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We present the first generalization of Navier-Stokes theory to relativity that satisfies all of the following
properties: (a) the system coupled to Einstein’s equations is causal and strongly hyperbolic; (b) equilibrium
states are stable; (c) all leading dissipative contributions are present, i.e., shear viscosity, bulk viscosity, and
thermal conductivity; (d) nonzero baryon number is included; (e) entropy production is non-negative in the
regime of validity of the theory; (f) all of the above hold in the nonlinear regime without any simplifying
symmetry assumptions. These properties are accomplished using a generalization of Eckart’s theory
containing only the hydrodynamic variables, so that no new extended degrees of freedom are needed as in
Müller-Israel-Stewart theories. Property (b), in particular, follows from a more general result that we also
establish, namely, sufficient conditions that when added to stability in the fluid’s rest frame imply stability
in any reference frame obtained via a Lorentz transformation All of our results are mathematically
rigorously established. The framework presented here provides the starting point for systematic
investigations of general-relativistic viscous phenomena in neutron star mergers.
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I. INTRODUCTION

Relativistic fluid dynamics has been successfully used as
an effective description of long wavelength, long time
phenomena in a multitude of different physical systems,
ranging from cosmology [1] to astrophysics [2] and also
high-energy nuclear physics [3]. In the latter, relativistic
viscous fluid dynamics has played an essential role in the
description of the dynamical evolution of the quark-gluon
plasma formed in ultrarelativistic heavy-ion collisions [4]
and also in the quantitative extraction of its transport
properties (see, for instance, Ref. [5]). More recently, with
the observation of binary neutron star mergers [6–8], the
modeling of the different dynamical stages experienced by
the hot and dense matter formed in these collisions requires
extending of our current understanding of viscous fluids
toward the strong gravity regime where general relativistic
effects are important (see, e.g., Refs. [9–14]).

The ubiquitousness of fluid dynamics stems from the
existence of general conservation laws (such as energy,
momentum, and baryon number) and their consequences to
systems where there is a large separation of scales, such that
the macroscopic behavior of conserved quantities can be
understood without precise knowledge of all the details that
govern the system’s underlying microscopic properties
[15]. Ideal fluid dynamics is the extreme situation where
dissipative effects are neglected and the theory’s basic
properties in this limit are reasonably well understood, both
in a fixed background as well as when coupling to
Einstein’s equations is taken into account [2,16,17]. We
remark that because all sources of dissipation relevant for
our discussion stem from bulk viscosity, shear viscosity,
and heat conduction, and following standard practice in the
field [3], we will use the terms viscous fluid and dissipative
fluid interchangeably. In particular, other sources of dis-
sipation, such as anomalous dissipation [18,19], will not be
discussed.
When dissipative effects are taken into account, the

behavior of fluids is far less understood (unless stated
otherwise, fluids, hydrodynamics, etc., henceforth mean
relativistic fluids, relativistic hydrodynamics, etc.), despite
the importance of viscous dissipation in cutting-edge scien-
tific experiments such as in studies of thequark-gluon plasma
or their expected relevance for neutron star mergers, as
mentioned above. Historically, a stumbling block has been
the difficulty of modeling dissipative phenomena while
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preserving causality. Causality is a central postulate in
special and general relativity, stating that the speed which
information can propagate in any system cannot be larger
than the speed of light [20]. This implies that a solution to the
equations of motion at a given spacetime point x is
completely determined by the spacetime region that is in
the past of and causally connected to x [20–22]. Of course,
this property must hold in relativity regardless of whether
dissipation is present or not [20]. While causality is typically
not an issue for most matter models under reasonable
assumptions [21], including the case of ideal fluids [23],
ensuring causality of fluid theories in the presence of
dissipation turned out to be a major challenge [2].
The challenges one encounters when modeling fluids

with dissipation, however, are not restricted to enforcing
causality. Another hallmark property of dissipative fluids is
stability. By this we mean that perturbations of a system
that is in thermodynamic equilibrium should decay in time.
This expresses the basic intuition that if dissipation is
present, the system will dissipate energy and, consequently,
small deviations from equilibrium will be damped, leading
the dynamics to return to equilibrium within some char-
acteristic timescale. Naturally, in order to implement this
idea in a given formalism one needs to specify what is
meant by equilibrium and perturbations. We will consider
homogeneous (nonrotating) equilibrium states and our
perturbations will be plane-wave solutions to the equations
of motion linearized about such homogeneous states.
Although this is not the most general definition of equi-
librium [24], it captures the most basic intuition about how
deviations from equilibrium should behave in a dissipative
theory and, consequently, in practice this has been the
definition most often used in the literature [25,26]. Like
causality, stability is a property that is difficult to incor-
porate in theories of relativistic fluids with dissipation.
Aside from causality and stability, a third fundamental

property required for a theory of relativistic viscous fluids
is that the equations of motion be locally well posed. This
means that given initial conditions, there must exist one and
only one solution to the equations of motion taking the
prescribed initial conditions [27] and defined for some time
[28]. Physically, this means that the system has a well-
defined evolution determined by the initial conditions. Like
causality, local well posedness is a property required of any
field theory [2,20–22], but we emphasize it here since, also
like causality, this is a property that is difficult to achieve in
theories of fluids with dissipation.
Needless to say, there is little use for a theory of fluids

that is causal, stable, and locally well posed if it is not able
to make connections with real physical phenomena. Thus, a
theory of relativistic viscous fluids must in addition be
suitable for empirical studies. This means, at the least, that
the theory must agree with well-established physical facts,
but also that one needs to be able to extract quantitative
predictions from such a theory.

The interplay between theory and experiment is, of
course, at the heart of physics. In the context of relativistic
fluid dynamics, such interplay has been heavily guided by
complex numerical simulations [3]. Moreover, it is clear
that simulations will continue to be at the center of
developments in the field, particularly when it comes to
the investigations of viscous effects in neutron star mergers.
In this regard, while there is no one-size-fits-all approach
for implementing numerical simulations of general relativ-
istic systems [2,29], in the numerical general relativity
community one concept that has been very important for
the construction of numerical algorithms is that of strong
hyperbolicity [30]. This means that the principal part of the
equations of motion can be diagonalized; see Sec. V for
details. Although a discussion of the role of strong hyper-
bolicity in general relativistic numerical simulations is
beyond the scope of this work (the reader can consult
the above references for details), we stress that strong
hyperbolicity is a highly desirable feature for numerical
studies of general relativistic systems (see also Ref. [31] for
more discussion on potential caveats of numerical
simulations).
In summary, a physically meaningful theory of relativ-

istic viscous fluids must be (I) causal, (II) stable, and (III)
locally well posed. In addition, it is highly desirable to have
a theory that is (IV) strong hyperbolic.
While property II is, by definition, concerned with the

equations linearized about equilibrium in Minkowski back-
ground, we emphasize that whenever referring to causality,
local well posedness, and strong hyperbolicity, i.e., proper-
ties I, III, and IV, we are always talking about the equations
of motion in the full nonlinear regime. It is important to
stress this point because a substantial body of theoretical
work in relativistic viscous fluids is restricted to analyzing
the equations linearized about equilibrium and, thus, the
corresponding claims about causality, local well posedness,
etc., are restricted to this particular, linearized-about-equi-
librium case (see Sec. II B). Furthermore, for applications
in general relativity (in particular the study of viscous
effects in neutron star mergers), one is interested in the case
where properties I–IV hold with dynamical coupling to
Eintein’s equations (again, with exception of property II).
At this point, we should stress that when we say that a

theory is causal, stable, etc., we do not mean it uncondi-
tionally, but rather under a specific set of assumptions.
Obviously, one is interested in cases where the assumptions
are physically reasonable, even if they do not cover all
cases of physical interest. For simplicity, however, in the
remaining of this Introduction and in Sec. II, we avoid
discussion of specific hypotheses. Thus, when we say that a
certain theory is causal, stable, etc., we mean “causal under
a specific set of assumptions,” and unless stated otherwise,
it will be implicitly understood that the assumptions in
question are of physical interest. An exception to this will
be made only later in Sec. II B, when we summarize the
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extent to which different theories of viscous fluids satisfy
one or more of the properties I–IV, since in this case
mentioning the assumptions under which such theories
fulfill some of these requirements will be important for
comparison among them and also with our results. Even in
this case, however, we will refer to those assumptions only
at a high level (e.g., we will say that a certain property holds
for nonzero shear viscosity but without specifying the
precise range of nonzero values that is in fact required for
the result to hold). We believe that this will suffice to give
the reader a panoramic view of the state of affairs in the
field. All the precise assumptions for the results that will be
discussed can be found in the references we provide or, in
the case of the results of this paper, in the remainder of
the text.
The goal of this work is to provide the first example of a

theory of relativistic viscous fluids that simultaneously
satisfies all the properties I–IV. All our results are math-
ematically rigorous, hold with or without dynamical
coupling to Einstein’s equations, are valid in the full
nonlinear regime, and do not make any symmetry or
simplifying assumptions. We establish these results without
the need for additional (extended) variables (see Sec. II B
for details).
Section II provides a more or less self-contained expo-

sition of our results and how they fit within studies of
relativistic fluids with viscosity. We hope that such an
exposition will be helpful to readers interested in the
subject here investigated but who are not necessarily
specialists in all the topics covered by our methods. In
order to keep our account as simple as possible, we carry
out the discussion in Sec. II at a high level, writing few
formulas and omitting several details, but we provide full
references for interested readers. More precisely, in Sec. II
A, we discuss some important concepts underlying the
investigation of relativistic viscous fluids. None of the ideas
discussed in Sec. II A are new, but they play a key role in
our constructions. Therefore, it is convenient to revisit such
ideas here. In Sec. II B, we review the state of affairs in the
field regarding properties I–IV. This review is not intended
to be exhaustive; rather, our goal is to provide enough
context for our results. Finally, in Sec. II C, we provide a
summary and discussion of our results. Specialists might
skip Sec. II without compromising understanding (although
some specialists might still be interested in some aspects of
the discussion in Sec. II C).
Definitions.—The spacetime metric gμν has a mostly plus

signature ð−þþþÞ. Greek indices run from 0 to 3, latin
indices from 1 to 3. The spacetime covariant derivative is
denoted as ∇μ. We use natural units, c ¼ ℏ ¼ kB ¼ 1.

A. Organization of the paper

This paper is organized as follows. In Sec. II we provide
an overview of our results and the context surrounding
them. In Sec. III, we formulate a generalization of Navier-

Stokes (NS) theory using the Bemfica-Disconzi-Noronha-
Kovtun (BDNK) formalism [32–35]. In Sec. IV, we provide
necessary and sufficient conditions that must be fulfilled by
the parameters of the theory for causality to hold. In Sec. V,
we prove that the full nonlinear system of equations in
general relativity is strongly hyperbolic, the solutions are
unique, and the initial-value problem is well posed in
general relativity. A new theorem concerning the linear
stability properties of relativistic fluids in flat spacetime is
given in Sec. VI. We employ this theorem in Sec. VII to
obtain conditions that ensure that the new theory presented
here is stable. The rigorous mathematical proofs of
Theorem I, Proposition I, Theorem II, and Theorem III
are found in the Appendixes A, B, C, and D, respectively.
Our conclusions and outlook can be found in Sec. VIII.

II. BACKGROUND AND DISCUSSION

A. Definition of out-of-equilibrium variables:
Hydrodynamic frames

In the modern perspective, relativistic fluid dynamics is
understood as an effective theory for the evolution of
conserved densities, such as the energy-momentum tensor
Tμν. (We could include, in this introductory part, other
conserved quantities such as the baryon current Jμ and
those associated with higher moments. In fact, conservation
of Jμ will be implicitly understood later in the discussion of
Secs. II A and II B and thereafter since we will often refer to
the presence of a chemical potential. For simplicity,
however, we will often refer only to Tμν in this part, since
this will suffice for the aspects wewant to highlight.) To say
that Tμν is conserved means that

∇μTμν ¼ 0;

which provides equations of motion governing the dynam-
ics of the fluid.
The energy-momentum tensor Tμν is understood as the

expectation value of the microscopic quantum operator T̂μν,
which is an observable that can be defined for any non-
equilibrium state. In equilibrium, the state of the system can
be parametrized by the temperature Teq, the flow velocity
uμeq (observe that this is the four-velocity of the fluid,
although we will often refer to it simply as the velocity; the
fluid velocity is always assumed to be normalized; see
Sec. II B), and the chemical potential μeq. One of the
assumptions that forms the basis of a fluid dynamics
description is that for states not very far from equilibrium,
the physical observable Tμν ¼ hT̂μνi can still be para-
metrized in terms of a “temperature” T, a “flow velocity”
uμ, and a “chemical potential” μ that reduce to Teq, u

μ
eq, and

μeq in equilibrium. We write quotation marks to emphasize
the fact that the quantities T, uμ, and μ have no first-
principles microscopic definitions. Therefore, while it is
useful to interpret T, uμ, and μ as out-of-equilibrium
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macroscopic temperature, velocity, and chemical potential,
since they are close to Teq, u

μ
eq, and μeq and reduce to the

latter in equilibrium, we should ultimately understand T,
uμ, and μ as auxiliary variables that are used to parametrize
the physical observable Tμν—the latter enjoying a first-
principles, microscopic definition even when the system is
out of equilibrium.
It follows that there exists an ambiguity in the definition

of the out-of-equilibrium quantities T, uμ, and μ, since there
are different ways of parametrizing Tμν subject to the
constraint that one recovers the unambiguous parametriza-
tion in terms of Teq, u

μ
eq, and μeq in equilibrium. In other

words, different out-of-equilibrium choices of T, uμ, and μ
to parametrize Tμν are allowed as long as they agree in
equilibrium. This is sometimes expressed by saying that T,
uμ, and μ correspond to a “fictitious” temperature, flow
velocity, and chemical potential [2,36].
A particular choice of parametrization of Tμν in terms of

