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A 1.2 Billion Pixel Human-
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The world’s coastlines are spatially highly variable, coupled-human-natural systems that comprise a 
nested hierarchy of component landforms, ecosystems, and human interventions, each interacting 
over a range of space and time scales. Understanding and predicting coastline dynamics necessitates 
frequent observation from imaging sensors on remote sensing platforms. Machine Learning models 
that carry out supervised (i.e., human-guided) pixel-based classification, or image segmentation, have 
transformative applications in spatio-temporal mapping of dynamic environments, including transient 
coastal landforms, sediments, habitats, waterbodies, and water flows. However, these models require 
large and well-documented training and testing datasets consisting of labeled imagery. We describe 
“Coast Train,” a multi-labeler dataset of orthomosaic and satellite images of coastal environments and 
corresponding labels. These data include imagery that are diverse in space and time, and contain  
1.2 billion labeled pixels, representing over 3.6 million hectares. We use a human-in-the-loop tool 
especially designed for rapid and reproducible Earth surface image segmentation. Our approach 
permits image labeling by multiple labelers, in turn enabling quantification of pixel-level agreement 
over individual and collections of images.

Background & Summary
The availability of imagery from Earth observation platforms1 in coastal areas2 has enabled models of physical 
processes in the coastal zone to focus on coastal change measured in decades to centuries and tens to hundreds 
of kilometers3. Part of this shift is an increasing acceptance of the notion that large-scale coastal issues may only 
be addressed with large-scale measurements from aerial or space platforms, even if those measurements are 
less accurate than traditional ground-based survey measurements4 because of the relatively high temporal and 
spatial coverages of satellite-based measurements2,5. Remotely sensed photography has been used to monitor 
coastal ecosystems and hazards, such as hurricanes6,7, flooding8,9, and cliff erosion10, for almost a century. In 
some areas, aerial photos of the coast predate extensive modification of coastal morphology and ecosystems by 
humans.

Modeling coastal systems at large spatial and temporal scales requires methods to extract information from 
images. A traditional way to do this is through developing landcover maps. Modern landcover mapping efforts 
are designed to facilitate users bringing their own pixel classification and other image analysis algorithms to 
the data11, using petabyte-scale ‘analysis-ready’ data in cloud storage1, and carrying out accuracy and other 
quality assessments of the landcover maps informed by specialist knowledge (e.g., ecological or physical). This 
manual work is time consuming, hence the widespread interest in and adoption of automatic identification and 
mapping of natural or human-induced coastal change from geospatial imagery12. Coastal scientists are largely 
concerned with mapping features at and near the intersection of land and water, and with the visible expres-
sions of water flows and seasonal growth patterns and other processes. While leveraging existing national- and 
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international-scale landcover products is possible to a certain degree5, there is also a pressing need for labeled 
datasets for more and more specific land and water categories, relating to, for example, specific water and flow 
states, morphologies, sediments and surficial geologies5,13, habitats and vegetation types14, hydrodynamics, and 
coastal infrastructure12.

Time-series of coincident imagery can display transitions in habitats, morphologies and sediment distri-
bution, as well as signatures of change or visible indicators of characteristics of a particular type of coastal 
landform or habitat, even without detailed measurements of elevation. For example, it is possible to use a seg-
mented image time-series to estimate beach slope, and from that slope, a reasonable estimate of beach grain size 
might be inferred through the application of existing empirical models that relate grain size to slope15. Further, 
a time-series of segmented images, being classified at the pixel-level, is ideally suited to many coastal remote 
sensing tasks that require high-frequency information at event scales. Among numerous potential uses of seg-
mented imagery, some examples include capturing the expansion, densification, displacement, or otherwise, 
of development at the coast16, disaster assessment such as inventory of development and land-uses in hazard 
zones17, geomorphic mapping13,18, mapping water for verification of flood-inundation models19 using imagery, 
and examining the effectiveness of coastal management practices such as interception of sediment transported 
by longshore drift by coastal structures on eroding coasts20, or beach nourishments, by mapping the spatiotem-
poral distributions of (at least) sand and water21. Some smaller publicly available datasets for segmentation of 
time-series of imagery of coastal zones already exist, for specific objectives involving highly specialized labels or 
specific imagery or coastal landform types22–32.

Our dataset consists of pixel-level discrete classification of a variety of publicly available geospatial imagery 
that are commonly used for coastal and other Earth surface processes research. The primary purpose is 
to provide coastal researchers a labeled dataset for training machine learning or other models to carry out 
pixel-based classification or image segmentation. The adoption and communication of a rigorous, reproducible, 
and therefore fully transparent accuracy assessment for coastal-specific labeled imagery is lacking, for example 
specific details about dataset creation, such as label error. One way to quantify labeling errors is to measure 
inter-rater-agreement in a multi-labeler context33, a practice adopted here. After all, any supervised image seg-
mentation model and model outcomes that resulted from training on the Coast Train dataset would only be as 
good as the quality of that dataset34. Therefore, any quantifiable lack of agreement could be used as a conserva-
tive measure of irreducible error in model outputs.

