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Abstract

Electrodermal activities (EDA) are any electrical phxenomena observed on the skin.
Skin conductance (SC), a measure of EDA, shows fluctuations due to autonomic
nervous system (ANS) activation induced sweat secretion. Since it can capture
psychophysiological information, there is a significant rise in the research work for
tracking mental and physiological health with EDA. However, the current
state-of-the-art lacks a physiologically motivated approach for real-time inference of
ANS activation from EDA. Therefore, firstly, we propose a comprehensive model for the
SC dynamics. The proposed model is a 3D state-space representation of the direct
secretion of sweat via pore opening and diffusion followed by corresponding evaporation
and reabsorption. As the input to the model, we consider a sparse signal representing
the ANS activation that causes the sweat glands to produce sweat. Secondly, we derive
a scalable fixed-interval smoother-based sparse recovery approach utilizing the proposed
comprehensive model to infer the ANS activation enabling edge computation. We
incorporate a generalized-cross-validation to tune the sparsity level. Finally, we propose
an Expectation-Maximization based deconvolution approach for learning the model
parameters during the ANS activation inference. For evaluation, we utilize a dataset
with 26 participants, and the results show that our comprehensive state-space model
can successfully describe the SC variations with high scalability, showing the feasibility
of real-time applications. Results validate that our physiology-motivated state-space
model can comprehensively explain the EDA and outperforms all previous approaches.
Our findings introduce a whole new perspective and have a broader impact on the
standard practices of EDA analysis.

Author summary

The current state-of-the-art lacks physiology-motivated models for electrodermal
activities (EDA) that have the power to comprehensively describe the variations in skin
conductance (SC)-a measure of EDA. In this study, we propose a physiology-motivated
state-space model to address previous challenges. On the other hand, there is also an
absence of a scalable autonomic nervous system (ANS) activation inference method that
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simultaneously solve for the physiological system parameters. Furthermore, we develop
a scalable ANS activation inference approach based on the proposed model with a goal
for real-time edge computation. We utilize a dataset with 26 participants to validate the
new model and the scalable method. Results demonstrate that our physiology-motivated
state-space model can comprehensively explain the EDA. Our findings introduce a whole
new perspective and have a broader impact on standard practices of EDA analysis.

Introduction

The term “electrodermal activity” (EDA) refers to any electrical phenomenon on human
skin |1]. EDA was discovered in the late 19th century and, since then, it has been
widely used in psychophysiology as the EDA fluctuations have high correlations with
the autonomic nervous system (ANS) activation. One of the most popular measures of
EDA is the continuous exosomatic recording of skin conductance (SC). Due to
emotional stimuli, there is a change in the psychophysiological and metabolic state of
the body in order to deal with the emotional stimuli (e.g. flight or fight response). ANS
may excite sweat glands based on the psychophysiological and metabolic change in the
state, and the corresponding salty sweat secretions increase SC. Examination of SC

measurements enables us to investigate ANS activation related to emotional arousal [2].

There are a few vital signals in the human body similar to EDA that have the
potential to be measured continuously and unobtrusively using very simple
instrumentation. The unobtrusive nature of the measuring techniques has led to a new
era of wearable technology for continuous health monitoring. Such signals include
cardiac signals (e.g. electrocardiogram (ECG) and photoplethysmogram (PPG)), skin
temperature (SKT), EDA, muscle activity (e.g. electromyogram (EMG)) etc. [3}/4].
Among them, PPG and SKT have been widely integrated into consumer wearable
technologies, along with reliable techniques for decoding useful information. In the past
few decades, extensive research has been conducted, mainly on PPG signal analysis for
wearable implementation, with the goal of continuous health monitoring. The next
candidate with the greatest potential for revolutionizing wearable health monitoring is
EDA [5]. However, the amount of research performed on EDA signals is relatively
limited compared to cardiac signals. Although researchers have published many studies
to systematically model EDA in the last two decades, there are still many fundamental
characteristics of EDA being discovered today. For example, in 2020, Subramaniam et
al. [6] have shown that the point process characterizes EDA in normal healthy
participants. Therefore, further studies are required to identify the more accurate
system dynamics of EDA so that critical information related to health monitoring can
be obtained.

Appropriate EDA analysis has applications in a wide range of fields such as mental
disorders, pain, cognitive stress tracking, wakefulness, etc. As different physiological
signals, including EDA, contain information about human emotional arousal, they have
potential applications in the field of mental health. For example, preventing death from
mental disorders with regular tracking could be one potential application, as Walker et
al. |7] reported that a large portion of deaths worldwide are attributable to mental
health-related disorders. A meta-analysis shows that mental disorders are a major risk
factor for suicide [8]. Suicide is one of the leading causes of death in the United States
in the year 2017 9] and the cost related to suicide alone in the United States were more
than $90 billion in 2013 [10]. Studies have recommended [10] community-based
immediate psychiatric services, including telepsychiatric support for reducing
suicide-related costs which require continuous monitoring. Augmenting EDA with other
physiological signals for time-to-time monitoring of critical patterns of emotional
regulation could potentially help preventing psychiatric disorders [11].
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Another possible potential application is in treating diabetic neuropathy. Diabetic
neuropathy refers to small nerve damage caused by prolonged exposure to high levels of
blood glucose concentration |12]. As a result, small nerves along with the sudomotor
nerves in the legs, feet, and hands that are responsible for transmitting ANS activation
are prone to neuropathy [12]. As confirmed by numerous studies in |[13H15], damages in
small nerves, including the sudomotor nerves may lead to abnormal EDA variations.
Furthermore, it is well known in clinical diagnostics that the development of anomalies
in sweat secretions may be attributed to forms of disorders, such as hypohidrosis and
anhidrosis [16]. Moreover, such disorders may indicate diseases like diabetes
mellitus [16]. Clinical investigations of abnormalities in the SC recordings can be pivotal
for the early detection of such diseases.

Because of its wide range of applicability, accurate modeling of system-theoretic
understanding is a prerequisite. In 1997, Lim et al. [17] proposed a heuristic
sigmoid-exponential model to represent the rise and decay characteristics of the SCR
shape. Instead of a general approach, they had to consider four different configurations
of the proposed model for four different cases. Later in 2005, Alexander et al. [1§]
proposed a second-order differential equation for defining the SC fluctuations, the
solution of which is a bi-exponential function representing the rise and decay of the SCR
shape. They assumed that SC is single-phasic and, more specifically, that all
fluctuations can be defined with the second-order differential equation. However,
eventually researchers have realized the bi-phasic nature of EDA fluctuations, meaning
there are two different components in EDA that vary in two different rates [19H24].
Bach et al. |25] have used a low-pass filter to separate slow varying component and then
investigated the fast varying component as the output of a finite linear time-invariant
(LTT) filter. Benedek et al. [19,26] have suggested bi-exponential functions, namely
Bateman functions, to describe the slow varying components with large decay time and
the fast varying component with smaller decay times. However, this model cannot
explain both components together. In a similar time, Bach et al. [20] reported that
bi-exponential functions provided better fit than other candidates while modeling the

fast varying component after removing the slow varying component with low-pass filter.

Nevertheless, the FIR filter-based separation of the slow and fast varying components
has limitations as pointed out in our previous work [24].

In our previous studies [23]/24,27H29], we have developed deconvolution approaches
in which we investigated previously known mathematical models for EDA dynamics. In
these studies, we have utilized the SC modeling approach in [21], where the authors
have modeled the slow varying component of EDA with a linear combination of a few
arbitrary cubic spline basis functions. Although such a model can provide a good fit to
the data, it lacks a reasonable physiological justification, and the corresponding
coefficients of the obtained cubic-spline functions obtained do not have an
interpretation. Furthermore, the cubic-spline basis function based model may overfit to
the data and provide a solution that is not physiologically plausible. In addition, the
lack of a complete state-space model makes it difficult to design scalable fixed-interval
smoother (FIS) based inference approaches for recovery of ANS activation. Although
similar approaches have been developed for calcium oscillation deconvolution and EEG
sleep spindle detection [30], it is difficult to develop such an approach for EDA with the
models currently available. During our development of deconvolution approaches, we
realized that there is a need for a potential improvement in the current mathematical
models for describing EDA dynamics as well as the current deconvolution practices to
obtain a systematic and reliable approach with the feasibility of real-time application.

