Check for
Updates

Bringing Together Configuration Research: Towards a
Common Ground

Paul Gazzillo
University of Central Florida
Orlando, FL, USA
paul.gazzillo@ucf.edu

Abstract

Configurable software makes up most of the software in use
today. Configurability, i.e., the ability of software to be cus-
tomized without additional programming, is pervasive, and
due to the criticality of problems caused by misconfigura-
tion, it has been an active topic researched by investigators
in multiple, diverse areas. This broad reach of configurabil-
ity means that much of the literature and latest results are
dispersed, and researchers may not be collaborating or be
aware of similar problems and solutions in other domains.
We argue that this lack of a common ground leads to a missed
opportunity for synergy between research domains and the
synthesis of efforts to tackle configurability problems. In
short, configurability cuts across software as a whole and
needs to be treated as a first class programming element. To
provide a foundation for addressing these concerns we make
suggestions on how to bring the communities together and
propose a common model of configurability and a platform,
ACCORD, to facilitate collaboration among researchers and
practitioners.

CCS Concepts: - Software and its engineering — Lan-
guage features.

Keywords: configurability, community building

ACM Reference Format:

Paul Gazzillo and Myra B. Cohen. 2022. Bringing Together Configu-
ration Research: Towards a Common Ground. In Proceedings of the
2022 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!
’22), December 8—10, 2022, Auckland, New Zealand. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3563835.3568737

1 Introduction

Configurable software makes up most of the software in use
today. Developers typically expose sets of preferences (or

@00

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9909-8/22/12.
https://doi.org/10.1145/3563835.3568737

259

Myra B. Cohen
Iowa State University
Ames, IA, USA
mcohen@iastate.edu

configuration options) which can be selected and combined
in different ways, forming unique instances of the program
for each combination of settings. Configurable software can
be found in applications for a range of purposes, e.g. business,
science, entertainment, system administration, health, and
embedded devices [8, 9, 12, 16, 24, 25, 28, 31, 34, 42, 44, 53,
58, 63]. On one end of the spectrum, configuration options
may be manifested as user-facing settings such as turning
JavaScript on or off in a web browser while, on the other
end, it could involve a system builder selecting a driver or
protocol for a specific hardware sensor or an administrator
defining a set of allowable settings that are known to be
secure. Configurations can be defined in an ad-hoc manner
or in a more formal language, such as those used in Kconfig
or sendmail. It may also mean choosing specific devices
and tuning their settings in a mixed environment such as
the Internet of Things (IoT), file systems or even surgical
robots [36, 53].

In essence, configurability is pervasive. At the same time
this penchant for customization can have a large impact on
software quality across all stages of development, (e.g. design,
coding, testing, deployment, etc.) which means that config-
urability impacts software reliability, correctness, usability,
and security. As a case in point, security misconfiguration is
listed as number five in the Open Web Application Security
Project’s (OWASP) 2021 top ten list of the most critical se-
curity risks [46], up from sixth place in the last report from
2017. OWASP tracks security incidents across half a million
applications, and misconfiguration has one of the highest
incidence rates across applications, 4.5% on average, with
over two hundred thousand incidents in total.

The criticality of problems due to misconfigurations (a
general term we clarify later) along with the many facets
of software and its life cycle including requirements, devel-
opment, security and testing, and the fact that it is used in
most software domains, means it has been an active topic
researched by investigators in multiple, diverse areas such as
systems, networking, software engineering, programming
languages, machine learning, scientific computing, human
computer interaction, and more.

Figure 1 represents different facets (domain, stakeholder
and impact) of configurability. The first facet domain indi-
cates the reach of configurability into different application
sectors. Stakeholder captures the human facet: who is in-
teracting with and being impacted by configurability. And

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

last impact shows the effect that configurability can have
on software (e.g. variable correctness or safety properties).
The combinatorics of combining these facets has meant an
explosion in research without a central core.

For instance, the software engineering community has
studied configuration faults [1, 4, 7, 20, 38, 39, 48, 50, 60-62]
and the need to reduce options for usability [4, 27, 28, 51, 58]
or to predict performance [3, 23, 26, 42, 52, 55], the security
community has looked at impacts on security [16, 19, 21, 40,
47,53, 56], the systems community has focused on problems
related to overall system configuration [10, 18, 49] and even
file storage [34].

* correctness

+ performance
X « safety
: busll)pless + security
mobile « usability
« parallel
« scientific
+ systems
+ learning
stakeholder
« developer
« end user
+ researcher
+ sys admin
« test engineer

Figure 1. Different facets of configurability. Domain includes
the application sector, stakeholders are those within the soft-
ware ecosystem who are impacted by configurability and
impact indicates the effect of varying configurations.

Additionally, there is research from the Human Computer
Interaction (or HCI) community [37, 59], and the scientific
community which impacts both performance and function-
ality of their tools [8, 29, 35]. Last, Artificial Intelligence
researchers have proposed different ways to achieve optimal
parameter tuning [5, 6, 30]. Despite our attempted survey
here, we admit we are most likely missing key contributions
to this field; it is simply too diverse.

This broad reach of configurability means that much of the
literature and latest results for managing its complexity are
dispersed, and researchers or practitioners in these different
domains may not be collaborating, and/or may not aware of
similar problems and solutions in other domains. This can
lead both to duplication and missed opportunities to build
on state of the art solutions. In short, there is community
fragmentation; configurability isn’t seen as a first-class ele-
ment, but rather has become an ancillary, yet crosscutting
problem.

An exemplar of this fragmentation is its lack of an ACM
Content Classification System (CCS) category. CCS contains

260

Paul Gazzillo and Myra B. Cohen

“Software configuration management and version control sys-
tems” and “Software product lines” (one type of configurabil-
ity) [13], but configuration management has other meanings
and product lines encompass one particular paradigm of
configurability. Hence, someone trying to understand the
wide-ranging effects or research topics on configurability
cannot easily find all of this research.

We argue that this lack of a common ground leads to
a missed opportunity for synergy between research
domains and the synthesis of efforts to tackle config-
urability problems. We need a shared set of solutions.