Methods
Site and image selection.  The dataset35 consists of 10 data records, derived from 5 different imagery types, 
namely National Agricultural Imagery Program (NAIP) (aerial), Sentinel-2 (satellite), Landsat-8 (satellite), 
U.S. Geological Survey (USGS) Quadrangle (aerial), and Uncrewed Aerial System (UAS) -derived orthomosaic 
imagery. Each data record is characterized principally by the combination of image type and class set. Class sets 
are the lists of labels, or classes, used to segment the data. The study was confined to locations within the conter-
minous United States (CONUS), and locations related to various historical and present USGS research objectives 
within coastal hazards and ecosystems research were prioritized. Even within this scope, due to the large amount 
of imagery available and limited time to label in a multi-labeler context, which is more time-consuming than 
single-labeler contexts, we prioritized image sets according to geographic location, including multiple represent-
ative imagery from Pacific, Atlantic, Gulf, and Great Lakes coastlines. As described below, we included a set of 
relatively recently published sets of high-resolution orthomosaic imagery (Fig. 1) created from aerial imagery col-
lected from following a Structure-from-Motion workflow36 in addition to geospatial satellite imagery data avail-
able throughout CONUS (Fig. 2). The orthomosaics are locationally specific data collectively represent muddy, 
sandy, and mixed-sand-gravel beaches and barrier islands, in developed and undeveloped settings.

Image retrieval and processing.  Sentinel-2 (https://www.esa.int/Applications/Observing_the_Earth/
Copernicus/Sentinel-2) imagery was collected over the period 2017–2020, and Landsat-8 (https://www.usgs.
gov/landsat-missions/landsat-8) imagery over the period 2014–2020. Sentinel-2 and NAIP (https://www.fsa.
usda.gov/programs-and-services/aerial-photography/imagery-programs/napp-imagery/index) imagery was 
accessed using the parts of Google Earth Engine (GEE)1 Application Programming Interface (API) exposed 
by functionality encoded into the software program Geemap37, and Landsat-8 Operational Land Imager (OLI) 
imagery was accessed using the GEE API within the CoastSat program38. Only Tier 1 Top-of-Atmosphere (TOA) 
Landsat products (GEE collection “LANDSAT/LC08/C01/T1_RT_TOA”) and equivalent Level-1C Sentinel MSI 
(“COPERNICUS/S2”) products were used, which exhibit the most consistent quantization over time26,39. Imagery 
was orthorectified by the data provider, and no image registration was carried out. All Landsat imagery were 
pan-sharpened using a method40 based on principal components of the 15-m panchromatic band, resulting in 
3-band imagery with 15-m pixel size. Visible-band 10-m Sentinel-2 imagery was used. Landsat-8 imagery was 
masked for clouds using the provided Quality Assessment band that includes an estimated per-pixel cloud mask, 
whereas only cloudless Sentinel-2 imagery (assessed visually) is used because a per-pixel cloud mask is not availa-
ble. Though spectral indices that contain the Short Wave Infrared (SWIR) band such as the Modified Normalized 
Difference Water Index (MNDWI) have been shown to facilitate more reliable automated classification of water 
bodies in coastal regions25,38, only pansharpened visible-spectrum (blue, green, and red bands) imagery were 
labeled. Additional coincident spectral bands are available for each satellite scene at the same spatial resolution, 
for example near-infrared and shortwave-infrared bands; the labels created using the visible-spectrum imagery 
would apply to those additional bands.

Cloudless 1-m NAIP orthomosaic imagery was collected at various times in summer between 2010 and 
2018. There are 493 images depicting 366 unique locations. USGS quadrangle imagery (https://www.usgs.
gov/centers/eros/science/usgs-eros-archive-aerial-photography-digital-orthophoto-quadrangle-doqs) depict 
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mud-dominated delta and wetland environments of the Mississippi River Delta in Louisiana, collected in sum-
mer 2008 and 2012. To represent sand-dominated Gulf Coast environments, we include 5-cm orthomosaic 
imagery created from low altitude (<100 meters above ground level) nadir imagery of portions of Dauphin 
Island (Little Dauphin and Pelican Islands), Alabama41, and Madeira Beach, Florida42. Mixed sand-gravel 
beaches are represented in our dataset using 5-cm orthomosaic imagery created from low altitude imagery col-
lected between 2016 and 2018 at Town Neck Beach in Sandwich, Massachusetts43. All 5-cm orthomosaic imagery 

