
1.  Introduction
Image segmentation has become an increasingly important tool in Earth science research (Pally & Samadi, 2022; 
Sun et al., 2022; Yuan et al., 2021). In recent years, Deep Learning (LeCun et al., 2015) models based on the 
UNet (Ronneberger et al., 2015) and the Residual UNet (Liu et al., 2019; Zhang et al., 2018) have become the 
standard in state-of-the-art Earth science applications involving image segmentation (Chen et al., 2020; Collins 
et al., 2020; Gupta et al., 2021; Hoeser & Kuenzer, 2020; Jin et al., 2022; Kattenborn et al., 2019; Kotaridis & 
Lazaridou, 2021; Li et al., 2022; Liu et al., 2019; Marangio et al., 2020; Nagi et al., 2021; Nalepa et al., 2019; 
Rafique et al., 2022; Sáez et al., 2021; Song et al., 2020; van der Meij et al., 2021; Verma et al., 2021; Xiao 
et al., 2021).

Deep-Learning-based image segmentation (or “semantic segmentation”) starts with a research question and rele-
vant labeled training data, that is, pairs of images and corresponding labels. Training data can come from existing 
sources (e.g., Wernette et al., 2022) or made from scratch using labeling tools (e.g., Buscombe et al., 2021). With 
training data in hand, researchers are left to wrangle, preprocess and format data, followed by building, training, 
and evaluating models using one of several Deep Learning frameworks. This work often requires substantial 
trial-and-error experimentation; choosing a model and training technique, as well as implementing those tech-
niques, can be challenging (Yuan et al., 2021). Further, guidance in published papers and code repositories often 
only present the author's best model (in terms of a validation metric), and not the extensive model training trials 
that might inform other experiments for a researcher to try when developing a suitable model. This points to a 
gap in the current software landscape, namely an end-to-end pipeline for geoscientific image segmentation that 
makes quick experimentation relatively easy.

Abstract  Segmentation of Earth science imagery is an increasingly common task. Among modern 
techniques that use Deep Learning, the UNet architecture has been shown to be a reliable for segmenting 
a range of imagery. We developed software–Segmentation Gym–to implement a data-model pipeline for 
segmentation of scientific imagery using a family of UNet models. With an existing set of imagery and labels, 
the software uses a single configuration file that handles data set creation, as well as model setup and model 
training. Key benefits of this software are (a) the focus on reproducible data set creation and modeling, and 
(b)  the ability for quick model experimentation through changes to a configuration file. Quick experimentation 
permits researchers to prototype different model architectures, sizes, and adjust common hyperparameters to 
find a suitable model. We demonstrate the use of the software using a data set of 419 labeled Landsat-8 scenes 
of coastal environments and compare results across two model architectures, five model sizes, and three loss 
functions. This demonstration highlights that our software enables rapid, reproducible experimentation to 
determine optimal hyperparameters for specific data sets and research questions.

Plain Language Summary  A common task for Earth scientists is to divide a satellite or aerial 
image into specific classes. For example, an image of the coastline might be assigned certain pixels as being 
water, beach, and land. In the Deep Learning world, this is called segmentation. We wrote a piece of software 
that helps researchers train Deep Learning models to do segmentation on all types of imagery. A major problem 
with making Deep Learning models is dealing with all the choices on which model to use and quickly testing 
many options. We have designed our code in such a way that it can easily be adjusted, and will work in many 
applications and for many common types of Earth science image data sets.
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To fill this gap and aid in the adoption and use of Deep Learning image segmentation, we developed software 
named “Segmentation Gym” to allow researchers to quickly implement and experiment with segmentation with 
their own imagery. A fully reproducible workflow enables users to adjust a configuration file and perform their 
own experimentation with hyperparameters. Segmentation Gym enables its users to fully document the compu-
tational provenance of their data models using openly accessible and citable methods (Gil et al., 2016), which 
moves Earth science segmentation practices closer to realizing a goal of being fully reproducible (Donoho, 2010).