T, uμ, and μ has been historically called a choice of a
hydrodynamic frame, or simply frame. (It is a bit unfortu-
nate the word “frame” has also other meanings in relativity
theory, e.g., reference frames related by a Lorentz trans-
formation, frames in a tetrad formalism, null frames, or a
local rest frame (LRF), etc. However, all these different
meanings can be distinguished from the context.) A choice
of frame is, therefore, a definition of what one means by
temperature, velocity, and chemical potential out of equi-
librium. Consequently, a choice of frame is always involved
whenever we describe a fluid out of equilibrium in terms of
temperature, velocity, and chemical potential. This is still
the case even if further, extended variables are introduced
(see Sec. II B for the notion of extended variables). The
notion of hydrodynamic frame and how it represents a
choice of out-of-equilibrium variables is discussed exten-
sively in the literature. An incomplete list is given by
Refs. [34,36–51]. References [34,48], in particular, contain
a detailed discussion of the topic.
Observe that once Tμν is cast in terms of T, uμ, and μ, the

energy-momentum conservation equations ∇μTμν ¼ 0 can
be equivalently written as evolution equations for those
quantities. We also remark that one can choose other
thermodynamic quantities, e.g., the energy density or the
pressure, to parametrizeTμν, andwewill in fact do so later on
in the paper. Of course, not all thermodynamic scalars are
independent; they are connected by the first law of thermo-
dynamics and a prescription of an equation of state [2].
Obviously, the nonuniqueness in the definition of the
variables used to parametrizeTμν out of equilibrium remains
if we choose a parametrization in terms of other thermody-
namic variables such as the energy density, pressure, etc.
In order to pass from this qualitative argument about the

ambiguity of T, uμ, and μ away from equilibrium to a more
precise assessment of such ambiguity, one needs to be more
specific about how one formalizes the idea that fluid
dynamics arises as a long time, long wavelength limit of

an underlying microscopic theory, i.e., as a description of
the macroscopic dynamics of the system for small devia-
tions from equilibrium. Such a formalization can be
accomplished in the framework of the so-called gradient
expansion, which was used a century ago by Chapman and
Enskog in the derivation of fluid dynamics from the
(nonrelativistic) Boltzmann equation and that has since
then been adapted to the relativistic setting [38]. We remark
that the gradient expansion is not the only way to formalize
the idea that fluid dynamics is an effective description that
emerges from a more fundamental microscopic behavior;
see Sec. II B for a discussion of ideas involving the so-
called moment expansion and holographic techniques.
Nevertheless, the gradient expansion, while not fundamen-
tal, is a very convenient and powerful formalism based on
effective field theory ideas that allows one to track how
different parametrizations of Tμν lead to different fluid
descriptions.
The gradient expansion is based on the idea that one can

write

Tμν ¼ Oð1Þ þOð∂Þ þOð∂2Þ þ � � � ;

whereOð∂nÞ denotes terms with n derivatives of T, uμ, and
μ [so, e.g., Oð∂2Þ involves both terms of the form ∂2T and
∂T∂μ, etc.] and Oð1Þ corresponds to the terms that reduce
to Tμν

eq, the energy-momentum tensor parametrized in terms
of Teq, u

μ
eq, and μeq. Schematically, this is an expansion in

powers of the Knudsen number Kn ∼ lmicro∂, i.e., the ratio
between the relevant microscopic scale lmicro and the
inverse macroscopic scale L, associated with the derivative
of the hydrodynamic fields. In this sense, the gradient
expansion corresponds to the well-known Knudsen number
expansion used in the description of kinetic systems
[38,39]. In particular, since the expansion truncated at
Oð1Þ corresponds to ideal hydrodynamics, viscous con-
tributions require considering at least Oð∂Þ terms, which is
consistent with the basic intuition that dissipation is a
phenomenon associated with deviations from equilibrium.
In order to construct a fluid theory out of the gradient

expansion, one truncates it at a certain order. This trunca-
tion necessarily defines a scale at which the effective
description is supposed to be valid, with higher-order
effects encoded by the terms neglected in the expansion
which are considered outside the limit of validity of the
truncated theory. Aside from the truncation order, one also
needs to specify the constitutive relations, i.e., the specific
form of each term Oð∂nÞ in terms of T; uμ; μ, up to the
truncation order (see Secs. II B and III for examples). By
specifying the truncation order and the constitutive rela-
tions, one is in fact defining what is meant by T, uμ, and μ
out of equilibrium; i.e., one is making a choice of hydro-
dynamic frame.
Different frame choices, therefore, correspond to differ-

ent effective descriptions of the same truncated theory. At
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this point, it seems almost unnecessary to talk about frames,
and one might be tempted to simply say that one has
distinct theories of fluids. The key word here, however, is
effective. Indeed, when we consider two distinct constitu-
tive relations truncated at a given order,

Tμν ¼ TμνðT; uα; μÞ and T̃μν ¼ T̃μνðT̃; ũα; μ̃Þ;

one obviously has different fluid theories: the equations of
motion ∇μTμν ¼ 0 and ∇μT̃μν ¼ 0 are not the same.
Consequently (upon writing these conservation laws in
terms of T; uα; μ and T̃; ũα; μ̃, respectively), the quantities
T; uα; μ and T̃; ũα; μ̃ satisfy different evolution equations
and, thus, cannot represent the same definition of temper-
ature, fluid velocity, and chemical potential. However,
one needs to keep in mind that the temperature, flow
velocity, and chemical potential are not fundamental
quantities, whereas the energy-momentum tensor is (it
does have a first-principles definition). Thus, TμνðT; uα; μÞ
and T̃μνðT̃; ũα; μ̃Þ differ because they represent distinct
coarse-grained or low-energy limits of the actual, micro-
scopically uniquely defined, energy-momentum tensor.
Therefore, the language of frames signals the key fact that
one is always considering one possible effective description
among many.
Summarizing, there exists an intrinsic ambiguity in how

one parametrizes Tμν in terms of out-of-equilibrium tem-
perature T, velocity uμ, and chemical potential μ. Such
ambiguity simply expresses the fact that these quantities do
not have first-principles microscopic definitions away from
equilibrium. What is not ambiguous away from equilibrium
is the definition of Tμν. One resolves this ambiguity by
choosing a definition of T; uμ; μ. Such a choice is known as
a frame choice. Different parametrizations of Tμν, therefore,
correspond to different frame choices. Not all frame
choices, however, are equally useful. In our work, we
explore suitable definitions of temperature, flow velocity,
and chemical potential to construct effective theories
describing fluids that lead to sensible theories in terms
of satisfying properties I–IV.
At this point, the attentive reader will probably have

noticed that much of the above discussion does not depend
on relativistic principles. In other words, the fact that there
is no first-principles definition of out-of-equilibrium quan-
tities such as temperature, flow velocity, and chemical
potential applies to nonrelativistic theories as well. In the
nonrelativistic setting, however, there exists a highly
successful theory of dissipative (Newtonian) fluids,
namely, the Navier-Stokes-Fourier theory. In light of its
success, it is fair to say that for all practical purposes, one
can take the definitions of out-of-equilibrium quantities in
the Navier-Stokes-Fourier theory as the correct ones in a
nonrelativistic context. Had an equivalently successful
theory of relativistic viscous fluids been available (where
success would in particular incorporate properties I–IV),

we could similarly take the definitions of out-of-equilib-
rium quantities in such a theory as the correct ones for all
practical purposes. Nevertheless, as we explain in the next
section, there is not, at the moment, a theory of relativistic
viscous fluids that can claim such a level of success. Hence,
exploring how different frame choices can lead to different
fluid descriptions becomes a topic of uttermost interest (see
Sec. II C).

B. Brief overview of viscous theories

The first proposal for a relativistic viscous fluid theory
was done by Eckart [52] in 1940, with a closely related
formulation by Landau and Lifshitz [15] in the 1950s. In
these works, the authors postulated a form for the energy-
momentum tensor (and also of the baryon current Jμ, but,
as in the previous section, here we simplify the discussion
by focusing on Tμν only) based on ideas from thermody-
namics and following a covariant generalization of the
nonrelativistic Navier-Stokes-Fourier theory. For example,
in Eckart’s theory, one has

Tμν
Eckart¼ εuμuνþðP−ζ∇λuλÞΔμνþqμuνþqνuμ−2ησμν;

where ε, T, and uμ are the (out-of-equilibrium) energy
density [53], temperature, and velocity of the fluid, with the
latter normalized [54] by uμuμ ¼ −1, Δμν ¼ gμν þ uμuν is
the projection onto the space orthogonal to uμ, P is the
equilibrium pressure (see below) given by an equation of
state (the choice of which depends on the nature of the
fluid; for example, for a conformal fluid one has P ¼ 1

3
ε), ζ

is the coefficient of bulk viscosity, η is the coefficient of
shear viscosity, qμ ¼ −κTðΔν

μ∇ν lnT þ uν∇νuμÞ repre-
sents energy diffusion, with κ being the coefficient of heat
conduction, and σμν ¼ Δμναβ∇αuβ is the shear tensor, with
Δμν

αβ ¼ 1
2
ðΔμ

αΔν
β þ Δμ

βΔν
α − 2

3
ΔμνΔαβÞ (so Δμν

αβ projects a
two-tensor on the space of two-tensors traceless and
orthogonal to uμ). In the absence of viscous effects, when
ζ ¼ η ¼ κ ¼ 0, one recovers the energy-momentum tensor
of an ideal fluid.
According to the standard physical interpretation of the

energy-momentum tensor of a fluid, the fluid’s total
pressure is given by 1

3
ΔμνTμν. It is convenient to write

the total pressure as a sum of an “equilibrium” part, which
is assumed to be given by an equation of state whose
functional form follows that assigned to the fluid in the
limit when viscous effects are absent, and a “nonequili-
brium” part that contains explicitly the viscous contribu-
tions. In the case of Tμν

Eckart, the latter is given by −ζ∇μuμ.
This term clearly illustrates the fact that only terms of first
order in Knudsen number were kept in this case because
ζ=P gives the relevant microscopic length scale associated
with particle-number changing processes, while ∇μuμ

accounts for the inverse length scale associated with the
gradient of the hydrodynamic fields.
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As said, Eckart and Landau and Lifshitz were seeking a
covariant version of the nonrelativistic Navier-Stokes
equation compatible with thermodynamic principles, most
notably, the second law of thermodynamics; i.e., their
choice of Tμν ensured that entropy production (for a
suitable definition of out-of-equilibrium entropy) is non-
negative. From a modern perspective, however, these
theories are better understood as effective theories that
arise from a gradient expansion truncated at first order and
with a specific choice of hydrodynamic frame, i.e., a
specific choice of constitutive relation that parametrizes
the energy-momentum tensor in terms of out-of-equilib-
rium variables. In fact, it is possible to show that the Eckart
and Landau and Lifshitz theories can be obtained from
kinetic theory as an expansion in gradients truncated at first
order [38]. Constraints on the coefficients that appear in
such truncated series are found by imposing the second law
of thermodynamics. In accordance with the notion of
hydrodynamic frames, the specific choices that lead to
the theories of Eckart and of Landau and Lifshitz are known
in the literature as the Eckart and Landau and Lifshitz
frames [2]. One can immediately see that other frame
choices are possible for an energy-momentum tensor
truncated at first order upon noticing that Tμν

Eckart does
not contain all possible terms that are linear in derivatives of
T, uμ, and μ—terms that are allowed in a truncation at first
order. Theories arising from a gradient expansion truncated
at first order are known as first-order theories. The Eckart
and Landau theories are, thus, examples of first-order
theories.
The Eckart and Landau and Lifshitz theories are very

intuitive and natural at first sight. They correspond to
immediate covariant generalizations of the nonrelativistic
Navier-Stokes-Fourier theory (in fact, they recover it in the
nonrelativistic limit), satisfy the second law of thermody-
namics, preserve many features present in the ideal case
(e.g., the energy density is recovered from the energy-
momentum tensor by double contraction with the velocity),
are relatively simple, and, as already said, can be derived
from kinetic theory. Yet, they are remarkably at odds with
fundamental physical principles in that they are known to
violate causality and are unstable [25,55]. Consequently,
the Eckart and Landau and Lifshitz theories cannot be taken
as viable theories of relativistic viscous fluids. In fact, a
large class of first-order theories, of which the theories of
Eckart and of Landau and Lifshitz are particular cases, are
known to be acausal and unstable [25]. One naturally
wonders what are the root causes of the failures of these
theories, especially when at first sight they look very
intuitive. We return to this point in Sec. II C.
A different approach for the construction of relativistic

viscous fluid theories was taken by Israel and Stewart in a
series of works [36,37,56–58], adapting ideas developed by
Müller in the nonrelativistic setting [59]. The resulting
theory is referred to Israel-Stewart or Müller-Israel-Stewart

(MIS) theory, or sometimes simply Israel-Stewart theory.
In the MIS theory, the energy momentum takes the form

Tμν
MIS ¼ εuμuν þ ðPþ ΠÞΔμν þQμuν þQνuμ þ πμν:

The quantities Π, πμν, and Qμ represent the bulk viscosity,
shear viscosity, and energy diffusion of the fluid, and are
referred to as viscous fluxes. We see that Tμν

Eckart corre-
sponds to the choices where the bulk scalar Π ¼ −ζ∇μuμ,
the shear-stress tensor is given by πμν ¼ −2ησμν, and the
energy diffusion reads Qμ ¼ qμ ≡ −κTðΔν

μ∇ν lnT þ
uν∇νuμÞ. In the MIS theory, however, the viscous fluxes
are taken to be new variables on the same par as the
“ordinary” variables T, uμ, etc., (see below). Because
Π; πμν;Qμ add to the number of variables, hence extending
the state space, they are known as extended (thermody-
namic) variables and theories that investigate extended
variables are referred to as extended (thermodynamic)
theories [60,61]. An important point to make (already
alluded to earlier) is that one cannot dispense with a choice
of hydrodynamic frame even in extended theories, since
one still needs to make a definition of out-of-equilibrium
temperature, flow velocity, and chemical potential.
At this point, it is convenient to make the following

definition. The variables T, uμ, μ and those derived from
them via the first law of thermodynamics and a choice of
equation of state are known as hydrodynamic variables or
fields. In other words, the hydrodynamic variables are the
“ordinary” fields already present in the case of an ideal
fluid (although the physical interpretation of these variables
is not precisely the same as in the ideal fluid case; as
discussed, the meaning of, e.g., temperature is different in
or out of equilibrium). In this language, we can say that the
Eckart and Landau and Lifshitz theories involve only the
hydrodynamic variables, whereas the MIS theory involves
both hydrodynamic and extended fields. In addition, the
gradient expansion is always an expansion in the hydro-
dynamic variables [62].
Because the MIS formalism introduces new variables in

addition to the hydrodynamic fields, it also requires new
equations of motion besides the standard conservation laws
such as ∇μT

μν
MIS ¼ 0. The desired equations are postulated

to be relaxation-type equations whose precise form is
chosen so that entropy production is non-negative—where
the entropy current is also extended from its usual form
used in ideal fluids to include the extended variables
Π; πμν;Qμ. For example, Π satisfies

τΠuμ∇μΠþ Π ¼ −ζ∇μuμ −
1

2
ζTΠ∇μ

�
τΠ
ζT

uμ
�
;

where τΠ is a relaxation time. See, e.g., Ref. [2] for the full
set of equations satisfied by Π; πμν;Qμ, the form of the
entropy current including these fields, and the derivation of
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the equations of motion from the second law of thermo-
dynamics [63].
The MIS theory enjoys the following good properties:

the equations of motion are stable, thus satisfying property
II, and their linearization about equilibrium states is causal,
thus satisfying property I [24,64]. Also, it can, in certain
limits, be derived from kinetic theory [2,57,58].

We next discuss three other theories of great interest that
employ extended variables: Denicol-Niemi-Molnar-Rischke
(DNMR), resumed Baier-Romatschke-Son-Starinets-
Stephanov (rBRSSS), and anisotropic hydrodynamics
(AHYDRO) theories. The DNMR theory is an effective
theory derived from kinetic theory via an expansion in
moments [65]. The moment expansion goes back to Grad in
his work on nonrelativistic fluids [66,67]. Applying this
formalism to the relativistic Boltzmann equations, together
with a new power-counting scheme involving Knudsen and
inverse Reynolds number expansions, DNMR arrived at a
set of equations for the hydrodynamic fields and a set of
extended variables Π, πμν, and Qμ that represent the bulk
viscosity, shear viscosity, and energy diffusion, similarly to
the MIS equations. Also similar to the MIS equation is the
fact that the equations satisfied by the viscous fluxes in the
DNMR theory are relaxation-type equations. Despite their
similarities, it is important to stress that the MIS and
DNMR equations are not the same.
The DNMR theory enjoys many good properties. It is

stable and its linearization about equilibrium states [68] is
causal [26]. When only bulk viscosity is present, the
DNMR theory is causal, locally well posed, and strongly
hyperbolic; these properties hold with and without dynami-
cal coupling to Einstein’s equations [71]. When all viscous
fluxes are present, but chemical potential is absent, the
DNMR equations have recently been shown to be causal
(again, with or without coupling to Einstein’s equations)
[72] (see Refs. [26,73,74] for related results under sym-
metry assumptions). Hence, property II holds in general for
the DNMR equations; properties I, III, and IV hold if shear
viscosity and heat conduction are absent (with or without
dynamical coupling to Einstein’s equations); and property
I holds with all viscous fluxes present but in the absence of
chemical potential [75] (with or without dynamical cou-
pling to Einstein’s equations). Most importantly, the
DNMR theory has been very successful in phenomeno-
logical studies of the quark-gluon plasma, particularly in
numerical simulations of its dynamical behavior; see, e.g.,
Refs. [5,76].
We now move to discuss the resumed Baier-

