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Abstract—In this paper, we propose a novel reference gover-
nor (RG) scheme for pre-stabilized linear sampled-data systems
to satisfy pointwise-in-time constraints in the presence of
bounded disturbances and uncertain input and/or measurement
delays. Based on an explicit bound on the system response
to step changes in the reference signal derived using the
logarithmic norm, this RG scheme yields a closed-form solution
for updating the reference signal at sample time instants
that guarantees both sample-time and inter-sample constraint
satisfaction. Due to its closed-form expression, the proposed RG
scheme requires minimum computational effort and is thereby
suitable for systems with limited computing capability.

I. INTRODUCTION

Many control requirements can be expressed as pointwise-
in-time constraints. Control approaches that can handle such
constraints include Model Predictive Control (MPC) [1],
[2] and invariant set-based approaches [3]-[5]. Another
framework for handling constraints is the use of Reference
Governors (RGs) to augment (rather than replace) nominal
controllers [6]. Specifically, the RG enforces constraints by
monitoring, and modifying when necessary, the reference
signal to the nominal controller. From practical perspective,
the RG is an add-on scheme that preserves desirable small-
signal characteristics of the nominal closed-loop system,
which typically does not account for the constraints, while
protecting the system against constraint violations for larger
signals. In most of the above approaches, an optimization
problem, typically a linear or quadratic program, needs to
be solved online. In applications such as to small spacecraft
[7] and small-scale robotic systems [8], on-board comput-
ing capabilities are limited and electrical power consumed
during intensive computations becomes a concern. For these
and other certification-related reasons, closed-form/explicit
solutions without the need for an online optimization solver
are highly desirable. Such solutions are available in the case
of the scalar RG for discrete-time linear systems [6], [9].

For continuous-time systems, the Explicit Reference Gov-
ernor (ERG) [10], [11] uses a continuous-time dynamic
feedback law to adjust the reference signal for guarding the
system from constraint violations. In this paper, we propose
a novel ERG scheme in a sampled-data setting for linear
systems with disturbance inputs and time delays, which
exploits the Logarithmic Norm and is thus referred to as
ERG-LN. The logarithmic norm has been exploited in [12] to
bound the errors between the responses of a nonlinear system
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and its linearized model. This bound was then used to define
an RG scheme based on online prediction and optimization.
In this paper, the ERG-LN scheme is proposed for a different
class of systems, in which the logarithmic norm is exploited
in a different way.

Compared to the traditional ERG, the proposed ERG-
LN has the following differences: 1) The traditional ERG
is inherently a continuous-time reference adjustment law.
Typically, the issues related to discrete-time implementa-
tion are not explicitly addressed assuming high sampling
rates. While constraint satisfaction for all times as well as
reference convergence can be established through an extra
algorithm based on one-step prediction [13], this introduces
extra computing tasks. In contrast, the proposed ERG-LN is
applicable to a sampled-data setting [14]. Specifically, while
applied to a continuous-time system, ERG-LN is inherently
a digital device — it measures the state and updates the
reference signal only at periodic sample time instants. Such
a sampled-data setting is also different from a discrete-time
setting. A discrete-time model typically does not capture
the inter-sample behavior of the continuous-time system,
while the ERG-LN guarantees both sample-time and inter-
sample constraint satisfaction. 2) The ERG-LN can account
for bounded but uncertain constant delays in the reference
input and/or state measurement, which, to the best of our
knowledge, has not been addressed in the ERG literature.
The formulation of ERG for continuous-time linear systems
that are subject to known input delay has been studied in
[15]. For second-order linear systems with known reference
input delay, a prediction-based RG scheme that has low
computational footprint was proposed in [16]. An uncertain
reference input delay was treated within the prediction-based
RG framework in [17], where updates to the reference signal
are determined through online optimization. However, uncer-
tain state measurement delay was not addressed in [15]-[17],
which can also be handled by our ERG-LN scheme.

We note that the ability to account for uncertain reference
input and/or measurement delays is important. On the one
hand, such delays commonly exist in real systems due
to, e.g., time needed for measurement, computation and
communication (see Fig. 1 and also [17]). On the other hand,
although these delays are often small, ignoring them in the
design may cause the constraints to not be strictly enforced
during the operation (see the example provided in [17]). In
this context, the contributions of this paper are as follows:
1) We propose a novel optimization-free, closed-form/ex-

plicit RG solution, referred to as ERG-LN, for pre-

stabilized linear sampled-data systems with bounded dis-
turbances and uncertain delays affecting reference input
and/or state measurement channels (see Fig. 1) to satisfy
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Fig. 1: Application of reference governor to pre-stabilized
system subject to input and measurement delays.

pointwise-in-time constraints. To the best of our knowl-
edge, this is the first explicit RG solution in the literature
that is designed in a sampled-data setting and can simul-
taneously handle disturbances and uncertain delays.

2) This ERG-LN scheme employs the logarithmic norm to
derive explicit bounds on the system response and a
closed-form solution to the reference signal that guar-
antees constraint satisfaction. Such an application shows
that the logarithmic norm is a useful tool for constrained
control, especially in a sampled-data setting.

3) We establish important theoretical properties of the pro-
posed ERG-LN, including guaranteed both sample-time
and inter-sample constraint enforcement and finite-time
convergence of the reference signal to constant, strictly
steady-state constraint admissible desired reference.

4) We illustrate the proposed ERG-LN through simulation
examples and compare it with other relevant schemes.