Therefore, in this study, we propose a unified and comprehensive state-space model
to describe both the slow and fast varying components of EDA. We first start with a
more general and physiologically interpretable nonlinear model and then derive a
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simpler linear state-space one. Additionally, our proposed model enables us to derive an
FIS based novel scalable sparse deconvolution approach which was not previously
possible because of the absence of a comprehensive state-space model for the potential
of real-time inference. For obtaining our novel approach, we extended the scalable
sparse deconvolution approach for calcium and EEG sleep spindle deconvolution
proposed by Kazemipour et al. [30], which was developed for a subset of state-space
equations considering the input matrix as an identity matrix. We generalized this for
the state-space models with any input matrix and apply it for our proposed SC model.
Moreover, for estimating the state-space model parameters, we utilize the previously
known physiological priors similar to [24]. Furthermore, we employ
generalized-cross-validation for balancing between the sparsity level of the ANS
activation and the model fit for systematic reduction of the measurement noise. We
compare the performance of our approach with previous deconvolution approaches.
Furthermore, we show the scalability of our approach, illustrating the feasibility of
devising real-time edge computation with our approach.

Materials and methods

Dataset Description

In this study, we analyze the SC recordings where participants experience multiple
auditory stimuli (loud sounds) during the experiment [31]. The experiment was designed
to investigate event-related SC responses (SCRs) [32]. Each participants received
multiple auditory stimuli. Each auditory stimulus is a single white noise burst of 1s
length with a 10 ms ramp and 85 dB power. The participants were instructed to press a
foot pedal upon hearing a stimulus. The dataset contains recordings from thirteen
female and thirteen male participants. The partcipants are all healthy and unmedicated
with age 24.4+/-4.9 years. For each of the 26 participants, the datasets include three
channels of SC recordings from three different locations. We use the SC recordings from
the thenar/hypothenar of the nondominant hand for all datasets in this study. The
details regarding the experiment are provided in [32]. We pre-process all recordings with
an approach similar to [28] and resample the SC recordings to 4 Hz for our analysis.

Proposed Physiological Model

We propose our model based on the poral valve model by Edelberg [33]. For the sake of
discussion, let’s assume the sweat ducts are initially empty and in response to the
received impulsive ANS activation, secretions from the sweat glands start to fill the
sweat ducts. As the amount of sweat in the ducts increases, there is an increase in the
hydraulic pressure inside. The pressure build-up gives rise to the increasing diffusion
into the stratum corneum and the deeper stratum corneum area. This results in a slight
rise in the SC level. If the pressure exceeds a certain threshold, the pores of the sweat
ducts open for sweat secretion. This way, a fraction of the sweat is secreted directly by
the pore opening. The secreted sweat and the connected sweat content in the ducts
both contributes to the conductance. Therefore, there is a sharp rise in the SC level.
Here, direct secretion refer to the secretion of sweat via the pore to the surface of the
skin. On the other hand, sweat secretion via diffusion refers to hydration of stratum
corneum when sweat slowly travels via the sweat duct wall. As the direct secretion and
the diffusion reduces the hydraulic pressure and the pressure goes below a certain
threshold, the pore collapse separates the sweat contents in the ducts and prevents them
from contributing to the conductance. Consequently, a faster decay in SC level is
observed. We define it as the faster re-absorption resulting in the faster decay time in
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Fig 1. An overview of the physiology and corresponding proposed model.
(A) A step by step illustration of the poral valve model proposed by Edelberg [33]. (B)
An illustration of the cross section of the skin segment and corresponding different
regions contributing to the SCR, generation process based on poral valve model. (C) A
three compartment pharmacokinetic realization of the poral valve model. The arrows
with different colors in panel B and C correspond to the secretion and clearance of
sweat contents in different steps denoted by the associated step numbers as represented
in panel A.

SC. The remaining secreted fraction of the sweat in the stratum corneum is diffused into
the deeper dermis and cleared away from the periductal area by a slow re-absorption
process. Along with re-absorption, a fraction in the reduction of SC is because of the
evaporation from the surface. These steps will lead to SC level to decay slowly. A visual
illustration of the steps for the poral valve model is provided in Fig[JA. Fig shows a

cross section of the skin illustrating regions involved in different steps of SCR, generation.

With these speculations, we propose the following nonlinear state-space model:

x1(t) = f%xl(t) + u(t), (sweat production) (1)
Zo(t) = Mxl(t) - %.’172 (1), (pore opening and collapse) (2)
z3(t) = Mml(t) - Tidxg(t) (slow re-absorption) (3)

where 1(t), z2(t), and z3(t) respectively denote the states corresponding to the
amount of sweat in the sweat ducts, in the ducts but electrically conducted to the
surface due to the pore opening (contributing to the SC level), and diffused in the
stratum corneum according to the hypothesis in the poral valve model proposed by
Edelberg [33]. The states z2(t) and x3(t) are contributing to the rise in the SC level. 7,
denotes the faster decay time due to fast re-absorption (related to the pore collapse). 74
represents the slow decay time related to the elimination from stratum corneum
partially by re-absorption, diffusion in the deeper stratum corneum, and evaporation.
We assume clearance rate from the sweat duct is equal to the sweat secretion rate to the
surface and the adjacent skin tissue are. 7, denotes the rise time of SC, (effectively the
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clearance time of the sweat from the ducts). One should note that the state-space
model does not assume the duct is initially empty. Here, Eq|l| denotes the mechanism of
ANS activation to the Compartment I for sweat production and corresponding sweat
transportation towards Compartment I and III in Fig[T[C. Eq [2 denotes the increase in
the sweat content in Compartment II and corresponding fast re-absorption process in
the model in Fig[TIC. The location and the direction of the direct sweat secretion via
pore opening (SCR generation step 3 in green arrow) and the corresponding fast
re-absorption (SCR generation step 4 in red arrow) are denoted in Fig and .
Similarly, Eq |3| denotes the increase in the sweat content in Compartment III and
corresponding slow elimination process in the model in Fig[IIC. The location and the
direction of the sweat secretion via diffusion (SCR generation step 2 in purple arrow)
and the corresponding fast re-absorption (SCR generation step 5 in magenta arrow) are
denoted in Fig[1B and [IC.

The system input u(¢) represents the ANS activation. To keep the definition simple,
we assume that the ANS activation occurs during the integer multiple of the sampling
period. Let T, be the sampling period. Researchers reported that a single neural
impulse from ANS is responsible for a single SC response [21}/22,/34-36]. Moreover, the
sparsity constraint on u has been proven to be an appropriate prior in our previously
developed algorithms [23}24}|28}29}37,[38]. With the sparsity assumption, we represent
the ANS activation as u(t) = 2521 urd(t — kTs) where uy, is the amplitude of the
impulse during the ANS activation at time kT. uy is zero if there is no impulse in the
stimuli. Moreover, n,(z1(t)) and ng(x1(t)) are two functions that determine the fraction
of sweat that is secreted by direct pore opening and diffusion, respectively. We assume
np(21(t)) and np(xz1(t)) denote the nonlinearity in the pore opening operation. The
nonlinearity of the pore opening is similar to the switching operation (on/off) and
analogous to how a neuron works, i.e., in integrate-and-fire manner as pointed out in [6].
Therefore, we propose to model these nonlinearities with sigmoid functions similar to
the artificial neurons as follows:

np(21(t)) = S(aw1(t) + 6),
na(z1(t)) =1 — S(az1(t) + B)

where S(z) = (14 e~*)~! represents the sigmoid function. Although we assume it as an
integrate-and-fire operation, there is a difference, i.e., even if the pores do not open, the
sweat secretion will still be carried out by the diffusion process via duct wall with
relatively slower. Here, the nonlinear function 74(z1(t)) represents the the fraction of
sweat secreted via diffusion for a given duct pressure represented by z1(t). Similarly,
Np(x1(t)) represents the change in the fraction of sweat secreted via pore opening for a
given duct pressure represented by x(t). We assume thatthe amount of absorbed sweat
in the stratum corneum and epidermis that contribute to the SC level due to diffusion
process is denoted by x3(¢).The sweat content in the ducts and electrically conducted to
the surface due to the pore opening is denoted by x2(t) contribute to the SC level.
Therefore, the observation equation denoting resultant SC is as follows,

y(t) = wa(t) + x3(t) + (1)

where y(t) and v(t) represent overall SC measurement and the noise signal, respectively.
Equivalent to previous approaches, the phasic and the tonic components can be written
as follows,

yp(t) = z2(t)
and yr(t) = 23(t)

where yp(t) and yr(t) represents the phasic and the tonic components, respectively.
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Apparently, the proposed model is highly nonlinear and it is very difficult to derive a
practical deconvolution approach that runs in edge devices with this model. For the
simplification, we assume that the fraction of sweat secretion that happens via pore
opening is always constant. Therefore, the simplified linear version of the model is
obtained by the assumption that n, and nq is constant w.r.t z1(t) (o = 0) s.t.