In short, configurability cuts across software as a whole,
going beyond just software engineering. Key challenges we
face due to this fragmentation are (1) a lack of common
terms and definitions, (2) overlapping research efforts in
separate communities, (3) research venues without explicit
vehicles for sharing and collaboration on common problems,
and (4) solutions that are bespoke for each domain, losing
opportunities to build general solutions.

There are several benefits of incorporating configurabil-
ity into language design. Hence, we view the programming
languages community as an important part of this endeavor—
the opportunity to build practical and foundational solutions
for end-to-end configurability. While this alone will not solve
the problem, including configurability in language design
will (1) force designers and builders to consider configurabil-
ity from the beginning, (2) allow modeling languages that
are used to reason about the variability space to be leveraged,
and (3) add expressiveness that can be used by both static and
dynamic analyses to facilitate finding misconfiguration bugs,
which have become highly prevalent, yet are notoriously
difficult to find since they involve the interaction between
the language, build system, and other software infrastruc-
ture. Last, (4) performance (or other) metrics can be assigned
to code, models and intermediate representations, creating
end-to-end traceability.

To provide a foundation for addressing these concerns
we propose a common model and suggest a software de-
velopment paradigm that makes configurability first class
(Section 3), along with a platform to facilitate collaboration
among researchers and practitioners (Section 4).

2 Motivating Examples

We now illustrate how configurability interacts with soft-
ware using a security example. In this example, a fault in
the configuration code opens the application up to memory
leakage. Optionsbleed was an exploit in the Apache web-
server that “bleeds” arbitrary memory contents to a remote
attacker [15, 21]. It demonstrates how unexpected configura-
tion settings can lead to problems. This fault only manifests
when an administrator configures a restriction on which
HTTP methods are available to a client. The Limit directive
(Figure 2a) restricts access to the specified HTTP methods,

Bringing Together Configuration Research: Towards a Common Ground

a useful setting for securing a server. In this case, a restric-
tion was meant to be placed on PUT, DELETE, and BIND.
However, DELETE is incorrectly spelled as DELTE.

<Limit PUT DELTE BIND>
</Limit>

(a) The (mispelled) .htaccess file.

./configure --enable-dav

(b) The build option that compiles the WebDAV module.

a2enmod dav

(c) The tool that enables the WebDAV module.

Figure 2. The three separate configuration mechanisms in-
volved in Optionsbleed. Unless both (b) and (c) are config-
ured, (a)’s use of BIND will expose Optionsbleed.

But the validity of the HTTP method also depends on what
extensions have been configured into the server, e.g., BIND
is only available if WebDAV support is enabled by the build
configuration script (Figure 2b) and run-time configuration
tool (Figure 2c).

Each HTTP method can be enabled independently (and
combined arbitrarily), therefore we would consider each of
these a configuration option with the possible values of on or
off. Other configuration options can have multiple values, for
instance, if the various HTTP methods were exclusive and
only one could be selected at a time. In this system, providing
an unknown HTTP method (i.e. using the wrong spelling
for the method, e.g., DELTE, or if for any other reason the
extension is not actually built into the server code), causes
a use-after-free bug in the server’s HTTP method handling
code. Therefore, BIND also causes a use-after-free, but only
when WebDAYV is enabled, since it depends on WebDAV.

This is a classic case of a misconfiguration and is due to
the fact that the developer did not add code to ensure that
the user can only select valid configuration values. The chal-
lenge is that the absolute choice of values is dynamic and
dependent on other aspects of the system; it is hard for the
developer to encode all options and easily validate a user’s
choice. Ironically, security best practices recommend dis-
abling unneeded features to reduce the attack surface [46],
which in this case increases the possibility of triggering the
leak. This illustrates the need to identify and constrain con-
figuration options just as one would when performing type
checking.

Since it triggers a use-after-free, Optionsbleed is in some
sense just a traditional software fault. It is sometimes also
called a feature interaction, or simply an interaction fault,
another confusion in the broader community. This fault only
exists in the software under certain configuration settings,

261

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

hence we use the term misconfiguration. Without the miscon-
figuration, there is no code path that an attacker could ever
use to trigger the bug. This distinction is subtle: a traditional
fault is a fault because the software violates the specified
behavior of the program; in this case, accessing the memory
of freed pointers is a typically a violation of correctness. On
the other hand, the only reason the fault is feasible is because
of a configuration setting that is not supposed to be possible,
i.e., referring to an non-existent HT'TP method.

To further tease out the distinction between configuration-
related faults, we can look at how a developer fixes the prob-
lem. Do they just modify the program code? Do they update
the installation instructions or modify the build system to
make such configuration settings impossible to make? For
Optionsbleed, of course, modifying the pointer-handling
code to prevent the use of the dangling pointer would close
the leak. But the problem of misconfiguration would still
remain: how should the software behave when given an
unsupported HTTP method? If the build and configuration
system enforced explicit specifications of what configuration
settings are valid, then the vulnerability would not have been
reachable in the first place.

To see this in another context, take the SSH daemon root
port privilege escalation vulnerability [14]. This case in-
volves two configurable options, one to run the daemon
as root and one to allow forwarding to a local socket. Both
features work correctly independently. When used together,
however, this leads to a privilege escalation since users can
run programs as root, a non-functional program fault. This
fault relies on a security policy or an oracle to validate the
correct privileges. Without an explicit specification of what
configurations are secure, the consequences of their unex-
pected combination are difficult to reason about. While the
developer could have decided that the configuration was
permissible and rely on the user to harden their daemon,
the developer instead decided that combining these options
should not be allowed by any user, i.e., a misconfiguration,
because of the security implications citesshbug.

2.1 Configuration Options as Program Values

These misconfigurations might have been framed as tradi-
tional program correctness or security properties, where
configuration options are just program inputs. But config-
uration systems are not always implemented in the same
language as the software itself (or in a programming lan-
guage at all): configuration systems may involve compile-
time metaprogramming, i.e., macros or conditional compi-
lation. Moreover, configuration options may be persistent
across an entire system of separate programs and devices,
such as UNIX environment variables.

Therefore, we define configuration options as typically
long-lived, global values for an entire software system that

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

are set once and either retain the same value during exe-
cution (in the case of Optionsbleed) or changed via a well-
defined settings menu in interactive programs.