Fig. 1  Rows (from left to right) depict one example image, corresponding label image, and image-label overlay, 
of each of the orthomosaic datasets. Columns show imagery from San Diego, California (a), Monterey Bay, 
California (d), Mississippi River Delta, Louisiana (g), Madeira Beach, Florida (j), Pelican Island, Alabama (m), 
and Sandwich Town Beach, Massachusetts (p).
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was downloaded in GeoTiff format, tiled into smaller pieces of either 1024 × 1024 × 3 or 2048 × 2048 × 3 pixels 
depending on the dataset using the Geospatial Data Abstraction Library software40 (https://gdal.org) and con-
verted to jpeg format prior to use with Doodler (https://github.com/Doodleverse/dash_doodler), our labeling 
tool that creates dense (i.e., per pixel) labels from sparse labels called doodles44,45, further described in the ‘Image 
Labeling’ section below. All imagery data are provided in unsigned eight-bit format.

Class set selection.  We convened an invited panel consisting of seven experts on topics concerning coastal 
imagery, Land-Use Land-cover (LULC) and Machine Learning (ML) and met virtually for two hours to discuss 
the project and to determine a set of class labels for use with the various image sources and coastal geographies. 
During this meeting the various strategies we later adopted were proposed and discussed. The most important 
decision was to create a custom class set or two per image type, using a short list of simple (broad/elemen-
tal) classes, with the option to build complexity later (i.e., a hierarchical labeling approach). Addressing coastal 

Fig. 2  Rows (from left to right) depict one example image, corresponding label image, and image-label overlay, 
of each of the satellite image datasets. From top to bottom; Sentinel 2; Sentinel 2, 4 class; Landsat-8; and 
Landsat-8, Elwha. Columns show imagery from Ventura, California (a), Cape Hatteras, North Carolina (d), 
Galveston Island, Texas (g), Elwha River Delta, Washington (j).
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challenges using ML and image libraries requires that the classes match the features that can be readily distin-
guished in the images. Because some features are distinguishable in UAV imagery that are not distinguishable in 
aerial or satellite imagery, it is reasonable to use a different class list for the different image sources. Coast Train 
represents this scalable image and label library and includes a range of sources, from very high-resolution UAV 
images to spatially coarse but higher spectral resolution satellite images. In this way, the image and label library 
can be more readily utilized to address a range of coastal issues compared to existing land cover data derived 
solely from coarser satellite imagery.

During the expert panel discussion, it was also decided that water and whitewater would ideally always be 
included as categories as all the imagery depicted shoreline environments. We also defined class sets that could 
be combined into meaningful superclasses. In ontology, a superclass is a broad class name for a collection of 
subclasses. In this dataset there are seven superclass labels, and between four and 12 class labels. During the 
expert panel meeting it was further decided that we would only label what we are confident about, to maxi-
mize true positives in the training data by including relatively simple and unambiguous classes and a proba-
bility sink (unknown/uncertain) class. For some image sets we also adopted a suggestion of using an ‘unusual’ 
class to describe things that are not in the class set but occasionally appear in the scene. Finally, the utility of 
image sets with overlapping geographies was also posited, foreseeing the utility of linking relatively high- and 
low-resolution imagery. Linking class lists to the input image resolution (spatial and spectral) is important as 
some features like beach umbrellas, construction equipment, and woody debris are resolvable in higher resolu-
tion images but may become aggregated with the surrounding landscape in coarser resolution images. For these 
reasons, each image set was labeled using its own class list (Table 1).

Image labeling.  We achieved a fully reproducible workflow by using a semi-interactive ML program called 
‘Doodler’44,45 that uses sparse labels contributed by human labelers to estimate classes for all pixels. Its use in the 
Coast Train project is designed in such a way that each label image may be reconstructed using the sparse labels 
provided by a human labeler, and further, those labels might be repurposed using a different algorithm, if neces-
sary. This idea ensures reproducibility and is articulated further in a companion paper44 that is based on a similar 
dataset45 that complements the one described here but is much smaller and spatially and temporally less exten-
sive. The level of reported detail surrounding new human-labeled datasets is often poor, including the minutiae 
of decisions and other details that might impact the subsequent use of the data34, so below we describe how the 
labeling team interacted over the tasks.

Label quality assurance.  It is common to divide the work of labeling data among a group of people, which 
allows the labeling to be carried out in a shorter time period. However, group labeling in this way does not allow 
for quality assurance such as flagging outliers and measuring inter-labeler agreement44. We adopted a hybrid 
approach where some datasets were labeled by a single individual, for time efficiency, but also several datasets 
contained many images that were labeled by two or more individuals, ensuring sets of labels that could be com-
pared quantitatively44, a procedure that is described below.

