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Abstract— Everyday life actuators such as music can be used
as neurofeedback to improve quality of life and performance.
To track one’s performance, we develop a performance decoder
that captures the time-varying nature of the process noise.
We first design a performance state-space model within an
autoregressive conditional heteroskedasticity (ARCH) frame-
work to enable adaptive performance state estimation. Then,
we design an expectation-maximization algorithm to decode a
hidden performance state and estimate the model parameters.
Particularly, by considering the sequence of responses and the
corresponding reaction times as the observation vector, we
employ particle-filtering to track the hidden performance state.
We investigate the decoder’s performance on experimental data.
The estimated performance state is aligned with different task
difficulty levels. During the experiment, music was used as neu-
rofeedback to regulate the arousal. Our results indicate music
can be utilized to regulate arousal and modulate performance
in smart environments. Adaptive performance estimation in
varying environments in presence of neurofeedback is a key
step for improving performance in real-world settings. Envi-
sioned cyber-physical systems applications include improving
productivity in smart workplaces and enhancing learning in
online educational systems.

I. INTRODUCTION

The word cognition refers to the mental action of acquiring
knowledge and understanding through thought and experi-
ence, which emphasizes the dynamics of learning as opposed
to the participant’s previous knowledge [1]. Human cognitive
functions can be described by two branches, namely basic
cognitive functions and higher-level cognitive functions [2].
Basic cognitive functions are composed of attention, working
memory (WM), and perception while higher-level cognitive
functions comprise speech and language, decision making,
and executive control [2]. In this research, cognitive perfor-
mance during a working memory experiment (n-back task)
is the topic of interest. Working memory can be described
as a function in the brain that retains sensory perceptions for
processing and understanding a cognitive task [3]. Studies
have displayed that human cognitive performance can be
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affected by several external and internal factors such as en-
vironmental and psychological components [3]-[5]. Hence,
the ability to automatically track the performance and detect
the actuators’ influences could have extensive applications in
designing future cyber-physical systems related to learning
and productivity.

The effects of music on human mental states have been
receiving increased clinical attention over the past years.
Particularly, researchers have been focused on investigating
the impacts of music on cognitive performance [6]-[8]. As it
has been shown in the arousal-and-mood hypothesis [9]-[11],
listening to music may change the cognitive performance of
individuals. According to Yerkes—Dodson law, an individ-
ual’s arousal status is an effective factor that determines the
cognitive performance. Hence, music can be applied as a
non-invasive actuator to regulate one’s arousal state and close
the loop with the aim of improving cognitive performance
[12], [13].

In order to comprehend the impact of music on perfor-
mance, there is a demand for modeling the performance
state such that it accounts for triggers in a time-varying
framework. The performance can be modeled within a state-
space approach. State-space methods have been used to
model neural processes for a wide range of applications [14]—
[32]. In real-world settings, a person’s physical surroundings
and circumstances may vary significantly throughout the day.
Consequently, performance may change with different noise
dynamics over time (e.g. work, home, inside a vehicle).
Therefore, to track the performance state, we need to de-
sign an adaptive estimator that captures the time-varying
nature of the process noise. The autoregressive Conditional
heteroskedasticity (ARCH) framework [33] has been used
successfully in analyzing volatility in financial data. The
autoregressive-autoregressive conditional heteroskedasticity
(AR-ARCH) model is one of the extensions of the ARCH
model which has been used in the state-space scheme [34],
[35]. Here, we introduce an AR-ARCH model for the per-
formance states.

One of the informative behavioral data in measuring per-
formance is the sequence of correct and incorrect responses
over the experiment which provides information regarding
the cognition process. This has been utilized in modeling
learning in neuroscience research [4], [5], [24]. The other
non-invasive measurement that may constitute the observa-
tion set is the response time [36]. Reaction time or response
time is the time that the participant takes to observe, evaluate,



and respond to the existing problem. In our case, the time
that the participant spends observing a stimulus, identifying
that, and pressing a button is forming the reaction time.

