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Abstract

Electrodermal activities (EDA) are any electrical phxenomena observed on the skin.
Skin conductance (SC), a measure of EDA, shows fluctuations due to autonomic
nervous system (ANS) activation induced sweat secretion. Since it can capture
psychophysiological information, there is a significant rise in the research work for
tracking mental and physiological health with EDA. However, the current
state-of-the-art lacks a physiologically motivated approach for real-time inference of
ANS activation from EDA. Therefore, firstly, we propose a comprehensive model for the
SC dynamics. The proposed model is a 3D state-space representation of the direct
secretion of sweat via pore opening and diffusion followed by corresponding evaporation
and reabsorption. As the input to the model, we consider a sparse signal representing
the ANS activation that causes the sweat glands to produce sweat. Secondly, we derive
a scalable fixed-interval smoother-based sparse recovery approach utilizing the proposed
comprehensive model to infer the ANS activation enabling edge computation. We
incorporate a generalized-cross-validation to tune the sparsity level. Finally, we propose
an Expectation-Maximization based deconvolution approach for learning the model
parameters during the ANS activation inference. For evaluation, we utilize a dataset
with 26 participants, and the results show that our comprehensive state-space model
can successfully describe the SC variations with high scalability, showing the feasibility
of real-time applications. Results validate that our physiology-motivated state-space
model can comprehensively explain the EDA and outperforms all previous approaches.
Our findings introduce a whole new perspective and have a broader impact on the
standard practices of EDA analysis.

Author summary

The current state-of-the-art lacks physiology-motivated models for electrodermal
activities (EDA) that have the power to comprehensively describe the variations in skin
conductance (SC)–a measure of EDA. In this study, we propose a physiology-motivated
state-space model to address previous challenges. On the other hand, there is also an
absence of a scalable autonomic nervous system (ANS) activation inference method that
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simultaneously solve for the physiological system parameters. Furthermore, we develop
a scalable ANS activation inference approach based on the proposed model with a goal
for real-time edge computation. We utilize a dataset with 26 participants to validate the
new model and the scalable method. Results demonstrate that our physiology-motivated
state-space model can comprehensively explain the EDA. Our findings introduce a whole
new perspective and have a broader impact on standard practices of EDA analysis.

Introduction 1

The term “electrodermal activity” (EDA) refers to any electrical phenomenon on human 2

skin [1]. EDA was discovered in the late 19th century and, since then, it has been 3

widely used in psychophysiology as the EDA fluctuations have high correlations with 4

the autonomic nervous system (ANS) activation. One of the most popular measures of 5

EDA is the continuous exosomatic recording of skin conductance (SC). Due to 6

emotional stimuli, there is a change in the psychophysiological and metabolic state of 7

the body in order to deal with the emotional stimuli (e.g. flight or fight response). ANS 8

may excite sweat glands based on the psychophysiological and metabolic change in the 9

state, and the corresponding salty sweat secretions increase SC. Examination of SC 10

measurements enables us to investigate ANS activation related to emotional arousal [2]. 11

There are a few vital signals in the human body similar to EDA that have the 12

potential to be measured continuously and unobtrusively using very simple 13

instrumentation. The unobtrusive nature of the measuring techniques has led to a new 14

era of wearable technology for continuous health monitoring. Such signals include 15

cardiac signals (e.g. electrocardiogram (ECG) and photoplethysmogram (PPG)), skin 16

temperature (SKT), EDA, muscle activity (e.g. electromyogram (EMG)) etc. [3, 4]. 17

Among them, PPG and SKT have been widely integrated into consumer wearable 18

technologies, along with reliable techniques for decoding useful information. In the past 19

few decades, extensive research has been conducted, mainly on PPG signal analysis for 20

wearable implementation, with the goal of continuous health monitoring. The next 21

candidate with the greatest potential for revolutionizing wearable health monitoring is 22

EDA [5]. However, the amount of research performed on EDA signals is relatively 23

limited compared to cardiac signals. Although researchers have published many studies 24

to systematically model EDA in the last two decades, there are still many fundamental 25

characteristics of EDA being discovered today. For example, in 2020, Subramaniam et 26

al. [6] have shown that the point process characterizes EDA in normal healthy 27

participants. Therefore, further studies are required to identify the more accurate 28

system dynamics of EDA so that critical information related to health monitoring can 29

be obtained. 30

Appropriate EDA analysis has applications in a wide range of fields such as mental 31

disorders, pain, cognitive stress tracking, wakefulness, etc. As different physiological 32

signals, including EDA, contain information about human emotional arousal, they have 33

potential applications in the field of mental health. For example, preventing death from 34

mental disorders with regular tracking could be one potential application, as Walker et 35

al. [7] reported that a large portion of deaths worldwide are attributable to mental 36

health-related disorders. A meta-analysis shows that mental disorders are a major risk 37

factor for suicide [8]. Suicide is one of the leading causes of death in the United States 38

in the year 2017 [9] and the cost related to suicide alone in the United States were more 39

than $90 billion in 2013 [10]. Studies have recommended [10] community-based 40

immediate psychiatric services, including telepsychiatric support for reducing 41

suicide-related costs which require continuous monitoring. Augmenting EDA with other 42

physiological signals for time-to-time monitoring of critical patterns of emotional 43

regulation could potentially help preventing psychiatric disorders [11]. 44
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Another possible potential application is in treating diabetic neuropathy. Diabetic 45

neuropathy refers to small nerve damage caused by prolonged exposure to high levels of 46

blood glucose concentration [12]. As a result, small nerves along with the sudomotor 47

nerves in the legs, feet, and hands that are responsible for transmitting ANS activation 48

are prone to neuropathy [12]. As confirmed by numerous studies in [13–15], damages in 49

small nerves, including the sudomotor nerves may lead to abnormal EDA variations. 50

Furthermore, it is well known in clinical diagnostics that the development of anomalies 51

in sweat secretions may be attributed to forms of disorders, such as hypohidrosis and 52

anhidrosis [16]. Moreover, such disorders may indicate diseases like diabetes 53

mellitus [16]. Clinical investigations of abnormalities in the SC recordings can be pivotal 54

for the early detection of such diseases. 55

Because of its wide range of applicability, accurate modeling of system-theoretic 56

understanding is a prerequisite. In 1997, Lim et al. [17] proposed a heuristic 57

sigmoid-exponential model to represent the rise and decay characteristics of the SCR 58

shape. Instead of a general approach, they had to consider four different configurations 59

of the proposed model for four different cases. Later in 2005, Alexander et al. [18] 60

proposed a second-order differential equation for defining the SC fluctuations, the 61

solution of which is a bi-exponential function representing the rise and decay of the SCR 62

shape. They assumed that SC is single-phasic and, more specifically, that all 63

fluctuations can be defined with the second-order differential equation. However, 64

eventually researchers have realized the bi-phasic nature of EDA fluctuations, meaning 65

there are two different components in EDA that vary in two different rates [19–24]. 66

Bach et al. [25] have used a low-pass filter to separate slow varying component and then 67

investigated the fast varying component as the output of a finite linear time-invariant 68

(LTI) filter. Benedek et al. [19, 26] have suggested bi-exponential functions, namely 69

Bateman functions, to describe the slow varying components with large decay time and 70

the fast varying component with smaller decay times. However, this model cannot 71

explain both components together. In a similar time, Bach et al. [20] reported that 72

bi-exponential functions provided better fit than other candidates while modeling the 73

fast varying component after removing the slow varying component with low-pass filter. 74

Nevertheless, the FIR filter-based separation of the slow and fast varying components 75

has limitations as pointed out in our previous work [24]. 76

In our previous studies [23, 24,27–29], we have developed deconvolution approaches 77

in which we investigated previously known mathematical models for EDA dynamics. In 78

these studies, we have utilized the SC modeling approach in [21], where the authors 79

have modeled the slow varying component of EDA with a linear combination of a few 80

arbitrary cubic spline basis functions. Although such a model can provide a good fit to 81

the data, it lacks a reasonable physiological justification, and the corresponding 82

coefficients of the obtained cubic-spline functions obtained do not have an 83

interpretation. Furthermore, the cubic-spline basis function based model may overfit to 84

the data and provide a solution that is not physiologically plausible. In addition, the 85

lack of a complete state-space model makes it difficult to design scalable fixed-interval 86

smoother (FIS) based inference approaches for recovery of ANS activation. Although 87

similar approaches have been developed for calcium oscillation deconvolution and EEG 88

sleep spindle detection [30], it is difficult to develop such an approach for EDA with the 89

models currently available. During our development of deconvolution approaches, we 90

realized that there is a need for a potential improvement in the current mathematical 91

models for describing EDA dynamics as well as the current deconvolution practices to 92

obtain a systematic and reliable approach with the feasibility of real-time application. 93

Therefore, in this study, we propose a unified and comprehensive state-space model 94

to describe both the slow and fast varying components of EDA. We first start with a 95

more general and physiologically interpretable nonlinear model and then derive a 96
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simpler linear state-space one. Additionally, our proposed model enables us to derive an 97

FIS based novel scalable sparse deconvolution approach which was not previously 98

possible because of the absence of a comprehensive state-space model for the potential 99

of real-time inference. For obtaining our novel approach, we extended the scalable 100

sparse deconvolution approach for calcium and EEG sleep spindle deconvolution 101

proposed by Kazemipour et al. [30], which was developed for a subset of state-space 102

equations considering the input matrix as an identity matrix. We generalized this for 103

the state-space models with any input matrix and apply it for our proposed SC model. 104