A configuration option is then a special kind of program
value that exists outside of any particular program and may
affect program behavior by altering what the program is
versus what the program does during a particular execution.
In this way, configuration options can turn an individual
program into a family of closely related programs.

This leads us to posit that configuration options and their
specifications, are distinct, first-class concepts in software
engineering. While there is overlap between software and con-
figuration specification, we believe there is a benefit to provid-
ing developers with methods to make this distinction explicit
in their software.

The activity of defining software configurations is com-
mon and distinct enough, the problem space is unique enough,
and the potential benefits are strong enough to warrant pro-
viding developers these tools for defining and implementing
their software configurations. Akin to types, first-class ob-
jects, or first-class functions, first-class configuration options
provide developer a way to explicitly specify software config-
urations and to give researchers information about developer
intent when designing algorithms, analyses, tools, etc.

3 Towards a Common Ground

To help describe the disparate communities affected by con-
figurability and who are working on related challenges, we
present a model that encompasses a wide range of research
on configurability and translates across domains. There are
multiple views of configurable software, including the layers
of configurable software itself, what parts of the software
development lifecycle are involved in them, and what kinds
of faults emerge from configurable software.

Figure 3 presents the ideas of configurability using this
model. In the middle is the configurable software itself, viewed
here as taking a set of configuration options (also called fea-
tures, settings, etc.) and producing a system of software
variants, one for each software component in an entire sys-
tem. For instance, a web service may consist of a configured
kernel, webserver, and application, and an IoT system may
consist of a number of different smart devices configured for
a specific type of home. We identify four main components
that group together the many manifestations of configurable
software: User and developer specifications, the configu-
ration implementation, and the program code itself. This
grouping covers many widely-varying kinds of configurable
software. For instance, specifications may be formal feature
models, UNIX-style . conf files, or just informal README
files. We separate user and developer specifications, because
users may have their own constraints on what are their ac-
ceptable configurations that developers still allow for other

262

Paul Gazzillo and Myra B. Cohen

users. For instance, an operating system developer may per-
mit any kind of password policy, while one particular system
administrator (here a user of the system software) may im-
pose their own password policies.

The configuration implementation component refers to
how configuration options are used to select a program vari-
ant. These may be implemented with compile-time tech-
niques, such as Makefiles in C software, or run-time tech-
niques such as feature flags in Firefox. Finally, the program
code is the part of the software that is oblivious to config-
urability. It is the set of all possible variants that the config-
uration implementation chooses from. With compile-time
configurability, the program code may be in a different lan-
guage from the configuration implementation, e.g., C versus
Makefiles. But the two might also be blended, as in the case
of Firefox, where the distinction is only captured in the con-
trol flow of developer-defined configuration options versus
program input like the search bar.

Each of these groupings corresponds to some phase(s) of
the typical software development lifecycle. The specification
components are usually in the realm of requirements engi-
neering, while the configuration implementation and pro-
gramming are part of development. Maintenance spans spec-
ifications and implementation, since fixing bugs or adding
features may involve modifying either. Testing spans nearly
the entire stack: configuration testing might read the spec-
ifications to devise tests, unit testing might only involve
program code, and system testing might use the deployed
software variant.

3.1 Explaining Misconfigurations using the Model

This model provides a common ground for translating work
on configurable software, because each grouping maps to
the many research and industry efforts on configurable soft-
ware. For instance, research on configuration testing algo-
rithms can apply to any configuration specifications, be they
compile-time or run-time. Performance testing in the biol-
ogy domain can benefit from techniques developed in the
feature-oriented software domain and vice-versa.

In addition to providing a common ground for translation
across domains, our model also provides a more specific ex-
planation of misconfiguration bugs. Misconfiguration bugs
are currently a hodge-podge of various kinds of software
faults [45], for instance, a NULL pointer error in the Linux
kernel source that occurs only under x86, when NUMA and
PCI are enabled [1, 2] or a build that fails to compile. A
misconfiguration is used for any fault, security problem, or
performance issue with a wide variety of differing exam-
ples, such as a failure to change a default password or a
complex interaction between differing configuration options
as in SSHD privilege escalation. They can also be ordinary-
seeming faults such as a divide by zero, but one that can only
be triggered under specific configurations.

Bringing Together Configuration Research: Towards a Common Ground

Type of Fault

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Lifecycle Phase

| Configuration Options |

l

l

l

20

©

User configuration User User User 'E_

misuse Specification Specification Specification g

! ! ! g

Software Developer Developer Developer @

configuration misuse Specification Specification Specification

! ! !

Configuration
implementation bug

Configuration
Implementation

=
(7]
(9]
(o]
=]
=h
«Q
€
2
o
=}

Configuration
Implementation

Configuration
Implementation

!

!

aouBUBUIBIN

I

Variability bug Program Code

Program Code

juswdojanag

Program Code

Program bug

Variant

Variant

Configured and Deployed Software System

Variant

System
Deployment

Figure 3. Configurable software components, faults, and lifecycle phases.

Table 1. Examples of configuration-related bugs.

Example Model Component

Fault Type Fault Description

Plaintext logging [11, 32, 57] User specifications

Configuration violates user’s
own policies

User configuration misuse

sshd privilege escalation [14] Developer specifications

Configuration should never be
permitted

Software configuration misuse

Unimplemented Firefox option [4]

Configuration implementation

Configuration implementation Program code is missing

bug

Kernel panic in a variation [1,2] Program code

Table 1 lists different misconfiguration faults, a descrip-
tion, an example, and what component of the Common
Model in Figure 3 it corresponds to. A user configuration
misuse is a violation of the user’s own configuration speci-
fication. For example, when Facebook, Twitter, and others
inadvertently left plaintext logging on their development
servers, they violated their own security policies [11, 32, 57].
The fix may not involve removing these options from the
web server software, since such logging is still useful for
development servers; it is a violation of the software user’s
specification, not the developer’s.

The SSHD privilege fault [14] is an example of a fault in
the developer’s specification. Since the developer decided
that the combination of options should never be permissible
by any user, the fix was made in the configuration checking
code that all user’s of the software are subjected to, rather

263

Correctness of the variant is
violated

Variability bug

than advising user’s to avoid the options via a hardening
guide or configuration checker.