Romatschke-Son-Starinets-Stephanov theory [77]. In order
to do so, we need to start with the (plain, not resumed)
BRSSS theory [77]. This is an effective theory obtained
from the gradient expansion truncated at second order. As
such, it involves only the hydrodynamic fields, and the
equations of motion were chosen in Ref. [77] to be defined
in the Landau frame. This effective theory-based approach

was originally developed for conformal fluids in Ref. [77],
and the same equations of motion for a conformal system
were concurrently derived in Ref. [44] through the fluid-
gravity correspondence, a powerful technique introduced in
that work which was motivated by the holographic duality
of string theory [78]. In order to address the issues with
causality and stability, Baier et al. [77] proposed a MIS-like
theory with transport coefficients that ensure its agreement
with the gradient expansion at second order. In the context
of Ref. [77], this approach provides a resummation of
higher-order terms and the latter explains the differences
found, for instance, between rBRSSS and DNMR.
However, at the linearized level, this resummed BRSSS
theory shares the same properties of DNMR. Furthermore,
the techniques used in Ref. [72] can be adapted to establish
causality for this theory in the nonlinear regime. The local
well-posedness and hyperbolicity aspects of rBRSSS have
not yet been established.
Because the MIS, DNMR, and rBRSSS theories share

many properties, in particular, the use of extended variables
that satisfy similar relaxation-type equations, and their
linearizations about equilibrium agree, they are sometimes
collectively referred to as Israel-Stewart or Müller-Israel-
Stewart theories, Israel-Stewart-like or Müller-Israel-
Stewart-like theories, or yet generalized Israel-Stewart or
Müller-Israel-Stewart theories. They are sometimes also
collectively referred to as second-order theories. While
there is no harm in grouping these theories together in this
fashion, especially if one is concerned only with their
general qualitative behavior, it is important to note that
when it comes to specific features, including properties I–
IV, the exact form of the equations matters and, therefore,
the differences among these theories become important.
The fourth extended theory we would like to briefly

discuss is the anisotropic hydrodynamics theory [79–83].
The latter is, in principle, more general than most
approaches as it investigates the problem of small devia-
tions around a given anisotropic nonequilibrium state.
Formally, this approach involves a resummation in both
Knudsen and inverse Reynolds numbers, which may be
interpreted as a generalization of DNMR’s power-counting
ideas [84]. The equations of motion, which are in practice
derived using kinetic theory, can be approximated to give
rise to a MIS-like theory. As such, causality and stability in
the linearized regime follow from previous results. Nothing
is known about causality in the nonlinear regime of this
theory. The local well-posedness and hyperbolicity aspects
of AHYDRO have not yet been established.
The above summary highlights how the use of extended

variables has led tomany successes in the study of relativistic
viscous fluids. These accomplishments seem even more
impressive when they are contrasted with the fact
already mentioned that first-order theories (which do not
employ extended variables) had been largely ruled out for
decades due to instabilities and lack of causality [25,55].
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Such successes nonetheless, it is important to keep in mind
several actual or potential limitations of the extended theories
discussed above, as we now discuss.
First of all, observe that none of the theories MIS,

DNMR, rBRSSS, or AHYDRO is known to satisfy all the
properties I–IV. To the extent that they satisfy some of these
properties, this happens under restrictive assumptions.
Indeed, in the case of the quark-gluon plasma it is
abundantly clear that one needs to consider situations
when all viscous fluxes are present and the chemical
potential is nonzero [85] (and it is likely that this is also
true in neutron star mergers [12,14]), in which case none of
these theories is known to be causal and locally well posed.
Moreover, while numerical simulations of the dynamics of
the quark-gluon plasma based on the DNMR equations
have been carried out for a long time [86–88], only recently,
with the aforementioned causality results [71,72], one can
determine regions in the parameter and state spaces for
which causality holds or fails. When such constraints are
taken into consideration, it is found that state-of-the-art
numerical simulations of the quark-gluon plasma violate
causality [89,90], especially at early times [90]. Although
further research is required to find out the implications of
such causality violations to our current understanding of
those properties of the quark-gluon plasma that have been
extracted from numerical simulations, such results should
serve as a definite cautionary tale about running numerical
simulations of relativistic viscous fluids whose causality
properties are poorly understood. Furthermore, if causality
violations can be a real issue in numerical simulations of
the quark-gluon plasma, which are carried out in flat
spacetime, the situation is even more precarious in simu-
lations of general relativistic viscous fluids, such as in
neutron star mergers. While some simulations have been
implemented in this setting [11], they rely on a formulation
for which the key properties I, III, and IV are not known
to hold.
Another potential limitation of the extended theories

discussed above is that they do not seem appropriate for
describing shock waves [91–93]. This is a potentially
important limitation given the preponderance of shock
waves in fluid dynamics, which is aggravated by the recent
discovery that solutions to MIS-like equations can become
singular in finite time [94]. Additionally, MIS-like and
AHYDRO theories are only expected to describe the
transient regime of dilute gases as their derivation is
most naturally understood within kinetic theory [36,65].
Therefore, their use in other types of systems, such as in
strongly coupled relativistic fluids, is a priori not justified.
In fact, it is known that MIS-like equations do not generally
describe the complex transient regime of holographic
strongly coupled gauge theories [95–97] (see Ref. [98]
for the case of higher-derivative corrections). In this aspect,
we anticipate that the causal and stable first-order theory
developed here does not describe this transient regime

either, despite satisfying properties I–IV. However, this is
not an issue per se given that the description of such a far-
from-equilibrium state is certainly beyond the regime of
applicability of first-order hydrodynamics.
Finally, MIS-like theories lack the degree of universality

expected to hold in hydrodynamics as the equations of
motion themselves change depending on the derivation. For
instance, the equations of motion in Ref. [77] have different
terms than in Ref. [65], which is explained by the different
power-counting scheme employed in those works. This
situation should be contrasted with theories derived from
the gradient expansion: although, of course, a plethora of
different effective theories can be derived in the gradient
expansion formalism, these different theories can always be
viewed as particular cases, obtained via different frame
choices, of the most general expansion truncated at a
certain order. In fact, an approach of this type is employed
in this paper; see Sec. II C.
Summarizing, despite its undeniable success in advanc-

ing our understanding of relativistic viscous fluids in
general, and of the quark-gluon plasma in particular,
MIS-like and AHYDRO theories still face many chal-
lenges, especially when it comes to settings where general
relativity is involved. Thus, it is extremely important to also
consider alternative theories of relativistic viscous fluids.
This is especially the case when pursuing the study of
viscous effects in neutron star mergers [12,14,99,100] and,
as already mentioned, it is far from clear that the MIS-like
and AHYDRO approach are the correct approaches for this
setting.
In view of the above, it is not surprising that researchers

have explored other theories of relativistic viscous fluids
than those discussed so far. A natural place to start such an
investigation is the gradient expansion, and the simplest
possibility that includes viscous effects is that of first-order
theories, i.e., effective fluid descriptions arising as a
truncation of the gradient expansion at first order. On
the other hand, since, as said, large classes of first-order
theories are acausal and unstable, one might naturally
wonder whether such an approach would be doomed to
fail. In order to answer this, it is important to understand the
assumptions involved. While it is true that the acausality
and instability results [25,64] cover large classes of first-
order theories, these results apply only to theories that
satisfy

uμuνTμν ¼ ε; ð1Þ

i.e., only to frame choices that preserve the relation (1). In
other words, the latter means that an observer moving with
the fluid always sees the energy density as if it were in
equilibrium, even for states where entropy is produced.
Therefore, the construction of stable and causal first-order
theories remains a distinct possibility as long as one avoids
constitutive relations that imply (1). First-order theories for
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which (1) holds are often collectively referred to as the
(relativistic) Navier-Stokes theory [65], although there is no
universal agreement on the terminology [35].
The physical meaning of (1), as well as of not satisfying

it, is discussed in Sec. II C. We also remark that the
assumptions in Refs. [25,64] imply other special relations
than (1). But here, for simplicity, we focus only on (1),
since our goal is not to have a detailed discussion of the
assumptions involved in those works but rather to illustrate
how their conclusions apply only for a particular class of
theories that employ very specific frame choices and,
therefore, say nothing about first-order theories that employ
other hydrodynamic frames. In other words, here the reader
can take (1) as a placeholder for the class of frames that
are assumed in the instability and acausality results
[25,64]. Such a class of frames is far from exhaustive.
Consequently, the results in Refs. [25,64] simply do not
apply if different constitutive relations are used.
This motivated researchers to construct stable and causal

first-order theories of viscous fluids. Important attempts in
this direction go back to the first decade of this century
[21,42,47,101]. The first more formal indication that causal
and stable first-order theories could be constructed if the
frame choice (1) is avoided is given in Refs. [102–104].
These works were also the first ones to carry out a
systematic study of viscous shocks in relativistic theories,
a topic that in fact seems to be one of the main goals in
these references.
The first construction of a stable and causal first-order

theory of viscous fluids was carried out by Bemfica et al.
[32] for the case of conformal fluids (see also Ref. [105] for
some of the mathematical details of Ref. [32]). These
results hold with or without dynamical coupling to
Einstein’s equations. Although Ref. [32] was restricted
to conformal fluids, it provided an unequivocal proof that
first-order stable and causal theories are possible, provided
that one avoids the frame choice (1). Soon thereafter, causal
and stable first-order theories were obtained by Kovtun [34]
and by Bemfica et al. [33] for the case of nonconformal
fluids without a chemical potential [106]—although
stability was obtained only with the help of a numerical
investigation, so it might be more precise to say that
stability was only strongly suggested and not established.
The resulting first-order theory became known in the
literature as the BDNK theory [35]. Its local well
posedness and strong hyperbolicity was established in
Refs. [107,108]. The stability and causality of the
BDNK theory in the presence of a chemical potential
was obtained in Ref. [35] (again, stability in this case was
inferred only numerically). We also mention the closely
related results [109,110]. Of course, all these results are
obtained using frame choices different than (1). Perhaps not
surprisingly, after these results, the community took a
renewed interest in first-order theories. See, e.g.,
Refs. [51,98,111–119], and references therein. We remark

that choices of frames other than (1) have been studied
before BDNK in Refs. [42,101,102,120], but, as said, the
first construction of a stable and causal first-order theory
was done in Ref. [32] in the case of a conformal fluid. We
return to the BDNK theory in Sec. II C. In what follows, we
continue with our brief review of viscous theories.
Another first-order theory of interest is the Lichnerowicz

theory [121], introduced in the 1950s but not investigated in
detail until recently (see references that follow). The
Lichnerowicz theory has been shown to be causal in the
(very special) case of irrotational fluids [122] by the second
author of this paper (see also Ref. [123]). While irrotation-
ality is too strong of a constraint to be useful for most
physical applications, Ref. [122] is of interest because it
initiated the techniques that have since then been employed
to study the causality of the BDNK theory, including the
techniques employed in this work. We should also mention
that the Lichnerowicz theory has found some interesting
applications in the study of dissipative cosmological
models [124–127].

Another formalism of importance in the study of viscous
theories is that of divergence-type (DT) theories [128]. In
this approach, all the conserved quantities describing the
dynamics of the fluid are obtained from a single generating
function χ which is a function of a dynamical set of
variables ζA ¼ ðζ; ζμ; ζμνÞ (with ζμν trace-free and sym-
metric) representing the degrees of freedom of the fluid. For
example, in the DT approach the energy-momentum tensor
is obtained as

Tμν
DT ¼ ∂χ

∂ζμ∂ζν :

DT theories provide a far-reaching subject with many
important contributions to the physics of fluids, kinetic
theory, and out-of-equilibrium phenomena. Here, we limit
ourselves to discuss DT theories with respect to properties
I–IV. See Refs. [2,61,92,128–131] for further discussion of
DT theories and Refs. [132–134] for applications of DT
theories to the quark-gluon plasma.
All information of DT theories is contained in the

generating function χ. Unfortunately, there is no prescription
on how to construct χ, not to speak of how to construct a
generating function that leads to a theory satisfying proper-
ties I–IV. In fact, we think it would be more accurate to
consider theDTapproach as a general formalism instead of a
precisely defined theory or set of theories. That is because
radically different theories, such as Eckart’s and certain
types of extended theories, can be cast in divergence-type by
the choice of a suitable generating function [128].

Properties I–IV have been investigated in the context of
DT theories in Ref. [128]. The authors constructed a DT
theory that satisfies properties I–IV for states in equilib-
rium, i.e., when ζA ¼ ζAjeq. Next, they argued that, by
continuity, these properties will also hold for ζA sufficiently
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close to ζAjeq. However, no estimate is obtained for how
close to ζAjeq the state ζA needs to be. Thus, given any
nonequilibrium state ζA, this continuity result does not
provide any information on whether this specific system
satisfies the desired properties I–IV. In particular, without a
quantitative estimate on how small ζA − ζAjeq needs to be,
one does not know whether the states ζA for which
properties I–IV hold include states of physical interest. It
could in principle happen that this continuity argument
only guarantees the desired properties in a neighborhood of
ζAjeq that is orders of magnitude smaller than the size of any
deviation from equilibrium that one typically considers in
viscous fluid dynamics.
Another way of saying this is that the results in Ref. [128]

are purely qualitative, not providing a quantitative assess-
ment of their applicability to physical systems. This should
be contrasted with the precise quantitative results we
establish here (see Secs. IV–VI) and in the predecessor
works [32,33,72], which are obtained by employing sub-
stantially more refined techniques than a general continuity
argument. In Refs. [92,130–132,134], further results have
been obtained, but they are all of the same qualitative nature
as above, relying on precisely the same continuity argument.
Thus, we believe that a fair assessment of DT theories is that
they can in principle accommodate properties I–IV, but
precise conditions ensuring that such properties hold—in
particular, conditions that allow application to concrete
physical problems—are yet unknown.
We finally briefly mention recent formulations of vis-

cous fluids [135,136] inspired by Carter’s formalism and
the variational principle [112]. Such formulations address
some of the properties I–IV but do not establish them in
completeness.
Although the review here provided is not exhaustive, we

believe that it suffices to get across the following main
point, namely, despite intense work on the subject and
many different proposals made in the last 80 years, one still
does not have a theory of relativistic viscous fluids that
incorporates all relevant viscous fluxes and chemical
potential while satisfying all the properties I–IV.
Constructing such a theory is the goal of the present paper.

C. Summary and discussion of our results

In this paper, we consider the BDNK theory with
chemical potential and all relevant viscous fluxes, namely,
bulk viscosity, shear viscosity, and heat conduction, and
show that it satisfies all the properties I–IV, i.e., causality,
stability, local well posedness, and strong hyperbolicity.
Our results hold in the full nonlinear regime for the fluid
equations in a fixed background or dynamically coupled to
Einstein’s equations. We work in 3þ 1 dimensions and do
not make any symmetry or simplifying assumptions. As
explained in the previous section, this is the first time that a
theory of relativistic viscous fluids with all these properties

is constructed. In addition, all our results are mathemati-
cally rigorous and we provide a set of precise inequalities
among scalar quantities (e.g., shear and bulk viscosity) that
determine the regions in parameter and state space for
which properties I–IV hold. Such inequalities are useful for
numerical simulations as they allow us to check, at each
time step, whether conditions for causality and stability are
fulfilled.
The key conceptual ingredient that allows us to establish

our results is the realization that the causality and stability
properties of a theory are intrinsically tied to its hydro-
dynamic frame. This happens because different choices
affect the properties of the corresponding partial differential
equations (PDEs) that describe the evolution of the fluid. In
particular, we avoid the frame choice (1), which in first-
order theories leads to acausality and instability. The frame
choice (1) has a natural intuitive appeal; namely, it states
that the energy density measured by an observer moving
with the fluid (i.e., in the fluid’s local rest frame), uμuνTμν,
can be parametrized by a single scalar that can be identified
with the energy density of the fluid in equilibrium [note that
(1) holds for an ideal fluid]. It is not surprising, therefore,
that Eckart and Landau and Lifshitz adopted frames
satisfying (1). On the other hand, such a simplicity in
the definition of the hydrodynamic fields out of equilib-
rium, while desirable, is by no means a fundamental
property. The key idea underlying the BDNK theory is
that one should let the fundamental principle of causality
(and also of stability and local well posedness) dictate
which frame choices (i.e., parametrizations of Tμν) are
allowed, rather than choose a frame based on nonfunda-
mental principles and only then investigate properties such
as causality. In passing, we note that the MIS-like theories
discussed in this section also adopt (1), although, as just
said, other frame choices can be made. Different frames
have been recently investigated in the context of extended
theories in Refs. [137,138].
The idea of exploring different frame choices to con-

struct a first-order theory that satisfies properties I–IV is not
entirely new to this work. It was, in fact, the key idea
employed in the earlier versions of the BDNK theory that
have been showed to satisfy those properties in some
particular cases (see Sec. II B). We next explain what the
new aspects of this work are, but in order to do so, we need
to first review some other key ideas employed in the earlier
constructions of the BDNK theory.
Since we do not want to make premature frame choices,

our first step is to consider the most general frame; i.e., we
write down the most general expression for Tμν (and also Jμ

in the case of the present work since we here consider
nonzero chemical potential) compatible with the gradient
expansion truncated at first order; see Eqs. (5) and (6) for
the precise expression. By considering the most general
constitutive relations compatible with the symmetries of the
problem as our starting point, we are in fact applying the
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basic tenets behind the construction of effective theories
[48,139–141] to formulate hydrodynamics as a classical
effective theory that describes the near equilibrium, long
time, long wavelength behavior of many-body systems in
terms of the same variables fT; μ; uνg already present in
equilibrium. For completeness, we remind the reader that
an effective theory is constructed to capture the most
general dynamics among low-energy degrees of freedom
that is consistent with the assumed symmetries. When this
procedure is done using an action principle, the action must
include all possible fields consistent with the underlying
symmetries up to a given operator dimension and the
coefficients of this expansion can then be computed from
the underlying microscopic theory. These coefficients are
ultimately constrained by general physical principles such
as unitarity, CPT (charge, parity, and time reversal)
invariance, and vacuum stability. Analogously, in an
effective theory formulation of relativistic viscous hydro-
dynamics, the equations of motion must take into account
all the possible terms in the constitutive relations up to a
given order in derivatives that describe deviations from
equilibrium. The coefficients that appear in this expansion
can then be computed from the underlying microscopic
theory (using, for instance, linear response theory [48]),
being ultimately constrained by general physical principles
such as causality in the case of relativistic fluids [20] and
also by the fact that the equilibrium state must be stable; i.e.,
small disturbances from equilibrium in an interacting (uni-
tary) many-body system should decrease with time [142].