This paper is organized as follows: In Section II, we
introduce the system model considered in this paper and
the logarithmic norm, which will be exploited to define
our ERG-LN scheme. In Section III, we present our ERG-
LN scheme, together with a discussion of its theoretical
properties. We illustrate the proposed ERG-LN scheme and
compare it with other relevant schemes through simulation
examples in Section I'V. The paper is concluded in Section V.

The notations used in this paper are standard. For a set
X C R”, int(X) denotes its interior, cl(X) its closure, and
XC¢ =R\ X its complement. For a map .% : [a,b] — R",
Im(.%) denotes its image, i.e., Im(.#) = {7 (x) : x € [a,b]}.
To facilitate exposition in a sampled-data setting, we use (7)
with round brackets to represent a continuous time 7 € [0, ),
and use [¢t] with square brackets to represent a sample time
instant t € NoT', where Ny denotes the set of natural numbers
including 0, and T denotes the sampling period.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this paper, we consider a pre-stabilized continuous-time
linear system in the following form,

x(t) = Ax(t) + Bv(t — 71) + Dw(r), (1a)
() = x(t — »), (1b)

where x(¢) € R™ denotes the system state, v(r) € R™ denotes
a delayed reference input determining the set-point of the
system, £(¢) € R"™ denotes a delayed measurement of the sys-
tem state, and w(r) € R™ denotes an unmeasured disturbance
input, which can also be used to represent modeling errors.
By pre-stabilization, we mean that (la) represents a closed-
loop system consisting of a possibly unstable plant and a

stabilizing controller such that the matrix A in (1a) is Hurwitz
(i.e., all eigenvalues of A have strictly negative real parts).
Note that the nominal stabilizing controller can be designed
without considering any constraints or delays that affect the
RG channels (see Fig. 1). In this case, a variety of approaches
such as pole placement and linear quadratic regulator (LQR)
can be used for its design. Then, the proposed ERG-LN will
be used as an add-on scheme to augment the nominal system
(la) with constraint handling capability (see Fig. 1). More
details on this RG approach to handling constraints can be
found in [6].

When A is Hurwitz, for any constant reference input v(r) =
v € R™, there is a corresponding steady state x,(v) = —A~ !By
such that x(¢) — x.(v) as t — e when disturbance-free (i.e.,
Dw(t) =0). We now make the following assumptions on the
delays 7|, T, and on the disturbance input w(r):

Assumption 1: The values of the constant time delays
T1,T» > 0 are uncertain but satisfy 7; + 7, < T with T being
a known constant.

We note that the delays 71, 7, may be attributed to various
sources, such as sensing, data processing, and communica-
tion between the inner-loop (the nominal closed-loop system)
and the outer-loop (the augmented ERG-LN). For instance,
the nominal system (1) may be monitored and commanded
remotely in a networked systems setting (see Fig. 1), in
which case significant communication delays may occur. For
a real system, exact values of such delays may not be easy
to measure, but establishing a bound T for them is realistic.

Assumption 2: The disturbance input w(¢) is Lebesgue
measurable in ¢ € [0,0) and takes values in a bounded set
W C R™ for almost all ¢.

Note that we assume w(#) to take values in the bounded set
W for almost all ¢ (rather than for all ¢) because the values
of w(f) on a null set of time instants ¢ do not change the
solution of the differential equation (1a), i.e., we allow w(t)

to take any values on a null set of ¢ [18].
We consider the following pointwise-in-time constraints,

x(t) €X, Vie|0,0), 2

where X C R™ is a closed set. The following assumption on
the constraint set X is further made:

Assumption 3: For any two reference input values v,V €
R™ of interest, there is a continuous function & : [0,1] —
R™ connecting #(0) =v and (1) =V (called a “path”)
that satisfies —A~!'BIm(%) C int(X).

For instance, if int(X) is convex and the images of v,v/
under the linear transformation —A~'B both belong to int(X),
then & can be the linear path Z(p) = (1—p)v+pv. Note
that the proposed ERG-LN can also be applied for non-
convex constraint sets X, as long as a path & satisfying
Assumption 3 is available. An ERG for continuous-time
systems that can handle non-convex constraints has been
proposed in [19], but the development in [19] is not in a
sampled-data setting and does not address delays.

We aim to develop a RG scheme applicable in a sampled-
data setting that governs the reference input v(z) based on
the delayed state measurement £(z) = x(f — 7;) and, under
Assumptions 1-3, is able to enforce the constraint (2). For
this, we exploit the logarithmic norm.



Definition 1 [20], [21]: A functional pu(-,||-|) : R”" =R
defined by

I, +hF| —
F, Mt hFI =1 p g 3
(I = tim ®
is called a logarithmic norm, where ||-|| denotes both an

arbitrary vector norm on R” and its induced matrix norm on
R™" (defined by ||F|| = maxy—; [|Fx[]).

Note that a logarithmic norm is not a norm on a vector
space, but a real-valued functional on linear operators R" —
R" identified by square matrices in R"*". Importantly, a
logarithmic norm can take negative values. Furthermore, a
logarithmic norm can be induced from an arbitrary vector
norm using the formula (3), allowing a large flexibility in
the design. For common vector norms, such as ¢”-norms
with p = 1,2, 0, their corresponding logarithmic norms admit
explicit expressions [22]. In particular, for a quadratic norm
defined by |- ||p = +/(-) TP(+) with a positive-definite matrix
P, its corresponding logarithmic norm is given by

((PI/ZFP1/2)+(P1/2FP1/2)T)

H(F |- llp) = Ama B

@

where Amax(-) represents the largest eigenvalue of a real
symmetric matrix. The logarithmic norm has several useful
properties, presented as follows. For the sake of complete-
ness, we include their proofs in the Appendices.