The labeling task required an ability to recognize coastal landscapes and processes and, to a lesser degree, 
knowledge and experience with the Doodler program and the rudimentary elements of the ML behind it. The 
group of labelers had diverse backgrounds and career stages. The labeling team comprised two early career 
scientists who had limited prior knowledge of geosciences, and another who had a geoscience background with 
limited experience of data science and software. These individuals had never participated in data labeling tasks 
before. Other labelers had a wide range of experience with data labeling tasks involving geoscientific imagery. 
To ensure those respective backgrounds and experiences introduced minimal bias, and to otherwise ensure 
consistency among labeling styles and maintain high standards in the outputs, we adopted a practice of training 
and frequent communication.

First, the labeling team took training, during which the Doodler program44 was explained, demonstrated, 
and questions over its usage answered. Labelers were trained on how to load images, modify class lists, and 

Name Publisher
Number of 
images

Pixel 
size 
(m)

Number 
of unique 
scene 
locations

Number 
of labeled 
pixels 
(million)

Number of 
classified 
pixels 
(million)

Classified 
ground area 
(hectares)

Number of 
classes

NAIP-11 class USDA 493 1 366 63.720 380.227 38022.723 11

Quadrangles USGS 44 6.83 25 2.892 44.122 4412.208 8

Sentinel 2–11 class Copernicus 340 10 99 28.25 67.088 670878.850 11

Sentinel2-4 class Copernicus 103 10 2 9.863 44.205 442045.440 4

Landsat-8 USGS 350 15 8 21.572 108.596 2443414.838 11

Landsat-8 (Elwha 
River) USGS 50 15 1 0.771 1.133 25483.500 12

Madeira Beach USGS 26 0.05 26 4.371 27.263 6.816 12

Dauphin Island USGS 42 0.05 42 15.984 174.916 43.729 9

Sandwich Beach USGS 289 0.05 289 17.695 286.653 71.531 8

NAIP-6 class USDA 115 1 79 4.037 58.41 5841.465 6

Totals: n/a 1852 n/a 937 169.115 1192.617 3630221.100 n/a

Table 1.  Dataset summary.
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were provided examples detailing how to add/edit/remove doodles. The adjustable post-processing and classifier 
settings available were explained; however, users were encouraged to edit doodles before altering default set-
tings. This approach was because it is generally faster and sufficient to change pre-existing doodles than modify 
settings44. The human-in-the-loop aspect of the Doodler program places emphasis on humans aiding machine 
learning labeling of images; instead of only the human or the machine labeling each of the classes in the image, 
they work together for quicker and more consistent/objective labeling. This approach places emphasis on gain-
ing user experience with the program. Therefore, each labeler spent time practicing with the program before 
being assigned Coast Train imagery to label. There is a short learning curve for each individual as they develop 
their own labeling style and a relationship with the program that guides how much labeling is required, how to 
edit, and re-segment the image until they are satisfied with the results. Once such a relationship is established, 
labeling becomes a quick process and valuable labeled images are produced.

Thereafter, messaging and videoconferencing were used to establish criteria for sufficient labeling, receiving 
advice and consensus over images and portions of images that were hard to identify, and checking for con-
sistency among different labelers, to ensure the same strategy among different labelers was used to produce 
similar results. The labeling team was in hourly and daily communication via an instant messaging service, as 
well as during weekly meetings via videoconferencing. During weekly meetings, progress and challenges were 
discussed, and new tasks assigned. During these meetings, labelers were given a preview of the new dataset 
they were to label and warned of challenges they would need to overcome to successfully label the dataset. The 
challenges discussed typically related to (a) identifying features in relatively low-resolution satellite imagery 
and (b) the presence of new classes not previously encountered by labelers. Following the meetings, the labelers 
independently reviewed and labeled each image using the classes given during the meeting. In addition, we 
collectively carried out the analyses presented by a companion paper44, after which we were satisfied that vary-
ing interpretation and labeling styles impacted resulting labels minimally. We present similar label agreement 
statistics later that confirm this initial observation on the current dataset.

Data Records
There are 10 Coast Train data records35 (Table 1), including six orthomosaic-derived datasets and four 
satellite-derived datasets. Each dataset is associated with a specific image type and class set. Among the class 
sets, horizontal spatial resolutions range between 0.05 m and 1 m for orthomosaics, and either 10 m or 15 m for 
satellite imagery. All image sources are publicly available. Orthomosaic imagery (Fig. 1) is included to represent 
specific coastal environments at 5-cm pixel resolution. NAIP (1 m), Quadrangle (~6 m), Sentinel-2 (10 m), and 
Landsat-8 (15 m) imagery collectively represent continental-scale diversity in coastal environments (Fig. 2) at a 
range of pixel resolutions.