Observe that by considering the most general energy-
momentum tensor at first order, we are allowing viscous
corrections to the equilibrium energy density; i.e., one has

uμuνTμν ¼ εþ ∂ðT; μÞ:
[See Eq. (7) for the precise expression.] Even though this is
in sharp contrast with (1), in hindsight it seems the natural
thing to do. After all, it is standard to do precisely the same
with the pressure, i.e., to split 1

3
ΔμνTμν into an “equilib-

rium” part and a “viscous part” (see Sec. II B) [143]. There
is no reason not to follow a similar recipe for the energy
density seen by a comoving observer.
We next investigate how causality constrains the con-

stitutive relations. The idea that one should let causality
determine which frames are allowed in a theory, while
conceptually powerful, does not tell us how to in practice
find the appropriate frames. Causality of a theory can be
determined by computing its characteristics [144].
Roughly, the characteristics are hypersurfaces in spacetime
that correspond to the propagation modes of a theory. For
example, in the case of Einstein’s equations, the character-
istics are simply the light cones gμνvμvν ¼ 0. While in
principle we can always compute the characteristics of a
system of PDEs, in practice a brute-force calculation of the
characteristics seems unattainable for a nonlinear system of

PDEs as complex as the BDNK system. In order to be able
to compute the characteristics, we take a cue from the
system’s underlying geometric properties. Inspired by
structures found in the case of ideal fluids by Disconzi
and Speck in Ref. [145], which need to be recovered in the
ideal limit, we look for acoustical-metric-like structures. In
addition, knowing what the characteristics of the system
should be in some particular limit (e.g., in the conformal
case that had already been treated) is also helpful to guide
the calculations. In the case treated here, in particular, we
already know what needs to be recovered in the limit of
zero chemical potential. Finally, physical intuition also tells
us what kinds of modes of propagation should be present in
the system. In a nutshell, by relying on geometrical and
physical intuition and an understanding of the causal
properties of the theory in some particular limits, we can
have a good educated guess for what the characteristics
should look like. This allows us to look for a specific
factorization of the characteristic determinant that points in
that direction. This is the reason why, in our calculations,
we group certain terms in certain ways, leading to expres-
sions that can be managed in the end. Naturally, a brute-
force approach would not be able to anticipate how one
should group and factor terms in a way that would allow an
explicit determination of the characteristics.
The next step is to carry out a diagonalization of the

principal part of the equations of motion in order to establish
strong hyperbolicity.We are able to do so becausewe have a
precise understanding of the system’s characteristics. Even
so, in order to carry out the diagonalization, we need towrite
the system as a system of first-order PDEs (notice that
∇μTμν ¼ 0 is a system of second-order PDEs because Tμν

involves up to first derivatives of the hydrodynamic fields).
In doing so, there is the risk of introducing spurious
characteristics. For example, in the standard linear wave
equation the characteristics are the light cones. However,
when onewrites it as a first-order system in the standardway,
the resulting system has a spurious characteristic (it corre-
sponds, in the language of eigenvalues that can be applied to
first-order systems, to a zero eigenvalue).While the presence
of spurious characteristics per se is not an obstacle to
diagonalization, the more of them there are, the more likely
there will be obstacles to the diagonalization. Thus, we seek
to choose as variables for our first-order system quantities
that have direct physical or geometrical meaning, so that the
roots of the resulting characteristic polynomial resemble as
closely as possible the ones of the original system. Of
course, this does not guarantee diagonalizability. We still
need to carry out some work mostly technical in nature to
assure that the system is diagonalizable. But mutilating the
equations upon rewriting them as first order by introducing
new, fake features is likely to only make the technical work
harder or even insurmountable.
With diagonalization at hand, we can proceed to estab-

lish local well posedness. The basic idea is that once the
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system is diagonalized, one can rely on techniques of
diagonal systems of PDEs. There is a catch, though. The
diagonalization of the system is at the level of the so-called
principal symbol (i.e., it is a purely algebraic procedure that
does not deal directly with differential operators). In order
to apply it to the actual system of PDEs, one needs to
introduce pseudo-differential operators, and the quasilinear
nature of the equations causes further complications as we
need to deal with pseudo-differential operators with limited
smoothness. While there are results available in the
literature for such situations (see, e.g., Ref. [146]), we
have not found a result that could be directly applied to our
case. Thus, Bemfica and co-workers developed the neces-
sary tools in Refs. [107,108] with applications to the
BDNK equations with zero chemical potential in mind.
From these techniques and the diagonalization, local well
posedness follows.
Finally, let us address stability. For this, one needs to find

the roots of the polynomial determining the Fourier modes
of the perturbations. More precisely, only the sign of the
roots is relevant. Since the corresponding polynomial is of
high order, there is little hope of determining its roots
exactly, and even the analysis of the sign of the roots is very
challenging. Moreover, differently than what happens to
the causality analysis, geometrical intuition is not of much
help here because the Fourier modes are not covariant
quantities. Because of these difficulties, in previous works
the stability of the BDNK equations was not determined
rigorously, being obtained numerically or only in the
homogeneous Lorentz boosted frame [33,35]. Because of
a new result demonstrated in this paper, this limitation is
eliminated, as we discuss below.
We are now ready to discuss specific novelties of the

present work. While we continue to employ the ideas
described above and in fact improve on them, especially
with respect to some of the technical aspects that are more
challenging for the complete system here considered, we
want to highlight what are the truly new aspects introduced
in this work. First, we are able to completely and rigorously
determine the stability of the system. For this, we rely on a
new stability theorem, which roughly says that stability in
the fluid’s local rest frame (which can in general be
determined because in this case the polynomial for the
modes simplifies considerably) implies stability in any
Lorentz boosted frame provided that the system is causal
and strong hyperbolic; see Sec. VI for the precise assump-
tions and statement of the theorem. The theorem thus
establishes a close relationship between causality and
stability. While connections between causality and stability
have been discussed before, see Refs. [24,26] and refer-
ences therein, these results focused on specific theories,
thus making unclear whether they were due to the specific
form of the equations of motion or if they were examples of
a yet undiscovered connection between causality and
stability as general physical principles. Our theorem, in

contrast, is a general theorem that can be applied to many
different systems, showing that the relationship between
causality and stability runs deeper and is not a feature of
specific systems. In fact, we obtain stability of the BDNK
system by showing that it satisfies the assumptions of the
general theorem.
Interestingly, recently, a related theorem was proven in

Ref. [147], albeit using entirely different methods. The
results in Ref. [147] also provide further physical intuition
on the relationship between causality and stability, showing
that lack of causality allows that dissipation in one Lorentz
frame be viewed as “antidissipation” (i.e., dissipation
running “backward in time”) in another Lorentz frame.
We also note the related work, Ref. [69]. Combined, our
paper and the works of Refs. [69,147] provide a compre-
hensive picture of the relationship between causality and
stability, an idea that was hinted at several times before in
the literature (see above references) but that had eluded the
community until now.
We now discuss strong hyperbolicity. While strong

hyperbolicity has been obtained for the BDNK theory
before in the absence of a chemical potential [33,107,108],
the introduction of a chemical potential causes new severe
difficulties and the approach used in the case without
chemical potential does not seem to work. Indeed, in
Refs. [33,107,108], the choice of variables to write the
system as first order was based primarily on their physical
interpretation. For example, the viscous correction to the
equilibrium energy density was one of the variables chosen.
As just said, a similar approach does not work here. While
it is often a good idea to consider variables with a physical
meaning, the first-order reduction we seek to establish itself
does not need to carry much physical meaning, so an
approach employing easily identifiable physical variables
might not bear any fruit. The first-order system does carry,
however, some intrinsic geometric properties, such as
natural decompositions in the directions parallel and
perpendicular to uμ or the fact that the characteristics of
the original system are preserved by the reduction to first
order. Thus, a choice of geometric variables seems more
appropriate. That is what we have done, considering new
variables that involve several tensorial decompositions of
the original variables. This has the extra advantage that
several tensorial and geometric properties of the fields can
be used to carry out the difficult calculations needed to
diagonalize the system. Yet another advantage is that while
the previous physical choice of variables was specific to the
form of the BDNK equations, the geometric approach is
much more general and, thus, can be adapted to other
theories in that similar tensorial decompositions hold for
several fluids equations. Therefore, a second novel aspect
of this work is a new framework to investigate strong
hyperbolicity in relativistic fluids. We remark that once the
diagonalization is carried out, we can rely on the techniques
developed in Refs. [107,108] to establish local well
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posedness. Thus, while local well posedness is probably the
most technical and mathematical aspect of our results, we
were able to rely more on previous techniques than any
other of the results we obtain here.
In addition, it should by no means be overlooked that,

although the proof of causality provided here follows
similar ideas as in our earlier work [33], the fact that we
are now considering the full set of equations makes the
analysis much more difficult. Thus, a third novelty of our
work is a substantial improvement of the techniques
previously employed to analyze causality. From our cau-
sality analysis, it follows that the characteristics of the
BDNK theory are the flow lines, sound waves, the so-called
second sound, corresponding to the propagation of temper-
ature perturbations [24], and shear waves (plus heat
diffusion). In addition, when coupling to Einstein’s equa-
tions is considered, we find another set of characteristics
corresponding to gravitational waves.
Finally, as already stressed many times, the main end

product of this paper is itself a major novelty, namely, the
first construction of a viscous theory containing all relevant
fields and satisfying properties I–IV. We accomplish so by
building and expanding on several previous ideas and also
by introducing a series of novel ideas, as described above.
Having discussed the new aspects of our work, we move

on to discuss how they combine with other aspects of the
BDNK theory to provide a promising theoretical tool for
the study of general relativistic viscous phenomena. We
begin by pointing out that the BDNK theory has been
shown to be derivable from kinetic theory and holographic
arguments [32,33,148]. While derivation from kinetic
theory by itself is not guarantee that a theory is physically
meaningful since the coarse-grain procedure might intro-
duce nonphysical features—indeed, recall that the Eckart
and Landau-Lifshitz theories are derivable from kinetic
theory—it is reassuring to establish this connection with a
microscopic theory. As shown in Ref. [148], the derivation
of BDNK theory from holography can be done in the
context of the fluid-gravity correspondence [44] by care-
fully taking into account the presence of zero modes of
the corresponding differential operators in the holo-
graphic bulk.
Next, we should point out that, contrary to MIS-like

theories, the BDNK theory is capable of handling shocks.
By this, we mean that Rankine-Hugoniot-type conditions
can in principle be obtained for the BDNK theory simply
due to the fact that the BDNK equations are written as the
conservation laws ∇μTμν ¼ 0 and ∇μJμ ¼ 0. Aside from
this simple observation, viscous shocks have been recently
studied for the BDNK theory in the case of a conformal
fluid using numerical methods in Ref. [149], while math-
ematically rigorously properties were established in
Ref. [150].
At this point, we need to explain the role of shocks in the

BDNK theory. Since the BDNK theory is an effective

theory truncated at first order in the gradient expansion, it is
expected to be valid when gradients are not very large,
which is precisely the opposite of shocks. In order to
explain what we mean by a description of shocks in the
BDNK formalism, let us consider for a moment an ideal
fluid. In this case, one also is assuming that gradients are
small. Alternatively, one may also see this as the limit
where microscospic length scales are much smaller than the
length scales associated with the gradients. However,
shocks are known to develop in solutions of ideal hydro-
dynamics, and the study of shocks is indeed an important
topic within the community. To what extent such shocks are
accurate depictions of the state of the physical system is a
legitimate question. Nevertheless, once we have decided to
study shocks in the context of ideal hydrodynamics, the
formalism allows us to do so in that the equations of motion
of ideal fluids can accommodate weak solutions (also
known as distributional solutions) using the Rankine-
Hugoniot conditions [23]. The same situation happens
with BDNK: the formalism in principle allows for the
study of shocks. Whether or not such solutions are
physical, or accurate in the sense that the results would
change significantly if the formalism was extended to
second order, is an important question that is beyond the
scope of our paper. However, the point we are making is
that we can, in principle, study shock solutions in the
BDNK theory.
In other words, while the derivation of BDNK theory

rests on the assumption of small gradients, one might try to
apply it to situations where in principle gradients are not
small (like shocks), just like it was done before in the
context of ideal fluids. Although this seems inconsistent, it
is precisely what it is done when one employs the equations
of ideal fluids to the study of shocks. Moreover, it is also
the case that MIS-like theories are often applied to
situations where gradients are not so small; see, e.g.,
Refs. [84,90,151–155]. It is an intriguing, almost philo-
sophical, question why one can sometimes still obtain
meaningful results in such cases, even though shocks are
formally beyond the regime of validity of any known
approach to viscous fluids—an important question, how-
ever, that is beyond our scope here.
We now discuss another aspect of importance in viscous

theories, which is entropy production. Naturally, one needs
the second law of thermodynamics to be satisfied; i.e.,
entropy production for physically realizable states of the
system must be non-negative. Before addressing this point
in the BDNK theory, however, some important points need
to be highlighted. Strictly speaking, there is no universally
understood expression for the entropy of a given system out
of equilibrium, aside from the one given by the Boltzmann
equation. Thus, while it is useful to define an out-of-
equilibrium entropy (which must, of course, reduce to the
definition of equilibrium entropy in the absence of dis-
sipation), we need to keep in mind that such a definition is
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not fundamental or even unique. Moreover, the requirement
that entropy production be non-negative on-shell uncondi-
tionally, i.e., to all orders in gradients, is certainly too
stringent. In fact, since a fluid description is an effective
description, it has a certain limit of applicability. Therefore,
one should require that entropy production be non-negative
only within the regime of validity of the theory (which is
constructed within a certain approximation scheme). This
point was stressed in Ref. [102] and discussed in detail in
Ref. [34]. In fact, enforcing non-negative entropy produc-
tion even in the presence of any size of gradients was part of
the Eckart and Landau and Lifshitz theories, but the
resulting theory is unstable and acausal, as seen, showing
that this requirement by itself is not guaranteed to lead to
sensible theories in the context of the gradient expansion.
Non-negative entropy production to all gradients is also a
guiding principle in the construction of the MIS theory, but
so far properties I, III, and IV remain open for it. On the
other hand, the DNMR equations, that are stable, causal (in
the absence of chemical potential), and are extensively used
in numerical simulations of the quark-gluon plasma, do not
have entropy production non-negative to all orders in
Knudsen and inverse Reynolds numbers, but they should
have non-negative entropy production within the limit of
validity of the theory [65]. The same is true for the BDNK
theory, as pointed out in Ref. [34] and shown in Sec. III A.
A thorough discussion of the role of entropy in viscous
theories can be found in Ref. [51].
We finally comment on the ability of the BDNK theory

to describe realistic physical systems. In order to go beyond
theoretical aspects and make connection with experiments,
one needs to carry out realistic numerical simulations of the
BDNK equations. Not surprisingly, given how recent the
theory is, such investigations are at an initial stage, but the
results so far have been encouraging. In Ref. [149], the
authors carry out numerical simulations of the BDNK
theory in 1þ 1 dimensions in the case of a conformal fluid
and compare the results with simulations of MIS (rBRSSS)
equations in the same setting. They found that for small
values of the coefficient of shear viscosity, BDNK and MIS
provide essentially the same evolution, but their dynamics
differ for larger viscosity values. Given that small viscosity
is one of the main regimes of interest of both theories
(higher-order corrections might become relevant in both
theories if viscosity is not small), this shows that at least in
this test case the BDNK theory reproduces the well-studied
and considerably successful behavior of MIS theory. In
addition, the BDNK theory also reproduces well-known
behavior considering Bjorken [156] and Gubser [157–159]
flows, including the presence of a hydrodynamic attractor
[32]. Further numerical studies of BDNK theory can be
found in Refs. [160,161].
We also stress the obvious point that being a causal,

stable, and locally well-posed theory are themselves
fundamental properties that need to be satisfied as a

prerequisite for describing actual physical phenomena.
Thus, while on the one hand a theory possessing these
properties is only of formal interest if it is not connected to
experiments, on the other hand, a theory that has some
phenomenological success but violates, say, causality,
cannot be taken as an accurate description of real relativ-
istic physical phenomena. In this regard, we once more
remark that, in view of the results presented in this paper,
the BDNK theory is currently the only theory that satisfies
the fundamental requirements I–III and the additional
property IV when all viscous contributions and chemical
potential are incorporated, including in the case when
dynamical coupling to Einstein’s equations is considered.