Proposition 1: If V(0) = 8T PO is a Lyapunov function
proving the asymptotic stability of 6 = 0 for the system
6(1) = FO(t), then u(F,|-|l») <O.

Proof: See Appendix A. B

Since the matrix A of our pre-stabilized system (la) is

Hurwitz, for any positive-definite matrix Q, we can obtain a
positive-definite matrix P by solving the Lyapunov equation

ATP+PA+0Q=0, 5)

such that V(x) = x" Px is a Lyapunov function proving the

asymptotic stability of x = 0 for the system x(¢) = Ax(z).
Then, Proposition 1 implies that p(A, || -||p) <O.
Proposition 2: Consider 6(t) = F0(t) + y(t), where
F € R and y € Zm([ ,00) — ]R"). We have (i)
D6 <N U I‘ 10+ llY@l, D [[6(t)| =
limsup, o+ LEIEEOL 1 u(F, - [) < 0 and [[y()] <

Ymax for almost all t € [0,), then we also have (ii)
lim, .. dist(6(¢),®) = 0 for all 6(0) € R" and (iii) 6(0) €
® = 6(r) € © for all 1 € [0,00), where ® := {0 €
R[]0 < — 7’;“‘“"”)} and dist(6,0) := infg,ce |0 — 60|

Proof: See Appendix B. N

Proposition 2 represents a way of using the logarithmic
norm to estimate a bound on the response of a continuous-
time linear system subject to a bounded input. We choose to
exploit the logarithmic norm for this purpose because it has
been shown in [20], [21] that the logarithmic norm offers
a less conservative estimate than some other tools such as
Lipschitz constants. This result will be relied upon in our
RG design to achieve constraint enforcement.

To summarize, the problem treated in this paper is to
develop a RG scheme for system (1), which is subject to a
bounded disturbance input w(¢) and uncertain delays 7y, 72,
to satisfy constraint (2) while achieving desirable reference
and state convergence properties. Furthermore, we require
this RG scheme to be applicable in a sampled-data setting

and is computationally light. For the latter requirement, we
pursue an optimization-free, closed-form/explicit solution.

ITI. EXPLICIT REFERENCE GOVERNOR USING
LOGARITHMIC NORM FOR CONSTRAINT HANDLING

The basic idea of our design is to update the reference
input v(¢) periodically until v(¢) converges to its desired
value, r, while guaranteeing that the system response x(¢) to
the periodically updated v(¢) satisfies the constraint (2). The
desired reference value r is typically an input provided by
either a human operator or a higher-level planning algorithm.
In principle, r may also be a periodically updated signal,
in which case the constraint enforcement result of our
designed ERG-LN scheme still holds true. Note that in many
applications the update period of r is typically much longer
than the update period of v(z) [6]. In view of this fact, we
assume r to be a constant throughout this section to simplify
the exposition. Under the assumption of constant r, we also
establish the finite-time convergence result of v(r).

Let T > 11 + 7 and consider updating v(¢) at the sample
time instants No7'.! Let v[ty] denote the reference input value
determined at the sample time instant fy = k7. Note that
due to the input delay 7;, the reference vfy] acts on the
system (la) starting from ¢ =ty + 7;. Then, define y(¢) =
x(t) — xe(v[to]) = x(¢) + A~'Bv[to] and write (1a) in the y
coordinates as

3() = (1) +% (" Bvin]) = 0)
y(t ]tho>+Bv(tf‘L'1)+D (1)
= y(t)+Bv(t—r1 — Bv[to] + Dw(r). (6)

= Ax(t) +Bv(t — 1)) + Dw(r)

Note that in the above expressions v[f] denotes a value for
the reference input and is treated as a constant. Now consider
updating the reference input from vfp] to some value v[f] at
the sample time instant #; = (k+ 1)7. The solutions to (6)
satisfy the following result:

Proposition 3: Let y(t) be a solution to (6) over [t} —
Tp,o0) with a given initial condition y(¢; — 1), where v(r —

Tl) = v[t() for t € |1 7.’62,[1 Jr’L']), V({*Tl) = V[tl] for t €
[f1 4 71,°0), and w(r) satisfies Assumption 2. Then, y(z) must
satisfy
B(v[t| — [t +Q
o)l < max (-~ LECERZEOIEL 1o o), o)

for all ¢ € [tj — Ty,0), where P satisfies (5) and Q =

supy,cyw |[Dwl|p-
Proof: For t € [t] — Tp,t1 + T1), (6) reduces to

() = Ay(1) + Dw(t). ®)

Firstly, from Proposition 2(i), if |[y(¢)|p >

_ Ipw@llp
u(A-p)
tion 2(iii), if ||y(ri — »)|lp < —

Q5
u(A e =
then D/|ly(t)|lp < O. Secondly, from Proposi-

then |ly(1)[lp <

M(AH'HP) ’

'For systems in which a processor performing RG computations is
capable of a shorter sampling period T, one can update the reference v(r)
every N sample instants where NT > 1; 4 7. Without loss of generality
one can then treat (and rename) N7 as T in the analysis. We require the
update period of v(¢) to satisfy T > 7; + 7, in order to guarantee constraint
satisfaction for all times without knowing exact values of the delays 7; and
Ty, as will be shown in what follows.