Moreover, for estimating the state-space model parameters, we utilize the previously 105

known physiological priors similar to [24]. Furthermore, we employ 106

generalized-cross-validation for balancing between the sparsity level of the ANS 107

activation and the model fit for systematic reduction of the measurement noise. We 108

compare the performance of our approach with previous deconvolution approaches. 109

Furthermore, we show the scalability of our approach, illustrating the feasibility of 110

devising real-time edge computation with our approach. 111

Materials and methods 112

Dataset Description 113

In this study, we analyze the SC recordings where participants experience multiple 114

auditory stimuli (loud sounds) during the experiment [31]. The experiment was designed 115

to investigate event-related SC responses (SCRs) [32]. Each participants received 116

multiple auditory stimuli. Each auditory stimulus is a single white noise burst of 1s 117

length with a 10 ms ramp and 85 dB power. The participants were instructed to press a 118

foot pedal upon hearing a stimulus. The dataset contains recordings from thirteen 119

female and thirteen male participants. The partcipants are all healthy and unmedicated 120

with age 24.4+/-4.9 years. For each of the 26 participants, the datasets include three 121

channels of SC recordings from three different locations. We use the SC recordings from 122

the thenar/hypothenar of the nondominant hand for all datasets in this study. The 123

details regarding the experiment are provided in [32]. We pre-process all recordings with 124

an approach similar to [28] and resample the SC recordings to 4 Hz for our analysis. 125

Proposed Physiological Model 126

We propose our model based on the poral valve model by Edelberg [33]. For the sake of 127

discussion, let’s assume the sweat ducts are initially empty and in response to the 128

received impulsive ANS activation, secretions from the sweat glands start to fill the 129

sweat ducts. As the amount of sweat in the ducts increases, there is an increase in the 130

hydraulic pressure inside. The pressure build-up gives rise to the increasing diffusion 131

into the stratum corneum and the deeper stratum corneum area. This results in a slight 132

rise in the SC level. If the pressure exceeds a certain threshold, the pores of the sweat 133

ducts open for sweat secretion. This way, a fraction of the sweat is secreted directly by 134

the pore opening. The secreted sweat and the connected sweat content in the ducts 135

both contributes to the conductance. Therefore, there is a sharp rise in the SC level. 136

Here, direct secretion refer to the secretion of sweat via the pore to the surface of the 137

skin. On the other hand, sweat secretion via diffusion refers to hydration of stratum 138

corneum when sweat slowly travels via the sweat duct wall. As the direct secretion and 139

the diffusion reduces the hydraulic pressure and the pressure goes below a certain 140

threshold, the pore collapse separates the sweat contents in the ducts and prevents them 141

from contributing to the conductance. Consequently, a faster decay in SC level is 142

observed. We define it as the faster re-absorption resulting in the faster decay time in 143
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Fig 1. An overview of the physiology and corresponding proposed model.
(A) A step by step illustration of the poral valve model proposed by Edelberg [33]. (B)
An illustration of the cross section of the skin segment and corresponding different
regions contributing to the SCR generation process based on poral valve model. (C) A
three compartment pharmacokinetic realization of the poral valve model. The arrows
with different colors in panel B and C correspond to the secretion and clearance of
sweat contents in different steps denoted by the associated step numbers as represented
in panel A.

SC. The remaining secreted fraction of the sweat in the stratum corneum is diffused into 144

the deeper dermis and cleared away from the periductal area by a slow re-absorption 145

process. Along with re-absorption, a fraction in the reduction of SC is because of the 146

evaporation from the surface. These steps will lead to SC level to decay slowly. A visual 147

illustration of the steps for the poral valve model is provided in Fig 1A. Fig 1B shows a 148

cross section of the skin illustrating regions involved in different steps of SCR generation. 149

With these speculations, we propose the following nonlinear state-space model: 150

ẋ1(t) = �
1

⌧r
x1(t) + u(t), (sweat production) (1)

ẋ2(t) =
⌘p(x1(t))

⌧r
x1(t)�

1

⌧p
x2(t), (pore opening and collapse) (2)

ẋ3(t) =
⌘d(x1(t))

⌧r
x1(t)�

1

⌧d
x3(t) (slow re-absorption) (3)

where x1(t), x2(t), and x3(t) respectively denote the states corresponding to the 151

amount of sweat in the sweat ducts, in the ducts but electrically conducted to the 152

surface due to the pore opening (contributing to the SC level), and diffused in the 153

stratum corneum according to the hypothesis in the poral valve model proposed by 154

Edelberg [33]. The states x2(t) and x3(t) are contributing to the rise in the SC level. ⌧p 155

denotes the faster decay time due to fast re-absorption (related to the pore collapse). ⌧d 156

represents the slow decay time related to the elimination from stratum corneum 157

partially by re-absorption, diffusion in the deeper stratum corneum, and evaporation. 158

We assume clearance rate from the sweat duct is equal to the sweat secretion rate to the 159

surface and the adjacent skin tissue are. ⌧r denotes the rise time of SC, (effectively the 160
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clearance time of the sweat from the ducts). One should note that the state-space 161

model does not assume the duct is initially empty. Here, Eq 1 denotes the mechanism of 162

ANS activation to the Compartment I for sweat production and corresponding sweat 163

transportation towards Compartment II and III in Fig 1C. Eq 2 denotes the increase in 164

the sweat content in Compartment II and corresponding fast re-absorption process in 165

the model in Fig 1C. The location and the direction of the direct sweat secretion via 166

pore opening (SCR generation step 3 in green arrow) and the corresponding fast 167

re-absorption (SCR generation step 4 in red arrow) are denoted in Fig 1B and 1C. 168

Similarly, Eq 3 denotes the increase in the sweat content in Compartment III and 169

corresponding slow elimination process in the model in Fig 1C. The location and the 170

direction of the sweat secretion via diffusion (SCR generation step 2 in purple arrow) 171

and the corresponding fast re-absorption (SCR generation step 5 in magenta arrow) are 172

denoted in Fig 1B and 1C. 173

The system input u(t) represents the ANS activation. To keep the definition simple,
we assume that the ANS activation occurs during the integer multiple of the sampling
period. Let Ts be the sampling period. Researchers reported that a single neural
impulse from ANS is responsible for a single SC response [21, 22, 34–36]. Moreover, the
sparsity constraint on u has been proven to be an appropriate prior in our previously
developed algorithms [23,24,28,29,37,38]. With the sparsity assumption, we represent

the ANS activation as u(t) =
PK

k=1 uk�(t� kTs) where uk is the amplitude of the
impulse during the ANS activation at time kTs. uk is zero if there is no impulse in the
stimuli. Moreover, ⌘p(x1(t)) and ⌘d(x1(t)) are two functions that determine the fraction
of sweat that is secreted by direct pore opening and diffusion, respectively. We assume
⌘p(x1(t)) and ⌘p(x1(t)) denote the nonlinearity in the pore opening operation. The
nonlinearity of the pore opening is similar to the switching operation (on/off) and
analogous to how a neuron works, i.e., in integrate-and-fire manner as pointed out in [6].
Therefore, we propose to model these nonlinearities with sigmoid functions similar to
the artificial neurons as follows:

⌘p(x1(t)) = S(↵x1(t) + �),

⌘d(x1(t)) = 1� S(↵x1(t) + �)

where S(x) = (1 + e
�x)�1 represents the sigmoid function. Although we assume it as an

integrate-and-fire operation, there is a difference, i.e., even if the pores do not open, the
sweat secretion will still be carried out by the diffusion process via duct wall with
relatively slower. Here, the nonlinear function ⌘d(x1(t)) represents the the fraction of
sweat secreted via diffusion for a given duct pressure represented by x1(t). Similarly,
⌘p(x1(t)) represents the change in the fraction of sweat secreted via pore opening for a
given duct pressure represented by x1(t). We assume thatthe amount of absorbed sweat
in the stratum corneum and epidermis that contribute to the SC level due to diffusion
process is denoted by x3(t).The sweat content in the ducts and electrically conducted to
the surface due to the pore opening is denoted by x2(t) contribute to the SC level.
Therefore, the observation equation denoting resultant SC is as follows,

y(t) = x2(t) + x3(t) + ⌫(t)

where y(t) and ⌫(t) represent overall SC measurement and the noise signal, respectively.
Equivalent to previous approaches, the phasic and the tonic components can be written
as follows,

yP (t) = x2(t)

and yT (t) = x3(t)

where yP (t) and yT (t) represents the phasic and the tonic components, respectively. 174
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Apparently, the proposed model is highly nonlinear and it is very difficult to derive a
practical deconvolution approach that runs in edge devices with this model. For the
simplification, we assume that the fraction of sweat secretion that happens via pore
opening is always constant. Therefore, the simplified linear version of the model is
obtained by the assumption that ⌘p and ⌘d is constant w.r.t x1(t) (↵ = 0) s.t.
⌘d = 1� ⌘p = ⌘. Here, ⌘ is a constant and it represents the fraction of sweat that is
secreted by diffusion process, i.e., ⌘ 2 [0, 1]. This simplification makes the model linear
and more suitable for scalable edge computation. Now, the simplified model can be
thought of as a three compartment pharmacokinetic model as shown in Fig 1C. To

represent it in vector matrix form we define x(t) =
⇥
x1(t) x2(t) x3(t)

⇤>
,

Ac =

2

4
�

1
⌧r

0 0
+⌘p

⌧r
�

1
⌧p

0

+⌘d

⌧r
0 �

1
⌧d

3

5, Bc =

2

4
1
0
0

3

5, Cc =
⇥
0 1 1

⇤
. Therefore, the

continuous state-space model in matrix form is as follows:

ẋ(t) = Acx(t) +Bcu(t),

y(t) = Ccx(t) + ⌫(t).

