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Abstract— Objective: Internal physiological processes
govern multiple state variables within the human body.
Estimating these from point process-type bioelectric and
biochemical observations is a challenge. Here we seek
to estimate cortisol-related energy production and sym-
pathetic arousal based on point process and continuous-
valued data while permitting an external influence to affect
the state estimates. Methods: Traditional point process
state-space methods, such as those used for estimating the
aforementioned quantities from cortisol and skin conduc-
tance measurements respectively, suffer from the inability
to permit the state estimates to also fit to an external
influence (e.g. labels) or be guided by it. Here we modify
an existing recurrent neural network (RNN) approach for
state-space estimation through a weighted cost-function
to enable a hybrid estimator that has this capability. Re-
sults: Results on cortisol data based on a hypothetical
sleep-wake influence term show how energy production
can be estimated by permitting the estimates to fit to the
external influence as much as desired. We further show
how overfitting may be reduced by using circadian rhythm-
based influence terms. Results on skin conductance data
also indicate how the method can be used to estimate
sympathetic arousal in an experiment containing stressors
and relaxation, and permit an external influence as well.
Conclusion: The RNN-based hybrid method is thus able
to recover internal physiological states from point process
and continuous-valued observations while permitting an
external influence to guide the estimates. Significance:
The hybrid estimator could be embedded within wearable
monitors that can be tailored based on domain expertise or
individual feedback.
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mation, recurrent neural networks, biomedical monitoring,
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[. INTRODUCTION

HYSIOLOGICAL processes govern multiple internal

state variables within the human body. These processes
help maintain a stable internal environment despite changes
in the external environment and aid the body adapt to the
demands imposed thereof (e.g. physical or cognitive loads).
Often, the internal state variables are inaccessible and remain
difficult to observe directly, but are nonetheless tied to bio-
chemical and bioelectric phenomena that can be measured
more easily. These measurements provide a window into
estimating the latent physiological state variables of interest.

A. Physiological Point Processes - Cortisol and Skin
Conductance

In several instances, the internal states are linked to point
process observations arising from pulsatile or impulse-like
phenomena. The stress hormone cortisol, of which a healthy
adult secretes between 15-22 pulses a day, is one such example
[1], [2]. Cortisol supplements internal energy production by el-
evating blood glucose levels as a part of its role in coordinating
the stress response [3], [4]. The number, timing and amplitudes
of these cortisol pulses reflect changes in the body’s internal
energy production state. Note that we use the term “energy
production” to reflect a utilization of existing glucose reserves
rather than an actual production of glucose itself.

Skin conductance, generated by bursts of neural activity to
the sweat glands, likewise closely resembles cortisol in its
“spikey” appearance and generation dynamics [1], [5]. Skin
conductance is a sensitive indicator of sympathetic arousal [6],
[7] owing to sweat gland innervation by sympathetic nerve
fibers [8]. A fast-varying phasic component, consisting of
individual skin conductance responses (SCRs), and a slower-
varying tonic component make up a skin conductance signal
[9]. SCRs are typically modeled as being generated by bursts
of neural activity [5], [10]. SCR rates, amplitudes (to which
the neural impulse rates and amplitudes are related) and
tonic component are three of the most commonly used skin
conductance markers of autonomic arousal [11].

A deconvolution algorithm can be used to extract the point
process events underlying a cortisol profile or a skin conduc-
tance signal (Fig. 1). Due to the cascaded nature of cortisol
secretion within the body, the pulses in Fig. 1 can be regarded
as abstractions of the CRH (corticotropin-releasing hormone)
pulses secreted in the brain [12]. For both cortisol and skin
conductance, a marked point process (MPP) accompanied by a
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continuous-valued variable constitute the primary observations
to which the underlying latent state variable is related (i.e.,
energy production and sympathetic arousal respectively).
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Fig. 1. Deconvolved Blood Cortisol and Skin Conductance Data.
A sequence of point process events underlies the generation of a blood
cortisol profile and a skin conductance signal. A deconvolution algorithm
can be used to extract these underlying pulsatile/impulse events. The
upper sub-panel depicts a series of blood cortisol concentrations at
10 min intervals (blue dots), the secretory events (red) and the re-
constructed minute-by-minute blood cortisol concentration (black). The
lower sub-panel depicts a skin conductance signal (blue), the neural
impulses responsible for phasic SCRs (red) and the tonic component
(black).

B. State-space Models

Point process state-space methods have been frequently used
to estimate latent states tied to observations such those in
Fig. 1. These have already found applications in sleep studies
[13], neural spiking-based movement and position decoding
[14]-[19], behavioral learning [20]-[22], the regulation of
anesthesia and comatose states [23]-[25], and the study of
heart rate variability [26], [27]. We too have developed several
such methods for estimating sympathetic arousal and energy
production from skin conductance and cortisol [28]-[34]. The
methods utilize Bayesian filtering applied within a larger
expectation-maximization (EM) framework.