The number of class labels varies between four and 12. The dataset consists of 1852 individual images, com-
prising 1.196 billion pixels, and representing a total of 3.63 million hectares of Earth’s surface. Most image sets 
are composed of time-series from specific sites, ranging between two and 202 individual locations. Sites were 
manually selected according to U.S. Geological Survey mission objectives, and to provide a large range of differ-
ent coastal environments and locations in all regions of the United States. Other imagery covers an area at one 
specific time. Collectively, the data records have been chosen to represent a wide variety of coastal environments, 
collectively spanning the geographic range 26 to 48 degrees N in latitude, and 69 to 123 degrees W in longitude 
(Fig. 3). The labelers directly labeled 169 million pixels (about 14%); the algorithms in Doodler segmented the 
remainder (Table 1, Fig. 4). Each labeler performed on-the-fly quality assurance through diligent usage of the 
labeling tool.

Labels are reproducible; images and their corresponding label images are provided in a data archive per 
image file in compressed numpy46 npz format file format (https://numpy.org/doc/stable/reference/generated/
numpy.savez_compressed.html, containing variables described in Table 2) that also contains all the file varia-
bles necessary to reconstruct the labels. Packages are available in every popular programming language to read 
numpy arrays. We provide codes to extract all images and labels and other information using utility scripts 
packaged with the Doodler program. It is possible to use Doodler to reconstruct all the labeled imagery from the 
original sparse labels (or ‘doodles’) that are recorded to file. Metadata files for each data record (Table 3) describe 
spatial footprint, coordinate reference system and many other details for each image and corresponding label 
image and are provided as tables in csv format, detailing one image per row.

Technical Validation
The geographic distribution of labeled orthomosaic images (Fig. 3A), satellite images (Fig. 3B), and the number 
of images in spatial bins (Fig. 3C) show that the majority of coastal states within CONUS are represented. The 
final dataset contains numerous (but unequal) examples of coasts dominated by rocky cliffs, wetlands, salt-
marshes, deltas, and beaches, including rural and urban locations, and low- and high-energy environments. The 
size of the individual datasets, expressed in terms of total pixels labeled, varies between ~1 and ~380 million 
(Fig. 4, Table 1). The percentage of pixels directly labeled by a human also varies considerably among individual 
datasets, from ~5 to ~70% (Fig. 4). The percentage of pixels labeled and total pixels labeled are negatively corre-
lated; labelers tend to label a larger proportion of lower-resolution scenes. This is typically because more features 
are visible and must be identified in higher resolution imagery.

The frequency distributions of images labeled by unique labeler ID (Fig. 5), and of images labeled by class 
label (Fig. 6) show that most of the dataset was labeled by three individuals (ID1, 2, and 3) and that certain 
datasets were labeled by others (ID4 and ID5). Further, distributions of labeler IDs by images labeled and pixels 
labeled (Table 4) reveal that anonymous labeling (ID6) affects 1.1% of the dataset in terms of number of total 
pixels labeled, or 1.6% of all images.
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Each data record has a unique set of classes; however, labels are easily re-processed to map multiple classes 
to a standardized set of “superclasses” across all data records. Superclasses are broad class names for a collection 
of component class labels. For example, ‘buildings’ and ‘vehicles’ are a subset of the ‘developed’ superclass, and 
‘sand’ and ‘gravel’ are part of the ‘sediment’ superclass. We defined seven superclass labels, and between four and 
12 class labels depending on the dataset. Table 5 documents our mapping from per-set classes to superclasses. 
The per-set frequency distributions of labeled images by superclass label vary considerably (Fig. 7); however, 
the summed frequency distributions of all labeled images by superclass label are somewhat even, with all seven 
superclasses represented by between ~1000 and ~1800 images (Fig. 8).

Fig. 3  Geographical distribution of (A) orthomosaic and (B) satellite imagery, and (C) the ‘heatmap’ of image 
locations, or the number of images in spatial bins.

https://doi.org/10.1038/s41597-023-01929-2
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We use the methods described by a companion paper44 to compute mean Intersection over Union (IoU) 
scores for quantifying inter-labeler agreement. We use 120 images across two datasets, namely NAIP (70 image 
pairs) and Sentinel-2 (50 image pairs), that have been labeled independently by our most experienced labelers 
(Table 4), namely ID2 and ID3. Mean IoU is the standard way to report agreement between two realizations of 
the same label image. IoU ranges from zero to one; one indicates perfect agreement. Further, because IoU quan-
tifies spatial overlap and is prone to class imbalance44, we also computed Kullback-Leibler divergence scores47 
that quantifies agreement between class-frequency distributions. Kullback-Leibler divergence ranges from zero 
to one; zero indicates perfect agreement. As shown by a companion paper44, it is preferable to examine agree-
ment using multiple independent metrics. Bivariate frequency distributions of all images labeled by mean IoU 
and Kullback-Leibler divergence scores were computed for the (a) NAIP-11 class and (b) Sentinel-2 11-class 
datasets (Fig. 9). The great majority of labeled images have high IoU and correspondingly low KLD scores; how-
ever, there is variability in this trend, especially for the NAIP images (Fig. 9a) because the two metrics quantify 
different aspects of agreement. The mean of mean IoU scores is 0.88, which is considered good agreement44. We 
recommend using 1 minus 0.88, or 0.12, as an expected irreducible error rate. Based on the finding of a com-
panion paper44 that mean IoU scores tend to be inversely correlated with number of classes, we would suggest 
that this error is a conservative estimate. While we only present agreement statistics for only the satellite and 
NAIP imagery here, the interested reader is referred to that paper44 for identical agreement metrics on similar 
orthomosaic data, which makes up the bulk of the rest of the Coast Train datasets.