For the performance state observations, we present a
model that is similar to [36] and consider the correctness
of response (binary observation) and reaction time (continu-
ous observation). We model the hidden performance state
using an AR-ARCH framework. By considering the AR-
ARCH model, we can better capture real-world scenarios.
In particular, we can design an adaptive estimator that
accounts for the history of the individuals’ performance.
Thereafter, we monitor the hidden state by applying particle
filtering with an expectation-maximization (EM) framework
[14], [15], [21], [37]-[40]. Particle filtering is a popular
filtering approach that allows handling the nonlinear model’s
structure and approximating the expected value of the desired
function. Based on the observation vector, we generate a set
of particles to represent the posterior distribution of some
stochastic process at the expectation step (E-step). Next, we
implement the maximization step (M-step) with the aim of
estimating the unknown model parameters.

II. METHODS

A. Dataset

The dataset was collected from 6 participants between the
ages of 22-25. The recorded data comprises functional near-
infrared spectroscopy (fNIRS), electrocardiography (ECG),
electrodermal activity (EDA), photoplethysmography (PPG),
respiration, and behavioral signals. The participants took
part in a working memory experiment called the n-back
task [3]. In the n-back task, the participant is presented
with a series of stimuli displayed one at a time, and the
participant has to identify if the current stimulus is the
same as the n™ previous one [41]. The participant performed
equal numbers of 1-back (16 blocks) and 3-back (16 blocks)
task blocks during 2 main sessions of calming and exciting
background music. The first 5 seconds of each task block
were dedicated to task instruction representation. Thereafter,
22 stimuli were implemented in 22 trials with a duration
of 2 seconds each. The first 0.5 seconds of each trial were
designed for presenting the letter (stimulus) and 1.5 seconds
for the participant to respond (total block duration was 49
seconds). At the end of each block, the participant had 10
seconds to relax. Right after the 8th block (halfway mark
for each session), the participant relaxed for 20 seconds.
Moreover, the participant was given a 2-minute relaxation
break between the main two sessions. A detailed description
of the experiment is provided in [42].

B. A Performance State-Space Model in Presence of a Time-
Varying Process Noise Variance

Assuming the AR-ARCH model for the hidden perfor-
mance state z;, the state-space model can be presented as

zj = Zj—1 t €5, (D)

where ¢; ~ N (O,h?) is a process noise that follows the
ARCH structure. In the ARCH(1) model, we take

€; = hjwj7 (2)
where
h =g+ i€y, 3)

refers to the time-varying conditional variance based on
the history of the signal. Here, ag and o are the model
parameters with the constraints on ag > 0 and 0 < a7 < 1
[33]. The unconditional and stationary ARCH(1) process
variance can be expressed as 0% = lf—gﬂ

Similar to [36], the sequence of responses and the log
of reaction time can be considered to form the observation
vector. The correct and incorrect response at each trial is
shown with n;.

Similar to [36], the binary response n; can be taken as a
Bernoulli-distributed random variable with probability mass
function p77 (1—p;)' =", where p; = P(n; = 1). We relate
p; to performance state z; using logit transformation [43],

P\ _ L 1
10g<1—pj)_’u+z'7:>pj_l+€(thZJ')’ (4)
where 1, is a constant to be determined. Similar to [20], [22],
the constant ;1 may be found by considering z; ~ 0 at the
very beginning of the random walk:

wlog(lpo ) 5)
— Do

where py stands for the average probability of observing

correct response during the entire experiment.
The continuous observation equation is

r; =logt; = o + Mz + vj; (6)

where t; indicates the reaction time at j** trial, v; ~

2

N(0,02) stands for the noise term, and 7o, 1, and o2 are

the unknown parameters to be estimated.

C. A Performance Decoder Based on the Time-Varying Pro-
cess Noise Variance

Given the observation vector Yy’ =
{(n1,7), (n2,r2), ..., (ny,rs)}, the objective is to estimate
the performance state z; and the unknown model parameters
0, = [70,7,02% ap, 1], simultancously. To do so, we
employ the expectation-maximization framework. Inspired
by [44], we design a particle filter for the AR-ARCH model
to decode the hidden performance.

1) E-Step: Following the particle filter design procedure
in [44], we design our particle filter to estimate the perfor-
mance state z; in presence of a time-varying ARCH process
noise €;. The steps for designing a particle filter are described
below.

Step 1: Initiate the filter by considering K number of
particles with the initial variance o equal to the stationary

value 02 = 1f‘;1, and an arbitrary initial state value.