The unimplemented configuration option in Firefox is an
example of a bug in the code that implements configuration
options, since the program code was available and the con-
figuration option was selectable, but the connection between
the two was broken by the implementation; the code was
had been deleted [4].

Finally, bugs in the program code are essentially indis-
tinguishable from conventional bugs that occur when there
is no configurability. For instance, the kernel panic in this
example was caused by a NULL pointer error in the pro-
gram code [1, 2]. The selection of options was correct, the
implementation chose the right program code, but the imple-
mentation of the program had a bug. Sometimes, such bugs
are called variability bugs, not because they are caused by

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

the configurability of the system, but because they may only
appear in some configurations of the software.

4 Bringing the Communities Together

The use of configurable software is only increasing and the
gaps between researchers and practitioners affected by con-
figurability will likely only grow. Our goal is to bring together
the multiple affected communities to foster collaboration,
share solutions, and increase awareness. Collectively, we
can advance the state of the art in configurability research
and practice, create stronger communities, and maximize the
safety and reliability of configurable software.

To facilitate collaboration, we present ACCORD, A Com-
munity for Configurability Open Research and Development.
ACCORD is a framework meant to enable shared infras-
tructure with community contributions and solutions. As
a framework it can be instantiated in multiple ways, such
as via online repositories, shared communication channels,
and increased interaction between research communities.
Over time we envision ACCORD cultivating a common lexi-
con that embodies configurability, providing a way to share
tools and best practices, and housing examples of potential
faults or pitfalls (configuration smells) in different domains,
along with solutions to avoid those pitfalls, i.e. configuration
patterns.

Possible mechanisms to achieve the objectives of ACCORD
are to host workshops co-located in conferences on the af-
fected domains, e.g., systems, bioinformatics, etc., to host a
shared, online repository for tools, patterns and best prac-
tices, and to organize a periodic summit with representatives
from the affected domains.

For instance, if IDEs are built with configurability in mind,
then documentation and traceability can be easily imple-
mented. And when we denote a variable as a configuration
option, why not enforce its relationships and dependencies
across the system as we would a type in any other program?
Going one step further, as we utilize common unit testing
frameworks, they could provide automated parameterization
based on those documented configuration options. But these
kinds of solutions take a community, as we will need tools
that are not bespoke or programming language dependent,
but that work across multiple languages and generalize to
different domains, each of which has its own notion and way
of viewing and using configurations.

Figure 4 illustrates the connection between some of the
communities affected by configurability and a proposed col-
laborative platform, for instance the programming languages
community for building domain-specific languages and new
high-level typing constructs, the software engineering com-
munity for creating develop tools, and other communities
such as artificial intelligence, networking, and systems. We
also include stakeholders such as educators and industry
partners, who are also important for adoption and training.

264

Paul Gazzillo and Myra B. Cohen

The ACCORD community would host repositories of domain
specific programming languages, tools, models, faults, and
labeled data for research on configurability which can be
widely used. It has the potential to cross the research dis-
cipline divide across key communities where research on
configurability has been flourishing, e.g. software engineer-
ing, systems, and programming languages.

To make ACCORD succeed, we need common conceptual
foundations so that researchers from multiple disciplines can
more easily work together and exchange ideas. For instance,
elevating configuration options to first-class language con-
structs will provide explicit, machine-readable expressions
of configurability. But this effort requires care to not only
add configurability features to languages, but to provide
tool support for existing configurable software, research the
ramifications of the design, and integrate first-class config-
urability into existing software processes for both computer
scientists and researchers in other fields using software, e.g.,
bioinformatics.

To provide the foundation for common research efforts,
we propose research tasks for making configurability a first-
class construct, with a shared set of artifacts for use in collab-
orative research, promotion of configurability, and education.
For example, we can extend existing languages by adding
formally-defined comments containing configuration option
declarations with their dependency constraints, e.g., javadoc,
pydoc, etc.

By extending automated documentation engines that sup-
port code analysis, this approach provides a basis for build-
ing tooling for several phases of the software development
lifecycle, such as combinatorial configuration testing, type-
checking, etc. This approach provides a platform for explor-
ing configuration as a first-class construct that can be used
to inform future language- and tool-design decisions for
integrating software configurability into software tooling.

If we focus on existing solutions for configurability, they
are simply not enough. For instance #ifdef's, while used
extensively for configurability, are not part of the actual C
language [22]. Variability calculus [17] provides fundamen-
tal constructs for variability, but it is not at the right level
of abstraction for most working on configurability. Javadoc
provides automated documentation but lacks a way to an-
notate or indicate configurations as other automated docu-
mentation systems, e.g. doxygen [54], do for other program
symbols. Instead we need novel, high-level annotations and
type systems to bring configurability to the forefront.

4.1 Enabling New Research

By building cross-discipline shareable artifacts, we hope AC-
CORD will lead to novel research directions. For instance,
the systems community will be able to leverage results from
software testing and validation to improve system reliabil-
ity. It will allow systems researchers to build more formal
approaches based on the software engineering work. At the

Bringing Together Configuration Research: Towards a Common Ground

Artificial Intelligence
Educators
Human Computer Interaction
Industry
Networking and Systems
Programming Languages
Security
Software Engineering

Community

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Experimental Artifacts Benchmarks
Tools Tutorials

Best Practices Communication

Figure 4. A Community for Configurability Open Research and Development

same time, the software engineering community will have
access to larger, more realistic applications with domain
knowledge and a better understanding of realistic workloads
and use cases. They will also need to consider scalability in
ways that they may not have previously considered, as well
as issues such as parallelism and threading. By involving
the programming languages community, common languages
and classifications of types of configuration faults (as well
as mitigation by type) will be enabled.

In the security community, research on topics such as
debloating to reduce attack surfaces, security analysis (like
testing/debugging), and reverse engineering of configuration
code will be able to leverage current tools and data sets for
experimentation. In general all of the research communities
will benefit from reuse and not having to reinvent similar
solutions. Take for instance, the area of parameter tuning for
machine learning software (one possible community for AC-
CORD). While hyper-parameters are specific to parameters
of the machine learning models, and may not be considered
traditional configuration options, the use of several opti-
mization techniques such as grid-search, and the ability to
reuse configuration predictions via transfer learning, can
benefit researchers in other software domains. At the same
time, there are configurable options (not related to hyper-
parameters) which behave in a similar way to configuration
options in traditional configurable systems and can lead to
misconfigurations.