In addition to presenting the design of Segmentation Gym, we demonstrate its use with an example using a data 
set consisting of 419 image-label pairs. The labeled imagery consist of Landsat-8 scenes of coastal environments 
from a large collection of labeled images (Buscombe et al., 2022; Wernette et al., 2022). We examine the sensi-
tivity of model outputs to hyperparameter choices that govern model architecture and training strategies. We 
compare two Deep Learning model architectures (UNets and Residual UNets), five different model sizes, and 
three different loss functions. The goal of this demonstration is to highlight how researchers can draw insight 
from the results of this experiment, and adapt a similar modeling campaign with their own data.

2.  Implementation
2.1.  Overview

We outline the implementation of the software (Figure 1) below in five sections. First, we describe the routines 
to create a model-ready data set, which ingest data, merge data bands from files, augment the data, remap classes 

Figure 1.  Schematic diagram of the data-model pipeline (a) encoded in the Segmentation Gym software, with examples of model inputs and outputs (b). The four basic 
pipeline stages are depicted (from left to right): 1. Model-ready data set creation; 2. Model architecture (model building); 3. Model training; and 4. Model evaluation, 
each with their own set of configuration settings that govern behavior (c).
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on-the-fly (if necessary), and format it into batches of tensors of a certain size for model training. Second, we 
describe the model building process, which involves experimenting with model architecture, such as how large 
and how numerous feature-extracting kernels are, and experimenting with the use of regularizing layers. Third, 
model training is described. Fourth, we discuss model evaluation routines, requiring the use of metrics to quantify 
accuracy on a hold-out data set. Training often involves experimenting with hyperparameters such as the loss 
function and learning rate. Therefore lastly, we describe how model reproducibility is ensured, for example, by 
using the same training and validation examples for successive experimentation, such as to test the outcome of 
retraining with new hyperparameters.

The Python software (Buscombe & Goldstein, 2022) relies on Numpy (Harris et al., 2020), Tensorflow (Abadi 
et  al.,  2015), and Keras (Chollet,  2021; Chollet et  al.,  2015), and is designed to run in an isolated conda 
(Conda, 2022) environment, a cross-platform and open-source package management system. Models are typically 
trained using GPUs but a CPU may also be used.

Training a segmentation model requires image-label pairs, and users come to this segmentation workflow with 
a folder of images and a folder of corresponding labels. Segmentation Gym is part of an ecosystem of tools that 
includes the labeling program “Doodler,” described by Buscombe et al. (2021). Images labeled using Doodler are 
readily ingested into the model pipeline (Figure 1), but label images acquired by other means are also supported.

The components outlined in Figure 1 permit rapid exploratory modeling, which is necessary because determin-
ing a successful model implementation often can take experimentation. A single configuration file (Figure 1) 
controls all of the data creation and model training hyperparameters, such as input data size, on-the-fly class 
remapping, data augmentation behavior, training hyperparameters, regularization, model loss, and model archi-
tecture. Configuration files are JSON files containing a data-model pipeline recipe encoded as variables and their 
values. Therefore each model building trial may be documented by the configuration file that made it.

2.2.  Model-Ready Data Set Creation

The routine to convert image-label pairs into formats amenable for training a model is opinionated (Ostblom & 
Timbers, 2021; Parker, 2017; Peng & Parker, 2021). For example, by design we force users into a certain way 
of preparing data. In return, users have their data batched and preprocessed in a way that we have found to be 
successful for training segmentation models using a range of geoscientific imagery.

First, the user is prompted via a Graphical User Interface to enter the path to the images, labels, and a place to 
store the output files. Imagery can consist of one or more bands in 8-bit unsigned formats. The program allows 
either (a) 3-band imagery, such as most visible-band photographic data; (b) 1-band imagery, such as other spec-
tral and hyperspectral bands or indices, or bespoke geophysical data bands; or c) merging of 1- or 3-band imagery 
with any number of additional 1-band images that are coincident in space.

Second, images are standardized by subtracting the mean and dividing by the standard deviation. This is a crucial 
step toward good model performance on sample imagery whose distributions may differ from the imagery used 
to train the model (Li et al., 2022; Yuan et al., 2021). Standardizing imagery diminishes the importance of outlier 
distributions of image values, ensuring better transferability from training to sample imagery.