III. GENERALIZED NAVIER-STOKES THEORY

We consider a general-relativistic fluid described by an
energy-momentum tensor Tμν and a timelike conserved
current Jμ associated with a global Uð1Þ charge that we
take to represent baryon number. In our approach, the
equations of relativistic fluid dynamics are given by the
conservation laws,

∇μJμ ¼ 0 and ∇μTμν ¼ 0; ð2Þ

which are dynamically coupled to Einstein’s field equa-
tions:

Rμν −
R
2
gμν ¼ 8πGTμν: ð3Þ

For the sake of completeness, we begin by recalling the
case of a fluid in local equilibrium [2]. In this limit, one
uses the following expressions in the conservation laws:

Tμν ¼ εuμuν þ PΔμν and Jμ ¼ nuμ; ð4Þ

where ε is the equilibrium energy density, n is the
equilibrium baryon density, P ¼ Pðε; nÞ is the thermody-
namical pressure defined by the equation of state, uμ is a
normalized timelike vector (i.e., uμuμ ¼ −1) called the
flow velocity, and Δμν ¼ gμν þ uμuν is a projector onto the
space orthogonal to uμ. The thermodynamical quantities in
equilibrium are connected via the first law of thermody-
namics εþ P ¼ Tsþ μn, where T is the temperature, s is
the equilibrium entropy density, and μ is the chemical
potential associated with the conserved baryon charge. We
note that uμ∇με ¼ 0 and uμ∇μn ¼ 0 in global equilibrium.
These are much stronger constraints on the dynamical
variables than in the case of local equilibrium where, e.g.,
only the combination uμ∇μεþ ðεþ PÞ∇μuμ vanishes. In
local equilibrium, both uμTμν and Jν are proportional to uν

and, thus, the flow velocity may be defined using either
quantity [2].

The system of equations (2) and (3) for an ideal fluid
[defined by Eq. (4)] is causal in the full nonlinear regime.
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Furthermore, given suitably defined initial data for the
dynamical variables, solutions for the nonlinear problem
exist and are unique. The latter properties establish that the
equations of motion of ideal relativistic fluid dynamics are
locally well posed in general relativity [16,17].
Let us now consider the effects of dissipation. Without

any loss of generality, one may decompose the current and
the energy-momentum tensor in terms of an arbitrary
future-directed unit timelike vector uμ as follows [48]:

Jμ ¼ N uμ þ J μ; ð5Þ

Tμν ¼ Euμuν þ PΔμν þ uμQν þ uνQμ þ T μν; ð6Þ

where N ¼ −uμJμ, E ¼ uμuνTμν, and P ¼ ΔμνTμν=3 are
Lorentz scalars while the vectors J ν ¼ Δν

μJμ, Qν ¼
−uμTμλΔν

λ, and the traceless symmetric tensor
T μν ¼ Δμν

αβT
αβ, with Δμν

αβ ¼ 1
2
ðΔμ

αΔν
β þ Δμ

βΔν
α − 2

3
ΔμνΔαβÞ,

are all transverse to uν. Observe that this decomposition is
purely algebraic and simply expresses the fact that a vector
and a symmetric two-tensor can be decomposed relatively
to a future-directed unit timelike vector. The physical
content of the theory is prescribed by relating the several
components in this decomposition to physical observables,
which will then evolve [162] according to Eqs. (5) and (6).
The general decomposition in Eqs. (5) and (6) expresses

fJμ; Tμνg in terms of 17 variables fE;N ;P; uμ;J μ;
Qμ; T μνg, and the conservation laws in Eq. (2) give five
equations of motion for these variables. Therefore, addi-
tional assumptions must be made to properly define the
evolution of the fluid. As mentioned before, the NS theory,
including the standard approach in Refs. [15,52], assumes
that E ¼ ε and N ¼ n. The same assumption is usually
made in the MIS theory [36], though different prescriptions
can be easily defined in the context of kinetic theory
[46,65,163]. A further constraint is usually imposed on the
transverse vectors, i.e., either J μ ¼ 0 or Qμ ¼ 0 through-
out the evolution. For instance, the former gives Jμ ¼ nuμ

and Tμν ¼ εuμuν þ ðPþ ΠÞΔμν þ uμQν þ uνQμ þ T μν,
where Π is the bulk viscous pressure (in equilibrium,
Π ¼ 0, Qν ¼ 0, and T μν ¼ 0). In this case, in an extended
variable approach such as MIS [36], Π, Qν, and T μν obey
additional equations of motion that must be specified and
solved together with the conservation laws, whereas in the
NS approach these quantities are expressed in terms of uμ,
ε, and its derivatives.
In this paper, we investigate the problem of viscous

fluids in general relativity using the BDNK formulation of
relativistic fluid dynamics. See Secs. II B and II C for a
detailed discussion of the origins of the BDNK theory and
the conceptual framework that it entails. As explained
in those sections, the starting point in the formulation of
the BDNK theory is the most general expression for
the energy-momentum tensor and the baryon current at
first order.

In practice, the most general expressions for the con-
stitutive relations that define the quantities in Eqs. (5) and
(6), truncated to first order in derivatives, are (following the
notation in Ref. [34])

E ¼ εþ ε1
uα∇αT

T
þ ε2∇αuα þ ε3uα∇αðμ=TÞ; ð7aÞ

P ¼ Pþ π1
uα∇αT

T
þ π2∇αuα þ π3uα∇αðμ=TÞ; ð7bÞ

N ¼ nþ ν1
uα∇αT

T
þ ν2∇αuα þ ν3uα∇αðμ=TÞ; ð7cÞ

Qμ ¼ θ1
Δμν∇νT

T
þ θ2uα∇αuμ þ θ3Δμν∇νðμ=TÞ; ð7dÞ

J μ ¼ γ1
Δμν∇νT

T
þ γ2uα∇αuμ þ γ3Δμν∇νðμ=TÞ; ð7eÞ

T μν ¼ −2ησμν; ð7fÞ

where σμν ¼ Δμναβ∇αuβ is the shear tensor. The transport
parameters fεi; πi; θi; νi; γig and the shear viscosity η are
functions of T and μ. Thermodynamic consistency of the
equilibrium state (i.e., that ε, P, and n have the standard
interpretations of equilibrium quantities connected via
well-known thermodynamic relations) imposes that γ1 ¼
γ2 and θ1 ¼ θ2 [34]. The final equations of motion for
fT; μ; uαg, which are of second order in derivatives, are
found by substituting the expressions above in the con-
servation laws. In the language of Sec. II A, expressions (7)
for Eqs. (5) and (6) correspond to the most general choice
of a hydrodynamic frame for a first-order theory. As
stressed in Ref. [34], it is of course impossible to not
choose a hydrodynamic frame since the latter actually
defines the meaning of the variables fT; μ; uμg out of
equilibrium (see Sec. II A for details).
In fact, in the regime of validity of the first-order theory,

one may shift fT; μ; uμg by adding terms that are of first
order in derivatives, shifting also the transport parameters
fεi; πi; θi; νi; γig, without formally changing the physical
content of Tμν and Jμ [34]. However, there are combina-
tions of the transport parameters that remain invariant under
these field redefinitions. In fact, the shear viscosity η and
the combination of coefficients that give the bulk viscosity
ζ and charge conductivity σ are invariant under first-order
field redefinitions, as explained in Ref. [34]. Additional
constraints among the transport parameters appear when
the underlying theory displays conformal invariance, as
discussed in detail in Ref. [32] at μ ¼ 0, and at finite
chemical potential in Refs. [34,35] (see also Ref. [110]).
Hoult and Kovtun [35] investigated Eq. (7) at nonzero

chemical potential using a class of hydrodynamic frames
where ε3 ¼ π3 ¼ θ3 ¼ 0. This corresponds to the case
where there are nonequilibrium corrections to both the
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conserved current and the heat flux. This choice is useful
when considering relativistic fluids where the net baryon
density is not very large, as in high-energy heavy-ion
collisions. Conditions for causality were derived and limit-
ing cases were studied that strongly indicated that this
choice of hydrodynamic frame is stable against small
disturbances around equilibrium. Further studies are
needed to better understand the nonlinear features of its
solutions (well posedness) and also the stability properties
of this class of hydrodynamic frames at nonzero baryon
density in a wider class of equilibrium states.
In this paper, we consider another class of hydrodynamic

frames that we believe can be more naturally implemented
in simulations of the baryon-rich matter formed in neutron
star mergers or in low-energy heavy-ion collisions. Our
choice for the hydrodynamic frame is closer to Eckart’s as
we define the flow velocity using the baryon current; i.e.,
Jμ ¼ nuμ holds throughout the evolution (γi ¼ νi ¼ 0).
Clearly, this limits the domain of applicability of the theory
to problems where there are many more baryons than
antibaryons so the net baryon charge is large.
In this case, it is more convenient to use ε and n as

dynamical variables instead of T and μ=T because the most
general expressions for the Lorentz scalar contributions to
the constitutive relations involve only linear combinations
of uμ∇με and ∇μuμ, given that current conservation implies
that the replacement uλ∇λn ¼ −n∇λuλ is valid. For sim-
plicity, we choose to parametrize the out-of-equilibrium
corrections to the scalars as follows [we note that θ1 ¼ θ2
and γ1 ¼ γ2, and in practice, 8 out of the 14 parameters in
Eq. (7) can be set using first-order field redefinitions [34],
so one is then left with η, ζ, σ, and three other parameters]:

E ¼ εþ τε½uλ∇λεþ ðεþ PÞ∇λuλ�; ð8aÞ

P ¼ P − ζ∇λuλ þ τP½uλ∇λεþ ðεþ PÞ∇λuλ�; ð8bÞ

where τε and τP have dimensions of a relaxation time and ζ
is the bulk viscosity transport coefficient. When evaluated
on the solutions of the equations of motion, one can see that
these quantities assume their standard form as in Eckart’s
theory up to second order in derivatives because E ∼
εþOð∂2Þ and P ¼ P − ζ∇μuμ þOð∂2Þ on shell (we
follow traditional terminology where a given quantity is
said to be on shell when it is evaluated using the solutions
to the equations of motion).
In fact, we remind the reader that in Eckart’s theory [52]

the energy-momentum tensor is given by Tμν ¼
εuμuν þ ðP − ζ∇λuλÞΔμν − 2ησμν þ uμQν þ uνQμ, with
heat flux Qμ ¼ −κTðuλ∇λuμ þ Δλ

μ∇λT=TÞ, where κ ¼
ðεþ PÞ2σ=ðn2TÞ is the thermal conductivity coefficient.
However, as remarked in Ref. [34], in the domain of validity
of the first-order theory one may rewrite the Eckart expres-
sion for the heat flux as Qν ¼ σT½ðεþ PÞ=n�Δλ

ν∇λðμ=TÞ
plus second-order terms. This is done by noticing that

ðεþ PÞuλ∇λuμ þ Δμλ∇λP ¼ 0þOð∂2Þ on shell, which
implies that one may write, using the standard thermody-
namic relation ½ðdPÞ=ðεþPÞ�¼½ðdTÞ=T�þ½ðnTÞ=ðεþPÞ�×
dðμ=TÞ,

uλ∇λuα þ
Δαλ∇λT

T
¼ −

nT
εþ P

Δαλ∇λðμ=TÞ þOð∂2Þ: ð9Þ

Therefore, one can always choose the coefficients such
that the heat flux Qμ has the same physical content of
Eckart’s theory plus terms that are of second order on shell.
We use this to write this quantity as

Qν ¼ σT
ðεþ PÞ

n
Δλ

ν∇λðμ=TÞ
þ τQ½ðεþ PÞuλ∇λuν þ Δλ

ν∇λP�; ð10Þ

where τQ has dimensions of a relaxation time.
In this work, we make the following choice for the

constitutive relations that give the energy-momentum
tensor and the baryon current:

Jμ ¼ nuμ; ð11aÞ

Tμν ¼ ðεþAÞuμuν þ ðPþ ΠÞΔμν − 2ησμν

þ uμQν þ uνQμ; ð11bÞ

A ¼ τε½uλ∇λεþ ðεþ PÞ∇λuλ�; ð11cÞ

Π ¼ −ζ∇λuλ þ τP½uλ∇λεþ ðεþ PÞ∇λuλ�; ð11dÞ

Qν ¼ τQðεþ PÞuλ∇λuν þ βεΔνλ∇λεþ βnΔνλ∇λn; ð11eÞ

where

βε ¼ τQ

�∂P
∂ε

�
n
þ σTðεþ PÞ

n

�∂ðμ=TÞ
∂ε

�
n
; ð12aÞ

βn ¼ τQ

�∂P
∂n

�
ε

þ σTðεþ PÞ
n

�∂ðμ=TÞ
∂n

�
ε

; ð12bÞ

and τε, τP, and τQ quantify the magnitude of second-order
corrections to the out-of-equilibrium contributions to the
energy-momentum tensor given by the energy density
correction A, the bulk viscous pressure Π, and the heat
flux Qμ. In other words, Eqs. (11) and (12) correspond to
the frame we consider in this work; thus they provide a
definition of what we mean by the nonequilibrium hydro-
dynamic fields.
The reason for considering the constitutive relations (11)

and (12) is that they lead to a theory satisfying properties I–
IV, as we show below. We refer the reader to Sec. II C for a
discussion of the ideas and techniques that led to the
particular choice of Eqs. (11) and (12).
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The equations of motion for the fluid variables are
obtained from the conservation laws and they can be
written explicitly as

uλ∇λnþ n∇λuλ ¼ 0; ð13aÞ

uλ∇λεþðεþPÞ∇λuλ¼−uλ∇λA− ðAþΠÞ∇λuλ

−∇μQμ−Qμuλ∇λuμþ2ησμνσ
μν;

ð13bÞ

ðεþ PÞuν∇νuβ þ Δβλ∇λP

¼ −ðAþ ΠÞuν∇νuβ − Δβλ∇λΠþ Δβ
λ∇μð2ησμλÞ

− uλ∇λQβ −
4

3
∇λuλQβ −Qμσ

μβ −Qμω
μβ; ð13cÞ

where ωμν ¼ 1
2
ðΔλ

μ∇λuν − Δλ
ν∇λuμÞ is the kinematic

vorticity tensor [2]. The equations above show that,
on shell,A ∼ 0þOð∂2Þ,Π ∼ −ζ∇μuμ þOð∂2Þ, andQν ¼
σT½ðεþ PÞ=n�Δλ

ν∇λðμ=TÞ þOð∂2Þ. Equations (11)–(13)
define a causal and stable generalization of Eckart’s theory
that is fully compatible with general relativity, as we prove
in the next sections. We remark that when one neglects the
effects of a conserved current altogether, the theory reduces
to the case studied in Refs. [33,34]. For additional
discussion about the case without a chemical potential,
including far-from-equilibrium behavior and also the pres-
ence of analytical solutions, see Refs. [111,116,117].