Nng = 1 —np =n. Here, 1 is a constant and it represents the fraction of sweat that is
secreted by diffusion process, i.e., n € [0, 1]. This simplification makes the model linear
and more suitable for scalable edge computation. Now, the simplified model can be
thought of as a three compartment pharmacokinetic model as shown in Fig[1|C. To

represent it in vector matrix form we define x(t) = [ #1(t) x2(t) a3(t) | ,

—% 0 0 1
A, = +%} _% 0 |,B.=]0]|,Cc=[0 1 1]. Therefore, the
Tr Td

continuous state-space model in matrix form is as follows:

&(t) = Acx(t) + Bou(t),
y(t) = Cex(t) + v(t).

Discretization

Let yx be the observed SC at time instance kT,. We can write,
Yk = Ccy(kTs) + vk (4)

where v Vk represent the noise and are modelled as independent and identically
distributed (i.i.d) zero mean Gaussian random variable, i.e., v, ~ N(0,02). We derive
the discrete equivalent of the system, assuming that the input and the states are
constant over T,. The discrete version of the neural stimuli can be written as a vector
w=/[u; uy --- wug]' that represents the entire neural stimuli over the duration of
SC data. Let A = eA<Ts B = fOTs eAc(T:=P) B dp, and C = C to write the discrete
state-space form as:

Ty = Azp1 + Bug, yr = Cxy + vy (5)

where z;, € R?, 3, € R, uy, 14, denote the state vector, the observation, ANS activation,
and the measurement error in discrete domain. The corresponding discretized phasic
and tonic components can be written as follows,

ypr = Cpxy,
and yr = Crxy

where C), = [ 01 0 ] and Cr = [ 0 0 1 ] Here, yp and yr j represents the
discretized version of the phasic and the tonic components, respectively.

Physiological Priors and Constraints

The proposed model has many unknown parameters, and the number of measurements
is relatively small. Therefore, the problem has many degrees of freedom. It is customary
to enforce appropriate physiologically motivated priors on the model parameters.
Otherwise, in the worst cases scenarios, the solution may not stay within the
physiological boundaries and may lead to over-fitting [39]. Therefore, we incorporated
physiologically motivated priors on the system model similar to [24,/40]. We assume that
the individual model parameters are Gaussian distributed with some mean and variance
similar to [24]. We use this information as a prior in the estimation step.
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Further, we also consider equality and inequality constraints on the system

parameters. First of all, we constraint all the physiological parameters are non-negative.

We select a lower bound for 7, of 0.2 seconds based on the result distribution obtained
in our previous study [24]. Furthermore, we set 7, > 17 and 74 > 27, similar to our
previous work [23}24,28]. However, the values of 5, and (2 are unknown for the
proposed model. Therefore, we select the values of 8; and (2 by manually by
investigating the results by trials and errors such that the multiple correlation
coefficients for all participants are R? > 0.98. First, we try to run the algorithm
(described in the next section) without any constraint on 7., 7,, 74 and 7. However,
most of the case algorithm converges in a solution where the model fit is very poor and
has a very small multiple correlation coefficient. And in most cases,  was convergent to
0 or 1. This is an indication of having a model with a very high degree of freedom.
Therefore, we first decided to fix n = 0.5 assuming that 50% contributions of each type
of secretion (i.e., via pore opening and via diffusion) reduce the complexity. Second, we
decide to set as 7, > 27, as this constraint can be inferred from the previous
distribution of the rise time and the decay time of the phasic component [24].The
reader should note that the estimated phasic decay time is at least 3 to 4 times the
estimated rise time in [24]. Therefore, 8; = 2 should be a fairly conservative choice.
Finally, we decide to find the constraint for 74. As among all the time constants, 74 is
the slowest one, we consider the constraint with 74 > 27, for different 3> > 1 and run
the algorithm and try to see which value provide better goodness of fit for all 26
participants in terms of R%. We start with 3, = 1 and increment it by 1. We stop once
all the participants (except Male Participant 12 as there is no fluctuation) show above
0.98 of R2. One should note that other configurations might also work. For example, if
someone decides to start with a value of n other than 0.5, they might have to follow a
similar procedure to find the new constraints. This suggests that there is a scope of
further future investigation of the current method.

Estimation

We wish to estimate the parameter vector

0=[6, 02 03 0, 05)"=[7 7 7a M na]' and unknown ANS activation
ug, given the SC measurement yy, Vk € {0,1, -+ , K — 1}. One straighforward way is to

solve the following optimization problem,

K—1 K—1 9
. r — Cxy,
min Al — Az o[+ S0 1 Gl
xk, Yk, 0,5 P P 202

(6)

where (z;, — Axg_1) = Bug. If we consider the first term in Eq@ i.e., the [;-norm of
(xr, — Axp_1) as the negative log-likelihood, taking the exponential of the negative of
the gives us the Laplace distribution of Buy, = (xy — Axp_1) with parameter A\I. The
second term in Eq [6] represents the least squares error between the observation y; and
the prediction Cxy, with a Gaussian observation error assumption. The final term
represents the negative loglikelihood of the Gaussian priors on the system parameters
with p;, G_j, and oy, represents the regularization parameters, the mean, and variance
for the Gaussian priors, respectively Vj € {0,1,2,---,J — 1}. In this case, J = 3.
Therefore, Eq |§| can be considered as the maximum a posterior (MAP) estimator as
pointed out in [30]. In general, the problem formulation in Eq@ is solved for uy by
taking the derivative of Eq [6] with respect u, and setting it zero. This is particularly
done using iteratively re-weighted least square (IRLS) approach. The sparse recovery
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with the direct analytical solution of the state-space model requires a matrix inversion
of a K x K matrix as shown in our previous works [23}24,|27]. This step works as the
bottle neck of the approach. In this study, we solve the very same problem with
iterative re-weighted lease squares approach implemented using FIS. The states xj, the
ANS activation uj and the matrices describing system dynamics A and B can be
estimated in an expectation-maximization (EM) approach.

Given the probabilistic model that generates a set of observed data
Y ={yx}Vk €0,1,--- ,K — 1 and a vector of unknown parameters 6, we can write,
p(Y,0) = p(Y|0)p(0). The following maximum log-likelihood estimation problem can be
solved in order to estimate the 6:

max logp(Y; 6)
Now lets introduce a set of hidden unknown states X = {x, u} Vk having a joint

probability distribution p(Y, X;0). We can re-write the maximum likelihood estimation
as the following marginal likelihood function of p(Y, X;6):

max logp(Y;0) = max log/ p(Y, X;6)dX. (7)
b's

We defined the joint log-likelihood function for Y, X, and @ as follows:

log p(Y, X;0) = log (p(Y| X, 0)p(X|0)p(8))
=logp(Y'|X, 8) +log p(X|0) + log(8)

K-1 K-1
= > 1og(pu, (yr — Cx) + Y log(ppu, (2x — Azy—1))
k=0 k=0

+ log(p(6))- (8)

where the p,, and pg,, denotes the probability density functions corresponding to
v = yr — Cxy, and Buy = ¢y, — Axp_1, respectively. Here, only the term
PBu,, (T, — Axp_1) depends on 6.
The original problem can be defined as the following expectation maximization (EM)
approach,

max logp(Y;6) = max Ex.q(x){logp(Y, X;0)}. 9)

As it is expressed in Eq[J] the unknowns can be estimated by iteratively maximizing the
expectation of the joint log-likelihood in Eq[8|as shown in S1 Appendix.