Step 2: Advance the filter from j — 1 to j and generate
particles Z;(k) based on the derived conditional mean Z;,
and conditional variance cr?- from the Bayes’ rule.

o2 (k) + h2(k
5i(k) = 2 1(k) +h3(k) gg<njpj(k)>
(w0 ) + ot
(N
+7 <?”j - Y 7153‘—1(]‘3)) + 2j-1(k),
oj (k) = m +Pj(k)(1 —pj(k)> + %
®)

where h (k) is equivalent to

h2(k) = ag + ay <2j_1(k) - 2j_2(k)>2. )

By plugging p;(k) = [1+ e’(‘”z](’“))]fl in H z; (k)
appears on both sides of and we may solve numerically
for 5j<k?).

Step 3: Assign the importance weight w;(k) to the
generated 2, (k). The importance weight density function can
take different forms based on the problem of interest; the
optimal importance weight w; can be derived from

“ N<Yj;5j(k)a03>/\/(5j(k);5j1(k)7hf(k))

J A (505200300 )

(10)

where N (zpr; piavs 0/2\;) stands for a Gaussian density func-
tion of variable zxr with a mean of p s and variance of 0'_%/
[44].

Step 4: Normalize the weights and perform the resam-
pling. Since we work on a high dimensional problem, particle
degeneracy can occur after some iterations and most of the
weights concentrate on a few particles. Hence, respmling
improves the estimation.

Step 5: Once we reach to j = J, we reverse the direction
to obtain a set of smoothed state Z;(k) with equally smoothed
wights w; (k) = 1/K.

2) M-Step: In M-step, model parameters can be estimated
such that they maximize the expected value of our log-
likelihood function. Similar to [44], [45], we approximate
the expected value of the function of interest E[f(z;)] by
using the particles and their weights:

K
Bl ()]~ = D F(5(8): (1
k=1

The log-likelihood function (Q)) can be written as

J
(12)
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The expected value of ) can be derived from ([E]) Hence,
expected value of the log-likelihood function (E[Q]) can be
calculated as follow.

Z Z [ (25 (k) — Zj—1(k))
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We aim to estimate the unknown parameters © =
[0,71, 02, &, &1 such that they maximize E[Q).
Hence, 79,71, and o2 can be recovered from:

9E[Q] _ (14)
o
J J K
0=K> ri—KJyp-m»_ Y %k
j=1 j=1k=1
_ K Z}I:l Ti— M 25:1 Zj:l zj (k)
Yo = KJ )
where y; may be obtained from
OE[Q] =0 (15)
om

0= Zi (rjij(k) —Y0%;(k) — 7153'(7@‘))

J
=1 k=1

. lZf_l 3 CIOP R SEIT)

<

KJ



and o2 can be written as

IE[Q]
Oo2

o? = Kljé; [(rj - —%zj(k)f].

Also, we find the ARCH unknown parameters with MAT-
LAB function fmincon such that they optimize the cost
function L

o Zi [ (Z5(k) = 251 (k)

~ ~ 2
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Figure |1| shows the scheme of the proposed performance
state decoder. We iterate between the E-step and the M-step
until meeting convergence criteria.

III. RESULTS AND DISCUSSION

In this section, we assess the impact of music as a type
of neurofeedback to modulate performance. In particular, we
utilize the AR-ARCH performance state decoder to analyze
experimental data.

The simplest approach to evaluate the music’s impact
on cognitive performance is to compare the sequence of
correct/incorrect responses during different sections of the
experiment. Figure [2| represents the sequence of incorrect
responses during calming and exciting sessions for six par-
ticipants, separately; a sub-panel with more blue vertical
lines is equivalent to a higher number of incorrect responses
throughout a session.

Since we account for the reaction time in shaping the
observation vector, it is important to analyze the variations in
individuals’ reaction time based on the background music. In
Fig. 3| we display the distribution of participants’ reaction
times during calming and exciting sessions by using box
plots.

The performance state decoder’s results for one participant
are illustrated in Fig. 4} The first subplot shows the log
of reaction time with the black dots and the blue curve
shows the reconstructed observation (7'; = o + 71Z;) from
the estimated state z; (R? = 0.92). The second subplot
displays the estimated performance state and the number
of correct responses at each block. The mean performance
state value for the calming session is 0.54 while the mean
performance at the exciting session is 0.79. The third and
fourth subplots depend directly on the estimated performance

state value such that the third subplot demonstrates the
probability of having a correct response p;, and the fourth
subplot shows the high performance index (HPI) derived as
p(zj > Zreshold). We set the threshold to the median of
estimated states.