—m for all ¢ € [fr] — 72,71 + 71]. Combining these two
cases, we must have

I5(0)llp < max (— m Iy(er - rz)np), ©)

for all t € [t — T, 1) + 7).
Similarly, for ¢ € [t] + T1,00), (6) reduces to

y(t) = Ay(t) +B(v[t1] —v[to]) +Dw(t),
and we must have

Iy ()| p < max (_ l\B<v[2}(;’v|‘[{<)‘}|i \)|p+sz

(10)

e +mup), (an

for all t € [t; + 71, 0).
Q
Note — oy < —

HB(V[II](_V[tO])”P‘FQ and (9) implies

w(A )

Q
tH+T <max| —————,|[y(t1 — 7 . 12
[y(r1 +71)llp < w(A, [l 1lp) [ly(t1 2)||P) (12)
Then, combining (9), (11) and (12), we obtain (7). B
Proposition 3 provides an explicit bound on the system
response to a step change in the reference input v(r). Then,
the following assumption is made and will be relied on to

enforce the constraint (2).
Assumption 4: The P-weighted Euclidean distance of

Xe[to] = x.(V[to]) = —A~'Bv]to] to the constraint boundary,

dist(xe[to], X) = inf |lxelro] —x]lp, (13)
xex¢
can be measured, and the measurement will be available at
the sample time instant .
Remark 1: For many well-structured constraint sets X,
dist(x',X€) = inf, _yc || — x| p admits an analytical expres-
sion. For instance, for a polyhedral set X = {x € R™ : MiTx <

mii=1,--- ny}, dist(x',X¢) can be computed as
M M
dist(, (M x=my}) = "R = TS (4a)
M5 /MlTp—lMl.
dist(x', X€) = min dist(x', {M;" x = m;}), (14b)
=1,
where || - ||p is the dual norm of || -||p defined as || - |5 =

v (-)TP~1(:). For a non-structured or a priori unknown
constraint set X, dist(x.[fg],X") may be estimated online

through sampling points on the constraint boundary dX, i.e.,

dist(x, 1], X€) ~ i:rlrlir‘ln llxelto] —xillp,  {xi}i, CoX. (15)

Such estimation may require non-negligible processing time.
However, Assumption 4 says that we need the estimate of
dist(x.[to],X€) to be available at the next sample time instant
ty =to+ T, ie., a time period of length T > 1) + 15 is
available for such processing.

On the basis of Proposition 3 and Assumption 4, the safety
of any value for v[t;] in terms of constraint enforcement can

be evaluated using the following result:

Proposition 4: Let x(t) be a solution to (la) over [f —
Ty,00) with a given initial condition x(¢#; — 1), where v(t —
Tl) = V[to for t € [t] — 1,1 +171), V(l—Tl) = V[tl] for t €
[t1+ T1,00), and w(r) satisfies Assumption 2. If the following
conditions hold,

(16a)
(16b)

B[] = viio))llp < =R (A, || - [|p) dist(xe[to]. X ) — 2,
1£(11) —=xelto] | < dist(xe[ro], X),

where £(¢;) = x(fj — 7p) is the measurement of the initial
condition at the delayed time instant #; according to (1b),
then the constraint x(¢) € X is guaranteed to be satisfied for
all # € [t] — Tp,0).

Proof: Firstly, the combination of (16a) and (16b) yields

diSt(xe[toLxC) > ni=
max (_ IB(v[t1] = vio))[lp +

,U(A,H ”P) 7||x(t1)_x€[t0]”P)' (17)
If n >0, then (17) implies that the open ball centered at
Xelto] with radius 1, B(x.[to],n) = {x: ||x — x¢[to]|lp < M},
is contained entirely in X. More specifically, suppose dxg €
%(x.[to],n) such that xo € XC. In this case, we would have
dist(xe[ro], X) = infcyc |lxe[to] —x][p < [lxe[to] — xollp < 1,
which contradicts (17). Because B(x,.[to],7) C X and X is
closed, the closure of Z(x.[to],n), cl(B(x.[t0],m)) = {x:
|lx—xc[to]|lp < M}, is also contained entirely in X. Recall we
have shown in Proposition 3 that for ¢ € [} — T2, ), ||x(¢) —
xeltolle = Iy(O)llp < . ., x(r) € cl(#(xlro], ). Thus, it
holds that x(r) € X. According to the definition of 1 in (17),
the only possible case for n =0 is with v[f;] = v[t], Q =
0 (disturbance-free), and £(t1) = x(fj — T2) = xe[to]. In this
case, x(r) starts at the steady state x,[fy] = x.(v[fo]) and stays
there forever. Then, according to Assumption 3, x.(v[f]) € X,
which implies x(r) € X. B

Now, based on the result of Proposition 4 and following
the idea of optimization-based RG [6], we present the
following design for determining v[t]: If ||£(¢1) — xe[to]||p <
dist(x,[to],X), then

v[t)] = argmin |[v—r|} st (18)
v

(v vlo)) (8 PB)(v—viio)) < (m(A |- 1) dist(xelio). X))

where S is a positive-definite matrix penalizing the difference
between v and the desired reference value r; v[t;] = v[to]
otherwise.

The online optimization problem (18) is a convex quadrat-
ically constrained quadratic program. To reduce the com-
putational complexity of the design, we derive a closed-
form/explicit alternative in what follows.