Discretization 175

Let yk be the observed SC at time instance kTs. We can write,

yk = Ccy(kTs) + ⌫k (4)

where ⌫k 8k represent the noise and are modelled as independent and identically
distributed (i.i.d) zero mean Gaussian random variable, i.e., ⌫k ⇠ N (0,�2

⌫). We derive
the discrete equivalent of the system, assuming that the input and the states are
constant over Ts. The discrete version of the neural stimuli can be written as a vector
u = [u1 u2 · · · uK ]> that represents the entire neural stimuli over the duration of

SC data. Let A = e
AcTs , B =

R Ts

0 e
Ac(Ts�⇢)Bcd⇢, and C = Cc to write the discrete

state-space form as:

xk = Axk�1 +Buk, yk = Cxk + ⌫k. (5)

where xk 2 R3, yk 2 R, uk, ⌫k denote the state vector, the observation, ANS activation,
and the measurement error in discrete domain. The corresponding discretized phasic
and tonic components can be written as follows,

yP,k = CPxk

and yT,k = CTxk

where Cp =
⇥
0 1 0

⇤
and CT =

⇥
0 0 1

⇤
. Here, yP,k and yT,k represents the 176

discretized version of the phasic and the tonic components, respectively. 177

Physiological Priors and Constraints 178

The proposed model has many unknown parameters, and the number of measurements 179

is relatively small. Therefore, the problem has many degrees of freedom. It is customary 180

to enforce appropriate physiologically motivated priors on the model parameters. 181

Otherwise, in the worst cases scenarios, the solution may not stay within the 182

physiological boundaries and may lead to over-fitting [39]. Therefore, we incorporated 183

physiologically motivated priors on the system model similar to [24,40]. We assume that 184

the individual model parameters are Gaussian distributed with some mean and variance 185

similar to [24]. We use this information as a prior in the estimation step. 186
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Further, we also consider equality and inequality constraints on the system 187

parameters. First of all, we constraint all the physiological parameters are non-negative. 188

We select a lower bound for ⌧r of 0.2 seconds based on the result distribution obtained 189

in our previous study [24]. Furthermore, we set ⌧p > �1⌧r and ⌧d > �2⌧p similar to our 190

previous work [23,24,28]. However, the values of �1 and �2 are unknown for the 191

proposed model. Therefore, we select the values of �1 and �2 by manually by 192

investigating the results by trials and errors such that the multiple correlation 193

coefficients for all participants are R
2
> 0.98. First, we try to run the algorithm 194

(described in the next section) without any constraint on ⌧r, ⌧p, ⌧d and ⌘. However, 195

most of the case algorithm converges in a solution where the model fit is very poor and 196

has a very small multiple correlation coefficient. And in most cases, ⌘ was convergent to 197

0 or 1. This is an indication of having a model with a very high degree of freedom. 198

Therefore, we first decided to fix ⌘ = 0.5 assuming that 50% contributions of each type 199

of secretion (i.e., via pore opening and via diffusion) reduce the complexity. Second, we 200

decide to set as ⌧p > 2⌧r as this constraint can be inferred from the previous 201

distribution of the rise time and the decay time of the phasic component [24].The 202

reader should note that the estimated phasic decay time is at least 3 to 4 times the 203

estimated rise time in [24]. Therefore, �1 = 2 should be a fairly conservative choice. 204

Finally, we decide to find the constraint for ⌧d. As among all the time constants, ⌧d is 205

the slowest one, we consider the constraint with ⌧d > �2⌧p for different �2 � 1 and run 206

the algorithm and try to see which value provide better goodness of fit for all 26 207

participants in terms of R2. We start with �2 = 1 and increment it by 1. We stop once 208

all the participants (except Male Participant 12 as there is no fluctuation) show above 209

0.98 of R2. One should note that other configurations might also work. For example, if 210

someone decides to start with a value of ⌘ other than 0.5, they might have to follow a 211

similar procedure to find the new constraints. This suggests that there is a scope of 212

further future investigation of the current method. 213

Estimation 214

We wish to estimate the parameter vector
✓ = [ ✓1 ✓2 ✓3 ✓4 ✓5 ]> = [ ⌧r ⌧p ⌧d ⌘p ⌘d ]> and unknown ANS activation
uk given the SC measurement yk 8k 2 {0, 1, · · · ,K � 1}. One straighforward way is to
solve the following optimization problem,

min
xk, 8k, ✓j , 8J

�

K�1X

k=0

||xk �Axk�1||1 +
K�1X

k=0

||yk �Cxk||
2
2

2�2
⌫

+
j=J�1X

j=0

⇢j
(✓j � ✓̄j)2

2�2
✓j

. (6)

where (xk �Axk�1) = Buk. If we consider the first term in Eq 6, i.e., the l1-norm of 215

(xk �Axk�1) as the negative log-likelihood, taking the exponential of the negative of 216

the gives us the Laplace distribution of Buk = (xk �Axk�1) with parameter �I. The 217

second term in Eq 6 represents the least squares error between the observation yk and 218

the prediction Cxk with a Gaussian observation error assumption. The final term 219

represents the negative loglikelihood of the Gaussian priors on the system parameters 220

with ⇢j , ✓̄j , and �✓j represents the regularization parameters, the mean, and variance 221

for the Gaussian priors, respectively 8j 2 {0, 1, 2, · · · , J � 1}. In this case, J = 3. 222

Therefore, Eq 6 can be considered as the maximum a posterior (MAP) estimator as 223

pointed out in [30]. In general, the problem formulation in Eq 6 is solved for uk by 224

taking the derivative of Eq 6 with respect uk and setting it zero. This is particularly 225

done using iteratively re-weighted least square (IRLS) approach. The sparse recovery 226
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with the direct analytical solution of the state-space model requires a matrix inversion 227

of a K ⇥K matrix as shown in our previous works [23, 24,27]. This step works as the 228

bottle neck of the approach. In this study, we solve the very same problem with 229

iterative re-weighted lease squares approach implemented using FIS. The states xk, the 230

ANS activation uk and the matrices describing system dynamics A and B can be 231

estimated in an expectation-maximization (EM) approach. 232

Given the probabilistic model that generates a set of observed data
Y = {yk} 8k 2 0, 1, · · · ,K � 1 and a vector of unknown parameters ✓, we can write,
p(Y, ✓) = p(Y |✓)p(✓). The following maximum log-likelihood estimation problem can be
solved in order to estimate the ✓:

max
✓

log p(Y ; ✓)

Now lets introduce a set of hidden unknown states X = {xk, uk} 8k having a joint
probability distribution p(Y,X; ✓). We can re-write the maximum likelihood estimation
as the following marginal likelihood function of p(Y,X; ✓):

max
✓

log p(Y ; ✓) = max
✓

log

Z

X
p(Y,X; ✓)dX. (7)

We defined the joint log-likelihood function for Y , X, and ✓ as follows:

log p(Y,X; ✓) = log (p(Y |X,✓)p(X|✓)p(✓))

= log p(Y |X,✓) + log p(X|✓) + log(✓)

=
K�1X

k=0

log(p⌫k(yk �Cxk)) +
K�1X

k=0

log(pBuk(xk �Axk�1))

+ log(p(✓)). (8)

where the p⌫k and pBuk denotes the probability density functions corresponding to 233

⌫k = yk �Cxk and Buk = xk �Axk�1, respectively. Here, only the term 234

pBuk(xk �Axk�1) depends on ✓. 235

The original problem can be defined as the following expectation maximization (EM)
approach,

max
✓

log p(Y ; ✓) = max
✓

EX⇠q(X){log p(Y,X; ✓)}. (9)

As it is expressed in Eq 9, the unknowns can be estimated by iteratively maximizing the 236

expectation of the joint log-likelihood in Eq 8 as shown in S1 Appendix. 237

E-step (Sparse Recovery) 238

Let’s assume that we know the current estimate of model parameters ✓(i�1) from the
(i� 1)th iteration of EM. We calculate the corresponding state matrices A(i�1) and
B(i�1). At ith iteration of EM, given the sequence of observations yk 2 Y and given
probability distribution q(X) = p(X|Y,✓(i�1)), we wish to estimate the expectation of

x(i)
k and u

(i)
k . We choose the probability distribution for uk such that it enforces

sparsity. Kazemipour et al. [30] proposed to use Laplace distributed with parameter for
sparsity of the innovation terms in the state transition equations. In this study, we
consider a broader family of distributions, namely, generalized Gaussian distribution for
uk so that distribution parameters can be selected to obtain a range of distributions
such as Gaussian and Laplace distribution. In contrast to [30] where the input matrix is

considered as an identity one, we assume that u(i)
k denote the scalar (or column vector)
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ANS activation and B(i�1) works as a direction vector (or matrix) of innovation in the

state transition equation. We consider u(i)
k is generalized Gaussian distributed, i.e.,

p(u(i)
k |�

(i)
, p) =

p�
(i)

4�(i)(1/p)
exp(�

�
(i)

2
|u

(i)
k |

p),

where �
(i) and p defines the shape of the generalized Gaussian distribution. p(uk|�

(i)
, p)

can also be written in terms of xk with multi-variate generalized Gaussian distribution
as follows.