Besides the ability to quickly build on techniques across
domains, we plan to build training materials and provide
tools that can be used generally for all domains. We provide
more concrete examples below of ways that ACCORD can
help the larger community.

Programming Language Researchers. Program-
ming language researchers will be able to help make
configurations a first-class construct using a common
model that can be used to inform future language- and

tool-design decisions for integrating software config-
urability into software tooling.

Systems Builders. This can be a catalyst to improve
research from multiple domains; e.g., the systems engi-
neer could utilize predictive models to help pre-screen
their system to find areas of concern in a more scalable
way. But the tools may not scale to larger systems, driv-
ing software engineering researchers to develop better
and more scalable predictive approaches. Systems engi-
neers could utilize configuration localization research
to help identify the root causes of faults they find,
while the software engineers would need to expand
these techniques, for instance, to handle dependencies.
Having a domain-specific language will allow easier
entry into this area and create more cross-fertilization.
Security Engineers. Take an Apache web server mis-
configuration which exposes server memory to an at-
tacker that is caused by unchecked configuration files
and interactions between software features. By build-
ing a community repository for software configuration
models, security engineers can pose new configura-
tion problems and leverage configuration testing tools,
while software engineering researchers can develop
newer and better models and apply them to critical
systems software.

Software Engineers. Software engineers who build
tools for sampling configuration spaces will have ac-
cess to real-world models and constraints so that they
can validate the scalability and usefulness of their tools.
The existence of benchmarks of programs and artifacts
will allow them to compare techniques on a wide range
of software systems.

4.2 An Example of Collaboration

While ACCORD is still a vision, we present a real use-case
with an industrial partner of the first author to motivate the

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

potential benefits for an interdisciplinary approach to solv-
ing problems related to configurability. The work began with
new techniques for producing more accurate models of the
Linux kernel build system. We developed an algorithm and
tool to collect a logical model of the configuration specifica-
tions from build system code automatically [44]. In order to
improve the model, we collaborated with other software en-
gineering researchers to apply the model to a configuration
optimization problem [43].

Having a public, reusable modeling artifact enabled re-
search and technology transfer with several other groups
across research areas and industry. The first application was
to systems software testing. This was a collaboration with
testing and analysis researchers, where the tool was repur-
posed for generating build system configurations to find
bugs in multiple configurations [41]. The next collaboration
was with Linux kernel maintainers, interested in practical
applications of the model to the Linux build system. We ob-
served that the modeling artifact could be used as the basis
for finding configuration dependency errors in build system
code. This led to research on a bug finder [44] which was in-
tegrated into the public repository for the modeling artifact.
By demonstrating its capability with accepted patches in
the Linux kernel, it developed interest from the maintainers
of the Intel 0-day kernel test robot, which runs dozens of
analysis and testing tools continuously on the Linux kernel
codebase. Our bug finder is now included in their suite of
tools, which automatically reports bugs to the Linux ker-
nel mailing list and is responsible for dozens of reports per
month [33]. The constant exercise of the tool has led to a
stronger artifact, since it identifies issues that we fix in our
modeling and bug finding tooling.

There are several key takeaways from this experience
that we hope to replicate and expand on with ACCORD.
First, collaborating with industry and other stakeholders was
synergistic: applying configuration analysis outside of the
original research subarea made the modeling algorithms and
the resulting artifacts more robust and reusable, since they
had to work out-of-the-box for others. Second, having public
artifacts enabled research progress in other areas, in this case
system development and testing. Using open-source tools
for development and issue reporting, enables stakeholders
to participate freely. Third, the collaborations led to impact
not possible by only publishing in a single research area; for
instance, the bug finding tool has led to dozens of patches
that fix configuration bugs in real-world code. Additionally,
by maintaining a public repository, all users can report issues
while the artifact’s maintainers can continuously improve
the artifacts, which benefits all users and enables smoother
future collaborations.

266

Paul Gazzillo and Myra B. Cohen

5 Conclusion

Our goal is to promote configurability to a first class ele-
ment and to provide common ground for all stakeholders,
so that we can more easily bring together researchers and
practitioners who are typically siloed. We have illustrated
what configurability is and provided several examples of how
misconfiguration can negatively impact software. We pro-
posed a common software model of configurable software
that can help provide a common explanatory framework for
the configurable software lifecycle and its impact on soft-
ware reliability and security. Last, we presented our vision
of ACCORD, a way to provide a foundation for collaboration
that we hope will continue to grow, providing a platform that
accelerates the research and practice related to configurable
software.

Acknowledgments

We thank the reviewers for the valuable feedback. This work
was supported in part by NSF grants CCF-1941816 and CCF-
1909688.

References

[1] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 Variability
Bugs in the Linux Kernel: A Qualitative Analysis. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering (Vasteras, Sweden) (ASE °14). Association for Computing
Machinery, New York, NY, USA, 421-432. https://doi.org/10.1145/
2642937.2642990
Tago Abal, Jean Melo, Stefan Stanciulescu, Claus Brabrand, Marcio
Ribeiro, and Andrzej Wasowski. 2014. NULL pointer deference due
to invalid cast in x86 NUMA. http://vbdb.itu.dk/linux/76baeeb.html.
Accessed: 2021-07-08.
[3] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc
Jézéquel. 2020. Sampling Effect on Performance Prediction of Con-
figurable Systems: A Case Study. In Proceedings of the ACM/SPEC
International Conference on Performance Engineering (Edmonton AB,
Canada) (ICPE "20). Association for Computing Machinery, New York,
NY, USA, 277-288. https://doi.org/10.1145/3358960.3379137
Farnaz Behrang, Myra B. Cohen, and Alessandro Orso. 2015. Users
Beware: Preference Inconsistencies Ahead (ESEC/FSE 2015). Asso-
ciation for Computing Machinery, New York, NY, USA, 295-306.
https://doi.org/10.1145/2786805.2786869
James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl.
2011. Algorithms for Hyper-Parameter Optimization. In Advances
in Neural Information Processing Systems, J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K. Q. Weinberger (Eds.), Vol. 24. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
[6] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-
Parameter Optimization. J Mach. Learn. Res. 13, 1 (feb 2012), 281-305.
[7] Malik Bouchet, Byron Cook, Bryant Cutler, Anna Druzkina, Andrew
Gacek, Liana Hadarean, Ranjit Jhala, Brad Marshall, Dan Peebles, Neha
Rungta, Cole Schlesinger, Chriss Stephens, Carsten Varming, and Andy
Warfield. 2020. Block Public Access: Trust Safety Verification of Ac-
cess Control Policies. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE
2020). Association for Computing Machinery, New York, NY, USA,
281-291. https://doi.org/10.1145/3368089.3409728