Traditional such EM-based point process state-space meth-
ods have a few notable drawbacks. Firstly, each new obser-
vation/feature addition requires a completely new Bayesian
filter derivation and EM algorithm (e.g. when extending the
model in [21] with one binary and one continuous feature
to two continuous features to obtain our model in [29]). A
second drawback we point out with the aid of an example. If a
state-space model for behavioral learning such as described in
[20]-[22], [35]-[37] is used to estimate the cognitive learning
state of a non-human primate, estimation can only rely on
the binary response variables, reaction times etc. since a
ground truth for the primate’s learning state is unavailable. If
however, sympathetic arousal or energy were to be estimated
from a human subject based on skin conductance or cortisol,

the subject would be able to provide some feedback (i.e., a
form of label) regarding how they felt emotionally or how
energetic/lethargic they felt during the experiment (on a rating
scale, for instance). While this may not necessarily be the
definitive ground truth, it nevertheless does contain some
information regarding the unobserved state being estimated.

C. Neural Networks and Hybrid Estimation

We thus raise the question regarding the possibility of
estimating a latent state xj (in this case, arousal or energy)
such that z; also fits to labels. EM-based Bayesian state-
space estimation typically does not utilize labels, and it is
a challenge to incorporate them into the estimation process.
Fitting to labels is traditionally a supervised learning problem.
Estimating zj, such that it fits both to physiological observa-
tions and labels would be a hybrid form of supervised learning
and state estimation. Note that the use of the term “label” in
the strict supervised learning sense is somewhat unsuitable for
the applications we propose here (we provide an example of
zy, fitting to a physiological rhythm later on). We thus choose
the broader term “external influence” to denote the additional
quantity zj is permitted to fit to. However, this term too is
not synonymous with the external input (usually denoted by
uy) that drives xj in a typical state-space control system.

Recent neural network approaches for state-space estimation
(e.g. [38], [39]) present an alternative to traditional EM-based
Bayesian state estimation. Methods such as the one in [38]
also permit a convenient increase in the number of features
without any complete re-derivations. As stated above, it is a
challenge for traditional state-space methods to estimate xy
such that it also fits to an external influence (e.g. a label). Here
we primarily address this problem by modifying the method in
[38] through a hybrid cost function. Our objective is to develop
a framework whereby we can estimate energy and sympathetic
arousal from MPP type and continuous-valued cortisol and
skin conductance features respectively, where the estimated
latent state zj is determined based on both physiological
features and an external influence. Our approach can also be
adapted to other types of data where the estimated states are
required to fit to additional label-type information as well.

[I. METHODS
A. Data

1) Cortisol: We use the blood cortisol data from the study
in [40] for energy state estimation. The study sought to in-
vestigate HPA-axis (hypothalamic-pituitary-adrenal) function
in patients diagnosed with chronic fatigue syndrome (CES),
fibromyalgia syndrome (FMS) or both. Intravenous blood
samples were drawn at 10 min intervals over a 24 h period
from patients and matched controls for extracting the blood
cortisol levels. Thirty one of the 36 available record pairs were
deconvolved by Pednekar ef al. [41]. Deconvolution yields the
pulsatile cortisol profile and other parameters necessary to re-
construct the continuous-valued blood cortisol concentrations
at a 1 min time resolution. Thirteen of the 31 patients had CFS
(which we label the CFS patient group) while the remaining
18 had either FMS or both FMS and CFS (which we label
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the FMS patient group). The first three patients in the FMS
group were diagnosed with FMS only while the others had
both FMS and CFS.

2) Skin Conductance: We use the skin conductance data
from the Non-EEG Biosignals Dataset for Assessment and
Visualization of Neurological Status [42] for estimating sym-
pathetic arousal. A number of the records are noise contam-
inated and we used data from the same subjects that we did
in our earlier work in [28]. Similar to [28], we also analyze
data from the portion of the experiment containing a period of
cognitive stress, relaxation and emotional stress. Each of these
lasted for approximately 5 min. A backward-counting task
and the Stroop test (a color-word association task) constituted
the cognitive stressor. A horror movie clip was used for the
emotional stressor. The brief period where instructions for the
cognitive tasks were provided is also included and categorized
as a stressor [42]. We downsampled the data to 4 Hz prior to
lowpass filtering at 0.5 Hz and tonic-phasic separation using
cvxEDA [43]. We extracted the neural impulses to the sweat
glands from the phasic component using the deconvolution
method described in [28].

B. EM-based State-space Estimation

Prior to describing the neural network approach, we briefly
review an example EM-based point process state estimation
method. We shall subsequently point out certain similarities
between the two methods. Assume that our unobserved state
variable zj, varies with time following a random walk [28],
[34].