E-step (Sparse Recovery)

Let’s assume that we know the current estimate of model parameters 6"~V from the
(i — 1)*™® iteration of EM. We calculate the corresponding state matrices A=Y and
B~ At 0 jteration of EM, given the sequence of observations y; € Y and given
probability distribution ¢(X) = p(X|Y, H(ifl)), we wish to estimate the expectation of
sc,(;) and u,(;). We choose the probability distribution for wu; such that it enforces
sparsity. Kazemipour et al. [30] proposed to use Laplace distributed with parameter for
sparsity of the innovation terms in the state transition equations. In this study, we
consider a broader family of distributions, namely, generalized Gaussian distribution for
ug so that distribution parameters can be selected to obtain a range of distributions
such as Gaussian and Laplace distribution. In contrast to [30] where the input matrix is

considered as an identity one, we assume that ug) denote the scalar (or column vector)
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ANS activation and BY~Y works as a direction vector (or matrix) of innovation in the

state transition equation. We consider u,(f) is generalized Gaussian distributed, i.e.,

) (@) @@ .

@6 = PV~ @
where 4 and p defines the shape of the generalized Gaussian distribution. p(ugly®, p)
can also be written in terms of xj with multi-variate generalized Gaussian distribution
as follows.

OING OING AD iy
p(u” P, p) = p(Bu’|IND, p) = exp(= || BU D ||7)

AD i—1), (i
= oxp(= [l = AC VD |17),

where A(®) represents the new parameter related to the new random variable to obtain
the equivalent pdf ()\(i)HB(i_l)Hg = 7). The sparsity constraint is imposed on u,(f) for
0 < p < 2. However, the closed form equations for FIS do not exist for generalized
Gaussian distribution where p # 2, although they are the prerequisite for scalable edge
computation of the sparse recovery. Therefore, we approximate the generalized
Gaussian distribution with iterative re-weighted Gaussian distributions for the closed
form derivation of the forward filter and backward smoother equations. For example, if
p =1, the generalized Gaussian distribution becomes Laplace distribution as shown

in [30]. Therefore, we approximate the Laplace distribution of u,(;) with iterative
re-weighted Gaussian distributions, i.e., if at " re-weighting step the state estimation

is :c,(:’r), the Laplace pdf can be approximated with Gaussian pdf as follows:

A7) A7)
Pz, = 9 €xXp <7 2

)\(iﬂ‘) 1 i,7r i— i,r i,r— -1 i,r i— 7,7
o 2 exp (J@c,i”fA“ Ve (QEY) (@ — ac ”mi;f)),

Hng,r) _ A(iﬂ)wl(;,_rl)ul)

2 2
where A(»") is the regularization at r* re-weighting step. Q,(f’r) is the co-variance
matrix at r*" re-weighting step at k" time point and we define it defined as follows:

QU = M) M E{ (a7 - AT D) (a7 — AUV )Ty 4 1)
_ ()\(i,r))fl((B(ifl) (ugjﬂ“))QB(ifl)T) + 6211)%.

Here, € is a value close to zero for the matrix perturbation to achieve numerical
stability. We select € = 1075 for the numerical stability. Unlike the conventional IRLS
approach where the covariance of the Gaussian approximation is taken to be diagonal,
here the current definition takes the square root of the entire matrix. The perturbations
enable us to obtain feasible inverse during FIS prediction and update equations as

_ . CNT
B(Zfl)(u,(j’r))2 (B (171)) is always singular. The generalized approximation is

performed by implementing ¢,-norm with Gaussian distribution approximation of
generalized Gaussian family as follows where 0 < p < 2,

i ; i— i,r i\ 2-p
Qgﬂ) _ ()\(z,r))fl((B(z 1)(ul(€7 ))2 (B( 1)) )+62H) = (10)

Similar to the previous case with square root, here the power 2;—” has been taken on the

whole matrix. With this approximation, we perform Kalman filtering and backward

smoothing to obtain the expectation of the state variables E{m,(j’r)}’s and corresponding
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covariance matrices. Constraining the corresponding innovation in the state equation to
be along the direction of the vector B, the expected uy, is given as follows at rth
re-weighting step:

T,7 . 1 T,7 i — 7,T ] —
ué ) = arg min §||E{w,g+1)} — AU 1)E{m,(€" )} - Bt 1)u||§, (11)

UZ>Uth
where wugy, is the selected minimum amplitude for ANS activation. Here, we select

ugn = 0.03 S/ s for the initialization step and wy, = 0.25 pS/s during the main step.
Here, a relatively conservative value of us, has been selected in the initialization step to
avoid excessive pruning before having good initialization of a other parameters.. The
selection has been done manually by trial and error such that the results for all
participants that reduces the number of detected spikes while keeping the multiple
correlation coefficient R? > 0.95. During this process, the number of detected detected
spikes that visually does not correspond to any SCR, is minimized. The evaluation of
the obtained spikes has been evaluated by visual inspection (verified by two different
viewers) similar to apporach in [6]. The criteria of selecting wuy is chosen to obtain a
reasonable goodness-of-fit define by R? while avoiding any over-fitting. The use of
threshold wy,, enables us to obtain a constrained solution of uj without implementing
actual constrained Kalman filtering and backward smoothing. As u,(;’r) is scalar in the
above optimization formulation, the solution can be written directly as follows:

uf") = max(ua, (B0 BOD) 7B (@) - ATV, (12)

This allows us to project the error vector along the direction of B (=1 vector based
on least square error with a minimum threshold. This is an approximation to make sure
that the solution is consistent with the assumptions of the state-space model. In this
study, we select p = 0.5 for [,-norm similar to our previous studies in [23}/24}[2729].

Adjust Sparsity Level by Choosing ~. In the initialization phase, we choose a
scheme for selecting A similar to IRLS algorithm FOCUSS+ algorithm in [41]. At r*™®
re-weighting iteration of E-step, the heuristic estimation of A works as follows:

K—-1 K-1
7,7 i,r—1 max
v = ( > Iy — Cx}; )Ilg/ZkaH%)"y , 7>0 (13)
k=0

k=0

Then, we set AS") = fy?(f’r)/||B("*1)||g. Similarly, in the main EM phase, we use
generalized-cross-validation (GCV) technique similar to the GCV-FOCUSS+
technique [42]. We modified the GCV technique to obtain scalability. To achieve this,
we segment our observations with a window size of M., samples and apply GCV to
obtain a X for each window. For n'* segment, the discretized vector form solution can
be provided as, y,, = F,Zy,0 + D,u,, where y,,, €41, U, represents the observation
vector, the first state and the ANS activation in the n*® segment, respectively. F,, and
D, are the matrices for the complete discretized vector solution for n*" block and can
be defined as, F'y, = [ Fuo Fui - Foogon |y, ., and
Dg=| D,y Dy, D, (m,.,-1) ]ngngcu’
A'B A* 2B ... B 0 - 0

D,,=C ——|. Mgycy = 100 worked well for
Myey—k

where F, ) = C A" and

our study.
For n'" segment, we obtain \,, using the following optimization formulation based on
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singular value decomposition (SVD) for GCV proposed in [42]:

2
gcv A2 In
gcv Z <Ni,n/+7n>

min G (7n) = > (14)
n Moo "
[Zn'il (I{iy;y/“r’)/n) ]
s.t. 0<y,<1x 1074
~ ~ ~ ~ ~ T . ~ ~ ~
where § = UTyn!T = [ Un1l Un2 " Un,Mye, ] with Ynr =Yn — F,x,, and

