in multiple configurations [41]. The next collaboration
was with Linux kernel maintainers, interested in practical
applications of the model to the Linux build system. We ob-
served that the modeling artifact could be used as the basis
for finding configuration dependency errors in build system
code. This led to research on a bug finder [44] which was in-
tegrated into the public repository for the modeling artifact.
By demonstrating its capability with accepted patches in
the Linux kernel, it developed interest from the maintainers
of the Intel 0-day kernel test robot, which runs dozens of
analysis and testing tools continuously on the Linux kernel
codebase. Our bug finder is now included in their suite of
tools, which automatically reports bugs to the Linux ker-
nel mailing list and is responsible for dozens of reports per
month [33]. The constant exercise of the tool has led to a
stronger artifact, since it identifies issues that we fix in our
modeling and bug finding tooling.

There are several key takeaways from this experience
that we hope to replicate and expand on with ACCORD.
First, collaborating with industry and other stakeholders was
synergistic: applying configuration analysis outside of the
original research subarea made the modeling algorithms and
the resulting artifacts more robust and reusable, since they
had to work out-of-the-box for others. Second, having public
artifacts enabled research progress in other areas, in this case
system development and testing. Using open-source tools
for development and issue reporting, enables stakeholders
to participate freely. Third, the collaborations led to impact
not possible by only publishing in a single research area; for
instance, the bug finding tool has led to dozens of patches
that fix configuration bugs in real-world code. Additionally,
by maintaining a public repository, all users can report issues
while the artifact’s maintainers can continuously improve
the artifacts, which benefits all users and enables smoother
future collaborations.
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5 Conclusion

Our goal is to promote configurability to a first class ele-
ment and to provide common ground for all stakeholders,
so that we can more easily bring together researchers and
practitioners who are typically siloed. We have illustrated
what configurability is and provided several examples of how
misconfiguration can negatively impact software. We pro-
posed a common software model of configurable software
that can help provide a common explanatory framework for
the configurable software lifecycle and its impact on soft-
ware reliability and security. Last, we presented our vision
of ACCORD, a way to provide a foundation for collaboration
that we hope will continue to grow, providing a platform that
accelerates the research and practice related to configurable
software.
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