We restrict the periodically updated values of v to the path
in Assumption 3, & :[0,1] — R™ connecting v[0] and r.
Then, we define J[ty] : [p[to],1] = R as

Tlwol(p) = 1B(Z(p) —vlto))|lp = |B(Z(p) — Z(plto]))l|p, (19)

where p[fo] is the coordinate of v[fo] on the path, and make
the following assumption:
Assumption 5: 7 [ty] is a monotone increasing function.
Assumption 5 holds for many cases. For instance, if &2 is
a linear path, 2 (p) = (1 —p)v[0] + pr, then

T liol(p) = IB((1 = p)v[0] +pr— (1 = p[to])v[0] — plio]r) [
= (p—plio)) |B(r—v[0])||p (20)

is monotone increasing in p.

With J[ty] and Assumption 5, we present the following
design, referred to as the Explicit Reference Governor using
Logarithmic Norm (ERG-LN), for generating the continuous-
time signal of v:

v(t) =v[n], @



for each time interval [t,71 +T), t; € NoT, where v[t;] is
determined as

o] = 2 (o), (223)
plin] = xlnlp*i] + (1 2l ]pliol, (22b)
Mnk:DMOO—memPSdwa%LXQ]7 (220)

pin] = (7l (min (~ w(A.] - [ dislnl] X) - 0,
Ia—vin)lr) )

where x[t;] is an indicator function, taking its value as 1 if
the condition on the right-hand side of (22c) holds true and
taking O otherwise. The second term in (22d) ensures that

(22) outputs v[t;] = r whenever r is a feasible solution.
Note first that the above design updates the value of v at
the sample time instants #; € NoT based on the delayed state
measurement £(¢;) = x(t; — 72) rather than the instantaneous
state value x(f1), which is not available due to the mea-
surement delay 7, (see (1b)). Note also that Assumption 5
guarantees the function 7 [fg] to be invertible, and for many
path types £, (22d) admits an analytical expression. For
instance, for a linear path #(p) = (1 — p)v[0] 4 pr with the
expression of 7 [fy] given as (20), (22d) reduces to

o1 — min (. O distxli). X€) + @
7= e elob1)- @

We now discuss theoretical properties of the reference
input signal v(r) generated by our ERG-LN (21)-(22). The
following results demonstrate its safety, in terms of constraint
enforcement, and liveness, in terms of convergence to r,
respectively.

Proposition 5: Suppose that for a constant reference
input, v(¢) = v[0] over [—7Tj,), and for w(t) satisfying
Assumption 2, the state trajectory x(¢) of (la) satisfies (2).
Then, for v(r) generated by (21)-(22) and w(r) satisfying
Assumption 2, x(¢) is guaranteed to satisfy (2).

Proof: Let t' € [0,00) be arbitrary and let us consider the
following two possible cases. Firstly, suppose there exists
an earlier sample time instant t; € NoT, t; <t — 71, such
that the value of v(r — 1) gets adjusted at t =1 + 17 (i.e.,
v((ti+7)—1) =v(t) # limt_"; v(t)), and after that v(r —
71) remains constant over ¢ € [t; + T;,¢']. According to (21),
v(t)) # limle v(t) implies v[t;] # v[to], where 19 =1, — T
denotes the sample time instant previous to #;. In this case,
according to the reference adjustment law (22), the following
two conditions must hold true at 7;: 1) x[t;] must be equal
to 1, which implies the right-hand side of (22¢) holds true,
ie., [|£(t1) — xe[to]||p < dist(x.[to],X€).2 2) Under Assump-
tion 5, (22d) ensures [[B(2(p*[11]) — vito])[lp < —p(A, |-
||p) dist(x.[to],XC) — Q. Then, according to Proposition 4,
viti] = P(p*[t1]) generated by (22) guarantees x(¢) € X to
be satisfied for all ¢ starting from ¢ =#; — 7, to the first time
instant after = 7| + 7y at which v(r — 1) gets adjusted again.
Since v(r — T1) remains constant over ¢ € [t; +T;,#'] (see the
definition of #; above), this implies x(¢') € X.

Secondly, suppose the #; € NyT defined in the first case
does not exist. This immediately implies v(r — 7;) = v[0] for

(22d)

2If the right-hand side of (22c) does not hold true and consequently
x[t1] = 0, then according to (22a)-(22b), v(1;1) = Z(p[]) = Z(pln]) =
vlfo] = limH,( v(r), which violates the definition of #.

all r € [0,7'] (i.e., no adjustment has occurred). In this case,
the assumption in the proposition statement guarantees x(¢) €
X for all ¢ € [0,#']. Therefore, we have shown that in either
case, x(1') € X. Since ' € [0,0) is arbitrary, this proves the
satisfaction of (2). B

In Proposition 5, we assume that the system trajectory
corresponding to the initial reference value v[0] satisfies
the constraint (2). This is a reasonable assumption [6]. For
instance, the system may start operating from a constraint-
admissible steady state (or, the time instant when the system
trajectory converges to a sufficiently small neighborhood of a
constraint-admissible steady state is considered as the initial
time ¢t = 0). However, this does not mean one can simply
maintain the reference input v(¢) at its initial value v[0] and
not update it, because v[0] and its corresponding steady state
x.(v[0]) may not be equal to the desired reference r and the
desired steady state x,(r). Indeed, the latter two represent the
current set-point/operational task for the system. Next, we
show the finite-time convergence property of v(f) to r and
the exponential convergence property of x(z) to a bounded
neighborhood of x,(r) using our ERG-LN.