A. Entropy production

It is instructive to investigate how the second law of
thermodynamics is obeyed in this general first-order
approach. This was discussed in detail by Kovtun in
Ref. [34] and, more recently, by other authors in Ref. [51].
The standard covariant definition of the entropy current

based on the first law of thermodynamics TSμ ¼
Puμ − uνTνμ − μJμ [36], together with Eq. (11), can be
used to show that the entropy density measured by a
comoving observer is given by

−uμSμ ¼ sþA
T
: ð14Þ

Note that in our system one finds that A ¼ 0þOð∂2Þ on
shell. Furthermore, using Eqs. (11) and (13) one finds that
the divergence of the entropy current is given by

∇μSμ ¼ 2ησμνσ
μν

T
−
Π
T
∇μuμ þ

n
εþ P

QνΔλ
ν∇λðμ=TÞ

−
Qν

T

�
uλ∇λuν þ

Δλ
ν∇λP
εþ P

�
−
A
T
uλ∇λT

T
: ð15Þ

It is crucial to note [34] that in a first-order approach ∇μSμ

can only be correctly determined up to second order in

derivatives [recall that in this argument terms such as
∇μ∇νϕ and ð∇μϕÞð∇νϕÞ, for any field ϕ, count as second-
order terms; see Sec. II A]. This means that not all the terms
in Eq. (15) actually contribute to this expression at second
order. For instance, when evaluating Eq. (15) on shell one
must keep in mind that the last two terms in Eq. (15) are
already at least of third order and must, thus, be dropped.
A similar argument can be used to show that the term
Π∇μuμ ¼ −ζð∇μuμÞ2 þOð∂3Þ. Therefore, one can see that

∇μSμ ¼ 2ησμνσ
μν

T
þ ζð∇μuμÞ2

T
þ σT½Δλ

ν∇λðμ=TÞ�½Δνα∇αðμ=TÞ� þOð∂3Þ; ð16Þ

which is non-negative when η, ζ, σ ≥ 0. Hence, there are no
violations of the second law of thermodynamics in the
domain of validity of the first-order theory—higher-order
derivative terms Oð∂3Þ in the entropy production can only
be understood by considering terms of higher order in
derivatives in the constitutive relations in Tμν and Jμ, which
is beyond the scope of the first-order approach.

IV. CAUSALITY

In order to determine the conditions under which
causality holds in this theory, we need to understand the
system’s characteristics. Our system is a mixed first-
second-order system of PDEs. While the principal part
and characteristics of systems of this form can be inves-
tigated using Leray’s theory [21,105,164], here it is simpler
to transform our equations into a system where all
equations are of second order. We thus apply uμ∇μ on
Eq. (13a). In this case, the conservation laws (2) coupled to
Einstein’s equations (3) written in harmonic gauge,
gμνΓα

μν ¼ 0, read

uβuα∂2
αβnþnδανuβ∂2

αβu
νþ B̃1ðn;u;gÞ∂2g¼B1ð∂n;∂u;∂gÞ;

ð17aÞ

ðτεuαuβ þ βεΔαβÞ∂2
αβεþ βnΔαβ∂2

αβn

þ ρðτε þ τQÞuðαδβÞν ∂2
αβu

ν þ B̃2ðε; n; u; gÞ∂2g

¼ B2ð∂ε; ∂n; ∂u; ∂gÞ; ð17bÞ

ðβε þ τPÞuðαΔβÞμ∂2
αβεþ βnuðαΔβÞμ∂2

αβnþ Cμαβν ∂2
αβu

ν

þ B̃μ
3ðε; n; u; gÞ∂2g ¼ Bμ

3ð∂ε; ∂n; ∂u; ∂gÞ; ð17cÞ

gαβ∂2
αβg

μν ¼ Bμν
4 ð∂ε; ∂n; ∂u; ∂gÞ; ð17dÞ

where ∂2
αβ ¼ ∂α∂β (using standard partial derivatives),

ρ¼ðεþPÞ, and AðαBβÞ ¼ ðAαAβ þ AβBαÞ=2. The remain-
ing notation is as follows. We use ∂lϕ to indicate that a
term depends on at most l derivatives of ϕ. A term of the
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form Bð∂l1ϕ1;…; ∂lkϕkÞ∂lϕi, i ∈ f1;…; kg, indicates an
expression that is linear in ∂lϕi with coefficients depending
on at most l1 derivatives of ϕ1;…;lk derivatives of ϕk. For
example, the term ðuμ∂μεþ ∂μuμÞgαβ∂2

αβgγδ would be
written as Bð∂ε; ∂u; gÞ∂2g (a term of this form is not
present in our system; we write it here only for illustration).
The terms B̃ above are top order in derivatives of g and thus
belong to the principal part, although, as we will see, their
explicit form is not needed for our argument, whereas the B
terms are lower order and do not contribute to the principal
part. We have also defined

Cμαβν ¼
�
τPρ−ζ−

η

3

�
ΔμðαδβÞν þðρτQuαuβ−ηΔαβÞδμν : ð18Þ

We notice that by taking uμ∇μ of Eq. (13a) we are not
introducing new characteristics in the system. This can be
viewed from the characteristic determinant computed
below which contains an overall factor of uμξμ to a power
greater than one. Theorem I below establishes necessary
and sufficient conditions for causality to hold in our system
of equations. We show that the assumptions of Theorem I
are not empty in Sec. VII A. Throughout this paper, we use
the following definition for the speed of sound cs:

c2s ¼
�∂P
∂ε

�
s̄
¼

�∂P
∂ε

�
n
þ n

ρ

�∂P
∂n

�
ε

; ð19Þ

where s̄ is the equilibrium entropy per particle. Also, we
define

κs ¼
ρ2T
n

�∂ðμ=TÞ
∂ε

�
s̄
¼ ρ2T

n

�∂ðμ=TÞ
∂ε

�
n
þ Tρ

�∂ðμ=TÞ
∂n

�
ε

:

ð20Þ

Theorem I.—Let ðε; n; uμ; gαβÞ be a solution to Eqs. (3)
and (13), with uμuμ ¼ −1, defined in a globally hyperbolic
spacetime ðM; gαβÞ. Assume that Assumption 1

ðA1Þ ρ ¼ εþ P; τε; τQ; τP > 0 and η; ζ; σ ≥ 0:

Then, causality holds for ðε; n; uμ; gαβÞ if, and only if, the
following conditions are satisfied:

ρτQ > η; ð21aÞ
�
τε

�
ρc2sτQþ ζþ 4η

3
þ σκs

�
þ ρτPτQ

�
2

≥ 4ρτετQ

�
τPðρc2sτQþ σκsÞ− βε

�
ζþ 4η

3

��
≥ 0; ð21bÞ

2ρτετQ > τε

�
ρc2sτQþζþ4η

3
þσκs

�
þρτPτQ ≥ 0; ð21cÞ

ρτετQ þ σκsτP > τε

�
ρc2sτQ þ ζ þ 4η

3
þ σκs

�

þ ρτPτQð1 − c2sÞ þ βε

�
ζ þ 4η

3

�
: ð21dÞ

The same result holds true for Eqs. (13) if the metric is not
dynamical.
Proof.—The proof can be reduced to a computation of

the characteristics of Eq. (17) [164]. Technical details are
found in Appendix A.

V. STRONG HYPERBOLICITY
AND LOCAL WELL POSEDNESS

In this section, we investigate the initial-value problem
for Eqs. (3) and (13). The goal is to show that the system is
causal and locally well posed under very general condi-
tions. First, we briefly discuss the initial data required to
solve the system of equations. Then, we rewrite our system
as a first-order system. We show that this first-order system
is diagonalizable in the sense of Proposition I. This means,
in particular, that the system is strong hyperbolic according
to the usual definition of the term, as in, e.g., Refs. [2,23].
The importance of having strongly hyperbolic equations is
due to its implications for the initial-value problem. As
already mentioned, one is generally interested in evolution
equations that are locally well posed [165]. For equations
with constant coefficients, local well posedness is equiv-
alent to strong hyperbolicity [166]. For nonconstant coef-
ficients and nonlinear systems, such an equivalence does
not hold [167–169]. However, there remains a close
connection between strong hyperbolicity and local well
posedness. For most reasonable systems, once diagonaliz-
ability is available, one can use known techniques to derive
energy estimates which, in turn, can be used to prove local
well posedness; see Sec. II C for more discussion on the
techniques involved. This is precisely the case for our
system of equations. Even though our equations consist of a
system of second-order PDEs, we can use the diagonalized
system of first-order equations to derive energy estimates.
Once these estimates are available, we use a standard
approximation argument as in Refs. [17,170] to obtain local
well posedness (see Theorem II).

A. Initial data

Equations (13) are second order in ε, n, and uμ.
Thus, initial data along a noncharacteristic hypersurface
consist of the values of ε, n, uμ and their first-order time
derivatives. Clearly, the initial uμ has to satisfy uμuμ ¼ −1.
Also, it is important to note that Eq. (13a) is first order and,
thus, the initial data cannot be arbitrary but must satisfy a
compatibility condition ensuring that Eq. (13a) holds at
t ¼ 0. Therefore, one can use Eq. (13a) to write the time
derivative of n in terms of the time derivative of uμ
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(this feature would also appear in Navier-Stokes theory in
the Eckart hydrodynamic frame).
A natural choice to determine the initial conditions for

the matter sector is to set an initial state that is within the
regime of validity of the first-order theory and closely
reproduces Eckart’s theory. First, one can directly extract n
and uμ from Jμ at the initial spacelike hypersurface. Then,
one sets the nonequilibrium correction to the energy density
A in Eq. (11) to zero in the initial state, so then the initial
value for ε equals Tμνuμuν and the first-order time
derivative of ε is defined in terms of the first-order time
derivative of the flow velocity (plus spatial derivatives that
are known in the initial state). Clearly, A will be different
than zero later during the actual evolution, and its value can
be used to check if the simulations remain within the
regime of validity of the first-order approach (i.e., jAj=ε
must remain less than unity). Finally, the time derivative of
the flow velocity can be set by imposing that the second-
order on-shell term ðεþ PÞuλ∇λuν þ Δνλ∇λP vanishes.
Hence, one can obtain the time derivative of the flow
velocity and all the other required initial data in the regime
of validity of the first-order approach, emulating Eckart’s
theory as much as possible.
We recall that the initial data for the gravitational sector

has to further satisfy the well-known Einstein constraint
equations. We briefly make some comments on this in
Sec. VIII.

B. Diagonalization and eigenvectors

In this section, we write Eqs. (3) and (13) as a first-order
system, as discussed above. For this, we begin defining the
variables V ¼ uα∂αε, Vμ ¼ Δμα∂αε, W ¼ uα∂αn, Wμ ¼
Δμα∂αn, Sμ ¼ uα∇αuμ, Sν

λ ¼ Δα
λ∇αuν, Fμν ¼ uα∂αgμν, and

F λ
μν ¼ Δλα∂αgμν. Then, the equations of motion can be

cast as

τεuα∂αVþ τQρ∂νSνþτερuα∂αSννþβε∂νVνþβn∂νWν¼ r1;

ð22aÞ

τPΔμα∂αV þ τQρuα∂αSμ þ βεuα∂αVμ þ βnuα∂αWμ

þ ηΠμλα
ν ∂αSνλ ¼ rμ2; ð22bÞ

uα∂αVμ − Δμα∂αV ¼ rμ3; ð22cÞ

uα∂αWμ þ nΔμα∂αSν
ν ¼ rμ4; ð22dÞ

uα∂αSν
λ − Δα

λ∂αSν − X νAα
λ ∂αFA − YνAα

λδ ∂αF δ
A ¼ rν5λ; ð22eÞ

uα∂αFA − Δα
δF

δ
A ¼ r6A; ð22fÞ

uα∂αF δ
A − Δδα∂αFA ¼ rδ7A; ð22gÞ

uα∂αε ¼ r8; ð22hÞ

uα∂αn ¼ r9; ð22iÞ

uα∂αuμ ¼ rμ10; ð22jÞ

uα∂αgA ¼ r11A; ð22kÞ

where the r’s are functions of the fields ε; uν;…;F λ
μν but

not its derivatives and A ¼ σβ for σ ≥ β; i.e., A takes the 10
independent values 00,01,02,03,11,12,13,22,23,33 with
repeated index A summing from 00 to 33,

Πμλα
ν ¼−ηðΔμλδανþΔαλδμνÞþ

�
ρτP−ζþ2η

3

�
Δμαδλν; ð23aÞ

X νAð¼σβÞα
λ ¼ 1

2
½gνðσΔβÞ

λ u
α−uðσΔβÞ

λ g
να−uðσΔβÞνΔα

λ �ð2−δAÞ;
ð23bÞ

YνAð¼σβÞα
λδ ¼ 1

2
uðσuβÞΔα

λδ
ν
δð2 − δAÞ: ð23cÞ

By δA we mean the Kronecker delta in the sense that when
A ¼ σβ, then δA ¼ δσδ, which equals one when σ ¼ β and
zero otherwise. Also, the terms rmay be functions of the 95
variables. Equations (22) were obtained as follows.
Equations (22a) and (22b) come from the conservation
law ∇νTμν ¼ 0 when projected into the directions parallel
and perpendicular to uν, respectively. Equations (22c),
(22d), (22e), and (22g) correspond, respectively, to the
identities ∇α∇βε −∇β∇αε ¼ 0, ∇α∇βn −∇β∇αn ¼ 0,
∇α∇βuν−∇β∇αuν¼Rν

αβσu
σ ¼ð∂αΓν

βσ−∂βΓν
ασÞuσþ terms

of order zero in derivatives, and ∂α∂βgμν − ∂β∂αgμν ¼ 0,

all contracted with uαΔβ
λ . Equations (22f) is the Einstein

equation in the harmonic gauge, i.e., gαβ∂α∂βgμν ¼ terms of
lower order in derivatives, while Eqs. (22h)–(22k) are the
definitions of V, W (also using the identity uα∇αnþ
n∇αuα ¼ W þ nSα

α ¼ 0 to eliminate W thoroughly), Sμ,
and FA, respectively. We may now define the 95 × 1
column vectors Ψ and B as

Ψ ¼

2
64
ψm

ψg

ψd

3
75; ð24Þ

and B¼ðr1;…;r11AÞT , where ψm ¼ ðV;Sν;Vν;Wν;
Sν
0;S

ν
1;S

ν
2;S

ν
3ÞT ∈ R29, ψg¼ðFA;F 0

A;F
1
A;F

2
A;F

3
AÞT∈R50,

and ψd ¼ ðε; n; uν; gAÞT ∈ R16, to write the quasilinear
first-order system (22) in matrix form as

Aα∂αΨ ¼ B; ð25Þ

where, here, Aα ¼ Aα ⊕ uαI16 (⊕ being the direct sum).
The matrix Aα is split in the following way:
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Aα ¼
�

Aα
m −Lα

050×29 Aα
g

�
; ð26Þ

where

Aα
m ¼

2
6666666666666664

τεuα ρτQδ
α
ν βεδ

α
ν βnδ

α
ν ρτεuαδ0ν ρτεuαδ1ν ρτεuαδ2ν ρτεuαδ3ν

τPΔμα ρτQuαδ
μ
ν βεuαδ

μ
ν βnuαδ

μ
ν Πμ0α

ν Πμ1α
ν Πμ2α

ν Πμ3α
ν

−Δμα 04×4 uαδμν 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 uαδμν nΔμαδ0ν nΔμαδ1ν nΔμαδ2ν nΔμαδ3ν

04×1 −Δα
0δ

μ
ν 04×4 04×4 uαδμν 04×4 04×4 04×4

04×1 −Δα
1δ

μ
ν 04×4 04×4 04×4 uαδμν 04×4 04×4

04×1 −Δα
2δ

μ
ν 04×4 04×4 04×4 04×4 uαδμν 04×4

04×1 −Δα
3δ

μ
ν 04×4 04×4 04×4 04×4 04×4 uαδμν

3
7777777777777775

; ð27Þ

while

Aα
g ¼

2
6666664

uαI10 −Δα
0I10 −Δα

1I10 −Δα
2I10 −Δα

3I10
−Δ0αI10 uαI10 010×10 010×10 010×10

−Δ1αI10 010×10 uαI10 010×10 010×10

−Δ2αI10 010×10 010×10 uαI10 010×10

−Δ3αI10 010×10 010×10 010×10 uαI10

3
7777775

ð28Þ

and

Lα ¼

2
6666666666666664

01×10 01×10 01×10 01×10 01×10

04×10 04×10 04×10 04×10 04×10

04×10 04×10 04×10 04×10 04×10

04×10 04×10 04×10 04×10 04×10

XμAα
0 YμAα

00 YμAα
01 YμAα

02 YμAα
03

XμAα
1 YμAα

10 YμAα
11 YμAα

12 YμAα
13

XμAα
2 YμAα

20 YμAα
21 YμAα

22 YμAα
23

XμAα
3 YμAα

30 YμAα
31 YμAα

32 YμAα
33

3
7777777777777775

: ð29Þ

We are now ready to establish that, when written as a
first-order system as above, the equations of motion are
strongly hyperbolic. In Sec. VII A, we show that the
assumptions of Proposition I are not empty.
Proposition I.—Consider the system (22). Assume that

(A1) with η > 0 holds and that Eq. (21) in Theorem I holds
in strict form, i.e., with > instead of ≥. Let ξ be a timelike
covector. Then, (i) detðAαξαÞ ≠ 0, and (ii) for any spacelike
vector ζ, the eigenvalue problem ðζα þ ΛξαÞAαR ¼ 0 has
only real eigenvalues Λ and a complete set of right
eigenvectors R.