Third, both images and labels are resized to the target dimensions, and also zero-padded if necessary. Fully 
convolutional models expect input imagery to all be the same specified size, and it is common practice to resize 
and reshape imagery to a desired target dimensions. Zero-padding involves placing an image in the center of 
a large matrix of zeros, such that the boundary pixels of the resulting image are all zero (with a correspond-
ing zero-valued label integer to denote a null class). Padding is necessarily carried out on imagery that has a 
range of dimensions; if the imagery is smaller than the target dimensions, it is zero-padded. If, however, the 
imagery is larger than the target dimensions, it is first shrunk (i.e., resampled to a coarser spatial dimension), then 
zero-padded.

Fourth, classes in the labeled imagery can optionally be remapped. Data sets for image segmentation come with 
labels from pre-determined class sets. Those classes may be merged, split or otherwise remapped from one set of 
classes to another, depending on the intended application. For example, if the integer 1 is used to encode the class 
label “ocean,” and the integer 2 is used to denote “river,” those two classes might be merged such that integers 1 
and 2 both denote a third common class, “water.” Remapped label imagery is stored directly in the output files.
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Finally, data undergo augmentation. Augmentation creates transformed versions of the data (Rafique et al., 2022; 
Stivaktakis et al., 2019; van Lieshout et al., 2020) and is carried out by means of the standard operations available 
in Keras, such as rotation, width and height shift, zoom, and vertical and horizontal flips. The primary purpose 
is regularization; by providing alternative versions of the data, the model learns feature representations that 
are  invariant to location, scale, translation, etc. Using augmented imagery to train a model permits oversampling 
(increasing the size of a data set) without excessive redundancy, because all oversampled augmented imagery will 
have unique, random augmentations. Optionally, augmentation may be disabled, in which case non-augmented 
data are used. Examples of augmented and non-augmented images with labels overlayed are printed to file for 
visual verification.

The model training pipeline stores image/label pairs as a TensorFlow Data set. This format allows for convenient 
batching, shuffling, and loading of the data set during model training and evaluation. The model training pipeline 
takes advantage of the TensorFlow Data Application Programming Interface (Tensorflow datasets, 2022), which 
represents a sequence of single training example, with a pair of tensor components representing the image and its 
label. Each image and its corresponding label are stored in the compressed numpy binary format, npz (also used 
by Doodler) as a sequence of binary strings, which allow large data sets to be sequentially loaded to the local 
(GPU or CPU) memory during model training and evaluation.

2.3.  Model Building

Currently, Segmentation Gym implements types of UNet and Residual UNet models. A UNet (Ronneberger 
et al., 2015) today generally refers to a family of models identified by the following characteristics (Figure 2): 
(a) fully convolutional (no fully connected layers); (b) four convolutional “blocks” consisting of convolutional 
layers and Batch Normalization layers connected by ReLu activations, then optionally, Dropout layers; and (c) 
symmetrical U shape (hence the “U” in the name) with skip connections encoding the Encoder and Decoder 
branches (Figure 2). Specific UNet implementations often differ in (a) number of filters, (b) stride length (i.e., 
feature extraction specifics), (c) use of (and type and relative location of) Dropout.

Our UNet (Figure 2a) and Res-UNet (Figure 2b) architecture implementations differ only through the use of 
residual connections in convolutional blocks in the latter. Residual connections add the outputs of the regular 
convolutional block with the inputs, so the model learns to map feature representations in context to the inputs 

Figure 2.  The (a) UNet and (b) Res-UNet fully convolutional model architectures used in the present study. There are several forms of these models available in the 
software “Segmentation Gym.”
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that created those representations (Drozdzal et  al.,  2016). Residual connections (Drozdzal et  al.,  2016) have 
been shown in numerous contexts to facilitate information flow during model training (Liu et al., 2019; Nagi 
et al., 2021; Zhang et al., 2018).