DnPﬁ% =UXV ' with Py = diag(|tn, v [>7P) and T = diag{x,}; U and V are
1
unitary matrices and x;’s are the singular values of D, P2. We estimate v, Vn and
take the median. Finally, we set A4 = fy,(f’r)/HB(i*l)Hg.
Usually, the re-weighting in E-step converges within a very small number of

iterations. We perform the re-weighting in E-step for r = 0,1,2,--- ,5. After finishing
all the re-weighting iterations in the E-step, we obtain the following estimations:

mlg), (0 Pgl)k’ and P,(d)k 1Vk‘ Here, Pg‘)k and Pél)k , represents the estimates of
T
E{x, () g } and E{wk :ck 1 I respectively. Here, we drop 7 to represent the final

E- Step estlmatlons

M-step (Physiological Parameter Estimation)

The M-step at i'" iteration can be defined as the following simplified constrained
optimization problem utilizing Eq [6] and EM derivation,

i C$(7)
mm E{)\()ZHw Amf{ P+ ZM

k=0
j:J o \2
(6, - )
+ijj2072J}7 (15)
=0 05
st. RO<s, R.O=s,,
-1 0 0 0 O $1
0 -1 0 0 0 S
where R = 0 0 -1 0 0 |,s=/| s3 ,Re[g 8 8 é (1) , and
i1 -1 0 0 O 0
0 B -1 0 O 0

1- . . . .
Se = { . " ] determines the constraints on 6. The equality constraints ensures the

sum of 1, and 7y are equal to 1. To incorporate estimated u,(f) from the E-step, we
re-write the Eq[I5] The modified optimization formulation is as follows,

C(Axy) | + Buy)|3

K—1 _
mln E{ Z| )|p Z e 2;2

st. RO<s, R.0=s,
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After some algebraic manipulation and assumption that J:,(Ql and ug) are statistically
independent Vk, we obtain the following optimization formulation by removing the

constant terms with respect to 6.

K—1
. 2 (4) (1) (1) T
min — + Tr x +P A
min 5yl (3 (@l )AT)
K—1 _ K—1 '
—Tr(ACY” ylCz) - Tr(B(Y_ yl Cu?))
k=0 k=0
K—1

+Tr(B Y (W)*)BT) + Tr(Az))  (u{”)TBT))
k=

/—\O

0. — 2
+ngpg . 202 (17)

.J

s.t. RO S S, Rea = Se¢

The overall approach can be divided into two phases. In the first phase, we perform
initialization with a fixed u,(:’o) = uq Vk at each iteration and with heuristic refinement
of A7) A detailed description of heuristic refinement is provided in S2 Appendix.
uq = 1 worked well for our study. In the main EM-phase, we update u(z 0 — g*l’s),
i.e. with the values obtained in the previous re-weighting iteration. In E steps of both
phases, we perform a heuristic refinement of uy. After finishing( 2)111 1Ee) weighting

1

iterations in the E-step, we obtain the following estimations: x;’,u; ~, P§c|)k7 and

P;CZI)kfle:. The expected values are plugged into the M-step optimization formulation in
The constrained optimization problem in [17|is solved using the interior-point
method. The overall algorithm for the initialization and the main EM-phase is provided
in Algorithm

Selection of Noise Variance o, and It’s Relation with A

The presence of noise may lead to inaccurate estimates of ANS activations. The
regularization parameter \ related to sparsity dictates the level sparsity of wuy, choice of
higher value of A leads to more sparse solution and vice versa. On the other hand, if the
of guess of the observation noise variance is higher, the estimation deconvolution tend to
fit more to the state equation itself without having much innovation term (i.e. smaller
Buy,) than the current observation. For regular FIS, there is a always a trade-off
between process noise and the observation noise. If the observation noise is high then
the process noise usually tend be very low during the estimation. In case of IRLS-based
FIS for sparse recovery, the process noise is represented with the innovation term, i.e.
the ANS activation wuj. Therefore, if the observation noise variance o2 is selected to be
smaller, the innovation uy will have more zeros Vk. In other words, higher value of
observation noise variance o2 leads to a more sparse estimation of u;. Therefore,
although we have incorporated a GCV based approach for selecting A\ that tunes the
sparsity level of uy, the noise filtration also depends on the selected observation noise
variance, 2. For the experimental study, we have selected 02 = 1 x 1078, This value is
working Well along with the GCV for balancing between dlscardmg the noise and
capturing the process. We have kept the value of o2 same for the simulated study. Our

results show that it is capturing more spikes than the ground truth for heavy noise level.

As pointed out in [30], increasing the noise variance o2 will lead to a much smoother
estimate with a lower number of spikes. For most of the cases, GCV could discard most
of the spikes related to noise. Because, the corresponding selected o2 are within the
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reasonable range for GCV to obtain a balance. Therefore, for GCV to balance the noise
spike, a reasonable choice of o2 is required. However, for some cases it is challenging to
find such a reasonable value for GCV. Higher values of 02 may result in some of the
SCRs undetected. Therefore, we select a relatively small value of o2 such that none of
the SCRs remain undetected. As most of the detected noise spikes are relatively smaller
than the spikes related to the SCRs, application tailored post-processing (e.g. hard/soft
thresholding) can remove most of the noise spikes.

Input :y; VEk
Output: uy Vk and 6

Initialization Phase: Initialize 8 ~ U(by,by,).

1
2 fori=1,2,3,---,30 do
3 Set u,(;’o) = uq Vk
4 E-Step:
5 With 6 = é(lil), calculate A®~Y and BO~Y
6 Iterative re-weighting:
7 forr=1,2,3,---,10 do
8 Estimate A\(*") using
9 Perform heuristic refinement of u,(ci’r_l).
v ) . NT sy
10 Set QY = (AE) LBV (V) (BUTY) )+ )
11 Estimate a:,(:’r), Pg";) and P,(j"kr)_l using FIS.
12 Set uf” = max(ug,, (B(i_l)TB(i_l))713(7.’_1“(93;;’7) — Az{"))).
13 end
14 M-Step: Set wg) = ac,(;’r), u,(;) = uff’r), P](;‘)k = Pg",:) and
Pl(cll)kfl = Pk|k_1(i’7') and solve the optimization problem in Eq. to
obtain 8.
15 end

16 Main EM Phase: while until convergence do

17 Seti=1i4+1
18 Set uy, = ug_l’r) Yk
19 E-Step:
20 With 6 = 9(171)7 calculate A®~Y and BO—D,
21 Iterative re-weighting:
22 forr=1,2,3,--- ,10 do
23 Estimate A(*") using the modified GCV technique.
24 Perform heuristic refinement of uff’ril).

; . i ; T 2—p
25 Set QLY = (AET) =1 (BU (w2 <B(’_1)> ) + €)%
26 Estimate ac,(;’r), P,(Ci"}:) and P,(cl‘;d)il using FIS.
27 Set u,(f’T) = max(Ush, (B(FUTB(FI))’1B(i71)T(m§:’T) — A:Itgj’fl))).
28 end

. @ _ Gr) @) _ () pl) _ plr) @ _ plr)
29 M-Step: Set ;" =x,"’, u;’ =u, ', Pk‘k = Pk“C and Pk\k—l = PWC_1
and solve the optimization problem in Eq. to obtain obtain é(l).

30 end

Algorithm 1: bayesianEDA
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Consideration of Non-convexity

The complete data log-likelihood that is optimized by the EM approach might suffer
from non-convexity and there is a potential risk that the solution may end up in
different locations for different initial values. To test that, we run our EM approach for
multiple random initializations of the physiological system parameters. Based on the
simulated and the experimental datasets we have analyzed, we have observed that the
solution for a given SC signal always converge to one location no matter what initial
value has been selected. Therefore, we decided to only run our approach for one random
initialization of the physiological system parameters in this study, unlike our previous
approaches where we have used multiple random initializations and selected the solution
that satisfies the selection criteria [23}[24}[28].

Results

We use the proposed approach to deconvolve the SC measurements from 26 participants.

The deconvolution approach provides the estimates of the underlying ANS activation
u(t), rise time (7,.), faster decay time (7,), and slow decay time (74). We have
considered the signal segment from 150 to 350 seconds for the analysis on the
experimental data. Figures from the deconvolution results for one female and one male
participant are provided in Fig[2] The figures from the deconvolution results for all 13
female and 13 male participants are provided in S1-S4 Figs. These figures depict the
successful estimation of the sparse ANS activation due to auditory stimulation.