Ty = Th—1 + €k, (D

where g ~ N(0,02). Let n, denote a binary variable
indicating the presence or absence of a point process event that
xy, gives rise to. Now ny is Bernoulli-distributed with mass
function pi* (1 — py)'~"™ where P(nj, = 1) = pj. Based on
the theory of generalized linear models, we can relate xj to
Dk using a logit transformation [44].
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where 5y and 3; are constant coefficients. We have made use
of this same formulation in our prior work as well [28]-[34].
Assume we also observe a continuous-valued variable s; that
we take to be related to x through

sk = 0o + 01k + Wy, 3)

where g, d; are constant coefficients and wy; ~ N(0,02).
If the regular EM approach were used to estimate zj and
recover the unknown model parameters © (consisting of dy,
81, 02 etc.), we would attempt to maximize [21]
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Here, a Bayesian filter would have to be designed to estimate
the expected values for the latent states xj, conditioned on the
observations and the parameter estimates. While this remains
the standard approach, and we too have developed several such
estimators [28]-[34], it nonetheless suffers from the limita-
tions described above. Namely, an inflexibility with regard to
feature addition/modification (e.g. each addition necessitates a
completely new Bayesian filter derivation and EM algorithm)
and a difficulty in incorporating a mechanism whereby z; can
be permitted to have an external influence affect its estimation.
In contrast, adding new features to [38] requires no complete
re-derivation and also affords a means whereby x; can be
estimated by permitting an external label-like influence.

C. Neural Networks and Training

Let us now consider the neural network approach in [38].
Here, the general Gaussian state-space model

xp ~ N(fu, (Tr-1); foz (k1)) (6)
yre ~ 1(fy(2x)), (7

where yj, represents the observations, is assumed. Both the
state transition equation and the output equation are learned
using two separate neural networks (for simplicity, we group
both of them together under the title “state-space neural net-
work™ — SSNN). A separate recurrent neural network (RNN)
is used to estimate xy.

We formally describe hybrid estimation based on a mod-
ification of the method in [38] in subsection III-A below.
In [38], the neural networks are trained by maximizing a
probability term. Here we use a re-weighted cost function that
is a combination of the negative of this term and an additional
penalization term based on the external influence which we
denote by [;. We use p to denote the coefficient determining
how much weight is assigned to either of these terms [this
will be formally defined in (12)]. We evaluate our proposed
hybrid estimation scheme as described below.

(1) Cortisol — We do not possess additional information from
the subjects regarding how energetic/lethargic they felt (i.e.,
similar to a label) during the course of the 24 h periods.
Therefore, we generated a hypothetical [; to illustrate the
possibility of hybrid estimation. Since cortisol-related energy
production is somewhat lower towards nighttime than it is
during the morning, we generated a binary-like [;, term to
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match the sleep-wake times of the subjects enrolled in the
study [41]. We first trained the neural networks for 500 epochs
with p = 0 (i.e., disallowing the external influence). We then
took this pre-trained model, set p = 0.5, introduced [; and
trained for several more epochs.

While hybrid estimation with the use of a binary-like sleep-
wake [ term largely serves an illustrative purpose in this
case, we then present a more practical application of using I
to reduce overfitting to the continuous-valued variable. Now
cortisol is known to exhibit circadian variation [45]. Therefore,
we generated separate circadian [; terms for each subject and
used them to undo the overfitting. To calculate these subject-
specific l’s, we first took the 500-epoch pre-trained models
(p = 0) for each one, and then calculated a two-harmonic
circadian based on a least-squares fit to each subject’s zy
estimate. The two-harmonic [, term is of the form [46]

I, = ag —l—i; [ai sin (%) + b; cos (?Zg)]’ ®)

and therefore only the a; and b; coefficients need to be
calculated for each subject using least squares. We then set
p = 0.75 and trained for an additional j = 20 epochs.

(ii) Skin Conductance — We estimate sympathetic arousal
from skin conductance using data from the experiment in [42]
containing different stress periods interspersed by relaxation.
Similar to [28], we calculate a high arousal index (HAI) as the
probability that xx > Tinresn as well. The threshold Tyyesn 1S
selected as the median state value [28]. The HAI is analogous
to the ideal observer certainty level in [20], [21] and expresses
the probability of x; exceeding a certain baseline (since py
is related to x;, the term can also be calculated based on
pi exceeding an equivalent baseline). We calculate the state
estimates for all the subjects with p = 0. As an illustration
of the possibility of hybrid estimation with skin conductance
data, we also select a hypothetical square wave-like [ term
and obtain the resulting estimate when z, is made to fully
conform to [j.