p(u(i)
k |�

(i)
, p) = p(Bu

(i)
k |�

(i)
, p) = exp(�

�
(i)

2
||B(i�1)

u
(i)
k ||

p
p)

= exp(�
�
(i)

2
||x(i)

k �A
(i�1)x(i)

k�1||
p
p),

where �
(i) represents the new parameter related to the new random variable to obtain 239

the equivalent pdf (�(i)
||B(i�1)

||
p
p = �

(i)). The sparsity constraint is imposed on u
(i)
k for 240

0 < p < 2. However, the closed form equations for FIS do not exist for generalized 241

Gaussian distribution where p 6= 2, although they are the prerequisite for scalable edge 242

computation of the sparse recovery. Therefore, we approximate the generalized 243

Gaussian distribution with iterative re-weighted Gaussian distributions for the closed 244

form derivation of the forward filter and backward smoother equations. For example, if 245

p = 1, the generalized Gaussian distribution becomes Laplace distribution as shown 246

in [30]. Therefore, we approximate the Laplace distribution of u(i)
k with iterative 247

re-weighted Gaussian distributions, i.e., if at rth re-weighting step the state estimation 248

is x(i,r)
k , the Laplace pdf can be approximated with Gaussian pdf as follows: 249

pxk =
�
(i,r)

2
exp

✓
�
�
(i,r)

2
||x(i,r)

k �A
(i�1)x(i,r)

k�1 ||1

◆

/
�
(i,r)

2
exp

✓
�
1

2
(x(i,r)

k �A
(i�1)x(i,r)

k�1 )
>
⇣
Q

(i,r�1)
k

⌘�1
(x(i,r)

k �A
(i�1)x(i,r)

k�1 )

◆
,

250

where �
(i,r) is the regularization at rth re-weighting step. Q(i,r)

k is the co-variance
matrix at rth re-weighting step at kth time point and we define it defined as follows:

Q
(i,r)
k = (�(i,r))�1(E{(x(i,r)

k �A
(i�1)x(i,r)

k�1 )(x
(i,r)
k �A

(i�1)x(i,r)
k�1 )

>
}+ ✏

2I) 1
2

= (�(i,r))�1((B(i�1)(u(i,r)
k )2B(i�1)>) + ✏

2I) 1
2 .

Here, ✏ is a value close to zero for the matrix perturbation to achieve numerical
stability. We select ✏ = 10�5 for the numerical stability. Unlike the conventional IRLS
approach where the covariance of the Gaussian approximation is taken to be diagonal,
here the current definition takes the square root of the entire matrix. The perturbations
enable us to obtain feasible inverse during FIS prediction and update equations as

B(i�1)(u(i,r)
k )2

⇣
B(i�1)

⌘>
is always singular. The generalized approximation is

performed by implementing `p-norm with Gaussian distribution approximation of
generalized Gaussian family as follows where 0 < p < 2,

Q
(i,r)
k = (�(i,r))�1((B(i�1)(u(i,r)

k )2
⇣
B(i�1)

⌘>
) + ✏

2I)
2�p
2 (10)

Similar to the previous case with square root, here the power 2�p
2 has been taken on the

whole matrix. With this approximation, we perform Kalman filtering and backward

smoothing to obtain the expectation of the state variables E{x(i,r)
k }’s and corresponding
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covariance matrices. Constraining the corresponding innovation in the state equation to
be along the direction of the vector B, the expected uk is given as follows at rth

re-weighting step:

u
(i,r)
k = argmin

u�uth

1

2
||E{x(i,r)

k+1}�A(i�1)E{x(i,r)
k }�B(i�1)

u||
2
2, (11)

where uth is the selected minimum amplitude for ANS activation. Here, we select 251

uth = 0.03 µS/s for the initialization step and uth = 0.25 µS/s during the main step. 252

Here, a relatively conservative value of uth has been selected in the initialization step to 253

avoid excessive pruning before having good initialization of a other parameters.. The 254

selection has been done manually by trial and error such that the results for all 255

participants that reduces the number of detected spikes while keeping the multiple 256

correlation coefficient R2
> 0.95. During this process, the number of detected detected 257

spikes that visually does not correspond to any SCR is minimized. The evaluation of 258

the obtained spikes has been evaluated by visual inspection (verified by two different 259

viewers) similar to apporach in [6]. The criteria of selecting uth is chosen to obtain a 260

reasonable goodness-of-fit define by R
2 while avoiding any over-fitting. The use of 261

threshold uth enables us to obtain a constrained solution of uk without implementing 262

actual constrained Kalman filtering and backward smoothing. As u(i,r)
k is scalar in the 263

above optimization formulation, the solution can be written directly as follows: 264

u
(i,r)
k = max(uth, (B

(i�1)>B(i�1))�1(B(i�1))
>
(x(i,r)

k+1 �A(i�1)x(i,r)
k )), (12)

This allows us to project the error vector along the direction of B(i�1) vector based 265

on least square error with a minimum threshold. This is an approximation to make sure 266

that the solution is consistent with the assumptions of the state-space model. In this 267

study, we select p = 0.5 for lp-norm similar to our previous studies in [23, 24,27–29]. 268

Adjust Sparsity Level by Choosing �. In the initialization phase, we choose a
scheme for selecting � similar to IRLS algorithm FOCUSS+ algorithm in [41]. At rth

re-weighting iteration of E-step, the heuristic estimation of � works as follows:

�
(i,r) =

 
1�

K�1X

k=0

||yk �Cx(i,r�1)
k ||

2
2/

K�1X

k=0

||yk||
2
2

!
�
max

, � > 0 (13)

Then, we set �(i,r)
n = �

(i,r)
n /||B(i�1)

||
p
p. Similarly, in the main EM phase, we use 269

generalized-cross-validation (GCV) technique similar to the GCV-FOCUSS+ 270

technique [42]. We modified the GCV technique to obtain scalability. To achieve this, 271

we segment our observations with a window size of Mgcv samples and apply GCV to 272

obtain a � for each window. For nth segment, the discretized vector form solution can 273

be provided as, ỹn = F nx̃n,0 +Dnũn, where ỹn, xn+1, ũn represents the observation 274

vector, the first state and the ANS activation in the n
th segment, respectively. F n and 275

Dn are the matrices for the complete discretized vector solution for nth block and can 276

be defined as, F n = ⇥
F n,0 F n,1 · · · F n,(Mgcv�1)

⇤>
Mgcv⇥3

and 277

D✓ =
⇥
Dn,0 Dn,1 · · · Dn,(Mgcv�1)

⇤>
Mgcv⇥Mgcv

, where F n,k = CAk and 278

Dn,k = C


Ak�1B Ak�2B · · · B 0 · · · 0| {z }

Mgcv�k

�
. Mgcv = 100 worked well for 279

our study. 280

For nth segment, we obtain �n using the following optimization formulation based on
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singular value decomposition (SVD) for GCV proposed in [42]:

min
�n

Gn(�n) =

"
Mgcv

PMgcv

n0=1 ŷ
2
n,n0

✓
�n

2
n,n0+�n

◆2
#

"
PMgcv

n0=1

✓
�n

2
n,n0+�n

◆2
# (14)

s.t. 0  �n  1⇥ 10�4

where ŷ = U>ŷn,⌧ =
⇥
ŷn,1 ŷn,2 · · · ŷn,Mgcv

⇤>
with ŷn,⌧ = ỹn � F nx̃n, and 281

DnP ũ
1
2 = U⌃V > with P ũ = diag(|ũn,n0 |

2�p) and ⌃ = diag{j}; U and V are 282

unitary matrices and i’s are the singular values of DnP
1
2
ũ. We estimate �n 8n and 283

take the median. Finally, we set �(i,r)
n = �

(i,r)
n /||B(i�1)

||
p
p. 284

Usually, the re-weighting in E-step converges within a very small number of 285

iterations. We perform the re-weighting in E-step for r = 0, 1, 2, · · · , 5. After finishing 286

all the re-weighting iterations in the E-step, we obtain the following estimations: 287

x(i)
k , u

(i)
k , P (i)

k|k, and P (i)
k|k�18k. Here, P (i)

k|k and P (i)
k|k�1 represents the estimates of 288

E{x(i)
k x(i)

k

>
} and E{x(i)

k x(i)
k�1

>
}, respectively. Here, we drop r to represent the final 289

E-step estimations. 290

M-step (Physiological Parameter Estimation) 291

The M-step at ith iteration can be defined as the following simplified constrained
optimization problem utilizing Eq 6 and EM derivation,

min
✓j , 8j

E{�(i)
K�1X

k=0

||x(i)
k �Ax(i)

k�1||
p
p +

K�1X

k=0

||yk �Cx(i)
k ||

2
2

2�2
⌫

+
j=JX

j=0

⇢j
(✓j � ✓̄j)2

2�2
✓j

}, (15)

s.t. R✓  s, Re✓ = se,

where R =

2

66664

�1 0 0 0 0;
0 �1 0 0 0
0 0 �1 0 0
�1 �1 0 0 0
0 �2 �1 0 0

3

77775
, s =

2

66664

s1

s2

s3

0
0

3

77775
, Re =


0 0 0 1 0
0 0 0 0 1

�
, and

se =


1� ⌘

⌘

�
determines the constraints on ✓. The equality constraints ensures the

sum of ⌘p and ⌘d are equal to 1. To incorporate estimated u
(i)
k from the E-step, we

re-write the Eq 15. The modified optimization formulation is as follows,

min
✓j , 8j

E{
�
(i)