Proof.—The proof of this proposition is very lengthy and
we refer the interested reader to check all the details and the
proof presented in Appendix B.

C. Local well posedness

In this section, we establish the local existence and
uniqueness of solutions to the nonlinear equations of
motion in Eqs. (3) and (13).
We begin by noticing that Eq. (13) used the normaliza-

tion uμuμ ¼ −1 to project the divergence of Tμν and Jμ onto
the directions parallel and orthogonal to uμ. In order to
show that the condition uμuμ ¼ −1 is propagated by the
flow, it is more convenient to work directly with Eqs. (2)
and (3). In order to complete the system, we differentiate
uμuμ ¼ −1 twice in the uμ direction:

uβ∇β½uα∇αðuαuαÞ� ¼ 0: ð30Þ

We also differentiate ∇μJμ ¼ 0 once, as in Sec. IV:

uμ∇μð∇νJνÞ ¼ 0: ð31Þ

Observe that Eqs. (30) and (31) imply that uμuμ ¼ −1 and
∇μJμ ¼ 0 hold at later times if these hold at the initial time.
The main result of this section can be found below.
Theorem II.—Let ðΣ; g∘αβ; κ̂αβ; ε∘; ε̂; n∘ ; n̂; u∘α; ûαÞ be an

initial-data set for the system composed of Einstein’s
equations (2) and ∇μJμ ¼ 0, where Tαβ and Jμ are given

in Eq. (11). Assume that u
∘ μu∘ μ ¼ −1, n∘ > 0 [171], and that

∇μJμ¼0 holds for the initial data. Assume (A1) with η > 0

and suppose that Eqs. (21) of Theorem I hold in strict form
and that the transport coefficients are analytic functions of

their arguments. Finally, assume that g
∘
αβ; ε

∘
; n
∘
; u
∘α ∈ HNðΣÞ

and that κ̂αβ; ε̂; n̂; ûα ∈ HN−1ðΣÞ, N ≥ 5, where HN is the
Sobolev space. Then, there exists a globally hyperbolic
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development of the initial data. This globally hyperbolic
development is unique if taken to be the maximum globally
hyperbolic development of the initial data.
Proof.—The proof is found in Appendix C.

VI. NEW THEOREM ABOUT LINEAR STABILITY

Any ordinary fluid must be stable against small devia-
tions from the thermodynamic equilibrium state [15]. (We
only consider systems such that the equilibrium state is
unique and has a finite correlation length. Therefore, in
principle, our discussion does not apply to systems where
the correlation length in equilibrium can become arbitrarily
large, such as at a critical point.) We recall that in
equilibrium βμ ¼ uμ=T must be a Killing vector, i.e.,
∇μβν þ∇νβμ ¼ 0, and also ∇αðμ=TÞ ¼ 0 [36,172,173].
In Minkowski spacetime, nonrotating equilibrium corre-
sponds to a class of states with constant T and μ and
background flow velocity uμ ¼ γð1; vÞ defined by a con-
stant subluminal three-velocity v, where γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
.

(In this paper, we neglect the constant thermal vorticity
term; see Ref. [172] for a nice discussion of its physical
content and consequences.) In the local rest frame v ¼ 0
and the background flow is simply uμ ¼ ð1; 0; 0; 0Þ. In a
stable theory, small disturbances from the general equilib-
rium state T → T þ δTðt;xÞ, μ → μþ δμðt;xÞ, and uμ →
uμ þ δuμðt;xÞ (with uμδuμ ¼ 0) lead to small variations in
the energy-momentum tensor and current, δTμνðt;xÞ and
δJμðt;xÞ, which decay with time.
The standard theories from Eckart and Landau-Lifshitz

are unstable, as shown by Hiscock and Lindblom many
years ago [25]. This instability appears because such
theories possess exponentially growing, hence unstable,
nonhydrodynamic modes, which spoil linear stability
around equilibrium even at vanishing wave number.
(The frequency of a hydrodynamic mode, such as a sound
wave, vanishes in a spatially uniform state. On the other
hand, a nonhydrodynamic mode correspond to a collective
excitation that possesses nonzero frequency even at zero
wave number.) For Landau-Lifshitz theory at zero chemical
potential, this instability is only observed when considering
a general equilibrium state with nonzero v [25,26,73],
while in the case of Eckart the instability already appears
even when v ¼ 0. The lack of causality in these approaches
implies that it is not sufficient to investigate only the static
v ¼ 0 case in order to determine the stability properties of a
general equilibrium state where v ≠ 0, even though such
states are in principle connected via a simple Lorentz
transformation.
The necessity to investigate the stability properties of

general equilibrium states where v ≠ 0 makes linear sta-
bility analyses of viscous hydrodynamic theories very
complicated. Already in the local rest frame, finding
whether the linear modes of the system are stable requires
determining the sign of the imaginary part of the roots of a

high-order polynomial, which becomes a daunting task
when v ≠ 0 (see Refs. [35,70] for recent examples of how
complicated a v ≠ 0 analysis can become in BDNK and
MIS theory, respectively).
We prove below a new theorem that gives sufficient

conditions for causal fluid dynamic equations to be linearly
stable against disturbances of a general nonrotating equi-
librium state with arbitrary background velocity. In this
case, proving stability for the local rest frame implies
stability in any other frame (note that the word frame here is
used in the standard context of special relativity, i.e., to
refer to an inertial observer, and has nothing to do with the
concept of a hydrodynamic frame discussed in previous
sections, which concerned the definition of hydrodynamic
variables out of equilibrium) connected to the local rest
frame via a Lorentz transformation. This general feature is
expected to hold in any interacting relativistic system; i.e.,
no issues should appear if one simply observes a given
system in another inertial frame. We then use this theorem
in Sec. VII to find conditions under which the hydro-
dynamic theory presented here is stable. We remark that our
results can be used to establish stability at nonzero v ≠ 0 in
other theories as well, e.g., MIS, as long as the conditions
discussed below are fulfilled.

A. Transforming a second-order system of linear
differential equations into a first-order one

We begin by showing how one may convert a system of
linear second-order PDEs into a first order one, as this is
needed for the theory discussed in this paper. Let the system
of linearized second-order PDEs be given by

X
b

Mð∂ÞabδψbðXÞ ¼ Nð∂δψÞa; ð32Þ

where a and b run from 1 to n,Mð∂Þba are differential linear
operators of order 2, Nð∂ΨÞ are linear terms containing
derivatives of the perturbed fields δΨ up to order 1, and
δψ1ðXÞ;…; δψnðXÞ are the perturbed fields (for instance,
δε, δn, etc.). We suppose that Eq. (32) arises from the
conservation laws −uα∂βδTαβ ¼ 0, Δμ

α∂βδTαβ ¼ 0, and
∂αδJα ¼ −uβuα∂αδJβ þ Δαβ∂αδJβ ¼ 0, where the first
two come from ∂αδTαβ ¼ 0, while the last equation appears
only when Jμ is included. In this manner, the derivatives in
the equations of motion in Eq. (32) shall always appear as
combinations of uα∂α and Δαβ∂β only. Thus, if the system
in Eq. (32) has one or more second-order equations,
it can be rewritten as a first-order system in the N ≡ 5n
new variables δψ̄aðXÞ ¼ uα∂αψ

aðXÞ and δψ̃a
μðXÞ ¼

Δν
μ∂νψ

aðXÞ. These definitions automatically lead (32) to
n first-order linear equations. One then needs to supplement
those with the 4n dynamical equations that are missing. By
means of the identity ∂α∂βψ

aðXÞ − ∂β∂αψ
aðXÞ ¼ 0, one

may find the extra 4n dynamical equations
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uα∂αδψ̃
a
μðXÞ − Δα

μ∂αδψ̄
aðXÞ ¼ 0, giving the needed 5n

first-order dynamical equations, as required. In matrix
form it becomes

Aα∂αδΨðXÞ þ BδΨðXÞ ¼ 0; ð33Þ

where Aα and B are N × N constant real matrices
and δΨðXÞ is a N × 1 column vector with entries
δψ̄1; δψ̃1

ν;…; δψ̄n; δψ̃n
ν . This ends the procedure.

However, if one of the equations in Eq. (32) is already
of first order but contains variables that have second-order
derivative in other equations, then one can eliminate this
equation by using it as a constraint to eliminate one of the
variables. For example, consider the case of the ideal
current Jμ ¼ nuμ. In this case, the conservation equation
∂αJα ¼ 0 becomes uα∂αδnðXÞ þ n∂αδuαðXÞ ¼ 0. If Tμν

has shear or bulk contributions, for example, then the other
equations must have second-order derivatives of δuμ. Thus,
one must write ∂αδJα ¼ 0 as δψ̄ þ nδψ̃μ

μ ¼ 0, where δψ̃μ
ν ¼

Δα
ν∂αuμ and δψ̄ ¼ uα∂αn. This is a zeroth-order equation in

the new variables and, therefore, is just a constraint. One
may use this constraint in order to eliminate the variable δψ̄
in the other dynamical equations. Then, in this case one
ends up with 5n − 1 dynamical equations for the 5n − 1
fields.
Finally, we remark that other approaches to viscous

relativistic fluids, such as MIS, are already written in the
format (33) in the linearized regime so the procedure to
reduce the order of the equations of motion described above
is not needed and one can move directly to the part below.

B. New linear stability theorem

To study linear stability, let us expand the perturbed
fields in the Fourier modes Kμ ¼ ðiΓ; kiÞ by substituting
δΨðXÞ → expðiKμXμÞδΨðKÞ ¼ expðΓtþ ikixiÞδΨðKÞ in
Eq. (33). The result is

iKμAμδΨðKÞ þ BδΨðKÞ ¼ 0: ð34Þ

Since Kμ appears, as aforementioned, as combinations of
−uαKα ¼ γðiΓ − kiviÞ and ΔμνKμKν¼ðuμKμÞ2þΓ2þk2,
where k2 ¼ kiki, then the direction of ki is not relevant
once one keeps vi arbitrary. Thus, we may write
Kμ ¼ −nμnνKν þ ζμζνKν, where nμ is timelike and ζμ is
spacelike, with nμnμ ¼ −1, nμζμ ¼ 0, and ζμζ

μ ¼ 1 [for
example, it is common to choose Kμ ¼ ðK0; k; 0; 0Þ so that
nμ and ζν are ð−1; 0; 0; 0Þ and (0,1,0,0), respectively]. In
this case we define Ω ¼ nαKα and κ ¼ ζαKα such that
Kμ ¼ −Ωnμ þ κζμ [70]. Then, Eq. (34) can be written as

iΩð−nαAαÞδΨðKÞ ¼ −iκζαAαδΨðKÞ − BδΨðKÞ: ð35Þ

The general form of the covectors n and ζ is nα ¼
γnð−1; ciÞ for any ci such that 0 ≤ cici < 1 and where

γn ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cici

p
≥ 1, and ζα ¼ γζð−d̂jcj; d̂iÞ ≥ 1, where

d̂id̂i ¼ 1 for an arbitrary unitary d̂i and γζ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðd̂iciÞ2

q
≥ 1. From the Cauchy-Schwarz inequality

ðd̂iciÞ2 ≤ jcij2 (here, jcij ¼
ffiffiffiffiffiffiffiffi
cici

p
), then one obtains that

γn ≥ γζ: ð36Þ

Stability demands that the perturbed modes Γ ¼ ΓðkiÞ are
such that ΓR ≤ 0. Now, consider the eigenvalue problem,

ðΛnα þ ζαÞAαr ¼ 0; ð37Þ

where here Λ is the eigenvalue associated with the right
eigenvector r.
Proposition II.—If Eq. (33) is causal, then the

eigenvalues Λ are real and lie in the range ½−1; 1�.
Furthermore, detðnαAαÞ ≠ 0.
Proof.—Causality demands that the roots of QðξÞ ¼

detðξαAαÞ ¼ 0 are such that (i) ξ0 ¼ ξ0ðξiÞ ∈ R and that
(ii) the curves ξ0 lie outside or over the light cone. In other
words, ξαξα ≥ 0. If one writes ξα ¼ Λnα þ ζα, where n and
ζ are real, then condition (i) means that Λ is real. On the
other hand, since n and ζ are orthonormal, then condition
(ii) means that ξαξα ¼ −Λ2 þ 1 ≥ 0, which demands that
Λ2 ≤ 1, i.e., Λ ∈ ½−1; 1�. Now, since QðξÞ ¼ 0 if and
only if ξ is spacelike or lightlike, this means that
detðnαAαÞ ≠ 0. ▪
Theorem III.—Let Eq. (37) have a set of N linearly

independent (LI) real eigenvectors fr1;…; rNg. If Eq. (33)
is causal and stable in the local rest frame O, then it is also
stable in any other Lorentz frame O0 connected to O by a
Lorentz transformation.
Proof.—The details of the proof are found in

Appendix D. However, we summarize some steps here.
Note that causality enables us to invert the matrix ð−nαAαÞ.
Then, it is possible to rewrite Eq. (35) as

iΩδΨðKÞ†ðRTÞ−1R−1δΨðKÞ
¼ −iκδΨðKÞ†ðRTÞ−1R−1ð−nαAαÞ−1ðζαAαÞδΨðKÞ
− δΨðKÞ†ðRTÞ−1R−1ð−nαAαÞ−1BδΨðKÞ; ð38Þ

where the dagger stands for the matrix transpose and
complex conjugate operations altogether,T stands formatrix
transpose operation, while R is the square matrix that
diagonalizes ð−nαAαÞ−1ðζαAαÞ, since Eq. (37) has a com-
plete set of real eigenvectors inRnwith only real eigenvalues.
Then, we can expand δΨðKÞ in terms of these eigenvectors.
In the proof, it is shown that δΨðKÞ†ðRTÞ−1R−1δΨðKÞ and
δΨðKÞ†ðRTÞ−1R−1ð−nαAαÞ−1ðζαAαÞδΨðKÞ are real for any
Lorentz frame. After somework, we demonstrate that, under
the theorem’s statements, stability reduces to the condition
that the term δΨðKÞ†ðRTÞ−1R−1ð−nαAαÞ−1BδΨðKÞmust be
greater than or equal to zero. Since this is proven to be a scalar
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under Lorentz boosts, it can be computed in any frame.
Thus, this implies that if the theory is stable in the LRF and
obeys the other conditions of the theorem, it is stable in any
other Lorentz frame.
We note that this result implies that the original system of

linearized second-order PDEs in Eq. (32) is stable under the
stated assumptions.