The Encoder branch (Figure 2) receives the input image and applies a series of Convolutional and Batch Normal-
ization layers, and optionally Dropout layers, followed by Pooling layers that reduce the spatial size and condense 
features. Four banks of convolutional filters each use filters that double in size to the previous, thereby progres-
sively downsampling the inputs as features are extracted through pooling. The last set of features (or so-called 
bottleneck) is a very low-dimensional feature representation of the input imagery. The Decoder upsamples the 
bottleneck into a label image progressively using convolutional filters, each using filters half in size to the previ-
ous, thereby progressively upsampling the inputs as features are extracted through transpose convolutions and 
concatenation. The sets of features from each of the four levels in the Encoder-Decoder structure are concate-
nated, which allows learning different features at different levels and leads to spatially well-resolved outputs. The 
final classification layer maps the output of the previous layer to a single 2D output based on a Sigmoid activation 
function.

2.4.  Model Training

The routine for training a model is opinionated through the specification of the numerical optimizer that guides 
training, and through the use of a deterministic learning rate scheduler. Neural networks are trained with varia-
tions of the stochastic gradient descent (SGD) algorithm, and the specific form of numerical optimizer is a hyper-
parameter. We use the Adam optimizer (Kingma & Ba, 2014), a variation of SGD. Schmidt et al. (2020) found 
Adam to be a good choice for almost all Deep Learning models based on Convolutional layers. Other important 
model training variables specified in the configuration file are (a) batch size, (b) loss function, and (c) learning 
rate. These tend to have a greater impact on final model accuracy than other tunable hyperparameters such as 
kernel size, number of convolutional filters, and Dropout, and are therefore described in more detail below.

Data sets are typically larger than can be held in memory so models are trained in batches. Batch size can be an 
important hyperparameter; when the model is presented with a batch of, say, six images, and six corresponding 
labels, the model performance and the magnitude of weight adjustment during backpropagation will be evaluated 
as the average of the six individual discrepancies between model predictions and ground-truth labels. Therefore 
the size of the batch has an effect on the model's ability to recognize patterns in the presence of variability, 
with larger variability given by large batch sizes, and hence its rate of convergence in training. Where possible, 
we recommend using the largest batch size your available GPU memory will allow. Larger batch sizes tend to 
promote more stable validation loss curves. This is usually only possible with relatively large hardware, because 
large batches mean larger amounts of GPU memory required. You may therefore decide to use a smaller model 
input size to achieve a larger batch size if necessary.

During training, the distribution of accuracy scores over classes are optimized using a loss function. Segmen-
tation Gym provides various options for loss function. In this contribution we compare three loss functions, 
namely mean Dice, categorical cross-entropy or CCE, and Kullback-Leibler distance or KLD. The mean Dice 
coefficient is given by 𝐴𝐴 𝐴𝐴 = 2|𝑌𝑌 ∩ 𝑌𝑌 |∕|𝑌𝑌 | + |𝑌𝑌 | , where Y and 𝐴𝐴 𝑌𝑌  are true and estimated label images, respectively, 
∩ is intersection. Mean Dice is a spatial metric that is relatively insensitive to class-imbalance, or the tendency 
for a majority class to dominate over one or more minority classes (Csurka et al., 2004). This is because the 
numerator is the number of correctly classified pixels, and the denominator is the total number of pixels in a class 
that is in both estimated and ground truth. We therefore can use 1 − D as a loss function during class-imbalanced 
model training, and D to evaluate model results. Many geoscience data sets are significantly imbalanced, and rare 
classes may be scientifically important, therefore a loss function such as 1 − D that handles this can be impor-

tant for model accuracy. Categorical cross-entropy, 𝐴𝐴 𝐴𝐴 = −
∑

𝑐𝑐
𝑌𝑌 log

(

𝑌𝑌

)

 , is a measure of the difference between 
two distributions over a class set, c, that is, the target or ground truth and the current model estimate, and is a 
generalization of log loss to multi-class classification problems. Kullback-Leibler distance measures divergence 

in class-probability distributions and is given by 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 =
∑

𝑐𝑐
𝑌𝑌 log

(

𝑌𝑌 ∕𝑌𝑌
)

 .