I'cmalc Participant 1 Male Participant 1

Samin R S o e

MMLMMM@Z*‘* NUNUNNE

T\l( !y <L\>(!V

SC (,m‘)

SC (uS)

Activation
(1:575)

Phasic SC (u5)

X
o
]
E

Top Sub-Panel Bottom Sub-Panel
sxksksoksonkaksokink SC Measurements | = Phasic SC
Reconstructed SC | s AN Activation
Tonic SC 3 Auditory Stimulation
H Timing

Fig 2. Estimated Decomposition of the Experimental SC Signals for Female
Participant 1 and Male Participant 1: In each of the panels, i) the top sub-panel

shows the experimental SC signal (red stars), the reconstructed SC signal (black curve),

the estimated tonic component (green curve), and the timings of the auditory
stimulations (gray vertical lines); ii) the bottom sub-panel shows the estimated phasic
component (blue curve), estimated ANS activation timings and amplitudes (black
vertical lines) and the timings of the auditory stimuli (gray vertical lines).

The estimated rise time (7,.), fast decay time 7, slow decay time 74, number of
pulses (||ul|o), and multiple correlation coefficient (R?) are provided in Table [1] l Fig
shows the histogram of the estimated state-space model parameters from all 26
participants. The estimated means of the parameters among the 26 participants are
tr = 2.0040, pp, = 5.4545, and p1g = 81.8175 seconds for rise times, fast decay time, and
slow decay times, respectively. Corresponding standard deviations are o, = 0.8675,
op = 1.9258, and 04 = 28.8874 seconds, respectively. The calculated multiple correlation
coefficients (R?) are greater than 0.98 for all participants except for Male Participant 12
(R? for Male Participant 12 is 0.8352). This suggests that the proposed model can
successfully explain the variations in SC recording.
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Fig 3. Histograms of Estimated SCR Shape Parameters using Our
Approach: In top sub-panel in the red and green bar plots correspond to the
histogram plots of the estimated rise time 7,. and decay time 74, respectively. Red,
green and blue vertical lines correspond to the locations of the means p,, p, and pq of
the corresponding histograms, respectively.

For further evaluating the performance of the proposed algorithm on experimental
data, we utilize it’s ability of separating a high-arousal condition (with larger ANS
activation amplitudes) from a low-arousal condition (with smaller ANS activation
amplitudes), inspired by the work commonly done in the PsPM framework [43]. We
utilize the estimated ANS activation u(¢) in distinguishing between SCRs that are
related to and not related to loud sound events. We label all the impulses in estimated
u that have been detected within 5 seconds after a loud sound event as the positive
class and other impulses as the negative class. We consider the amplitudes of the
impulses as the classification scores within the subjects for obtaining the receiver
operating characteristic (ROC) curves |441[45]. The estimated area under the ROC
curves (AUCQ) for all participants ranges from 0.6600 to 1 with a median of 0.9380 and a
mean of 0.8960. We individually normalized the estimated w for all participant and
combined all u in one vector to obtain an overall ROC. The estimated overall AUC is
0.8196. We compare our proposed bayesianEDA approach with LedaLab-CDA [19)],
LedaLab-DDA [26], cvxEDA [21], sparsEDA [34], PsPM-MP [46], PsPM-DCM [20], and
our spline based approach [24]. The ROC curves are for each of the approaches shown
in Fig[A. The corresponding overall AUC’s are shown in Fig[4B. We further count the
number of auditory stimulations for which no SCRs were detected, we name them as
number of undetected auditory stimulation. The number of undetected auditory
stimulation for each approaches is shown in Fig [4C.

To further, investigate the efficacy of our approach, we use the reconstructed signal
from our experimental study and add Gaussian noise to simulate data for all 26
participants similar to the previous works in [23}|241|28)/47,48|. We consider the results
from the experimental study as the ground truths to compare with the estimation from
the simulated study. The proposed approach successfully estimates the ANS activation
along with the physiological model parameters. All the multiple correlation coefficients
(R?) are greater than 0.98 for simulated data with 25 dB noise level is 0.9872.
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Fig 4. Event Related SCR Detection Performance Comparison (A) The overall
ROC curve related to the discrimination power between event-related vs
non-event-related SCRs combining all the normalized u from each of the individual
participants. (B) Corresponding AUC of the ROC curves. (C) Total number of the
undetected auditory stimulation impulses within 26 participants.
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Table 1. The Estimated Model Parameters and the Squares of the Multiple
Correlation Coefficients (R? ) for the Fits of the Experimental SC Data

Partiepent | 0 |7 | | o | &

1 12 | 2.4575 | 6.4373 96.5591 25 0.9980
2 15 | 2.6889 | 6.9542 104.3135 | 24 0.9936
3 7 1.9565 | 5.3131 79.6968 28 0.9961
4 18 | 2.2324 | 5.9467 89.2004 25 0.9944
5 21 | 2.2948 | 6.0929 91.394 24 0.9893
6 25 | 2.3572 | 6.2167 93.2508 39 0.9990
7 1 1.3424 | 3.9588 59.3823 6 0.9986
8 2 0.7779 | 2.9288 43.9323 1 0.9883
9 ) 1.2355 | 3.7123 55.6841 16 1

10 6 1.3411 | 3.9759 59.6391 11 0.9997
11 14 | 1.2101 | 3.6983 55.4741 9 0.9991
12 16 | 3.4221 | 8.6496 129.7442 | 41 0.9871
13 19 | 1.5775 | 4.4758 67.1366 25 0.9928
Parlz/il(zlsant D7 p Td lullo | 22

1 11 | 1.7215 | 4.7976 71.9641 8 0.9991
2 26 | 1.6574 | 4.6498 69.7463 13 0.9991
3 8 2.0524 | 5.5199 82.7989 24 0.9987
4 10 | 1.9070 | 5.2164 78.2453 40 0.9836
5 20 | 4.5170 | 11.0786 | 166.1788 | 59 0.9909
6 23 | 1.5451 | 4.4054 66.0803 27 0.9998
7 3 3.4100 | 8.6018 129.0276 | 58 0.9986
8 4 0.8936 | 3.1084 46.6253 8 0.9993
9 9 1.3561 | 4.0062 60.0935 20 0.9963
10 13 | 3.1618 | 8.066 120.9899 | 75 0.9954
11 17 | 1.6731 | 4.6962 70.4425 30 0.9976
12 22 | 1.7625 | 4.8939 73.4078 16 0.8352
13 24 | 1.5518 | 4.4164 66.2467 29 0.9992

Here 7., 7, and 74, ||ul|o, and R? denote the rise time, fast decay time, slow decay time,
ANS activation, and multiple correlation coefficients, respectively.

Estimated system parameters (7, 7, and 74), estimation errors, and the multiple
correlation coefficients (R?) for the results for all the simulated data with 25 dB SNR
are provided in Table |2} Further, we also perform the same analysis for 35 dB SNR
noise level. The deconvolution result figures related to both 25 dB and 35 dB SNR noise
level are also provided in Figs [5] and [6] for two participants for each case. All the other
simulation results with Gaussian noise are provided in S5-S12 Figs. Furthermore, we
performed similar deconvolution study with pink noise with 25 dB SNR for the signal
which show similar results as for the case of Gaussian noise showing the robustness to
the model mismatch. The corresponding figures are provided in S13-S16 Figs.