[2

—

[4

—

(5

—

Bringing Together Configuration Research: Towards a Common Ground

(8]

—_
O
—

(10]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

Mikaela Cashman, Myra B. Cohen, Priya Ranjan, and Robert W. Cot-
tingham. 2018. Navigating the Maze: The Impact of Configurability in
Bioinformatics Software. In Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering (Montpellier,
France) (ASE 2018). Association for Computing Machinery, New York,
NY, USA, 757-767. https://doi.org/10.1145/3238147.3240466
Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and
Tianyin Xu. 2020. Understanding and Discovering Software Configura-
tion Dependencies in Cloud and Datacenter Systems. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (Virtual
Event, USA) (ESEC/FSE 2020). Association for Computing Machinery,
New York, NY, USA, 362-374. https://doi.org/10.1145/3368089.3409727
Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin
Xu. 2021. Test-Case Prioritization for Configuration Testing. In
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis (Virtual, Denmark) (ISSTA 2021). As-
sociation for Computing Machinery, New York, NY, USA, 452-465.
https://doi.org/10.1145/3460319.3464810

Catalin Cimpanu. 2018. Twitter Admits Recording Plaintext Passwords
in Internal Logs, Just Like GitHub. https://krebsonsecurity.com/2018/
05/twitter-to-all-users-change-your-password-now/. Accessed: 2019-
06-07.

Jane Cleland-Huang, Nitesh Chawla, Myra B. Cohen, Md Nafee Al
Islam, Urjoshi Sinha, Lilly Spirkovska, Yihong Ma, Salil Purandare,
and Muhammed Tawfiq Chowdhury. 2022. Towards Real-Time Safety
Analysis of Small Unmanned Aerial Systems in the National Airspace.
In AIAA AVIATION 2022 Forum. https://doi.org/10.2514/6.2022-3540
Paul Clements and Linda Northrop. 2002. Software Product Lines:
Practices and Patterns. Addison-Wesley, Boston, MA, USA.

CVE. 2016. CVE-2016-10010. https://nvd.nist.gov/vuln/detail/CVE-
2016-10010. Accessed: 2021-07-08.

CVE. 2017. CVE-2017-9798. https://nvd.nist.gov/vuln/detail/CVE-
2017-9798. Accessed: 2020-06-10.

Constanze Dietrich, Katharina Krombholz, Kevin Borgolte, and Tobias
Fiebig. 2018. Investigating System Operators’ Perspective on Security
Misconfigurations. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (Toronto, Canada) (CCS ’18).
Association for Computing Machinery, New York, NY, USA, 1272-1289.
https://doi.org/10.1145/3243734.3243794

Martin Erwig and Eric Walkingshaw. 2011. The Choice Calculus:
A Representation for Software Variation. ACM Trans. Softw. Eng.
Methodol. 21, 1, Article 6 (dec 2011), 27 pages. https://doi.org/10.1145/
2063239.2063245

Nick Feamster and Hari Balakrishnan. 2005. Detecting BGP Configura-
tion Faults with Static Analysis. In in Proc. Networked Systems Design
and Implementation. 43-56.

Gabriel Ferreira, Momin Malik, Christian Késtner, Jirgen Pfeffer, and
Sven Apel. 2016. Do #Ifdefs Influence the Occurrence of Vulner-
abilities? An Empirical Study of the Linux Kernel. In Proceedings
of the 20th International Systems and Software Product Line Confer-
ence (Beijing, China) (SPLC ’16). ACM, New York, NY, USA, 65-73.
https://doi.org/10.1145/2934466.2934467

Brady J. Garvin and Myra B. Cohen. 2011. Feature Interaction
Faults Revisited: An Exploratory Study. In 2011 IEEE 22nd Interna-
tional Symposium on Software Reliability Engineering. 90-99. https:
//doi.org/10.1109/ISSRE.2011.25

Paul Gazzillo. 2020. Inferring and Securing Software Configurations
Using Automated Reasoning. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Virtual Event, USA) (ES-
EC/FSE 2020). Association for Computing Machinery, New York, NY,
USA, 1517-1520. https://doi.org/10.1145/3368089.3417041

267

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Paul Gazzillo and Shiyi Wei. 2019. Conditional Compilation is Dead,
Long Live Conditional Compilation!. In Proceedings of the 41st Interna-
tional Conference on Software Engineering: New Ideas and Emerging Re-
sults (Montreal, Quebec, Canada) (ICSE-NIER °19). IEEE Press, 105-108.
https://doi.org/10.1109/ICSE-NIER.2019.00035

Alexander Grebhahn, Norbert Siegmund, and Sven Apel. 2019. Pre-
dicting Performance of Software Configurations: There is no Silver
Bullet. arXiv:1911.12643

Ruidong Han, Chao Yang, Siqi Ma, JiangFeng Ma, Cong Sun, Juanru
Li, and Elisa Bertino. 2022. Control Parameters Considered Harmful:
Detecting Range Specification Bugs in Drone Configuration Modules
via Learning-Guided Search. In Proceedings of the International Confer-
ence on Software Engineering. ACM. https://doi.org/10.1145/3510003.
3510084

Karam Ignaim and Jodo M. Fernandes. 2019. An Industrial Case Study
for Adopting Software Product Lines in Automotive Industry: An
Evolution-Based Approach for Software Product Lines (EVOA-SPL).
In Proceedings of the 23rd International Systems and Software Product
Line Conference - Volume B (Paris, France) (SPLC ’19). Association for
Computing Machinery, New York, NY, USA, 183-190. https://doi.org/
10.1145/3307630.3342409

Muhammad Adil Inam, Wajih Ul Hassan, Ali Ahad, Adam Bates, Rashid
Tahir, Tianyin Xu, and Fareed Zaffar. 2022. Forensic Analysis of
Configuration-based Attacks. In Proceedings of the 29th Network and
Distributed System Security Symposium (NDSS’22).