We vary the learning rate deterministically using a scheduler function that assigns a specific learning rate value 
as a function of model training epoch. A model epoch is a full training pass over the entire data set such that 
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each example has been seen once. Thus, an epoch represents N/batch size training iterations, where N is the total 
number of examples in the training set. We make use of a function that starts with a small learning rate, then 
quickly ramps up to a maximum, then decays exponentially. An advantage of varying the learning rate determinis-
tically using a scheduler is to make training reproducible. Decaying the learning rate as training progresses allows 
the model to slowly converge on an optimal solution. This procedure prevents the solution from getting stuck in a 
so-called “saddle point,” which is a local minimum much higher than the global minimum. Without varying the 
learning rate, large updates to the model can potentially lead to suboptimal convergence or prematurely trigger 
early stopping criteria. In addition to a scheduler, we also implement an early stopping criterion, where the model 
ceases training early when no improvement to validation loss is observed over a user-defined number of training 
epochs. Even when models do end after a differing numbers of epochs, the scheduler ensures the learning rate 
varied in the same way for each model.

2.5.  Model Evaluation

Mean Intersection over Union, given by 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 = |𝑌𝑌 ∩ 𝑌𝑌 |∕|𝑌𝑌 | + |𝑌𝑌 | − |𝑌𝑌 ∩ 𝑌𝑌 | , is the canonical metric to evaluate 
model performance. It is sometimes useful to keep track of multiple metrics (Buscombe et al., 2021). Whereas 
mean IoU is a spatial measure, KLD measures the difference in observed and estimated class-probability distribu-
tions. KLD is used as an alternative metric. The only variable related to model evaluation specified in the config-
uration file is the validation split, which is the proportion of all data to use for model validation. The remainder 
will be used to train the model. Starting with a relatively high validation split should be a goal, to avoid overfitting 
and promote generalization. If the model is under-performing on the training data, the validation split should be 
reduced by small increments accordingly.

2.6.  Reproducibility

The data creation and model training process in Segmentation Gym is reproducible. We take several steps to 
enable this reproducibility. First, we use a seed value to instantiate any numerical operations that involved random 
numbers, and operating system environment variables are used to guarantee reproducibility in some of the soft-
ware routines that accelerate computation on GPUs. These collectively ensure consistency in data set creation 
and in model training. Second, we have adopted the practice of varying the learning rate deterministically using a 
scheduler function that assigns a specific learning rate value as a function of model training epoch, rather than  an 
adaptive learning rate.

3.  Case Study
We provide a case study to demonstrate the use of Segmentation Gym, the results obtained from the software, and 
the experimentation that the software permits. In this example, our goal is to develop a segmentation model that is 
able to operate on 419 coastal images from Landsat-8 and classify pixels into one of four classes: water, whitewa-
ter, sand, and other. Our specific target is to develop a segmentation model with acceptable accuracy metrics on 
a relatively large validation subset, without overfitting to the data, that converges to a solution relatively quickly, 
and is also parsimonious (with only enough parameters to achieve a desired accuracy threshold).

To develop this model we designed an experimental matrix to independently examine the effects on model perfor-
mance of the following: (a) five different numbers of model parameters, (b) three alternative loss functions, and 
(c) the presence/absence of residual connections. We kept track of mean IoU and KLD on training and validation 
portions during model training, and computed those quantities of the validation subset comprising of a reproduc-
ibly random draw of 60% of the data and the remainder for model training. The same validation and training data 
were used to train each model to ensure repeatability and comparison. We also kept track of the epoch at which 
training was terminated, to quantify model convergence time.