2

K�1X

k=0

|u
(i)
k |

p +
K�1X

k=0

||yk �C(Ax(i)
k�1 +Bu

(i)
k )||22

2�2
⌫

+
j=JX

j=0

⇢j
(✓j � ✓̄j)2

2�2
✓j

} (16)

s.t. R✓  s, Re✓ = se
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After some algebraic manipulation and assumption that x(i)
k�1 and u

(i)
k are statistically

independent 8k, we obtain the following optimization formulation by removing the
constant terms with respect to ✓.

min
✓j , 8j

1

2
||y||2 +

1

2
Tr(A(

K�1X

k=0

(x(i)
k�1(x

(i)
k�1)

> + P (i)
k�1))A

>)

� Tr(A(
K�1X

k=0

y
>
k Cx(i)

k ))� Tr(B(
K�1X

k=0

y
>
k Cu

(i)
k ))

+ Tr(B
K�1X

k=0

((u(i)
k )2)B>) + Tr(Ax(i)

k�1(u
(i)
k�1)

>B>))

+ �
2
v

j=JX

j=0

⇢j
(✓j � ✓̄j)2

2�2
✓j

(17)

s.t. R✓  s, Re✓ = se

The overall approach can be divided into two phases. In the first phase, we perform 292

initialization with a fixed u
(i,0)
k = u↵ 8k at each iteration and with heuristic refinement 293

of �(i,r). A detailed description of heuristic refinement is provided in S2 Appendix. 294

u↵ = 1 worked well for our study. In the main EM-phase, we update u
(i,0)
k = u

(i�1,5)
k , 295

i.e. with the values obtained in the previous re-weighting iteration. In E-steps of both 296

phases, we perform a heuristic refinement of uk. After finishing all re-weighting 297

iterations in the E-step, we obtain the following estimations: x(i)
k , u

(i)
k , P (i)

k|k, and 298

P (i)
k|k�18k. The expected values are plugged into the M-step optimization formulation in 299

17. The constrained optimization problem in 17 is solved using the interior-point 300

method. The overall algorithm for the initialization and the main EM-phase is provided 301

in Algorithm 1. 302

Selection of Noise Variance �⌫ and It’s Relation with � 303

The presence of noise may lead to inaccurate estimates of ANS activations. The 304

regularization parameter � related to sparsity dictates the level sparsity of uk, choice of 305

higher value of � leads to more sparse solution and vice versa. On the other hand, if the 306

of guess of the observation noise variance is higher, the estimation deconvolution tend to 307

fit more to the state equation itself without having much innovation term (i.e. smaller 308

Buk) than the current observation. For regular FIS, there is a always a trade-off 309

between process noise and the observation noise. If the observation noise is high then 310

the process noise usually tend be very low during the estimation. In case of IRLS-based 311

FIS for sparse recovery, the process noise is represented with the innovation term, i.e. 312

the ANS activation uk. Therefore, if the observation noise variance �
2 is selected to be 313

smaller, the innovation uk will have more zeros 8k. In other words, higher value of 314

observation noise variance �
2 leads to a more sparse estimation of uk. Therefore, 315

although we have incorporated a GCV based approach for selecting � that tunes the 316

sparsity level of uk, the noise filtration also depends on the selected observation noise 317

variance, �2
⌫ . For the experimental study, we have selected �

2
⌫ = 1⇥ 10�8. This value is 318

working well along with the GCV for balancing between discarding the noise and 319

capturing the process. We have kept the value of �2
⌫ same for the simulated study. Our 320

results show that it is capturing more spikes than the ground truth for heavy noise level. 321

As pointed out in [30], increasing the noise variance �
2
⌫ will lead to a much smoother 322

estimate with a lower number of spikes. For most of the cases, GCV could discard most 323

of the spikes related to noise. Because, the corresponding selected �
2
⌫ are within the 324
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reasonable range for GCV to obtain a balance. Therefore, for GCV to balance the noise 325

spike, a reasonable choice of �2
⌫ is required. However, for some cases it is challenging to 326

find such a reasonable value for GCV. Higher values of �2
⌫ may result in some of the 327

SCRs undetected. Therefore, we select a relatively small value of �2
⌫ such that none of 328

the SCRs remain undetected. As most of the detected noise spikes are relatively smaller 329

than the spikes related to the SCRs, application tailored post-processing (e.g. hard/soft 330

thresholding) can remove most of the noise spikes. 331

Input : yk 8k

Output : uk 8k and ✓

1 Initialization Phase: Initialize ✓̃
0
⇠ U(bl, bu).

2 for i = 1, 2, 3, · · · , 30 do

3 Set u(i,0)
k = u↵ 8k

4 E-Step:

5 With ✓ = ✓̃
(i�1)

, calculate A(i�1) and B(i�1)

6 Iterative re-weighting:
7 for r = 1, 2, 3, · · · , 10 do
8 Estimate �

(i,r) using 13.

9 Perform heuristic refinement of u(i,r�1)
k .

10 Set Q
(i,r�1)
k = (�(i,r))�1((B(i�1)(u(i,r�1)

k )2
⇣
B(i�1)

⌘>
) + ✏

2I) 2�p
2 .

11 Estimate x(i,r)
k , P (i,r)

k|k and P (i,r)
k|k�1 using FIS.

12 Set u
(i,r)
k = max(uth, (B

(i�1)>B(i�1))�1B(i�1)>(x(i,r)
k �Ax(i,r)

k�1 )).

13 end

14 M-Step: Set x(i)
k = x(i,r)

k , u
(i)
k = u

(i,r)
k , P (i)

k|k = P (i,r)
k|k and

P (i)
k|k�1 = P k|k�1

(i,r) and solve the optimization problem in Eq. 17 to

obtain ✓(i).
15 end

16 Main EM Phase: while until convergence do
17 Set i = i+ 1

18 Set uk = u
(i�1,r)
k 8k

19 E-Step:

20 With ✓ = ✓̃
(i�1)

, calculate A(i�1) and B(i�1).
21 Iterative re-weighting:
22 for r = 1, 2, 3, · · · , 10 do
23 Estimate �

(i,r) using the modified GCV technique.

24 Perform heuristic refinement of u(i,r�1)
k .

25 Set Q
(i,r�1)
k = (�(i,r))�1((B(i�1)(u(i,r�1)

k )2
⇣
B(i�1)

⌘>
) + ✏

2I) 2�p
2 .

26 Estimate x(i,r)
k , P (i,r)

k|k and P (i,r)
k|k�1 using FIS.

27 Set u
(i,r)
k = max(uth, (B

(i�1)>B(i�1))�1B(i�1)>(x(i,r)
k �Ax(i,r)

k�1 )).
28 end

29 M-Step: Set x(i)
k = x(i,r)

k , u
(i)
k = u

(i,r)
k , P (i)

k|k = P (i,r)
k|k and P (i)

k|k�1 = P (i,r)
k|k�1

and solve the optimization problem in Eq. 17 to obtain obtain ✓̃
(i)
.

30 end

Algorithm 1: bayesianEDA

332
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Consideration of Non-convexity 333

The complete data log-likelihood that is optimized by the EM approach might suffer 334

from non-convexity and there is a potential risk that the solution may end up in 335

different locations for different initial values. To test that, we run our EM approach for 336

multiple random initializations of the physiological system parameters. Based on the 337

simulated and the experimental datasets we have analyzed, we have observed that the 338

solution for a given SC signal always converge to one location no matter what initial 339

value has been selected. Therefore, we decided to only run our approach for one random 340

initialization of the physiological system parameters in this study, unlike our previous 341

approaches where we have used multiple random initializations and selected the solution 342

that satisfies the selection criteria [23, 24,28]. 343

Results 344

We use the proposed approach to deconvolve the SC measurements from 26 participants. 345

The deconvolution approach provides the estimates of the underlying ANS activation 346

u(t), rise time (⌧r), faster decay time (⌧p), and slow decay time (⌧d). We have 347

considered the signal segment from 150 to 350 seconds for the analysis on the 348

experimental data. Figures from the deconvolution results for one female and one male 349

participant are provided in Fig 2. The figures from the deconvolution results for all 13 350

female and 13 male participants are provided in S1-S4 Figs. These figures depict the 351

successful estimation of the sparse ANS activation due to auditory stimulation. 352

*****************SC Measurements
Reconstructed SC

Tonic SC

Phasic SC
ANS Activation
Auditory Stimulation 
Timing

Top Sub-Panel Bottom Sub-Panel

Fig 2. Estimated Decomposition of the Experimental SC Signals for Female
Participant 1 and Male Participant 1: In each of the panels, i) the top sub-panel
shows the experimental SC signal (red stars), the reconstructed SC signal (black curve),
the estimated tonic component (green curve), and the timings of the auditory
stimulations (gray vertical lines); ii) the bottom sub-panel shows the estimated phasic
component (blue curve), estimated ANS activation timings and amplitudes (black
vertical lines) and the timings of the auditory stimuli (gray vertical lines).

The estimated rise time (⌧r), fast decay time ⌧p, slow decay time ⌧d, number of 353

pulses (||u||0), and multiple correlation coefficient (R2) are provided in Table 1. Fig 3 354

shows the histogram of the estimated state-space model parameters from all 26 355

participants. The estimated means of the parameters among the 26 participants are 356

µr = 2.0040, µp = 5.4545, and µd = 81.8175 seconds for rise times, fast decay time, and 357

slow decay times, respectively. Corresponding standard deviations are �r = 0.8675, 358

�p = 1.9258, and �d = 28.8874 seconds, respectively. The calculated multiple correlation 359

coefficients (R2) are greater than 0.98 for all participants except for Male Participant 12 360

(R2 for Male Participant 12 is 0.8352). This suggests that the proposed model can 361

successfully explain the variations in SC recording. 362
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Fig 3. Histograms of Estimated SCR Shape Parameters using Our
Approach: In top sub-panel in the red and green bar plots correspond to the
histogram plots of the estimated rise time ⌧r and decay time ⌧d, respectively. Red,
green and blue vertical lines correspond to the locations of the means µr, µp and µd of
the corresponding histograms, respectively.