Dongpu Jin, Myra B. Cohen, Xiao Qu, and Brian Robinson. 2014.
PrefFinder: getting the right preference in configurable software sys-
tems. In Proceedings of the 29th ACM/IEEE International Conference
on Automated Software Engineering (Vasteras, Sweden) (ASE ’14). As-
sociation for Computing Machinery, New York, NY, USA, 151-162.
https://doi.org/10.1145/2642937.2643009

D. Jin, X. Qu, M.B. Cohen, and B. Robinson. 2014. Configurations
Everywhere: Implications for Testing and Debugging in Practice. In
Companion Proceedings of the 36th International Conference on Software
Engineering (Hyderabad, India) (ICSE Companion 2014). Association
for Computing Machinery, New York, NY, USA, 215-224. https://doi.
org/10.1145/2591062.2591191

JCS Kadupitiya, Geoffrey C Fox, and Vikram Jadhao. 2020. Ma-
chine learning for parameter auto-tuning in molecular dynamics sim-
ulations: Efficient dynamics of ions near polarizable nanoparticles.
The International Journal of High Performance Computing Applica-
tions 34, 3 (2020), 357-374. https://doi.org/10.1177/1094342019899457
arXiv:https://doi.org/10.1177/1094342019899457

Patrick Koch, Oleg Golovidov, Steven Gardner, Brett Wujek, Joshua
Griffin, and Yan Xu. 2018. Autotune: A Derivative-Free Optimiza-
tion Framework for Hyperparameter Tuning. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (London, United Kingdom) (KDD ’18). Association
for Computing Machinery, New York, NY, USA, 443-452. https:
//doi.org/10.1145/3219819.3219837

Emily Kowalczyk, Myra B. Cohen, and Atif M. Memon. 2018. Con-
figurations in Android Testing: They Matter. In Proceedings of the 1st
International Workshop on Advances in Mobile App Analysis (Montpel-
lier, France) (A-Mobile 2018). Association for Computing Machinery,
New York, NY, USA, 1-6. https://doi.org/10.1145/3243218.3243219
Brian Krebs. 2019. Facebook Stored Hundreds of Mil-
lions of User Passwords in Plain Text for Years. https:
//krebsonsecurity.com/2019/03/facebook-stored-hundreds-of-
millions-of-user-passwords-in-plain-text-for-years/. Accessed:
2019-06-07.

lore kernel.org 2022. Linux Kernel Mailing list - kismet search results.
https://lore.kernel.org/all/?q=kismet. Accessed: 2022-07-13.
Tabassum Mahmud, Duo Zhang, Om Rameshwar Gatla, and Mai Zheng.
2022. Understanding Configuration Dependencies of File Systems. In

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

(35]

(36

—

(37]

(38]

(39]

[40]

[41]

[43]

(4]

Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File
Systems (Virtual Event) (HotStorage °22). Association for Computing
Machinery, New York, NY, USA, 1-8. https://doi.org/10.1145/3538643.
3539756

Serghei Mangul, Thiago Mosqueiro, Richard J. Abdill, Dat Duong,
Keith Mitchell, Varuni Sarwal, Brian Hill, Jaqueline Brito, Russell Jared
Littman, Benjamin Statz, Angela Ka-Mei Lam, Gargi Dayama, Laura
Grieneisen, Lana S. Martin, Jonathan Flint, Eleazar Eskin, and Ran
Blekhman. 2019. Challenges and recommendations to improve the
installability and archival stability of omics computational tools. PLOS
Biology 17, 6 (06 2019), 1-16. https://doi.org/10.1371/journal.pbio.
3000333

Niloofar Mansoor, Jonathan A. Saddler, Bruno Silva, Hamid Bagheri,
Myra B. Cohen, and Shane Farritor. 2018. Modeling and Testing a
Family of Surgical Robots: An Experience Report (ESEC/FSE 2018).
Association for Computing Machinery, New York, NY, USA, 785-790.
https://doi.org/10.1145/3236024.3275534

Sampada Marathe and S. Shyam Sundar. 2011. What Drives Customiza-
tion? Control or Identity?. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Vancouver, BC, Canada)
(CHI ’11). Association for Computing Machinery, New York, NY, USA,
781-790. https://doi.org/10.1145/1978942.1979056

Flavio Medeiros, Iran Rodrigues, Marcio Ribeiro, Leopoldo Teixeira,
and Rohit Gheyi. 2015. An Empirical Study on Configuration-Related
Issues: Investigating Undeclared and Unused Identifiers. In Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (Pittsburgh, PA, USA) (GPCE
2015). Association for Computing Machinery, New York, NY, USA,
35-44. https://doi.org/10.1145/2814204.2814206

Jens Meinicke, Chu-Pan Wong, Christian Késtner, Thomas Thiim,
and Gunter Saake. 2016. On Essential Configuration Complexity:
Measuring Interactions in Highly-Configurable Systems. In Proceed-
ings of the 31st IEEE/ACM International Conference on Automated
Software Engineering (Singapore, Singapore) (ASE 2016). Association
for Computing Machinery, New York, NY, USA, 483-494. https:
//doi.org/10.1145/2970276.2970322

Mainack Mondal, Giince Su Yilmaz, Noah Hirsch, Mohammad Taha
Khan, Michael Tang, Christopher Tran, Chris Kanich, Blase Ur, and
Elena Zheleva. 2019. Moving Beyond Set-It-And-Forget-It Privacy
Settings on Social Media. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United
Kingdom) (CCS ’19). Association for Computing Machinery, New York,
NY, USA, 991-1008. https://doi.org/10.1145/3319535.3354202

Austin Mordahl, Jeho Oh, Ugur Koc, Shiyi Wei, and Paul Gazzillo.
2019. An Empirical Study of Real-World Variability Bugs Detected by
Variability-Oblivious Tools. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE
2019). Association for Computing Machinery, New York, NY, USA,
50-61. https://doi.org/10.1145/3338906.3338967

Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017.
Using Bad Learners to Find Good Configurations. In Proceedings of
the 2017 11th joint Meeting on Foundations of Software Engineering
(Paderborn, Germany) (ESEC/FSE 2017). Association for Computing
Machinery, New York, NY, USA, 257-267. https://doi.org/10.1145/
3106237.3106238

Jeho Oh, Don S. Batory, Marijn J. H. Heule, Margaret Myers, and Paul
Gazzillo. 2019. Uniform Sampling from Kconfig Feature Models.
Jeho Oh, Necip Fazil Yildiran, Julian Braha, and Paul Gazzillo. 2021.
Finding Broken Linux Configuration Specifications by Statically An-
alyzing the Kconfig Language. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA,

268

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Paul Gazzillo and Myra B. Cohen

893-905. https://doi.org/10.1145/3468264.3468578

OWASP. 2022. A05:2021 — Security Misconfiguration. https://owasp.
org/Top10/A05_2021-Security_Misconfiguration/. Accessed: 2022-09-
04.

OWASP. 2022. Top 10 - 2021: The Ten Most Critical Web Application
Security Risks. https://owasp.org/Top10/. "Accessed: 2022-06-29".
Stijn Pletinckx, Kevin Borgolte, and Tobias Fiebig. 2021. Out of Sight,
Out of Mind: Detecting Orphaned Web Pages at Internet-Scale. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, Republic of Korea) (CCS "21).
Association for Computing Machinery, New York, NY, USA, 21-35.
https://doi.org/10.1145/3460120.3485367

Xiao Qu, Myra B. Cohen, and Gregg Rothermel. 2008. Configuration-
aware Regression Testing: An Empirical Study of Sampling and Pri-
oritization. In Proceedings of the 2008 International Symposium on
Software Testing and Analysis (Seattle, WA, USA) (ISSTA °08). As-
sociation for Computing Machinery, New York, NY, USA, 75-86.
https://doi.org/10.1145/1390630.1390641

Ariel Rabkin and Randy Katz. 2011. Precomputing possible configu-
ration error diagnoses. In 2011 26th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2011). 193-202. https:
//doi.org/10.1109/ASE.2011.6100053

Brian Robinson, Mithun Acharya, and Xiao Qu. 2012. Configura-
tion Selection Using Code Change Impact Analysis for Regression
Testing. In Proceedings of the IEEE International Conference on Soft-
ware Maintenance (ICSM). IEEE Computer Society, 129-138. https:
//doi.org/10.1109/ICSM.2012.6405263

Mohammed Sayagh, Noureddine Kerzazi, Fabio Petrillo, Khalil Ben-
nani, and Bram Adams. 2020. What should your run-time configura-
tion framework do to help developers? Empirical Software Engineering
(2020). https://doi.org/10.1007/s10664-019-09790-x

Norbert Siegmund, Alexander Grebhahn, Christian Késtner, and Sven
Apel. 2015. Performance-Influence Models for Highly Configurable
Systems. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association
for Computing Machinery, New York, NY, USA, 284-294. https://doi.
org/10.1145/2786805.2786845

Oleksandr Tomashchuk, Dimitri Van Landuyt, and Wouter Joosen.
2021. The Architectural Divergence Problem in Security and Privacy of
EHealth IoT Product Lines. Association for Computing Machinery, New
York, NY, USA, 114-119. https://doi.org/10.1145/3461001.3473061
Dimitri van Heesch. 2022. Doxygen. https://doxygen.nl/. Accessed:
2022-09-04.

Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and
Christian Kastner. 2021. White-Box Analysis over Machine Learning:
Modeling Performance of Configurable Systems. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). 1072—
1084. https://doi.org/10.1109/ICSE43902.2021.00100

Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi min Wang.
2004. Automatic Misconfiguration Troubleshooting with Peerpressure.
In Proceedings of the 6th Conference on Symposium on Operating Systems
Design & Implementation - Volume 6 (San Francisco, CA) (OSDI’04).
USENIX Association, USA, 17.

Zack Whittaker. 2018. GitHub says bug exposed some plaintext
passwords. https://www.zdnet.com/article/github-says-bug-exposed-
account-passwords/. Accessed: 2019-06-07.

Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupa-
thy, and Rukma Talwadker. 2015. Hey, You Have given Me Too Many
Knobs!: Understanding and Dealing with over-Designed Configuration
in System Software. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015).
Association for Computing Machinery, New York, NY, USA, 307-319.
https://doi.org/10.1145/2786805.2786852

Bringing Together Configuration Research: Towards a Common Ground

(59]

(60]

Tianyin Xu, Vineet Pandey, and Scott Klemmer. 2016. An HCI View
of Configuration Problems. arXiv.

C. Yilmaz, M. B. Cohen, and A. Porter. 2006. Covering arrays for
efficient fault characterization in complex configuration spaces. IEEE
Transactions on Software Engineering 31, 1 (2006), 20-34. https://doi.
org/10.1109/TSE.2006.8

[61] Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu. 2021. Static

Detection of Silent Misconfigurations with Deep Interaction Analysis.
Proc. ACM Program. Lang. 5, OOPSLA, Article 140, 30 pages. https:
//doi.org/10.1145/3485517

269

[62]

[63]

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Sai Zhang and Michael D. Ernst. 2014. Which Configuration Option
Should I Change?. In Proceedings of the 36th International Conference
on Software Engineering (Hyderabad, India) (ICSE 2014). Association
for Computing Machinery, New York, NY, USA, 152-163. https://doi.
org/10.1145/2568225.2568251

Yuanliang Zhang, Haochen He, Owolabi Legunsen, Shanshan Li, Wei
Dong, and Tianyin Xu. 2021. An Evolutionary Study of Configura-
tion Design and Implementation in Cloud Systems. In Proceedings of
the 43rd International Conference on Software Engineering: Compan-
ion Proceedings (Virtual Event, Spain) (ICSE "21). IEEE Press, 175-176.
https://doi.org/10.1109/ICSE-Companion52605.2021.00075

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Configuration Options as Program Values

	3 Towards a Common Ground
	3.1 Explaining Misconfigurations using the Model

	4 Bringing the Communities Together
	4.1 Enabling New Research
	4.2 An Example of Collaboration

	5 Conclusion
	Acknowledgments
	References