3.1.  Data

The labeled imagery we use in the present contribution are one of the 10 data records that comprise the Coast 
Train data set (Buscombe et al., 2022; Wernette et al., 2022), specifically 419 Landsat-8 (top-of-atmosphere) 
images and associated labels consisting of time-series from seven coastal locations around the United States 
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(Figure 3a). The data set consist of visible-band (RGB) imagery, and 2D integer label masks (Figure 3b). The 
imagery was pre-processed for use in model training. The original 11-classes were remapped into four classes: 
water, whitewater, sand, and other. Images and corresponding label images were zero-padded to 512 × 512 pixels 
if smaller than that dimension, and downsized to 512 × 512 pixels. We also retrieved the Near Infra-Red (NIR) 
and Short-wave Infrared (SWIR) bands associated with each RGB image, because spectral indices that contain 
the NIR and especially the SWIR band have been shown to facilitate more reliable automated classification of 
water bodies in coastal regions (Luijendijk et al., 2018; Vos et al., 2019). We therefore stacked the three-band 
visible (RGB) 15-m pan-sharpened imagery with the coincident 15-m pan-sharpened SWIR and NIR bands, and 
the resulting 5-band raster was used as the model training input.

3.2.  Implementation

Images and labels were augmented such that five copies were made each consisting of the original images modi-
fied by applying random zoom (up to 5%), rotation (up to 5%), width and height shifts (up to 5%) and horizontal 
flips. This resulted in 2095 augmented image-label pairs for model training.

We trained 30 different models on the same augmented data set: 15 UNets and 15 ResUNets. Each 15 consist of 
five model sizes (in terms of parameters), and three loss functions, namely CCE, Dice, and KLD. The number 
of parameters was varied by adjusting the number of convolutional filters (2, 4, 6, 8, or 12) in the initial convo-
lutional block. The number of filters doubles every subsequent block on the downsampling (Encoder) layer, then 
halves on every subsequent block on the upsampling (Decoder) layer (Figure 2). Overfitting is countered by three 

Figure 3.  Example model inputs and outputs: (a) RGB imagery, (b) Label imagery (created using Doodler), (c) 4M-parameter UNet model output, (d) 6M-parameter 
Res-UNet model output. In (b) through (d), labels are shown as colored semi-transparent overlays of the underlying image. Blue indicates water, red is whitewater, 
yellow is sediment, and green is other. Smaller inset regions are scaled at 200% and better illustrate variability among model outputs, and between model outputs and 
input label images, as well as error in inputs.
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main model regularization strategies, namely the use of a relatively large validation subset, the use of early stop-
ping, whereby the weights with the smallest validation loss are stored, not from the last training epoch, and the 
use of Dropout. We used a Dropout rate of 0.1 on each downsample layer but not on upsample layers. We use a 
7 × 7 kernel with a stride of two. Each model was trained with the same learning rate scheduler (varying learning 
between 1e−7 and 1e−4 based on epoch), and batch size (8). Model training stopped early when the validation 
loss didn't improve upon its previous best value for 10 epochs. As explained above, all of these parameters are 
specified in a single configuration file. We therefore trained our 30 models using 30 different configuration files.

3.3.  Results

To compare the 30 models, we evaluate mean IoU and KLD for the validation subset. Performance statistics 
(Figure 4) reveal that Res-UNets tend to outperform UNets, as evidenced by a higher average IoU (Figures 4a–4c), 
lower average KLD (Figures 4d–4f), and also a larger accuracy for smaller number of model parameters. The larg-
est discrepancy between Res-UNet and UNet, and highest model accuracy, is observed when CCE is used for loss 
(Figure 4b). The performance of Res-UNets demonstrate that residual connections improve statistical measures 
of success, which is corroborated by visual inspection revealing more realistic model outputs.

In these experiments the best loss is CCE, which promotes the fastest convergence, and highest average and 
maximum IoU scores. Dice is the worst loss in these trials, as evidenced by very long convergences, and lowest 
scores. Also, IoU scores do not always appreciably increase with increasing model parameters (Figure 4a). All 
models improve with more parameters, then plateau or even decline in accuracy (Figures 4b and 4c); an average 
model size is best overall. Peak Res-UNet model performance tends to occur with fewer parameters compared to 
an equivalent U-Net.