For further evaluating the performance of the proposed algorithm on experimental 363

data, we utilize it’s ability of separating a high-arousal condition (with larger ANS 364

activation amplitudes) from a low-arousal condition (with smaller ANS activation 365

amplitudes), inspired by the work commonly done in the PsPM framework [43]. We 366

utilize the estimated ANS activation u(t) in distinguishing between SCRs that are 367

related to and not related to loud sound events. We label all the impulses in estimated 368

u that have been detected within 5 seconds after a loud sound event as the positive 369

class and other impulses as the negative class. We consider the amplitudes of the 370

impulses as the classification scores within the subjects for obtaining the receiver 371

operating characteristic (ROC) curves [44, 45]. The estimated area under the ROC 372

curves (AUC) for all participants ranges from 0.6600 to 1 with a median of 0.9380 and a 373

mean of 0.8960. We individually normalized the estimated u for all participant and 374

combined all u in one vector to obtain an overall ROC. The estimated overall AUC is 375

0.8196. We compare our proposed bayesianEDA approach with LedaLab-CDA [19], 376

LedaLab-DDA [26], cvxEDA [21], sparsEDA [34], PsPM-MP [46], PsPM-DCM [20], and 377

our spline based approach [24]. The ROC curves are for each of the approaches shown 378

in Fig 4A. The corresponding overall AUC’s are shown in Fig 4B. We further count the 379

number of auditory stimulations for which no SCRs were detected, we name them as 380

number of undetected auditory stimulation. The number of undetected auditory 381

stimulation for each approaches is shown in Fig 4C. 382

To further, investigate the efficacy of our approach, we use the reconstructed signal 383

from our experimental study and add Gaussian noise to simulate data for all 26 384

participants similar to the previous works in [23, 24,28,47,48]. We consider the results 385

from the experimental study as the ground truths to compare with the estimation from 386

the simulated study. The proposed approach successfully estimates the ANS activation 387

along with the physiological model parameters. All the multiple correlation coefficients 388

(R2) are greater than 0.98 for simulated data with 25 dB noise level is 0.9872. 389
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Fig 4. Event Related SCR Detection Performance Comparison (A) The overall
ROC curve related to the discrimination power between event-related vs
non-event-related SCRs combining all the normalized u from each of the individual
participants. (B) Corresponding AUC of the ROC curves. (C) Total number of the
undetected auditory stimulation impulses within 26 participants.
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Table 1. The Estimated Model Parameters and the Squares of the Multiple
Correlation Coefficients (R2 ) for the Fits of the Experimental SC Data

Female
Participant

ID ⌧r ⌧p ⌧d ||u||0 R
2

1 12 2.4575 6.4373 96.5591 25 0.9980
2 15 2.6889 6.9542 104.3135 24 0.9936
3 7 1.9565 5.3131 79.6968 28 0.9961
4 18 2.2324 5.9467 89.2004 25 0.9944
5 21 2.2948 6.0929 91.394 24 0.9893
6 25 2.3572 6.2167 93.2508 39 0.9990
7 1 1.3424 3.9588 59.3823 6 0.9986
8 2 0.7779 2.9288 43.9323 1 0.9883
9 5 1.2355 3.7123 55.6841 16 1
10 6 1.3411 3.9759 59.6391 11 0.9997
11 14 1.2101 3.6983 55.4741 9 0.9991
12 16 3.4221 8.6496 129.7442 41 0.9871
13 19 1.5775 4.4758 67.1366 25 0.9928

Male
Participant

ID ⌧r ⌧p ⌧d ||u||0 R
2

1 11 1.7215 4.7976 71.9641 8 0.9991
2 26 1.6574 4.6498 69.7463 13 0.9991
3 8 2.0524 5.5199 82.7989 24 0.9987
4 10 1.9070 5.2164 78.2453 40 0.9836
5 20 4.5170 11.0786 166.1788 59 0.9909
6 23 1.5451 4.4054 66.0803 27 0.9998
7 3 3.4100 8.6018 129.0276 58 0.9986
8 4 0.8936 3.1084 46.6253 8 0.9993
9 9 1.3561 4.0062 60.0935 20 0.9963
10 13 3.1618 8.066 120.9899 75 0.9954
11 17 1.6731 4.6962 70.4425 30 0.9976
12 22 1.7625 4.8939 73.4078 16 0.8352
13 24 1.5518 4.4164 66.2467 29 0.9992

Here ⌧r, ⌧p and ⌧d, ||u||0, and R
2 denote the rise time, fast decay time, slow decay time,

ANS activation, and multiple correlation coefficients, respectively.

Estimated system parameters (⌧̂r, ⌧̂p and ⌧̂d), estimation errors, and the multiple 390

correlation coefficients (R2) for the results for all the simulated data with 25 dB SNR 391

are provided in Table 2. Further, we also perform the same analysis for 35 dB SNR 392

noise level. The deconvolution result figures related to both 25 dB and 35 dB SNR noise 393

level are also provided in Figs 5 and 6 for two participants for each case. All the other 394

simulation results with Gaussian noise are provided in S5-S12 Figs. Furthermore, we 395

performed similar deconvolution study with pink noise with 25 dB SNR for the signal 396

which show similar results as for the case of Gaussian noise showing the robustness to 397

the model mismatch. The corresponding figures are provided in S13-S16 Figs. 398

We add noise with different noise power to investigate how the proposed approach 399

performs in terms of estimating the unknowns and the reconstructed signal. We add 400

Gaussian noise with different energy levels to the reconstructed SC signals from the 401

experimental study for the 26 participants and perform deconvolution to estimate 402

unknowns with the proposed approach. We calculate the average estimation errors of 403

the unknowns for all participants at different noise levels. Figs 7 and 8 show how the 404

average estimation error changes as the noise level increases. Similarly, Fig 9 shows how 405
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Table 2. The Estimated Model Parameters, Estimation Errors, and the Squares of the
Multiple Correlation Coefficients (R2 ) for the Fits of the Simulated SC Data
Female
Participant

ID ⌧r ⌧p ⌧d
|⌧r�⌧̂r|

⌧r
⇥ 100% |⌧p�⌧̂p|

⌧p
⇥ 100% |⌧d�⌧̂d|

⌧d
⇥ 100% R

2 run time

1 12 2.4604 6.4389 96.5830 0.1210 0.0247 0.0247 0.99794 31.6575
2 15 2.6990 6.9523 104.2847 0.3778 0.0276 0.0276 0.99755 317
3 7 1.9586 5.3138 79.7069 0.1071 0.0126 0.0126 0.99755 29.5756
4 18 2.2347 5.9467 89.2011 0.1044 0.0008 0.0008 0.99688 30.5766
5 21 2.3006 6.0931 91.3963 0.2512 0.0025 0.0025 0.99363 28.2613
6 25 2.3588 6.2170 93.2545 0.0693 0.0040 0.0040 0.99789 30.4497
7 1 1.3436 3.9595 59.3931 0.0900 0.0182 0.0182 0.99970 26.1312
8 2 0.7779 2.9288 43.9316 0.0018 0.0016 0.0016 0.99830 21.3974
9 5 1.2366 3.7137 55.7056 0.0907 0.0388 0.0388 0.99888 21.5944
10 6 1.3411 3.9762 59.6431 0.0036 0.0067 0.0067 0.99985 24.9445
11 14 1.2102 3.6981 55.4716 0.0079 0.0045 0.0044 0.99976 28.5442
12 16 3.4366 8.6424 129.6358 0.4253 0.0836 0.0836 0.98704 34.1906
13 19 1.5792 4.4764 67.1456 0.1075 0.0133 0.0133 0.99814 26.3280

Male
Participant

ID ⌧r ⌧p ⌧d
|⌧r�⌧̂r|

⌧r
⇥ 100% |⌧p�⌧̂p|

⌧p
⇥ 100% |⌧d�⌧̂d|

⌧d
⇥ 100% R

2 run time

1 11 1.7232 4.7982 71.9732 0.0995 0.0126 0.0126 0.99906 25.9000
2 26 1.6579 4.6494 69.7406 0.0312 0.0082 0.0082 0.99911 29.7408
3 8 2.0574 5.5219 82.8286 0.2476 0.0358 0.0358 0.99864 30.1971
4 10 1.9103 5.2170 78.2550 0.1727 0.0125 0.0125 0.98358 28.9428
5 20 4.5459 11.0648 165.9723 0.6384 0.1242 0.1242 0.99098 32.0364
6 23 1.5452 4.4053 66.0799 0.0042 0.0006 0.0006 0.99983 29.6168
7 3 3.4207 8.5952 128.9286 0.3125 0.0767 0.0767 0.99864 32.2376
8 4 0.8937 3.1084 46.6255 0.0026 0.0004 0.0004 0.99938 23.1102
9 9 1.3568 4.0064 60.0960 0.0571 0.0042 0.0042 0.99632 26.4126
10 13 3.1736 8.0676 121.0135 0.3727 0.0195 0.0195 0.99549 31.7452
11 17 1.6754 4.6976 70.4639 0.1386 0.0304 0.0304 0.99762 26.2041
12 22 1.7660 4.8959 73.4382 0.1990 0.0414 0.0414 0.83526 24.6898
13 24 1.5524 4.4157 66.2352 0.0409 0.0174 0.0174 0.99922 28.8487