For cortisol data, we use a neural network configuration with
two layers in the SSNN and a hidden layer dimensionality of
256. We also select an RNN size of 256. For skin conductance,
we selected an SSNN hidden layer dimensionality of 200 with
two layers and an RNN size of 200. Effects of changing
the RNN size, the number of layers in the SSNN and the
SSNN hidden layer dimensionality on the state estimates are
described in more detail in the supplementary information.

[1l. RESULTS
A. Model
Taking 1 and ¢ to denote the state-space model parameters
and the RNN parameters respectively, the networks are trained
by maximizing
K

> Eqy(ani) 108 o (Wklzn)] — KL(gg (21 [5)|py (1))

k=1
K
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k=2
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where py(-) and g4(-) denote density functions [38]. The
actual training is performed within the algorithm as a min-
imization of the negative term. We label this negative term
(2. Analogous to the traditional EM method, in this new
approach: (i) the SSNN replaces the explicit state-space model
[such as described in (1)-(3)]; (ii) the RNN replaces the
Bayesian filter for state estimation; (iii) the weights of the
neural networks replace ©. Since neural networks are used to
learn the state-space model, more complicated state transitions
and input-output relationships are permitted. These, however,
come at the expense of interpretability. The neural network
weights parameterized by 1 and ¢ are updated using stochastic
backpropagation and details of this can be found in [38].

We now point out some general similarities with the tradi-
tional EM method, particularly with regard to the terms in Q)1
and @, depending on the type of variables that are present.
For instance, if a binary variable nj is present among the
observations i, (Q2 contains

18 (- 7m)
_Z Nk 108 1_~_e_fn(xk)

+(1—n)log (1 (10)

1
o 1+ e_fn(xk) >:| ’
similar to the first term in (5), except that now f,(-) is a
function learned by the SSNN. Similarly, if a continuous-
valued variable sj is present in yy, there is the term

2
[Sk — fu, (ﬁk)]
Qfa'g (xk)
in Q2, where f,, (-) and f,2(-) represent mean and variance

functions learned by the SSNN. Again, note the similar term
involving s in (5).

Z%log (27 fr2 (x1)] + (11)

B. Hybrid Estimation

In our case, the observations consist of an MPP and a
continuous variable. We take nj to denote the presence or
absence of a point process event (cortisol pulse or neural
impulse), r; to denote the event amplitude (mark) and s; to
denote the continuous variable (blood cortisol concentration
or tonic level). We make the following two modifications to
the original method in [38] to enable hybrid estimation:

(i) We first change the cost function to

Q=(1=p)Q2+p> (zr — )%

where 0 < p < 1. Note carefully the form of (12). Typical
supervised learning problems (e.g. regression) have a cost
function similar to the second term on the right of (12), where
Iy is a form of label or known ground truth. On the other hand,
traditional EM-based Bayesian state-space estimation usually
only has a term similar to Q2. By changing the cost function
to the weighted sum in (12), we enable a hybrid of the two
approaches. Our general method is to first train the neural
networks with p = 0 similar to the original method in [38],
then take the pre-trained model, choose a positive value for p,
introduce [; and re-train for several more epochs to modify
the state estimates. This enables a class of hybrid estimators

(12)
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lllustration of the Effect of the External Influence Term [, in Cortisol-based Energy State Estimation. The sub-figures respectively

depict the energy state estimates for CFS patient 1 from a 500-epoch pre-trained model with p = 0 (left), after training an for additional 5 = 25
epochs with p = 0.5 (center) and after training an for additional 5 = 100 training epochs with p = 0.5 (right). Within each sub-figure, the sub-
panels respectively depict: (a) the raw blood cortisol data zg; (b) the deconvolved cortisol pulses (blue) and the estimated fit to i (red); (c) the
reconstructed blood cortisol profile si (orange) and its estimated fit (red); (d) the probability of pulse occurrence py; (e) the energy production state
xg (purple) with its 95% confidence limits and the sleep-wake I term (blue).

that allows z, to be estimated based on a mix of physiological
data and an external influence.

(i) Secondly, similar to [34], we change the form of (11)
to sum only over the locations where the point process events
occur for the MPP amplitudes 7.

C. Cortisol

Deconvolving the data in [41] yields the pulsatile cortisol
profile (ng, rx) and the cortisol infusion and clearance rates
necessary to reconstruct the cortisol concentration s, at a
1 min resolution [41]. The neural networks yield the state
estimates x ~ N (z, NN, a,%’NN) and we provide x yn in
the figures with confidence intervals calculated using o7 5 -

Fig. 2 shows the effect of introducing a hypothetical biflary—
like sleep-wake [;, term and the entailing (gradual) conformity
of xy to Il during state estimation. With p = 0, x is only
estimated from the data. However, after setting p = 0.5 and
training for j = 25 more epochs, the shape of xj gradually
begins to conform to [j. After j = 100 epochs, z;, completely
fits to [;. By changing p and the number of additional training
epochs j, the external influence term [, can be permitted to
affect the state estimates as much as desired.