Proposition 6: Suppose that &2 is uniformly continuous
and there exists & > 0 such that for every p € [0,1],
dist(x.(2(p)),X€) > —m + 6. Then, (i) there ex-
ists tr € NoT such that v(ig =r for all r > ty, and (i)
dist(x(¢),Q(r)) converges exponentially to 0 as ¢ — o, where
Qr)={xeR™: lx—x.(r)||]p < fm}.

Proof: Let tg € NgT be arbitrary such that v[tg] # r. Since
U(A,| -1lp) <0, from Proposition 2(ii), if v(¢) = v[to] for a
sufficiently long time period, then there must be ¢ > fo +
71 + T such that ||x(t' — 1) — x.[to]|lp < —m +4 <
dist(x,[to],X©). This ensures the existence of a sample time
instant #; € NoT, 9 < t; < ¢, such that the condition (22c)

is satisfied at #1.
Given that [(A, |- ||p) <O, it follows that

— (A, |- ||p) dist(xe[to], X©) —©

> (- 12) (f ﬁum +5) Q= p(A]- |58 >0,

Hence, there exists p > plto] such that

1B(Z(p) = Z(plwo]))llp = 1B(Z(p) —vito])l»
< — (A |- [lp) dist(xe[ro] . X€) — 2.

(24)

(25)

This ensures that the solution to (22d) at the sample time
instant #; satisfies p*[t;] > p[to]. Note that p[fp] # 1 since
we have assumed v[fy] # r. Furthermore, by the uniform
continuity of &, there exists € = £(6) > 0 such that for
any p with |p — plr]| < &, we have

1B(2(p) = Z(plto]))lp < k(A ]| -[lp)&

< —p(A, |- [|p) dist(xe[to], X) — Q. (26)

This ensures that the solution to (22d) at #; must satisfy
p*[t1] > min(plto] + €,1). Note that € here is a constant
determined by 0, independent of 7y or ;.

Therefore, by combining the above results we have shown
that for any #9 € NoT with v[tg] # r, there exists #; € NoT
such that #; is the first sample time instant after #y where v
is updated from v[ty] = P (plto]) to vit;] = L(p[r1]) and,
in particular, p[t] satisfies p[t;] > min(plro] + €,1). This



ensures that 1) starting from v[0] = £2(0), the piecewise
constant signal v must converge to r = Z?(1) after a finite
number of jumps, and 2) the time periods between consecu-
tive jumps are of finite length. This proves (i).

Then, (ii) follows from (i) and Proposition 2(ii). In par-
ticular, the convergence is exponential, which follows from
the expression (35). B

IV. EXAMPLES

In this section, we use examples to illustrate our proposed
ERG-LN and compare it to relevant schemes, including the
prediction-based RG and the traditional ERG.

., k=1 _
m=1 . _g; m=1

Fzm
—_—

B

X2 X1

Fig. 2: Two-mass system.

A. Example 1

Consider the two-mass system shown in Fig. 2. The dy-
namics are represented by the following differential equation:

» 0 0 I 07y, 0 0
0 0 0 1 0 0

E&Z_LL_LL{CZ-ﬁ-LOFl;

dr | X1 I:nl mlk m my X1 my | F
Y2 m Tm om T mpl 2 0
=4, =:[B,, D]

where the force Fj is a controlled input and the force F, is
an uncontrolled disturbance input, which takes values in the
range W = [—Wmax, Wmax]- We assume the following feedback
control law for F; has been designed to stabilize the system,

FIZK[xlira)Q*r?xlvxZ]T? (28)

in which r represents a desired position deviation from the
nominal for the two masses m; and my to track, and K is the
LQR gain K = —R" !B/ P where P is the positive-definite
solution to the continuous-time algebraic Riccati equation,

A P+PA,—PB,RT'B/ P+ 0 =0, (29)

with Q = diag(1,1,0.25,0.25) and R = 1. We assume that
the following collision-avoidance constraints,

xi(t) <2, x () —x() > =05, (30)

must be satisfied. For enforcing such constraints, we apply
the ERG-LN, which replaces the desired position r in (28)
with a modified reference signal v.

In this example, we assume the existence of input and
measurement delays of 7 = 7p = 0.1. To account for these
delays, we consider a sampling period of T =7+ 17, =0.2. It
is well-known that the function V' (x) = x " Px with P obtained
from (29) is a Lyapunov function for the LQR closed-loop
system. According to Proposition 1, we use this P to define
the logarithmic norm u (-, |- ||) used in ERG-LN. Moreover,
since the constraint set X defined by (30) is convex, we
consider a linear path & connecting the initial reference
v(0) =0 and r. Note that in this case Assumption 5 holds
true and (22d) admits the analytical solution (23).