We add noise with different noise power to investigate how the proposed approach
performs in terms of estimating the unknowns and the reconstructed signal. We add
Gaussian noise with different energy levels to the reconstructed SC signals from the
experimental study for the 26 participants and perform deconvolution to estimate
unknowns with the proposed approach. We calculate the average estimation errors of
the unknowns for all participants at different noise levels. Figs [7] and [§] show how the
average estimation error changes as the noise level increases. Similarly, Fig [0] shows how
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Table 2. The Estimated Model Parameters, Estimation Errors, and the Squares of the
Multiple Correlation Coefficients (R? ) for the Fits of the Simulated SC Data

‘ chalo D | 7 4 ‘ o Y 100% ‘ =7l o 100% lra—tal o 100% | R? run time

Participant Tr Tp Ta
1 12 | 2.4604 | 6.4389 96.5830 0.1210 0.0247 0.0247 0.99794 | 31.6575
2 15 | 2.6990 | 6.9523 104.2847 | 0.3778 0.0276 0.0276 0.99755 | 317
3 7 1.9586 | 5.3138 79.7069 0.1071 0.0126 0.0126 0.99755 | 29.5756
4 18 | 2.2347 | 5.9467 | 89.2011 0.1044 0.0008 0.0008 0.99688 | 30.5766
5 21 | 2.3006 | 6.0931 91.3963 0.2512 0.0025 0.0025 0.99363 | 28.2613
6 25 | 2.3588 | 6.2170 93.2545 | 0.0693 0.0040 0.0040 0.99789 | 30.4497
7 1 1.3436 | 3.9595 59.3931 0.0900 0.0182 0.0182 0.99970 | 26.1312
8 2 0.7779 | 2.9288 | 43.9316 | 0.0018 0.0016 0.0016 0.99830 | 21.3974
9 5 1.2366 | 3.7137 | 55.7056 | 0.0907 0.0388 0.0388 0.99888 | 21.5944
10 6 1.3411 | 3.9762 59.6431 0.0036 0.0067 0.0067 0.99985 | 24.9445
11 14 | 1.2102 | 3.6981 55.4716 | 0.0079 0.0045 0.0044 0.99976 | 28.5442
12 16 | 3.4366 | 8.6424 129.6358 | 0.4253 0.0836 0.0836 0.98704 | 34.1906
13 19 | 1.5792 | 4.4764 | 67.1456 | 0.1075 0.0133 0.0133 0.99814 | 26.3280

‘ ghﬂe.’ 4 ‘ D ‘ 7 ‘ ™ ‘ Ta ‘ Imetel 5 100% | le=Tel x 100% | 2=l « 100% ‘ R? ‘ run time ‘
articipant Tr TP Td
1 11 | 1.7232 | 4.7982 71.9732 | 0.0995 0.0126 0.0126 0.99906 | 25.9000
2 26 | 1.6579 | 4.6494 | 69.7406 | 0.0312 0.0082 0.0082 0.99911 | 29.7408
3 8 2.0574 | 5.5219 82.8286 | 0.2476 0.0358 0.0358 0.99864 | 30.1971
4 10 | 1.9103 | 5.2170 78.2550 0.1727 0.0125 0.0125 0.98358 | 28.9428
5 20 | 4.5459 | 11.0648 | 165.9723 | 0.6384 0.1242 0.1242 0.99098 | 32.0364
6 23 | 1.5452 | 4.4053 66.0799 0.0042 0.0006 0.0006 0.99983 | 29.6168
7 3 3.4207 | 8.5952 128.9286 | 0.3125 0.0767 0.0767 0.99864 | 32.2376
8 4 0.8937 | 3.1084 46.6255 0.0026 0.0004 0.0004 0.99938 | 23.1102
9 9 1.3568 | 4.0064 60.0960 | 0.0571 0.0042 0.0042 0.99632 | 26.4126
10 13 | 3.1736 | 8.0676 121.0135 | 0.3727 0.0195 0.0195 0.99549 | 31.7452
11 17 | 1.6754 | 4.6976 70.4639 | 0.1386 0.0304 0.0304 0.99762 | 26.2041
12 22 | 1.7660 | 4.8959 73.4382 0.1990 0.0414 0.0414 0.83526 | 24.6898
13 24 | 1.5524 | 4.4157 66.2352 0.0409 0.0174 0.0174 0.99922 | 28.8487

Here 7,, 7, and 74 denote the estimated rise time, fast decay time, and slow decay time
for the simulated SC data. The SC signal is simulated with 25 dB Gaussian noise.

the reconstruction errors change at different noise levels.

To empirically investigate the time complexity of the approach, we utilize the
experimental data with different durations and perform deconvolution using our
approach. We measure the run-time for each of the deconvolution. Fig|L0|shows the
distributions of the run-times in different signal lengths. According to the Fig[10} the
medians of the run-times increase linearly with the increase in the signal length showing
the scalability of the approach. For the signal with 200 second length, the mean
run-time for M-step (parameter estimation step) is 0.38 seconds with a standard
deviation of 0.15 seconds.

Discussion

Inference of ANS activation from SC recordings is challenging given that the parameters
of the underlying physiological system are unknown. The derived EM approach
maximizes the complete data log-likelihood. The complete data log-likelihood has many
degrees of freedom, i.e., the constraints on variables to be optimized are lower than the
number of variables. In other words, there exist many solutions for the unknowns that
can closely approximate the sampled signal. The use of a comprehensive state-space
model and the elimination of cubic spline functions-based model reduces the number of
unknown variables in optimization. For example, the number of cubic spline functions
needed to model the slow varying component of 200 seconds is 39, as pointed out in our
previous work [24]. On the other hand, the proposed comprehensive model requires only
one parameter instead of multiple cubic spline function parameters to model the
slow-varying component. Furthermore, we consider probabilistic sparsity priors
motivated by physiology on ANS activation along with Gaussian priors on the
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Fig 5. Deconvolution Results From the Simulated SC Signals with 25 dB
SNR for One Female Participant and One Male Participant: In each of the
panels, i) the top sub-panel shows the ground truth for SC signal (red stars), the
reconstructed SC signal (black solid curve), the estimated tonic component (green solid
curve), and ground truth for the ANS activation (gray vertical lines); ii) the bottom
sub-panel shows the estimated phasic component (blue solid curve), estimated ANS
activation timings and amplitudes (black vertical lines) and the ground truth ANS
activation (gray vertical lines).
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Fig 6. Deconvolution Results From the Simulated SC Signals with 35 dB
SNR for One Female Participant and One Male Participant: In each of the
panels, i) the top sub-panel shows the ground truth for SC signal (red stars), the
reconstructed SC signal (black solid curve), the estimated tonic component (green solid
curve), and ground truth for the ANS activation (gray vertical lines); ii) the bottom
sub-panel shows the estimated phasic component (blue solid curve), estimated ANS
activation timings and amplitudes (black vertical lines) and the ground truth ANS
activation (gray vertical lines).
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Fig 7. Noise Levels vs. Estimation Accuracy of The Model Parameters: Red
squares, green pentagram, and blue triangles connected with solid lines denote the
average percentage errors for the estimated rise times, fast decay times, and slow decay
time from simulated data with SNR levels. The SNR is provided with respect to the
phasic component.
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error of the neural stimuli from estimated data with different noise levels. We have
defined the average amplitude error as |||@||; — ||w||1]/]|w||o, where @ and w represent
the estimated and the ground truth neural stimuli, respectively. The data is simulated
using the obtained results from the all experimental data in |31].The SNR is given with
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Fig 9. Root Mean Square Error (RMSE) of the Reconstruction for SC
signal and Corresponding Components with Respect to the Ground Truth:

Green, blue and red dashed lines denote the RMSE for the reconstructed tonic

component, phasic component and overall SC data in different noise levels. The data is
simulated using the obtained results from the all experimental data in [31]. As noise is

added to the phasic component prior to addition of tonic component, the SNR is
with respect to the phasic component.

given

physiological system parameters. Last but not least, we also enforce inequality and

equality constraints on the state-space model parameters by trial and error. The

constraints 7, > 27,, 74 > 157, and n = 0.5 worked best for us for the dataset we have

analyzed. [24]. [24].