The practical application of the use of [ in reducing
overfitting to s, by means of a circadian term is shown for
a single subject (CFS patient 1) in Fig. 3 (this overfitting
to s can especially be seen in the state estimates for the
pre-trained model with p = 0 in Fig. 2). The results for
all 31 subject pairs using this overfitting control technique
are provided in the supplementary information (note that
the neural networks are trained for each subject separately).
Since the choice of p = 0.75 and j = 20 to undo overfitting
may seem arbitrary, additional results based on varying these
parameters and a further discussion of them is provided in

the supplementary information. In general, the number of
additional training epochs j, the coefficient p and the [; term
can all be customized based on the degree of overfitting control
that is desired. Taking the pre-trained model, and then training
for several additional epochs with [, included and p > 0 forces
x to be influenced externally undoing some of the overfitting
to si. We do, however, note one drawback with this method
of overfitting control. When training with the [; term included
and p > 0, we are forcing the neural networks to fit xj to
not just the physiological data alone, but rather to an external
influence term as well. Consequently, as xj deviates away
from its original fit and gradually begins to conform to [,
the fits to the other physiological features (i.e., to the MPP
amplitudes r; and the continuous-valued feature s;) tend to
become noisy. This effect can be seen in Figs. 2 and 3.

There is a scarcity of point process-related state estimation
work in the literature for pulsatile hormones such as cortisol.
It is of note that even a system-theoretic method for decon-
volving serum cortisol data to estimate the underlying pulsatile
secretion timings and amplitudes with person-specific model
parameters was only developed comparatively recently [1],
[12]. Our own estimation work in [33] also only utilized sim-
ulated data. Now label-like information is unavailable for the
experimental cortisol data considered here [40]. Consequently,
and due to the relatively high number of subjects in our dataset
(31 subject pairs), the evaluation of the energy state estimation
results is largely qualitative in nature.

We note two primary features of interest in the qualitative
evaluation of our results. Firstly, energy state estimates are
consistent with the cortisol awakening response (CAR) [47]
across subjects. As stated earlier, cortisol secretion is circadian
and is synchronized to light-dark and sleep-wake cycles [40].
Typically, cortisol begins to rise towards early morning and
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Fig. 3. Cortisol-based Energy State Estimation with a Circadian

;. Term Included to Reduce Overfitting. The sub-panels respectively
depict: (a) the raw blood cortisol data zg; (b) the deconvolved cortisol
pulses (blue) and the estimated fit to 7 (red); (c) the reconstructed
blood cortisol profile sk (orange) and its estimated fit (red); (d) the
probability of pulse occurrence pg; (e) the energy production state xg
(purple) with its 95% confidence limits and the circadian I, term (blue).

reaches peak values shortly after awakening. This is known as
the CAR. Taking the time interval betweeen 11:00 p.m. and
8:00 a.m. as the approximate sleep-wake period (similar to
[41]), a corresponding rise in the cortisol-related energy states
towards morning awakening is clearly visible across subjects.
This general trend occurs for both patients and controls with
lesser inter-subject variations. A second qualitative feature is
the diminishing of the energy state towards evening, with the
lowest values typically reached during sleep late at night. This
too is in accordance with the known physiology of cortisol
[48], [49] and can be seen for both patients and controls.

We next evaluate group-level differences. Now CFS is a
chronic condition of unknown medical etiology where patients
are primarily characterized by severe fatigue [50]. Pain, post-
exertional malaise and difficulties in sleeping and concen-
trating are also symptomatic of CFS patients [50]. FMS is
a similar condition where patients experience comparable
symptoms [51]. Findings have been mixed with regard to cor-
tisol differences between CFS and FMS patients and matched
controls [52]-[55]. A few serial sample studies have indicated
a lack of significant mean differences between patients and
controls [40], [53] (here we use the data from [40]), and
it currently remains unclear whether in fact definite cortisol
differences do exist in these conditions, and if any such
changes are causal or consequential. We provide a comparison
of the averaged zj and p;, values for all patients and matched
controls in the supplementary information. However, caution

must be exercised when interpreting these averaged values for
two reasons. Firstly, the neural networks can learn pj, estimates
that are inverted for some subjects. These then cancel out
with non-inverted p;, estimates from other subjects. Secondly,
the xj estimates can also lie in slightly different ranges for
different subjects. However, we too observe that there do
not appear to be any significant differences in the xj or py
estimates between patients and controls.

D. Skin Conductance

Skin conductance-based sympathetic arousal estimates for
the subjects considered from the dataset in [42] with p = 0 are
provided in the supplementary information. We also perform
hybrid estimation with a hypothetical square wave-like /5, term
for participant 1 to serve an illustrative purpose. This result,
along with the corresponding state estimate with p = 0 is
shown in Fig. 4.