We consider the initial condition x(0) = [0,0,0,0] " and the
desired reference r = 1.98. The steady state corresponding
to r is x.(r) = [1.98,1.98,0,0] ", which is located near the
boundary of the constraint x () < 2. We consider two cases
for the disturbance input F>, wp,x = 0 (disturbance-free) and
Wmax = 1 X 1072, The simulation results of using ERG-LN to
govern the reference signal v versus directly setting v = r are
shown in Fig. 3. It can be seen that without modification to
the reference signal r, i.e., v =r, the system response violates
both constraints of (30). In contrast, when using ERG-
LN to govern v, the constraints are strictly satisfied, which
verifies our constraint enforcement result in Proposition 5.
For wmax = 0, v(f) converges to r at the time instant * = 22.8
(indicated by the dotted vertical line in Fig. 3(a)). This
observation verifies our result in Proposition 6 on finite-time
convergence of v to 7. For wimax = 1 x 1072, v(¢) converges to
a point whose corresponding steady state is kept away from
the constraint boundary by a safety margin. Such a safety
margin is kept to guarantee that even under the worst-case
disturbance trajectory, constraint satisfaction is ensured.

a b
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1.8””(7":"“1"_-““ — LS’***/?’*T—"“‘WM"‘M
/ ——v=r:a /
Xi1.2p o~ ERG-LN: v 127 o~
06t/ —ERGIN:zl) gt/
/ — - constraint K
0E 0=
0 5 10 15 22.8 30 0 5 10 15 20 25 30
081+ 081+
N ——v=r:a A
04 —ERG-LN: & 04r v
Y N N — 0 i’ :\T o
Lo [
04E i 04 A f o ___
Y3 A
-0.8 - -0.8 =
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Fig. 3: ERG-LN response versus unconstrained response for
(2) Wmax = 0 and (b) wmax = 1 x 1072,

As discussed in Section I, the newly proposed ERG-
LN and traditional ERG are both closed-form RG schemes,
but they have several distinguishing features. To illustrate
their differences, we also implement the traditional ERG
to the above example. We consider both a continuous-time
implementation of ERG (ERG-c) and a digital/discrete-time
implementation of ERG (ERG-d) with a sampling period
T =0.2. In our ERG implementations, the dynamic safety
margin used by ERG to enforce constraints [13] is defined
based on the same Lyapunov function V(x) = x' Px used by
our ERG-LN to define the logarithmic norm p(-, ||-|/p). The
parameters kK and 1 [13] have been tuned to achieve a bal-
anced performance between response speed and steady-state
oscillation (see Fig. 4). We note that our ERG-d implementa-
tion here does not include the extra algorithm based on one-
step prediction introduced in [13] for guaranteeing constraint
satisfaction for all times as well as reference convergence,
which would involve extra computing tasks. This is done
to reveal potential issues when a continuous-time scheme is
implemented digitally without corresponding modifications,
and thereby illustrates the advantage of our ERG-LN, which
is formulated for use in a digital micro-controller from the
beginning but guarantees both sample-time and inter-sample
constraint satisfaction. As a benchmark, we also implement
a prediction-based RG [6]. A prediction-based RG operates
based on predictions of the system response to reference
values and online optimization to determine the most aggres-



sive constraint admissible reference adjustment. As a result,
it typically achieves faster responses than optimization-free
schemes such as the ERG-LN and the ERG, at the cost of
higher online computational footprint.

For the case of wpax = 0, the reference v and state x
responses using ERG-LN, ERG-c, ERG-d, and prediction-
based RG (referred to simply as RG in the figure) are plotted
in Fig. 4. It can be seen that the prediction-based RG leads
to the fastest response, and the response speeds of the other
three schemes are comparable. The prediction-based RG, the
ERG-LN with sampling period 7 = 0.2, and the ERG-c all
successfully drive the reference signal v(¢) to converge to
the desired reference r = 1.98 and drive the state x;(¢) to
converge to its desired steady-state value of 1.98 without
violating the constraint x1 (¢) < 2 during transience. However,
it can be observed in Fig. 4(b) that when the ERG-d with
sampling period 7' = 0.2 is used, constraint violation occurs
around ¢ = 20 and the terminal-phase trajectory of x;(¢) has
some oscillation around its desired steady-state value of 1.98.
Such behaviors can be understood with the help of Fig. 4(a):
When being close to r = 1.98, the reference signal v(r)
generated by ERG-d exhibits chattering behavior and fails
to converge to r = 1.98, which are related to overshoots in
the forward Euler approximation v(r +T) = v(z) + Tv(t) of
the continuous-time equation governing v(¢) used in ERG-c
[13]. Such chattering behavior causes the error between x; (7)
and its desired steady-state value of 1.98 and also contributes
to the constraint violation.

1.95

Fig. 4: (a) Reference responses and (b) state responses of
prediction-based RG, ERG-LN, ERG-c, and ERG-d.

Note also that unlike our ERG-LN, the traditional ERG-c,
ERG-d, and prediction-based RG do not account for delays,
meaning that they may not have strict constraint enforcement
guarantee when delays are present. In particular, although
for 11 = 7 = 0.1 no constraint violations are observed when
ERG-c and prediction-based RG are used, when we enlarge
the delay values to 7; = 7o = 0.5, we have observed constraint
violation occurrence with the prediction-based RG. Although
RG schemes that account for input delays have been pro-
posed in [15]-[17], those schemes rely either on knowledge
of the exact delay values [15], [16] or on robust optimization
to ensure constraint to be satisfied for all possible delay
values [17]. In contrast, the proposed ERG-LN scheme
handles uncertain input delays in a straightforward way by
using a sufficiently large update period 7. Furthermore,
our ERG-LN can also handle uncertain state measurement
delays, which are not addressed by [15]-[17]. In this regard,
the proposed ERG-LN scheme may be particularly attractive

to practitioners who want to achieve guaranteed constraint
enforcement without involving complicated algorithms.