Here ⌧̂r, ⌧̂p and ⌧̂d denote the estimated rise time, fast decay time, and slow decay time
for the simulated SC data. The SC signal is simulated with 25 dB Gaussian noise.

the reconstruction errors change at different noise levels. 406

To empirically investigate the time complexity of the approach, we utilize the 407

experimental data with different durations and perform deconvolution using our 408

approach. We measure the run-time for each of the deconvolution. Fig 10 shows the 409

distributions of the run-times in different signal lengths. According to the Fig 10, the 410

medians of the run-times increase linearly with the increase in the signal length showing 411

the scalability of the approach. For the signal with 200 second length, the mean 412

run-time for M-step (parameter estimation step) is 0.38 seconds with a standard 413

deviation of 0.15 seconds. 414

Discussion 415

Inference of ANS activation from SC recordings is challenging given that the parameters 416

of the underlying physiological system are unknown. The derived EM approach 417

maximizes the complete data log-likelihood. The complete data log-likelihood has many 418

degrees of freedom, i.e., the constraints on variables to be optimized are lower than the 419

number of variables. In other words, there exist many solutions for the unknowns that 420

can closely approximate the sampled signal. The use of a comprehensive state-space 421

model and the elimination of cubic spline functions-based model reduces the number of 422

unknown variables in optimization. For example, the number of cubic spline functions 423

needed to model the slow varying component of 200 seconds is 39, as pointed out in our 424

previous work [24]. On the other hand, the proposed comprehensive model requires only 425

one parameter instead of multiple cubic spline function parameters to model the 426

slow-varying component. Furthermore, we consider probabilistic sparsity priors 427

motivated by physiology on ANS activation along with Gaussian priors on the 428
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Fig 5. Deconvolution Results From the Simulated SC Signals with 25 dB
SNR for One Female Participant and One Male Participant: In each of the
panels, i) the top sub-panel shows the ground truth for SC signal (red stars), the
reconstructed SC signal (black solid curve), the estimated tonic component (green solid
curve), and ground truth for the ANS activation (gray vertical lines); ii) the bottom
sub-panel shows the estimated phasic component (blue solid curve), estimated ANS
activation timings and amplitudes (black vertical lines) and the ground truth ANS
activation (gray vertical lines).

Fig 6. Deconvolution Results From the Simulated SC Signals with 35 dB
SNR for One Female Participant and One Male Participant: In each of the
panels, i) the top sub-panel shows the ground truth for SC signal (red stars), the
reconstructed SC signal (black solid curve), the estimated tonic component (green solid
curve), and ground truth for the ANS activation (gray vertical lines); ii) the bottom
sub-panel shows the estimated phasic component (blue solid curve), estimated ANS
activation timings and amplitudes (black vertical lines) and the ground truth ANS
activation (gray vertical lines).
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Fig 7. Noise Levels vs. Estimation Accuracy of The Model Parameters: Red
squares, green pentagram, and blue triangles connected with solid lines denote the
average percentage errors for the estimated rise times, fast decay times, and slow decay
time from simulated data with SNR levels. The SNR is provided with respect to the
phasic component.
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Fig 8. Average Amplitude Error of Estimated ANS Activation in Different
Noise Levels: Black diamonds with the dashed lines denotes the average amplitude
error of the neural stimuli from estimated data with different noise levels. We have
defined the average amplitude error as |||ũ||1 � ||u||1|/||u||0, where ũ and u represent
the estimated and the ground truth neural stimuli, respectively. The data is simulated
using the obtained results from the all experimental data in [31].The SNR is given with
respect to the phasic component.
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Fig 9. Root Mean Square Error (RMSE) of the Reconstruction for SC
signal and Corresponding Components with Respect to the Ground Truth:
Green, blue and red dashed lines denote the RMSE for the reconstructed tonic
component, phasic component and overall SC data in different noise levels. The data is
simulated using the obtained results from the all experimental data in [31]. As noise is
added to the phasic component prior to addition of tonic component, the SNR is given
with respect to the phasic component.

physiological system parameters. Last but not least, we also enforce inequality and 429

equality constraints on the state-space model parameters by trial and error. The 430

constraints ⌧p > 2⌧r, ⌧d > 15⌧p, and ⌘ = 0.5 worked best for us for the dataset we have 431

analyzed. [24]. [24]. 432

Fig 2 shows that the estimations of the initial states as well as the states for about 433

20-30 seconds can be erroneous. After 20-30 seconds, the state estimate visually seems 434

reasonable. This erroneous estimation occurs because the Kalman filter in the FIS 435

needs a few samples to begin to follow the signal. Therefore, the estimations during the 436

initial few samples can be erroneous. Due to this erroneous estimation of the initial 437

state, the R
2 estimate for male participant 12 became very low compared to other 438

participants. One straightforward way to deal with this is to consider 20-30 seconds of 439

measured signal padded in the beginning. After performing deconvolution in the padded 440
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Fig 10. Run-time Vs Signal Length: Figure shows boxplots of the run-times of the
proposed approach with different signal lengths. The black dots with blue circle in the
middle of each boxplot denote median. The bottom and top of each blue box are the
25th and 75th percentiles of the sample, respectively. The red markers denote the
outliers.

signal, results corresponding to the initial 20-30 seconds can be removed. 441

For the comparative study with previous approaches, we assumed the timing of the 442

auditory stimulation as the ground truth. It should be noted that the shape of the ROC 443

curve is dictated by the three factors: 1) how many of the auditory stimuli are 444

translated as SCRs by the neural pathway and corresponding physiology, 2) spontaneous 445

SCRs, and 3) an algorithm’s ability to accurately model any SCRs along with the 446

corresponding accurate estimation of ANS activations. If an auditory stimulation does 447

not produce an SCR, all different algorithms will be penalized the same way in the ROC 448

metric if that specific SCR is not detected (contributing as the false negative). Similarly, 449

if there is a spontaneous SCR, all different algorithms will be penalized the same way in 450

the ROC metric if detected (contributing as the false positive). As the first two cases 451

are staying the same for all the algorithms, the relative change in the area in the AUC 452

of the ROC curve will mean that this change is coming from the algorithm itself only. 453

In this way we can benchmark our approach with previous algorithms. A better ROC 454

will mean algorithms ability to reduce the false negatives and false positives. Fig 4A 455

shows that our bayesianEDA has the best ROC curve than all the previous approaches, 456

including our previously proposed spline-based approach [24]. Fig 4B shows that our 457

bayesianEDA has the maximum AUC value of the corresponding ROC curves. The next 458

best ones are our spline-based approach (AUC = 0.8003) and sparsEDA (AUC = 459

0.7783). The ROC curves and AUC values are generated based only on the classification 460

ability between the event-related and non-event related SCRs among the ones that are 461
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only detected by each method. However, there is a possibility that an algorithm have 462

over-sparsified the solution and missed many smaller but event-related SCRs. Therefore, 463

we further calculate for how many of auditory stimulations no SCR was detected. Fig 464

4C shows that among all algorithms, our BayesianEDA approach has 24 undetected 465

ANS activation, which is close to the correct number of undetected responses, which is 466

23. Detailed discussion is provided in S3 Appendix. 467

Readers should note that, unlike all the methods we considered for the comparison, 468

PsPM [20,46] was specifically developed to incorporate knowledge of external 469

stimulation, and the dataset used comes from an experiment with defined stimulation. 470

PsPM can utilize this defined stimulation information. All other approaches including 471

ours perform ”blind” deconvolution regardless of any external stimulation. This is more 472

applicable in the envisioned application area, such as real-time deconvolution with 473

wearables. It can also be thought of as a drawback when there is knowledge of 474

stimulation, such as in most laboratory tasks. Therefore, here we used the spontaneous 475

fluctuation (SF) suite for PsPM for our comparison, which also does not take the 476

information of external stimulus as input. In the future, inspired by the PsPM 477

framework, we plan to extend our proposed algorithm bayesianEDA to take the 478

stimulus information as input in a probabilistic manner by changing the probability 479

distribution of u(t) at the time when external stimulation information exists for a more 480

contex-aware deconvolution. 481

The computational complexity of the deconvolution approach is O(K) as shown 482

in [30]. Furthermore, our empirical investigation also shows that the run-time scales 483

linearly with the number of samples, as shown in Fig 10. This shows the feasibility of 484

implementing such approaches in low-power wearable medical devices for edge 485

computation. This scalable implementation has been possible with the proposed 486

comprehensive state-space model. The time complexity of the M-step of this approach 487

is also of O(K) in terms of the number of samples. After E-step the calculation of the 488

summations such as
PK�1

k=0 (x(i)
k�1(x

(i)
k�1)

> + P (i)
k�1),

PK�1
k=0 y

>
k Cx(i)

k etc. in Eq. 17 has 489

O(K) time complexity. Further optimization can be performed by obtaining the 490

parameters of the physiological system for a smaller segment and performing the E-step 491

for the longer segments. During a day of recording, parameters can be updated a few 492

times by running the EM, and these parameters can be used to estimate the ANS 493

activation using only E-step. A real-time implementation can be done with only 494

running the Kalman filter in an iterative manner in the FIS after estimating the system 495

parameters for a shorter segment. As Kalman filters are very cheap in terms of 496

computation power, the proposed approach opens up the possibility of performing ANS 497

activity inference on the edge device rather than running it in the cloud, facilitating low 498

network traffic and user privacy. 499

In this study, we have proposed a novel physiological model inspired by the 500

physiological understanding of sweat secretion that can better explain the variation in 501