The data from [42] considered here contains two psycho-
logical stressors, the first of which is cognitive and the second
emotional. The cognitive stressor, which again consisted of
two parts, required the participants to count backwards in
sevens beginning at 2485 and then perform the Stroop test.
The emotional stressor consisted of watching a clip from a
zombie movie [42]. In the case of p = 0, the sympathetic
arousal estimates generally agree with those from our previous
state-space models in [28], [29], [31]. With the exception of
participant 4, arousal remains high during cognitive stress for
all participants. The active engagement required to perform the
cognitive tasks coupled together with the alerting of mistakes
through a buzzer [42] likely elicited a sympathetic stress
response in them. Arousal gradually declines thereafter as the
relaxation period commences. The rate of decline however,
shows inter-subject variability due to individual differences
in the stress response and recovery mechanism. The horror
movie clip fails to elicit as much stress from the participants
although a brief increase is seen in x at the start. The tonic
sg levels also tend to be lower during the clip. Watching
the clip, unlike the earlier stressor, only involves a passive
type of engagement and likely did not generate a sufficient
fear response as anticipated. Participant 4 is an exception for
whom arousal is significantly higher during relaxation. A sharp
increase in skin conductance is seen for this participant as the
relaxation period begins. This is unusual, and may possibly
have been due to a motion artifact causing the increase rather
than the actual onset of relaxation itself.

While estimates from the RNN method generally agree
with results from earlier state-space work in cortisol and skin
conductance, three drawbacks are to be noted. Firstly, small
fluctuations remain in the zj estimates compared to those in
[28], [29], [31], [33]. The effect of these fluctuations becomes
even more pronounced in the HAI values when zj is used
for a further probability calculation. The neural networks
have thousands of weights to estimate while the datasets
are small. This may likely be why some of the estimates
are noisy. Physiological data collection can be a resource-
expensive process (e.g. blood sample acquisition at 10 min
intervals over a 24 h period), and this highlights one of the
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Fig. 4. Skin conductance-based Sympathetic Arousal Estimation. The sub-figures depict arousal estimation without (left) and with (right) a
hypothetical Iy term included. Within each sub-figure, the sub-panels respectively depict: (a) the skin conductance signal z; (b) the deconvolved
neural impulses (blue) and the estimated fit to » (red); (c) the tonic component s, (orange) and its estimated fit (red); (d) the probability of impulse
occurrence pg; (e) the sympathetic arousal state x (purple) with its 95% confidence limits; the hypothetical 15, term (blue) is shown in the right
sub-figure; (f) the HAI (the regions above 90% and below 10% are shaded in red and green respectively). The background colors correspond to the
instruction period (red), the counting task (green), the Stroop test (orange), relaxation (blue) and emotional stress (yellow). The counting task and

the Stroop test formed the cognitive stress portion of the experiment.

drawbacks of using neural networks to perform estimation
with limited data. Secondly, the x; estimates do appear to
overfit to the continuous-valued variable s, in the case of
both cortisol and skin conductance. With cortisol, we were
able to undo overfitting by means of a circadian [ term.
For skin conductance, however, individual stress responses
can vary significantly and it remains unclear what type of
li; should be used to undo overfitting but retain individual
variability. The choice of [; thus remains a topic for further
research here. Thirdly and finally, the estimates of p; can be
inverted for certain subjects with the RNN method (the neural
networks appear to be learning an inverse of the point process
probability here). The same inversion can also occur for xj
(discussed in the supplementary information). Unfortunately,
it is a challenge to guide the neural networks to consistently
learn pi’s and z’s that are non-inverted. Nevertheless, the
hybrid RNN-based approach does permit z;, to be influenced
externally — a challenge for conventional state-space methods.

IV. DISCUSSION

Many physiological states within the human body remain
unobserved. Nevertheless, the biochemical and bioelectric phe-
nomena they are tied to provide a means for their estimation.
Point process state-space methods, such as the ones we have
developed in our previous work [28]-[34], can be used for
this purpose. Unfortunately, these methods do not conveniently
permit an external influence such as labels or medical domain

expertise to affect or guide the states being estimated. Here we
have illustrated how an existing neural network approach for
state estimation can be modified to address this shortcoming.
We provide a discussion related to certain aspects common to
both cortisol and skin conductance-based estimation below.