B. Example 2

The second example we consider is motivated by the
motion planning and control problems for small-scale robots
[8]. These robots typically have very limited on-board com-
puting capability due to their small sizes. Therefore, closed-
form/explicit solutions that involve minimum computational
effort are appealing to them. We consider a 2D omni-
directional robot with the following integrator-type dynamics

s(t) =v(t), v(t) =a(t), a(t) =u(t), 31

where s(1), v(t), and a(t) € R? represent its position, velocity,
and acceleration on the ground, respectively, and the time
derivative of acceleration (jerk), u(z), is the control input.
Suppose the task for the robot is to navigate through
the maze shown in Fig. 5(a) from the starting point s¢ to
the target point s; (marked by the green and red points,
respectively) without colliding with the walls (the black box
and grey shaded areas). We first stabilize the system (31)
using the feedback control u(t) = K[s(t) —s,, v(t), a(t)] ", in
which s, € R? represents the desired position for the robot
to track, and K is the LQR gain corresponding to Q =
diag(500,500,1,1,10,10) and R = diag(1,1). We assume
that a piecewise linear path &2, shown by the blue dotted
curve in Fig. 5(a), has been planned for the robot. We
decompose the task of tracking the endpoint s; of the entire
path into several sub-tasks. Each sub-task corresponds to a
linear piece of the path, with the endpoint s} (marked by the
orange points) as the immediate desired position to track.
For enforcing the collision-avoidance constraints, we apply
the proposed ERG-LN scheme, which replaces the desired
position s} with a modified reference signal v during each
sub-task. Since the path corresponding to each sub-task
is linear, the explicit solution to (22d) is given by (23).
Furthermore, to simplify the computation/estimation of the
distance to constraint boundary (13), we consider a box
constraint set for each sub-task, represented by the light blue
or green shaded rectangles in Fig. 5(a), so that (13) can be
computed through the explicit expressions in (14).
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Fig. 5: Omni-directional robot constrained navigation.

The position trajectory of the robot using ERG-LN is
shown by the blue curve in Fig. 5(b). For comparison, we
also consider a naive navigation strategy, with which the
robot directly tracks the endpoint of each sub-path, st during
each sub-task and switches the endpoint for tracking from s;
to the next one sit! when the robot position s(r) satisfies
|ls(¢) — s}|| < 0.5. The position trajectory corresponding to
this naive strategy is shown by the red curve in Fig. 5(b).



It can be seen that the robot using this naive navigation
strategy collides with the walls multiple times, while the
robot using ERG-LN reaches s, safely. A cost of guaranteed
safety using ERG-LN is slower response speed — it takes the
robot only 10[s] to get to s, using the naive strategy and
about 30[s] using ERG-LN. Approaches to reducing ERG-
LN conservativeness will be investigated in our future work.

V. CONCLUSIONS

This paper proposed a novel RG scheme, referred to
as ERG-LN, for pre-stabilized linear sampled-data systems
with uncertain input and/or measurement delays to sat-
isfy pointwise-in-time constraints. We established its the-
oretical properties, including guaranteed sample-time and
inter-sample constraint enforcement as well as guaranteed
finite-time convergence of the reference signal to constant,
strictly steady-state constraint admissible desired reference
in the presence of uncertain delays. Due to its closed-form
expression, the proposed ERG-LN scheme operates with
minimum computational footprint and is thereby suitable for
systems with limited computing capability. The operation and
properties of ERG-LN, as well as its potential for practical
applications, were illustrated in simulation examples.
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APPENDIX

A. Proof of Proposition 1

For any ¢, Taylor expansion of V ((I, +hF)6(r)) about 8(¢) to the
first order yields V ((I, +hF)8(1)) =V (0(r)) +h 3% (6(¢)) FO(r) +
O(h?), where O(h?) denotes higher-order terms. Since V(6) is a
Lyapunov function proving the asymptotic stability of 6 =0 for the
system §(t) = F (), we have V(0(r)) = % (6(¢)) FO(t) <O0. Then,
for sufficiently small 4 > 0, we have A %(G(t)) FO(t)+0(h?) <0,
which yields V ((Z, +hF)6(r)) <V(6(t)). Applying (3) yields

max g =1 ||l +1F)8(t)[|p— 1

w(F - llp) = lim p )
= lim max VY +1F)8(1) — V(1)) <0. m
h=0%16(1)[|lp=1 h
B. Proof of Proposition 2
Firstly, we have
. .
D;HeuﬂkzﬁnmupH90)+he@)+cxh)H 6]
h—=0+ h
2 —
_ timsup 180+ AFO() + (1) + 0G| ~ |01
h—0+ h
. I, +hF| —1 0 h2
<timsup (VR oo v+ 12090)
h—0+ h h
. I,+hF|—1
= u”e(ﬂllﬂl?’(ﬂll:u(EII~H)H9(t)||+||7(t)|\~
—0t h

This proves (i). Using the Bellman-Gronwall inequality [23], (33)
also yields the following bound on the solution 6(z),

1
J00)] < o)+ [N tsyas. o4
0
If ||7(¢)]] < Ymax for almost all ¢ € [0,0), then we have

°t
18(0)] < eI 0(0)+ [ MO dipyey
GHENDE
7’}/1'113.)('
w(E )

If u(F,||-||) <0, then we further have lim; .. e**I")7 ||6(0)|| =0
and €0V 1y < This proves (ii). Finally, if [ 6(0)]| <

= eHEID 0 (0)]| + -

LT (R
_W then (35) yields
, H(EIDr — g
0(1)[| < —eh (Pl Ymax € = — A
l6@ll < wE D) T RETD ™ T TR
(36)

This proves (iii). B