Fig. 4  The size of the individual datasets, expressed as millions of total pixels labeled, computed as the product 
of the two horizontal label image dimensions, summed over all labeled images in each set. Percentage of pixels 
labeled by a human is computed as the product of the two horizontal label image dimensions and the proportion 
of the image labeled using the labeling program ‘Doodler,’ summed over all labeled images in each set.

Variable Description

‘image’ Image used by the Doodler program. This is the first 3 bands of ‘orig_image’

‘orig_image’ Original 8-bit unsigned integer image read by the Doodler program, that may contain 4 bands.

‘label’
One-hot-encoded label image (2D raster) in 8-bit unsigned integer. Each integer encodes a class label, incrementing 
through ‘classes’ starting at zero. Refer to40 for an explanation of and rationale for storing labels in one-hot-encoded 
format.

‘color_label’ 8-bit unsigned integer 3D (RGB) version of ‘label’ colorized according to a discrete colormap

‘color_doodles’ 8-bit unsigned integer 3D (RGB) raster of doodles colorized according to a discrete colormap

‘doodles’ 8-bit unsigned integer 2D raster of doodles. It is possible to use Doodler utilities to reconstruct ‘label’ from ‘doodles’ and 
values listed in ‘settings’

‘settings’ List of settings used internally by the program, including the final values of the hyperparameters that may have been 
modified by the labeler

‘classes’ List of strings, each string a class name

0-prefix The variables ‘label’, ‘doodles’, and ‘color_doodles’ may have one or several prefix zeros, the number of which indicate the 
order of the previous trial. Variables without a zero prefix are always the final versions.

Table 2.  npz format file variables.
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Field(s) Description

‘annotation_image_filename’ npz format file containing the label data archive

‘classes_array ‘ names of possible classes in this dataset

‘classes_integer‘ one integer per element in ‘classes_array’

‘classes_present_integer’ one integer per element in ‘classes_present_array’

‘classes_present_array’ names of possible classes in this image

‘pen_width’ final width in pixels of pen used to doodle

‘CRF_theta’, ‘CRF_mu’, ‘CRF_downsample_
factor’, ‘Classifier_downsample_factor’, ‘prob 
_of_unary_potential’, ‘num_of_scales’

internal classifier hyperparameters used by the Doodler program. Refer to61.

‘num_classes’ number of possible classes in this dataset

‘doodle_spatial_density’ proportion of the image doodled

‘acc_georef ’ accuracy in meters of the specification of ‘XMin, XMax’ and ‘YMin, YMax’

‘epsg’ EPSG code of the projected coordinate system ‘CRS’

‘year, month, day’ time variables

‘hour, minute, second’ time variables

‘XMin, XMax’ minimum and maximum Easting of image footprint

‘YMin, YMax’ minimum and maximum Northing of image footprint

‘LonMin, LonMax’ minimum and maximum Longitude (WGS84) of image footprint

‘LatMin. LatMax’ minimum and maximum Latitude (WGS84) of image footprint

‘CRS’ the projected coordinate system description relating to ‘XMin, XMax’ and ‘YMin, YMax’

‘px_size_m’ horizontal size of pixel in meters

‘ImageHeightPx’, ‘ImageWidthPx’, ‘ImageBands’ Number of pixels in horizontal dimensions X and Y, and the number of bands (always 3)

Table 3.  csv format file variables.

Fig. 5  Frequency distribution of images labeled by unique labeler ID.
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Fig. 6  Frequency distribution of images labeled by class label.

Labeler ID
Number of images 
labeled

Millions of pixels 
labeled

1 415 276.178

2 497 194.595

3 826 614.167

4 40 48.917

5 44 44.072

6 (labeler did not identify 
themselves) 30 14.637

Table 4.  Distributions of (anonymized) labeler IDs by images labeled and pixels labeled.
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Usage Notes
Below we organize additional information for users of these data records, organized by six themes. The first is 
the specific information need met by the data records, outlining four ways in which the data may be used for 
model training, added to by others, and how the label data may have inherent value in analysis of how and why 
humans make labeling decisions. How these data meet standards of reproducibility are discussed, before advice 
is given over the use of the data for image segmentation model training. Finally, we briefly review existing data-
sets and modeling workflows that are complementary to the present data.