A. Data Acquisition

The cortisol data used in our work was acquired from
subjects under constrained settings. Ideally, however, data
could be collected in an unconstrained or free-range setting,
and would also enable more samples to be acquired. Since
meal times and sleep affect the secretion of circadian hor-
mones such as cortisol, it would be necessary for subjects to
maintain records of their daily activities in such an experiment.
The collection of serum cortisol, instead of salivary cortisol,
would also prove an additional challenge here. Feedback from
subjects regarding symptomatic events or fatigue levels (i.e.,
labels) could be acquired through wearable devices. Salivary
cortisol, while affording convenience, does not provide as
clear a picture of basal secretion compared to its serum
counterpart. Future work, however, would involve developing
a deconvolution algorithm and energy state estimator based
on salivary hormonal samples due to the comparative ease
of data collection. Similar real-world skin conductance data
acquisition would also be advantageous for testing out our
methods in unconstrained settings.
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B. Validation Challenges and Generalization

The lack of a ground truth during state estimation presents a
number of difficulties, particularly with regard to the validation
of the final estimates and the choice of features. This, how-
ever, is an issue common to other latent physiological state
estimation problems as well. A discussion on issues related
to feature selection, validation and the selection of the level
of overfitting control is thus provided in the supplementary
information.

Traditionally, the data is split into training, validation and
test sets when using machine learning. However, we do not
use machine learning in the traditional sense here. Inter-subject
variability is a known issue in biomedical research. Our use
of neural networks for state-space estimation is more along
the lines of determining the best set of weights that need
to be programmed into a particular patient’s personalized
healthcare device. Given individual variability and the need for
personalization, a patient’s device would require customization
based on his/her own data. However, since this can raise
issues with performance on unseen data, we have provided
some additional results with held-out data here and in the
supplementary information. For instance, Fig. 5 shows two
cases where z;, for CFS patient 1 is estimated using: (i) the
model trained with data from the other patients in the CFS
group (i.e., holding out CFS patient 1’s data); (ii) the circadian-
based overfitting controlled model trained for FMS patient
1. The estimates do appear reasonable and help support the
model’s viable performance on hitherto unseen data.

Physiological changes occur in the human body over time.
Such changes can also occur due to disease onset, or in
the case of patients, with changes in medication dosages,
types or conditions. The neural networks here learn how a
particular latent physiological state xj, evolves with time, what
its relationship is to the observed MPP and continuous-valued
features and how it is to be estimated. The weights of the
neurons thus capture physiological information. If changes
occur in an individual, with no corresponding update in the
neuron weights, it is likely that the accuracy of the xy
estimates and the performance of the system will diminish. We
thus propose that the neural networks be re-trained periodically
(for instance, if a change in the medical condition of an
individual were to occur). Having the neural networks be
person-specific (as we have done here) as well as conducting
periodic re-training would help the method generalize both to
the individual (e.g. as may be applicable in the case of medical
conditions/genetics unique to a person) and generalize over
time but to the same individual.

C. The Choice of External Influence and Degree of Fit

As evident from (12) and the results discussed above, the la-
tent state x; can not only be estimated based on physiological
observations and an external influence [, it can also be made
to completely ignore either one of them. Consequently, and in
the absence of a ground truth, it is a valid concern as to how
trustworthy estimates of x; can be obtained in different ap-
plication contexts. Therefore, [ must remain physiologically
plausible in order for the final estimates to be reliable. This

then, is bound up with two further questions: (i) What should
[}, itself be in different contexts? (ii) How much should xj be
permitted to fit to it in each case? Our formulation does not
impose a restriction on the nature of [; and the question of
how it is to be selected will likely require further research.
In the meantime, we propose that [, be chosen in one of
two ways to ensure reliable state estimates. Firstly, I;, can be
chosen based on medical expertise, domain knowledge well-
established in the literature (e.g. biological rhythms, rule sets)
or based on models developed with insight from these sources.
Secondly, I can be chosen based on individual feedback
(which would allow for personalization). An arbitrary selection
of I will likely not provide any guarantee on the reliability
of the x; estimates. Note that the choice of [; also affects
interpretability. If I were chosen based on either of the two
options just stated, we could interpret the swaying away of
x), towards [, as permitting domain knowledge or subject-
specific personalization to affect the estimates. Interpretability
however, would be lost if x; were to be influenced by an
arbitrary .

Moreover, in each such case, the degree to which x; should
be permitted to fit to I will likely require further research
and experimentation as well. This degree of fit is related
to the choice of p and the number of additional training
epochs j, and will also vary based on what [, is. A possible
future direction in this regard is to obtain data where skin
conductance and subject-provided labels are available (e.g.
[56], [57]) and determine, in general, to what extent x; needs
to be permitted to fit to [;. Similar experiments could also
be performed for cortisol based on subject-provided feedback
of how energetic/lethargic they felt. Thus both the choice I
and selecting its degree of influence on x; will likely require
further research.