Fig |2[ shows that the estimations of the initial states as well as the states for about
20-30 seconds can be erroneous. After 20-30 seconds, the state estimate visually seems
reasonable. This erroneous estimation occurs because the Kalman filter in the FIS
needs a few samples to begin to follow the signal. Therefore, the estimations during the
initial few samples can be erroneous. Due to this erroneous estimation of the initial
state, the R? estimate for male participant 12 became very low compared to other
participants. One straightforward way to deal with this is to consider 20-30 seconds of
measured signal padded in the beginning. After performing deconvolution in the padded
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Fig 10. Run-time Vs Signal Length: Figure shows boxplots of the run-times of the
proposed approach with different signal lengths. The black dots with blue circle in the
middle of each boxplot denote median. The bottom and top of each blue box are the
25th and 75th percentiles of the sample, respectively. The red markers denote the
outliers.

signal, results corresponding to the initial 20-30 seconds can be removed.

For the comparative study with previous approaches, we assumed the timing of the
auditory stimulation as the ground truth. It should be noted that the shape of the ROC
curve is dictated by the three factors: 1) how many of the auditory stimuli are
translated as SCRs by the neural pathway and corresponding physiology, 2) spontaneous
SCRs, and 3) an algorithm’s ability to accurately model any SCRs along with the
corresponding accurate estimation of ANS activations. If an auditory stimulation does
not produce an SCR, all different algorithms will be penalized the same way in the ROC
metric if that specific SCR is not detected (contributing as the false negative). Similarly,
if there is a spontaneous SCR, all different algorithms will be penalized the same way in
the ROC metric if detected (contributing as the false positive). As the first two cases
are staying the same for all the algorithms, the relative change in the area in the AUC
of the ROC curve will mean that this change is coming from the algorithm itself only.
In this way we can benchmark our approach with previous algorithms. A better ROC
will mean algorithms ability to reduce the false negatives and false positives. Fig
shows that our bayesianEDA has the best ROC curve than all the previous approaches,
including our previously proposed spline-based approach [24]. Fig shows that our
bayesianEDA has the maximum AUC value of the corresponding ROC curves. The next
best ones are our spline-based approach (AUC = 0.8003) and sparsEDA (AUC =
0.7783). The ROC curves and AUC values are generated based only on the classification
ability between the event-related and non-event related SCRs among the ones that are
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only detected by each method. However, there is a possibility that an algorithm have
over-sparsified the solution and missed many smaller but event-related SCRs. Therefore,
we further calculate for how many of auditory stimulations no SCR was detected. Fig
shows that among all algorithms, our BayesianEDA approach has 24 undetected
ANS activation, which is close to the correct number of undetected responses, which is
23. Detailed discussion is provided in S3 Appendix.

Readers should note that, unlike all the methods we considered for the comparison,
PsPM [20,46] was specifically developed to incorporate knowledge of external
stimulation, and the dataset used comes from an experiment with defined stimulation.
PsPM can utilize this defined stimulation information. All other approaches including
ours perform ”blind” deconvolution regardless of any external stimulation. This is more
applicable in the envisioned application area, such as real-time deconvolution with
wearables. It can also be thought of as a drawback when there is knowledge of
stimulation, such as in most laboratory tasks. Therefore, here we used the spontaneous
fluctuation (SF) suite for PsPM for our comparison, which also does not take the
information of external stimulus as input. In the future, inspired by the PsPM
framework, we plan to extend our proposed algorithm bayesianEDA to take the
stimulus information as input in a probabilistic manner by changing the probability
distribution of u(t) at the time when external stimulation information exists for a more
contex-aware deconvolution.

The computational complexity of the deconvolution approach is O(K) as shown
in [30]. Furthermore, our empirical investigation also shows that the run-time scales
linearly with the number of samples, as shown in Fig This shows the feasibility of
implementing such approaches in low-power wearable medical devices for edge
computation. This scalable implementation has been possible with the proposed
comprehensive state-space model. The time complexity of the M-step of this approach
is also of O(K) in terms of the number of samples. After E-step the calculation of the
summations such as ngol (w,(czzl(w,(ﬁl)—r + P,(jzl) 25;01 y,;er,(;) etc. in Eq. |17/ has
O(K) time complexity. Further optimization can be performed by obtaining the
parameters of the physiological system for a smaller segment and performing the E-step
for the longer segments. During a day of recording, parameters can be updated a few
times by running the EM, and these parameters can be used to estimate the ANS
activation using only E-step. A real-time implementation can be done with only
running the Kalman filter in an iterative manner in the FIS after estimating the system
parameters for a shorter segment. As Kalman filters are very cheap in terms of
computation power, the proposed approach opens up the possibility of performing ANS
activity inference on the edge device rather than running it in the cloud, facilitating low
network traffic and user privacy.

In this study, we have proposed a novel physiological model inspired by the
physiological understanding of sweat secretion that can better explain the variation in
SC with fewer unknowns. Using our proposed model, we have developed a highly
scalable deconvolution algorithm, which will enable efficient implementation in wearable
devices. To achieve convergence, obtain a good fit of the model and avoid overfitting,
several parameters and constraint have been chosen on a trial-and-error basis because of
the absence of in-depth physiological knowledge. There is room for improvement to
come up with a more systematic way to address this limitation. Future studies can
benefit from more motivation from physiology-motivated parameters and constraint
selections.

ANS activities obtained from the single channel SC recording can be used to track
the cognitive arousal state of an individual [2/49,50]. One of the future goals is to
extend this approach for multi-channel SC recording and the nonlinearity of the model
for a more robust inference in the presence of noise,leading to more reliable inference of
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individual arousal level similar to our previous study in [28]. For further accurate
estimate of emotional arousal, we intend to utilize the inferred ANS activity from SC
recordings with our approach and combine with other physiological signals similar

to [51H57]. The proposed new model as well as the scalable ANS inference approach
have enabled us to design a scalable control architecture to regulate the arousal level
similar to the proposed framework in [58H61]. Finally, since some studies have reported
inconsistencies in the poral valve model by Edlberg et al. [33] while investigating both
SC and skin potential response [62], we plan to continue our investigation of the
mechanism of sweat secretion to achieve improvements in the model and its
understanding.
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Supporting information

S1 Appendix. Expectation Maximization. The section provides a brief
derivation of the Expectation Maximization.

S2 Appendix. Heuristic Refinement of u. The section provide a brief derivation
of the heuristic refinement of u.

S3 Appendix. Additional Discussion. The section provides a detailed discussion
on performance comparison between different algorithms in terms of the number of
undetected activations of ANS.

S1 Fig. Estimated Decomposition of the Experimental SC Signals for
Female Participant 1 to 6.

S2 Fig. Estimated Decomposition of the Experimental SC Signals for
Female Participant 7 to 13.

S3 Fig. Estimated Decomposition of the Experimental SC Signals for Male
Participant 1 to 6.
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S4 Fig. Estimated Decomposition of the Experimental SC Signals for Male
Participant 7 to 13.

S5 Fig. Deconvolution Results From the Simulated SC Signals with 25 dB
SNR for Female Participant 1 to 6.

S6 Fig. Deconvolution Results From the Simulated SC Signals with 25 dB
SNR for Female Participant 7 to 13.

S7 Fig. Deconvolution Results From the Simulated SC Signals with 25 dB
SNR for Male Participant 1 to 6.

S8 Fig. Deconvolution Results From the Simulated SC Signals with 25 dB
SNR for Male Participant 7 to 13.

S9 Fig. Deconvolution Results From the Simulated SC Signals with 35 dB
SNR for Female Participant 1 to 6.

S10 Fig. Deconvolution Results From the Simulated SC Signals with 35 dB
SNR for Female Participant 7 to 13.

S11 Fig. Deconvolution Results From the Simulated SC Signals with 35 dB
SNR for Male Participant 1 to 6.

S12 Fig. Deconvolution Results From the Simulated SC Signals with 35 dB
SNR for Male Participant 7 to 13.

S13 Fig. Deconvolution Results From the Simulated SC Signals with 25 dB
SNR with Pink Noise for Female Participant 1 to 6.

S14 Fig. Deconvolution Results From the Simulated SC Signals with 25 dB
SNR with Pink Noise for Female Participant 7 to 13.

S15 Fig. Deconvolution Results From the Simulated SC Signals with 25 dB
SNR with Pink Noise for Male Participant 1 to 6.

S16 Fig. Deconvolution Results From the Simulated SC Signals with 25 dB
SNR with Pink Noise for Male Participant 7 to 13.
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