Information need.  We define the information need met by Coast Train as:

	 1.	 Pixel-level discrete classification of a variety of publicly available geospatial imagery that are commonly 
used for coastal and other Earth surface processes research.

	 2.	 Statistics describing agreement that might be used to define uncertainty in labeled data. This uncertainty 
could be interpreted as the irreducible error (cf.33).

	 3.	 A fully reproducible workflow, facilitating end-user-defined accuracy assessments and quality control 
procedures.

	 4.	 An extensible and open dataset, that might be actively contributed to by others.

Reproducibility.  The outcome of this effort is a dataset useful for custom spatio-temporal classification of 
coastal environments from geospatial imagery using a variety of potential image segmentation methods, includ-
ing a multi-purpose family of fully convolutional deep learning models, using the software Segmentation Gym 
(https://github.com/Doodleverse/segmentation_gym), described in another paper48. The present paper high-
lights the dataset, documents methods used to create it, and quantifies uncertainty associated with multiple labe-
lers. Mindful of the problems that have been identified in the construction of human-labeled datasets34, of which 
possibly most alarming was the evidence that two-thirds of publications with new datasets provided insufficient 
detail about how their data were constructed, we have endeavoured to provide a thorough description of the pro-
cess by which the dataset was constructed, including the choices and compromises made.

Image segmentation model training.  A significant advantage of Coast Train is the ability to efficiently 
remap classes and re-train a model without having to re-label imagery. The utility scripts contained within the 
Doodler program44 provide several means of organizing existing data but also include an approach to re-train a 
model with new or updated classes using previous labels. It is also possible to aggregate classes, depending on the 
application. For example, if a binary land-water mask is required for some application, it is possible to aggregate 
all land cover classes associated with land into one class representing land and all water classes aggregated into a 
single water class. This binary land-water classification scheme would be valuable when attempting to automate, 
for example, shoreline detection.

Example superclass label images are shown for orthomosaic (Fig. 10) and satellite (Fig. 11) datasets using the 
mapping shown in Table 5. These may be compared to the equivalent original label images in Figs. 1, 2, respec-
tively. Computer codes are provided (https://github.com/CoastTrain/CoastTrainMetaPlots) that generate these 
superclass label image sets for all images in each of the ten data records. Original classes and superclasses may 
have different uses, for example the use of superclass label imagery would be a ready means to train a supervised 
image segmentation model with broad classes on the full dataset consisting of all ten records. Individual class 
sets tend to contain more classes and may be more useful for image segmentation model training for more spe-
cific classes on particular image sets. In another paper48, we used merged class sets such as these to demonstrate 
and compare image segmentation model training strategies and outcomes.

Complementary image analysis and ML tools.  The data are contained in the numpy46 compressed 
data format, which is purposefully compatible with Doodler44, the accompanying dataset45, and image segmen-
tation modeling suite, “Segmentation Gym”48,49. Together, Doodler, Segmentation Gym, and models created by 
Segmentation Gym using Coast Train data, represent a small ecosystem of compatible software tools for custom 
label image creation, image segmentation model application and custom training and retraining for coastal, estu-
arine, and wetland environments. In addition, the number and availability of open-source image processing and 

Superclass names Aliases (component class names)

water water, sediment plume

whitewater whitewater, surf

sediment sediment, sand, gravel, gravel/shell, cobble/boulder/ mud/silt

developed developed, dev, coastal defense, pavement/road, other anthro, vehicles, buildings, development

natural terrain bedrock, bare ground, other natural terrain, other bare natural terrain

vegetation vegetated, vegetated surface, vegetated ground, terrestrial vegetation, marsh vegetation, herbaceous veg, herbaceous 
vegetation, wood vegetation, woody veg

other other, unknown, unusual, nodata, people, ice/snow, cloud

Table 5.  A mapping (look-up dictionary) between seven superclasses and the component classes used across all 
10 data records.
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machine learning-based image analysis and classification methodologies specifically for coastal and estuarine 
environments is on the rise. For example, specially designed software packages that allow for custom mapping of 
coastal environments by exposing an API for custom machine learning-based mapping26,32.