SC with fewer unknowns. Using our proposed model, we have developed a highly 502

scalable deconvolution algorithm, which will enable efficient implementation in wearable 503

devices. To achieve convergence, obtain a good fit of the model and avoid overfitting, 504

several parameters and constraint have been chosen on a trial-and-error basis because of 505

the absence of in-depth physiological knowledge. There is room for improvement to 506

come up with a more systematic way to address this limitation. Future studies can 507

benefit from more motivation from physiology-motivated parameters and constraint 508

selections. 509

ANS activities obtained from the single channel SC recording can be used to track 510

the cognitive arousal state of an individual [2, 49, 50]. One of the future goals is to 511

extend this approach for multi-channel SC recording and the nonlinearity of the model 512

for a more robust inference in the presence of noise,leading to more reliable inference of 513

July 4, 2022 23/29



individual arousal level similar to our previous study in [28]. For further accurate 514

estimate of emotional arousal, we intend to utilize the inferred ANS activity from SC 515

recordings with our approach and combine with other physiological signals similar 516

to [51–57]. The proposed new model as well as the scalable ANS inference approach 517

have enabled us to design a scalable control architecture to regulate the arousal level 518

similar to the proposed framework in [58–61]. Finally, since some studies have reported 519

inconsistencies in the poral valve model by Edlberg et al. [33] while investigating both 520

SC and skin potential response [62], we plan to continue our investigation of the 521

mechanism of sweat secretion to achieve improvements in the model and its 522

understanding. 523

References

1. Boucsein W. Electrodermal activity. Springer Science & Business Media; 2012.

2. Wickramasuriya DS, Qi C, Faghih RT. A State-Space Approach for Detecting
Stress from Electrodermal Activity. In: Annual International Conference of the
IEEE Engineering in Medicine and Biology Society. IEEE Engineering in
Medicine and Biology Society. Annual Conference. vol. 2018; 2018. p. 3562–3567.

3. Zheng YL, Ding XR, Poon CCY, Lo BPL, Zhang H, Zhou XL, et al. Unobtrusive
sensing and wearable devices for health informatics. IEEE Transactions on
Biomedical Engineering. 2014;61(5):1538–1554.

4. Guo Y, Liu X, Peng S, Jiang X, Xu K, Chen C, et al. A Review of Wearable and
Unobtrusive Sensing Technologies for Chronic Disease Management. Computers
in Biology and Medicine. 2020; p. 104163.

5. Johnson KT, Picard RW. Advancing Neuroscience through Wearable Devices.
Neuron. 2020;108(1):8–12.

6. Subramanian S, Barbieri R, Brown EN. Point process temporal structure
characterizes electrodermal activity. Proceedings of the National Academy of
Sciences. 2020;117(42):26422–26428.

7. Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global
disease burden implications: a systematic review and meta-analysis. JAMA
psychiatry. 2015;72(4):334–341.

8. San Too L, Spittal MJ, Bugeja L, Reifels L, Butterworth P, Pirkis J. The
association between mental disorders and suicide: A systematic review and
meta-analysis of record linkage studies. Journal of affective disorders. 2019;.

9. Murphy SL, Xu J, Kochanek KD, Arias E. Mortality in the united states, 2017.
2018;.

10. Shepard DS, Gurewich D, Lwin AK, Reed Jr GA, Silverman MM. Suicide and
suicidal attempts in the United States: costs and policy implications. Suicide and
Life-Threatening Behavior. 2016;46(3):352–362.

11. Gross JJ, Jazaieri H. Emotion, emotion regulation, and psychopathology: An
affective science perspective. Clinical Psychological Science. 2014;2(4):387–401.

12. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic
neuropathy: clinical manifestations and current treatments. The lancet
NEUROLOGY. 2012;11(6):521–534.

July 4, 2022 24/29



13. Freedman BI, Bowden DW, Smith SC, Xu J, Divers J. Relationships between
electrochemical skin conductance and kidney disease in type 2 diabetes. Journal
of Diabetes and its Complications. 2014;28(1):56–60.

14. Freedman BI, Smith SC, Bagwell BM, Xu J, Bowden DW, Divers J.
Electrochemical skin conductance in diabetic kidney disease. American journal of
nephrology. 2015;41(6):438–447.

15. He T, Wang C, Zuo A, Liu P, Zhao R, Li W, et al. Electrochemical skin
conductance may be used to screen for diabetic cardiac autonomic neuropathy in
a Chinese population with diabetes. Journal of diabetes research. 2017;2017.

16. Gerrett N, Griggs K, Redortier B, Voelcker T, Kondo N, Havenith G. Sweat from
gland to skin surface: production, transport, and skin absorption. Journal of
Applied Physiology. 2018;125(2):459–469.

17. Lim CL, Rennie C, Barry RJ, Bahramali H, Lazzaro I, Manor B, et al.
Decomposing skin conductance into tonic and phasic components. International
Journal of Psychophysiology. 1997;25(2):97–109.

18. Alexander DM, Trengove C, Johnston P, Cooper T, August J, Gordon E.
Separating individual skin conductance responses in a short interstimulus-interval
paradigm. Journal of neuroscience methods. 2005;146(1):116–123.

19. Benedek M, Kaernbach C. A continuous measure of phasic electrodermal activity.
Journal of neuroscience methods. 2010;190(1):80–91.

20. Bach DR, Daunizeau J, Friston KJ, Dolan RJ. Dynamic causal modelling of
anticipatory skin conductance responses. Biological psychology.
2010;85(1):163–170.

21. Greco A, Valenza G, Lanata A, Scilingo EP, Citi L. cvxEDA: A convex
optimization approach to electrodermal activity processing. IEEE Transactions
on Biomedical Engineering. 2016;63(4):797–804.

22. Faghih RT, Stokes PA, Marin MF, Zsido RG, Zorowitz S, Rosenbaum BL, et al.
Characterization of fear conditioning and fear extinction by analysis of
electrodermal activity. In: Engineering in Medicine and Biology Society (EMBC),
2015 37th Annual International Conference of the IEEE. IEEE; 2015. p.
7814–7818.

23. Amin MR, Faghih RT. Sparse Deconvolution of Electrodermal Activity via
Continuous-Time System Identification. IEEE Transactions on Biomedical
Engineering. 2019;.

24. Amin MR, Faghih RT. Identification of Sympathetic Nervous System Activation
from Skin Conductance: A Sparse Decomposition Approach with Physiological
Priors. IEEE Transactions on Biomedical Engineering. 2020;.

25. Bach DR, Flandin G, Friston KJ, Dolan RJ. Time-series analysis for rapid
event-related skin conductance responses. Journal of neuroscience methods.
2009;184(2):224–234.

26. Benedek M, Kaernbach C. Decomposition of skin conductance data by means of
nonnegative deconvolution. Psychophysiology. 2010;47(4):647–658.

July 4, 2022 25/29



27. Amin MR, Faghih RT. Inferring autonomic nervous system stimulation from
hand and foot skin conductance measurements. In: 2018 52nd Asilomar
Conference on Signals, Systems, and Computers. IEEE; 2018. p. 655–660.

28. Amin MR, Faghih RT. Robust Inference of Autonomic Nervous System
Activation Using Skin Conductance Measurements: A Multi-Channel Sparse
System Identification Approach. IEEE Access. 2019;7:173419–173437.

29. Amin MR, Faghih RT. Tonic and Phasic Decomposition of Skin Conductance
Data: A Generalized-Cross-Validation-Based Block Coordinate Descent
Approach. In: 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). IEEE; 2019. p. 745–749.

30. Kazemipour A, Liu J, Solarana K, Nagode DA, Kanold PO, Wu M, et al. Fast
and stable signal deconvolution via compressible state-space models. IEEE
Transactions on Biomedical Engineering. 2017;65(1):74–86.

31. Bach DR, Flandin G, Friston KJ, Dolan RJ. PsPM-SCRV10: Skin conductance
responses to loud sounds, simultanously recorded from palm, fingers and foot;
2017. Available from: https://doi.org/10.5281/zenodo.291465.

32. Bach DR, Flandin G, Friston KJ, Dolan RJ. Modelling event-related skin
conductance responses. International Journal of Psychophysiology.
2010;75(3):349–356.

33. Edelberg R. Electrodermal mechanisms: A critique of the two-effector hypothesis
and a proposed replacement. In: Progress in electrodermal research. Springer;
1993. p. 7–29.

34. Hernando-Gallego F, Luengo D, Artés-Rodŕıguez A. Feature Extraction of
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Supporting information

S1 Appendix. Expectation Maximization. The section provides a brief
derivation of the Expectation Maximization.

S2 Appendix. Heuristic Refinement of u. The section provide a brief derivation
of the heuristic refinement of u.

S3 Appendix. Additional Discussion. The section provides a detailed discussion
on performance comparison between different algorithms in terms of the number of
undetected activations of ANS.

S1 Fig. Estimated Decomposition of the Experimental SC Signals for
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S2 Fig. Estimated Decomposition of the Experimental SC Signals for
Female Participant 7 to 13.

S3 Fig. Estimated Decomposition of the Experimental SC Signals for Male
Participant 1 to 6.
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