We focus on the estimated performance state’s distribution
through calming and exciting sessions. Figure [5| presents
the box plots for the performance states during calming
and exciting sessions, respectively. The comparison of the
data based on background music is done by considering the
difference between the median of the distributions.

According to the obtained results in Fig. we can
observe that for all the participants except participant num-
ber two, the red regions of subplots that refer to exciting
sessions have fewer incorrect responses (blue vertical lines)
compared to the green regions (calming). Potentially, for
these participants, the exciting music session (high arousal
session) helps them reach a psychological state in which they
feel entirely absorbed in the task. The fact that participant
two does not follow a similar trend reveals that the result
might change based on the individual’s baselines. Perhaps,
participant two is more sensitive and becomes aroused more
easily in comparison to other participants. Given the reaction
time distribution in Fig. 3| and the connection between the
median of calming and exciting sessions’ data, we can detect
that the exciting music provokes all six participants to react
faster. This finding conforms with the results in [46] where
it has been shown that caffeine, which is associated with
higher arousal, improved the reaction time.

In the first subplot of Fig. |4l we can observe the agreement
between the experimental reaction time data (continuous
observation 7;) and the reconstructed reaction time. In the
second subplot, there are high fluctuations in the estimated
states, which can be a result of implementing the ARCH pro-
cess noise in modeling the performance state. Furthermore,
states in blocks with darker background colors (3-back tasks)
have lower levels since performing the 3-back task is more
difficult compared to the 1-back task. Introducing the ARCH
process noise enables the filter to capture the environmental
changes and produce volatile state estimation. The volatility
in the last five blocks of the experiment is consecutively high,
which can be modeled by including the ARCH process noise.
An experiment with more sessions and longer duration would
enable a more comprehensive investigation of the ARCH
process noise. Overall, for participant 1 (Fig. @), we can
observe that the baseline of the estimated state, probability
of having a correct response, and HPI are higher during
the exciting music session (higher arousal) compared to the
calming music session (lower arousal). For this particular
participant, high arousal music possibly improves working
memory performance. These findings are consistent with the
observed number of correct responses and reaction time for
this participant. As explained in [47], since the model has
a high degree of freedom with a small number of samples,
it is possible to overfit and align closely to the continuous
observation (reaction time). Hence, in some blocks, we can
detect that the algorithm tends to specify more weight to
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Fig. 1: An overview of the designed performance decoder. The proposed decoder consists of two major steps, namely, the expectation and the
maximization steps. The algorithm iterates between the E-step and the M-step until convergence.
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Fig. 2: Sequence of incorrect responses. The sub-panels depict: incorrect responses (blue vertical lines) for six participant during calming (green) and

exciting (red) sessions respectively; The z-axis specifies the trail number.

reaction time rather than the sequence of responses. One
possible approach to improve the condition is to use early
stopping while it increases the risk of deviation.

According to the estimated performance box plots in Fig.
[l overall, the cognitive performance improves for all six
participants during the exciting session. However, the amount
of improvement varies for each participant, which may reveal
differences in their cognition process and a demand for a

person-specific performance decoder.

IV. CONCLUSION AND FUTURE DIRECTION

The main objective of this research is to evaluate music as
a potential neurofeedback mechanism for designing closed-
loop architectures and improving performance. According to
our results, music can impact the participant’s cognitive per-
formance [6]. One should note that the type of music, and the
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individual’s familiarity and emotional baseline can influence
how music can be used as neurofeedback in a person-specific
manner. In [3], we have quantitatively illustrated that one’s
cognitive performance is a function of arousal level, and
hence, regulation of arousal can modulate performance. Our
results indicate that music can be used as a non-invasive
actuator in a closed-loop manner. However, the number of
participants is limited for making any general conclusions
and the future directions of this research include collecting
a larger dataset.

In the future, we plan to implement a longer experiment
with a higher number of participants that offers us more
information regarding the history of the signals and their
impacts on the current states. More specifically, the ARCH
model might be applied to data that is stored for a longer
period. Furthermore, we are interested in designing cogni-
tive experiments that consider multiple psychological factors
such as variation in both light and music. In order to imple-
ment a controller, several approaches can be employed [48]—
[50]. Since individuals’ responses to actuators may vary, and
the performance baseline of each person is different, we plan
to personalize the state-space model by adding uncertainty
to the model parameters.
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