Complementary datasets.  Coastal science has benefited from sharing of datasets50–52 and applications 
(e.g.53,54) have also made extensive use of national-scale LULC datasets built by governmental agencies using large 
satellite collections such as NOAA’s Coastal Change Analysis Program (www.coast.noaa.gov/htdata/raster1/land-
cover/bulkdownload/30m_lc.) and the Multi-Resolution Land Characteristics consortium (https://www.mrlc.
gov/) in the United States, and a plethora of others for both general and specific needs55,56. These products usually 
result from heavily post-processed mosaics from imagery collected at multiple times, and often take several years 

Fig. 7  Frequency distribution of images labeled by superclass label. We define a superclass as a broad class name 
for a collection of component classes. There are seven superclass labels, and between four and 12 class labels 
depending on the dataset. Hence the empty bars in some of the frequency histograms shown. Computer codes 
are provided that generate superclass label image sets.
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to develop, therefore they are not always suitable for event-scale processes, observations at custom frequencies or 
specific times, or customized categories, all of which are so crucial in process-based studies of coasts12. That said, 
many of the aforementioned datasets could be used effectively in many contexts, including so-called “transfer 
learning,” where a ML model is enhanced by pre-training on one dataset then transferred to the same or similar 
model architecture trained on a second dataset. Of particular relevance and closest in comparison with Coast 
Train are labeled datasets of flooded landscapes57–59. Finally, while the present manuscript was in peer-review, 
another describing a dataset with a similar scope and name, “coastTrain”, has been published60. That dataset is 
more global in coverage. It is, however, comprised only of satellite data and its classes are more specific ecosystem 
types than the broader physiographic classes of the present dataset, “Coast Train”. They are therefore highly com-
plimentary datasets, and within the scope of the intended applications of both datasets, it is possible that they may 
be combined to train unified models, or any models trained on each respective dataset could conceivably be used 
in conjunction for numerous automated mapping tasks in the coastal zone.

Sustainability and extension.  Although not nearly exhaustive or definitive, the images, doodles, and 
labels included in this dataset have potential application across a wide range of geographies, including but not 
limited to sandy coasts; rocky cliffs and platforms; wetlands, marshes, and mangroves; gravel and cobble beaches; 
and developed coasts (Fig. 3). The classes included in this image label library are diverse in geography and coastal 
environment. Future versions of Coast Train could include images from new sensors and platforms, new classes, 
and geographies. For example, oblique imagery from aerial platforms, and representation from very high latitude 
and tropical regions that each present their own particular image segmentation problems due to, for example, ice 
or clouds. Additionally, while our data are aimed toward segmentation tasks, they could be re-purposed for object 
detection or other image classification tasks.

Fig. 8  Frequency distribution of all images labeled by superclass label.

Fig. 9  Frequency distribution of all images labeled by mean IoU and Kullback-Leibler divergence scores, for the 
(a) NAIP-11 class and (b) Sentinel-2 11-class datasets.
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While we acknowledge that the dataset is not global in geographic distribution, the distribution of sites and 
sensors within the labeled datasets presented here are potentially relevant and useful to global studies aimed at 
classifying the coastal zone, even if they are limited to specific coastal environments of the USA. For example, 
many of the classes are broad, such as water, surf, sand, vegetation, etc, which has been a successful strategy 
adopted by many well-known and well-cited satellite image segmentation approaches in the coastal zone, such 

Fig. 10  Rows (from left to right) depict one example image, corresponding label image remapped into a 
standardized set of classes, and image-label overlay, of each of the orthomosaic datasets. Columns show imagery 
from San Diego, California (a), Monterey Bay, California (d), Mississippi River Delta, Louisiana (g), Madeira 
Beach, Florida (j), Pelican Island, Alabama (m), and Sandwich Town Beach, Massachusetts (p).
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as those behind CoastSat26, and those used by Luijendijk et al.25, which we note were trained on significantly less 
imagery than is contained in the Coast Train dataset, yet still applied successfully to multiple countries, regions, 
and in the case of the Luijendijk et al.25 study, the entire world. As-yet unspecified Machine Learning models 
based on these data may or may not generalize to the entire world. However, in numerous specific situations and 
locations, the distribution of our labeled imagery may not transfer well to all global environments, and indeed 
coarse, muddy, and coral coasts are absent, as we note above.

Fig. 11  Rows (from left to right) depict one example image, corresponding label image remapped into a 
standardized set of classes, and image-label overlay, of each of the satellite image datasets. From top to bottom; 
Sentinel 2; Sentinel 2, 4 class; Landsat-8; and Landsat-8, Elwha. Columns show imagery from Ventura, California (a),  
Cape Hatteras, North Carolina (d), Galveston Island, Texas (g), Elwha River Delta, Washington (j).
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Code availability
All the figures presented in this manuscript may be generated using computational notebooks provided (https://
github.com/CoastTrain/CoastTrainMetaPlots). Utilities for npz file variable extraction and class remapping are 
provided in the Doodler44 and Segmentation Gym48 software packages. All labels were created with Doodler44. 
Imagery was downloaded using CoastSat (https://github.com/kvos/CoastSat) and Geemap (https://github.
com/giswqs/geemap) functionality. For more information, please see the Coast Train project website (https://
coasttrain.github.io/CoastTrain/).
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