D. Application Scenarios

The type of hybrid estimator we present may find applica-
tions in a number of scenarios. It could, for instance, be used
in wearable monitors. The estimator could also be embedded
within a larger control loop for regulating energy or emotional
arousal in patients with certain cortisol or neuropsychiatric
disorders. In each case the choice of p permits a certain
degree of flexibility in how much [ is allowed to influence
zr — a choice that would likely have to be taken by a
physician or the wearer. Consider, for instance, a patient with
post-traumatic stress disorder (PTSD) or depression (known
to involve symptoms of either hyperarousal or abnormally
low arousal levels respectively [28]), fitted with a smart skin
conductance-based wearable device, being monitored for a
period of time. The patient may periodically have to fill out
questionnaires with details of how he/she is feeling on an
emotional arousal rating scale. In the meantime, the device’s
estimates would also provide continuous arousal levels. The
value of p would have to be tuned to obtain a complete
picture of the patient’s emotional state based on the two hybrid
sources of information. Note also that the implementation
architecture and frequency of model re-training would depend
on the application scenario and not have a “one-size-fits-all”
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approach. Domain knowledge regarding circadian rhythms do
not change rapidly and hence the models may not require
frequent re-training. The scenario may be different for arousal
perhaps with more rapidly-changing emotional environments.

This type of hybrid or labeled estimator may also have
utility in wearables or other remote monitoring devices for
clinical scenarios, particularly those where prior information
or expectations are available. In one example, PTSD, anxiety,
and related mental disorders can lead to dysregulation of
stress responses, which may lead to abnormal skin conduc-
tance dynamics. These may only be apparent, however, when
patients are exposed to stressful situations. It may be possible
to provide information on the probability of such stressors
through our labeling technique. For instance, there are usually
fewer stressors or trauma reminders in a patient’s home than
in work, school, or other environments far from home. In a
wearable monitor, the patient’s distance from their home could
be tracked by GPS, and could be provided as an input/label.
This would effectively act to shift the prior probability of
the stress state to a different level. Similarly, in depression,
patients can have dysregulated cortisol secretion, e.g. a loss
of normal patterns of circadian variation [58]. If the expected
circadian rhythm can be provided as input to a monitoring
system, then deviations from that rhythm will be more readily
detectable. In that application, the error terms/gain terms in the
estimator can be as important as the tracked state itself. Both
these models could then be used to track response to treatment
or relapse of illness, providing guidance to clinicians.

E. Alternate Methods and Future Work

Here we have used neural networks for estimation with
the hybrid formula in (12). However, we could alternatively
have used EM-based Bayesian filters as well by introducing a
weighted [g-based cost term in addition to the conventional
log-likelihood term. Then, instead of solving closed-form
expressions for all the model parameters © as we usually do in
[28]-[34], we could solve for © at once through an optimiza-
tion formulation. This would permit a class of hybrid Bayesian
filters where labels could influence the estimates. Nevertheless,
jointly determining the model parameters through such an
optimization will likely be challenging, perhaps even more
so in the case of models such as [29], [30] where a larger
number of parameters are present.

Certain types of automated hormone infusion pumps (e.g.
insulin pumps) are currently available in the commercial mar-
ket as are devices for monitoring biochemical concentrations
within the body. While these pumps largely function based
on monitoring a single variable (e.g. blood glucose), it is
likely that chemical concentrations within the body are, in
reality, affected by more than a single quantity. Cognitive
stress, for instance, affects both energy production and glucose
levels. While further research would be necessary, it is possible
that next-generation infusion pumps could monitor multiple
variables such as skin conductance (related to stress) and
cortisol simultaneously for adjusting dosages automatically.
In our work here we have estimated separate psychological
and hormone-related energy states. However, the observations
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could be combined to simultaneously obtain a more compre-
hensive view of the human body and be embedded within
a closed-loop control framework (e.g. for energy regulation
based on hormones and psychological stress levels). The con-
cept of energy may also be multi-faceted. For instance, while a
person involved in manual labor may experience physical ex-
haustion, another individual may experience cognitive fatigue
due to stressful work demands or the skills/concentration re-
quired to perform a task. Certain other types of measurements
(e.g. heart rate variability) could be explored to determine
factors that correlate with different types of fatigue to obtain
a holistic view of energy production within the human body.

V. CONCLUSION

Changes in internal states within the human body give
rise to electrical and chemical phenomena that can be easily
measured using sensors. While it is possible to estimate these
latent states purely from sensor data, it is likely that feedback
provided by subjects, medical diagnostic data etc. also contain
information regarding the states being estimated, and should
thus be permitted to influence/guide state estimation. Conse-
quently, latent physiological state estimation may need to be
based on a hybrid fusion of sensor data and external informa-
tion. Here we have illustrated how latent states tied to markers
in skin conductance and cortisol can be estimated based on
physiological data and as well as an external influence. This
work functions as a proof-of-principle of a hybrid form of
supervised learning and state estimation. Our approach could
also be applied to other types of point process data and have
important applications to personalized wearable monitoring.
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