KLD is a useful model comparative (Figures 4d–4f). It reveals similar (inverse) trends to mean IoU, but larger 
differences between UNet and Res-UNet trained with Dice loss (Figure 4d), smaller differences between UNet 
and Res-UNet trained with CCE loss (Figure 4e), and IoU and KLD are most similar when KLD loss is used 
to train a model (Figure 4f). To provide a representative indication of the variation in accuracies per-site, vali-
dation Dice coefficients for the mid-sized model trained using CCE were as follows: Duck: D = 0.83 (N = 76), 
Galveston-East: D = 0.93 (N = 40), Galveston-West: D = 0.94 (N = 40), Klamath: D = 0.87 (N = 124), Klamath 
region: D = 0.88 (N = 69), Ocean Beach: D = 0.92 (N = 53), Sunset: D = 0.90 (N = 46), Ventura: D = 0.88 
(N = 40). These statistics show that the model performs approximately as well across all areas.

4.  Discussion
Deep Learning is a powerful set of tools to develop models to segment imagery because of the lack of restrictions 
imposed on the input variables (such as their distributions or covariance structure). Despite the rapid pace of 
Deep Learning research, UNets are likely to continue to have considerable application for a number of reasons. 
First, their success has been demonstrated across many domains and tasks and are already widely known and 
effectively used in a wide range of scientific applications. Second, they converge well in training even with 
relatively small amounts of data. Third, they are easily and predictably scalable; catering to larger data sets can 
be accommodated by increasing the number of filters or batch size and/or lowering the learning rates. Finally, 
they are easily modified for regression tasks e.g. predicting subgrid wave or current fields from gridded weather 
variables (Sha et al., 2020), or estimating surf zone bathymetry (Collins et al., 2020).

A key aspect of Segmentation Gym is its link to an existing data labeling software, “Doodler” (Buscombe 
et al., 2021). Labeled Earth science imagery can be rare and data set creation can be costly and it is not yet possi-
ble to know a priori how much data will be needed to train a segmentation model for a given task. Segmentation 
Gym is specifically designed to quickly and easily build models from Doodler output. This interoperability facil-
itates interactive data labeling and model building cycle, and permitting researchers to quickly evaluate whether 
they have enough labeled data to develop a model able to reach the desired level of a test metric.

The Segmentation Gym software can be used across a wide range of remotely sensed imagery, where there is a 
growing availability, size and relevancy of labeled data sets. Across Earth science fields, segmentation of aerial 
and satellite imagery is especially a common task (e.g., Bishop-Taylor et al., 2021; Vos et al., 2019). The soft-
ware system we describe here allows for experimentation with many hyperparameters, and enables researchers 
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to build and use performant models on any suitable data set. We developed Segmentation Gym as an end-to-end 
reproducible workflow, whereby both labels and model results may be perfectly reproduced in another computing 
environment by an automated process. Donoho (2010) mentions several important advantages of computational 
reproducibility, including improved transparency, improved continuity since others can build on the work, greater 
reusability that leads to greater impact, and obliging scientific funders that the work is preserved.

We envision future work can build from Segmentation Gym. For example, developing a place to share models 
trained using Segmentation Gym, as well as relevant metadata that is, the configuration file, an example data set, 
and a “model card” for basic model inventory, reporting, and dissemination (Mitchell et al., 2019). Additionally, 
we provide a script to segment all images in a directory with a Gym model, but future work could expand this 

Figure 4.  A summary of validation metrics for all 30 models. Each plot shows a model evaluation metric (mean IoU on the top row and Kullback-Leibler distance 
(KLD) on the bottom) as a function of the number of model parameters. Dashed lines connecting square markers represent Res-UNets, and solid lines connecting 
circular markers represent UNets. Columns from left to right represent models trained using respectively Dice, categorical cross-entropy, and KLD for a loss function.
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functionality so that models can be deployed in a range of settings (e.g., as a web or edge computing application, 
as an internal-facing research tool, etc.).

Data Availability Statement
The Coast Train data used in this study are available from Wernette et al. (2022). The cross-platform open-source 
application “Segmentation Gym” is available at https://github.com/Doodleverse/segmentation_gym (Buscombe & 
Goldstein, 2022). Case study model weights and configuration files are available from Buscombe (2022a, 2022b).
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