1. Applying the stability theorem to a toy model

To illustrate the application of the stability theorem,
consider the simple model described by the fields ϕ and ψμ

that obey the first-order dynamical linear equations:

uα∂αϕ − αΔα
ν∂αψ

ν þ λϕ ¼ 0; ð39aÞ
uα∂αψ

μ − βΔμα∂αϕ ¼ 0: ð39bÞ
We consider the case where uμ is constant [uμ ¼ γð1; viÞ,
with γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
and v2 ¼ vivi < 1] as done in the

stability theorem of the last section. If we write Eq. (39) in
matrix form as

Aα∂αΨðXÞ þ BΨðXÞ ¼ 0; ð40Þ

where ΨðXÞ ¼ ðϕ;ψνÞ is a 5 × 1 column vector,

B ¼
�

λ 01×4

04×1 04×4

�

and

Aα ¼
�

uα −αΔα
ν

−βΔμα uαδμν

�
ð41Þ

are 5 × 5 matrices, the propagation modes ω ¼ ωðkiÞ are
obtained by means of the Fourier transform
ΨðXÞ → eiKμXμΨ̃ðKÞ, where Kμ ¼ ðω; kiÞ, and are the
roots of det½iKαAα þ B� ¼ 0. Let us write ω ¼ iΓ. Then,
stability requires that ReðΓÞ ≤ 0. In the local rest frame,
these equations are Γ ¼ 0 and Γ2 þ λΓþ αβk2 ¼ 0, where
k2 ¼ kiki. Then, stability in the LRF implies the conditions

αβ ≥ 0; ð42aÞ

λ ≥ 0: ð42bÞ

As for the boosted frame obtained by the Lorentz transform
Γ → γðΓþ ivikiÞ and k2 → Γ2 þ k2 − γ2ðΓþ ivikiÞ2, the
first root is Γ ¼ −iviki, which is stable, while the remain-
ing two roots demand (after a long but straightforward
computation)

λ ≥ 0; ð43aÞ

0 ≤ αβ ≤ 1: ð43bÞ

To verify stability via the stability theorem proven in this
paper, we must verify conditions where Eq. (39) is causal
and if the matrix ΦαAα (with Φα ¼ Λnα þ ζα, n and ζ are
the unitary timelike and spacelike covectors defined in the
text) has a complete set of eigenvectors in R5. Proposition I
guarantees that if Eq. (39) is causal, then Λ ∈ R. In order to
study causality, we compute the characteristics ξα of the
system, which reduces to the roots of detðAαξαÞ ¼
ðuαξαÞ3½ðuβξβÞ2 − αβΔμνξμξν� ¼ 0. Causal roots must be
real and obey ξμξ

μ ≥ 0, which gives the conditions
0 ≤ αβ ≤ 1. These conditions, together with stability in
the LRF, coincide with the conditions obtained by means of
the above direct calculation. However, if we did not know,
a priori, the conditions for stability in any frame (which is
the case when considering higher-order polynomials
for the modes), we would still have to obtain the eigen-
vectors of

ΦαAα ¼
�

uαΦα −αΔα
νΦα

−βΔμαΦα uαΦαδ
μ
ν

�
: ð44Þ

We can do it firstly by obtaining the eigenvalues Λ, which
may be easily obtained by changing ξα → Φα in the
computation of the characteristics. With that result one

obtains the eigenvalue Λð1Þ that is the root of uαΦð1Þ
α ¼ 0

with multiplicity 3 and the eigenvalue Λð2Þ
� , which give the

two roots of ðuβΦð2Þ
�βÞ2 − αβΔμνΦð2Þ

�μΦ
ð2Þ
�ν ¼ 0. The corre-

sponding eigenvectors are as follow.
(i) For uαΦð1Þ

α ¼ 0, the system Φð1Þ
α Aαrð1Þa ¼ 0 has as

eigenvectors the three linearly independent vectors
given by

rð1Þa ¼
�
0

wν
a

�
; ð45Þ

where fwν
ag3a¼1 is a set of three linearly independent

vectors orthogonal to the vector ΔμαΦð1Þ
α .

(ii) For ðuβΦð2Þ
�βÞ2 − αβΔμνΦð2Þ

�μΦ
ð2Þ
�ν ¼ 0, we assume

αβ ≠ 0 and obtain the two eigenvectors,

rð2Þ� ¼
�

uαΦð2Þ
�α

βΔναΦð2Þ
�α

�
: ð46Þ

[Note that in the special case αβ ¼ 0, the root uαΨα ¼ 0 is
the only root with multiplicity 5. We end up with two
distinct situations: first, if α ≠ 0 or β ≠ 0 with αβ ¼ 0, then
one obtains four LI eigenvectors as can be seen from
Eqs. (40) and (41). On the other hand, if α ¼ β ¼ 0, then
the system is already diagonal and the theorem applies
directly.] Thus, Eq. (46) completes the remaining two
linearly independent eigenvectors since Λ� are distinct
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eigenvalues, giving the five LI eigenvectors. Then, the
stability theorem states that the system is stable if λ ≥ 0 and
0 < αβ ≤ 1 or if λ ≥ 0 and α ¼ β ¼ 0. Note that there is a
slight difference from the condition obtained from the
direct calculation. To wit, it does not include the case αβ ¼
0 with α or β different from zero. The conclusion is that
stability in any frame does not necessarily imply strong
hyperbolicity. However, strong hyperbolicity plus causality
plus stability in the LRF implies stability in any boosted
frame. In other words, stability may occur outside the
conditions imposed by the theorem.

2. Applying the stability theorem to the MIS system

As another example of the usefulness of Theorem III,
let us briefly comment how it can be used to recover
the stability conditions of the MIS equations [24] in the
presence of bulk viscosity. More precisely, we take the
MIS-like equations studied in Ref. [71] where only bulk
viscous effects have been considered. In that case, it was
proven that there exist conditions such that the system of
PDEs is nonlinearly causal and symmetric hyperbolic;
hence the principal part of the equations is diagonalizable.
The linear version of such equations forms a system that is
also symmetric hyperbolic and the conditions for stability
needed for the application of Theorem III can be shown to
agree with those found in Ref. [24] for the case where only
bulk viscosity is present.

VII. CONDITIONS FOR LINEAR STABILITY

We now apply the theorem proved in the last section
to determine conditions that ensure the stability of the
hydrodynamic theory proposed in this paper. Let us first
define

D≡ ρc2sðτε þ τQÞ þ ζ þ 4η

3
þ σκε ð47Þ

and

E≡ σ½p0
εκs − c2sκε�

¼ σTρ

��∂P
∂ε

�
n

�∂ðμ=TÞ
∂n

�
ε

−
�∂P
∂n

�
ε

�∂ðμ=TÞ
∂ε

�
n

�
;

ð48Þ

where κs¼ðTρ2=nÞ½∂ðμ=TÞ=∂ε�s̄¼κεþκn, κε ¼ ðTρ2=nÞ×
½∂ðμ=TÞ=∂ε�n, κn¼ðTρÞ½∂ðμ=TÞ=∂n�ε, and p0

ε¼ð∂P=∂εÞn.
Standard thermodynamic identities imply that p0

εκs −
c2sκε > 0, then E≥0 from (A1). By assuming the
Cowling approximation [174] with gμν ¼ ημν ¼
diagð−1; 1; 1; 1Þ and δgμν ¼ 0, we find that the system
described by Eq. (13) is linearly stable if it is causal within
the strict form of the inequalities in Eq. (21) together with
the additional restriction η > 0 in (A1) and

ðτε þ τQÞjBj ≥ τετQD ≥ ρc2sτετQðτε þ τQÞ; ð49aÞ

ðτε þ τQÞjBjDþ ρτετQðτε þ τQÞE
> τετQD2 þ ρðτε þ τQÞ2C; ð49bÞ

c2sD − E ≥ ρc4sðτε þ τQÞ; ð49cÞ

ðτε þ τQÞ½jBjðc2sD − 2EÞ þ 2c2sρτετQEþ CD�
> 2c2sρðτε þ τQÞ2Cþ τετQDðc2sD − EÞ; ð49dÞ

jBjD½Cðτε þ τQÞ þ EτετQ� þ 2ρτετQðτε þ τQÞCE
> ρC2ðτε þ τQÞ2 þ τετQðCD2 þ ρτετQE2Þ
þ B2Eðτε þ τQÞ; ð49eÞ

where B and C are given by

B≡ −τε
�
ρc2sτQ þ ζ þ 4η

3
þ σκs

�
− ρτPτQ; ð50aÞ

C≡ τPðρc2sτQ þ σκsÞ − βε

�
ζ þ 4η

3

�
; ð50bÞ

as in Eq. (A5), with jBj ¼ −B > 0 from Eq. (21c) in the
strict form.
Toprove the statement above, as beforewemay expand the

perturbations δΨ ¼ ðδε; δuμ; δnÞ in Fourier modes bymeans
of the substitution δΨðXÞ → exp½TðΓtþ kixiÞ�δΨðKÞ,
whereKμ ¼ ðiΓ; kiÞ is dimensionless due to the introduction
of background temperature T in the exponent. We begin by
proving stability in the local rest frame, where the modes are
the roots of the shear and sound polynomials,

shear channel∶ τ̄QΓ2 þ η̄k2 þ Γ ¼ 0; ð51aÞ

sound channel∶ a0Γ5þa1Γ4þa2Γ3þa3Γ2þa4Γþa5¼0;

ð51bÞ

where k2 ¼ kiki and

a0 ¼ τ̄ετ̄Q; ð52aÞ

a1 ¼ τ̄ε þ τ̄Q; ð52bÞ

a2 ¼ 1þ k2jB̄j; ð52cÞ

a3 ¼ k2D̄; ð52dÞ

a4 ¼ c2sk2 þ k4C̄; ð52eÞ

a5 ¼ k4Ē: ð52fÞ
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We defined the dimensionless quantities τ̄Q ¼ TτQ,
τ̄ε ¼ Tτε, η̄ ¼ Tη=ρ, B̄ ¼ ðT2=ρÞB, C̄ ¼ ðT2=ρÞC, D̄ ¼
ðT=ρÞD, and Ē ¼ ðT=ρÞE. From the second inequality in
Eq. (21c) in its strict form one obtains that B̄ < 0 (see the
definition of a2). The analysis of stability in the LRF goes as
follows.
Shear stability conditions.—The second-order polyno-

mial (51a) has two roots with ΓR ≤ 0 only if τQ > 0 and
η ≥ 0, which is in accordance with assumption (A1). One
can see that τQ clearly acts as a relaxation time (the same
role is played by the shear relaxation time coefficient τπ
present in MIS theory) for the shear channel, which
ensures causality. In fact, the condition τQ > 0 is clear
since the leading contribution to the nonhydrodynamic
frequency in this channel goes as 1=τQ at zero wave
number.
Sound stability conditions.—As for the sound channel in

the rest frame, by means of the Routh-Hurwitz criterion
[175], the necessary and sufficient conditions for ΓR < 0
are (i) a0, a1 > 0, (ii) a1a2 − a0a3 > 0, (iii) a3ða1a2−
a0a3Þ−a1ða1a4−a0a5Þ> 0, (iv) ða1a4−a0a5Þ½a3ða1a2−
a0a3Þ−a1ða1a4−a0a5Þ�−a5ða1a2−a0a3Þ2>0, and
(v) a5 > 0. Condition (i) is already satisfied from (A1).
Condition (ii) corresponds to the first inequality
in Eq. (49a), while (iii) is the second inequality in
Eqs. (49a) and (49b). Condition (iv) corresponds to
Eqs. (49c)–(49e). Given that E ≥ 0, thus, when E ¼ 0
and (i)–(iv) are observed, then ΓR ≤ 0, which is in
accordance with stability. Also, if k ¼ 0, then ΓR ≤ 0
(three zero roots and two negative roots) because
a0; a1; a2 > 0 from (A1). Hence, the system is linearly
stable in the local rest frame.
We remark that our system displays three types of

hydrodynamic modes and three nonhydrodynamic modes.
In the small k expansion that typically defines the linearized
hydrodynamic regime, our shear channel gives a diffusive
hydrodynamic mode with (real) frequency ωðkÞ ¼
−ik2η=ðεþ PÞ þ � � �, while in the sound channel one finds
proper sound waves with ωðkÞ ¼ �csk − ik2Γs=2þ � � �
and also a heat diffusion mode with ωðkÞ ¼ −iDk2 þ � � �,
where D ∼ σ, and Γs ¼ Γsðη; ζ; σÞ just as in Eckart theory
(see Ref. [35] for their detailed expressions). Therefore, our
theory has the same physical content of Eckart’s theory in
the hydrodynamic regime. On the other hand, the shear
channel has a nonhydrodynamic mode with frequency
given by ωðkÞ ¼ −i=τQ þ � � �, while the sound channel
has two nonhydrodynamic modes with frequency ωðkÞ ¼
−i=τε þ � � � and ωðkÞ ¼ −i=τQ þ � � � in the low k limit.
These nonhydrodynamic modes parametrize the UV behav-
ior of the system in a way that ensures causality and

stability, making sure that the theory is well defined
(though, of course, not accurate) even outside the typical
domain of validity of hydrodynamics.
The complete proof of linear stability demands an

analysis of the linearized system around an equilibrium
state at nonzero velocity. In this regard, we shall use the
results presented in Sec. VI B. We first write the system in
Eq. (13) as a first-order linear system of PDEs. Then, since
we already have proven causality and also linear stability in
the LRF, it remains to be shown that the first-order
counterpart of Eq. (13) is diagonalizable in the sense of
Eq. (D2). This is done below.
First-order system.—Following Sec. VI A, we may

define δV ¼ uα∂αδε, δVμ ¼ Δμα∂αδε, δW ¼ uα∂αδn,
δWμ ¼ Δμα∂αδW, δSμ ¼ uα∂αδuμ, δSν

λ ¼ Δα
λ∂αδuν.

Since the current is ideal, i.e., Jμ ¼ nuν, then the linearized
conservation equation ∂μδJμ ¼ δW þ nδSν

ν ¼ 0 enables us
to eliminate δW from the new system of equations. Hence,
the first-order equations become

τεuα∂αδV þ ρτQ∂αδSα þ βε∂αδVα þ βn∂αδWα

þ ρτεuα∂αδSν
ν þ δV þ ρδSν

ν ¼ 0; ð53aÞ

τPΔμα∂αδV þ ρτQuα∂αδSμ þ βεuα∂αδVμ þ βnuα∂αδWμ

þ Πμλα
ν ∂νδSν

λ þ p0
εδVμ þ p0

nδWμ þ ρδSμ ¼ 0; ð53bÞ

uα∂αδVμ − Δμα∂αδV ¼ 0; ð53cÞ

uα∂αδWμ þ nΔμα∂αδSν
ν ¼ 0; ð53dÞ

uα∂αδS
μ
λ − Δα

λ∂αδSμ ¼ 0; ð53eÞ

where p0
n ¼ ð∂P=∂nÞε and

Πμλα
ν ¼−ηðΔμλδαν þΔλαδμνÞþ

�
ρτP−ζþ2η

3

�
Δμαδλν: ð54Þ

The supplemental equations (53c)–(53e) come from the
identities ∂α∂βδε − ∂β∂αδε ¼ 0, ∂α∂βδn − ∂β∂αδn ¼ 0,
and ∂α∂βδuμ − ∂β∂αδuμ ¼ 0, respectively, when con-
tracted with uαΔβλ. In particular, in Eq. (53d) we have
substituted δW ¼ −nδSν

ν that comes from the conservation
equation of Jμ. Then, we may write Eq. (53) in matrix form,
Aα∂αδΨðXÞ þ BΨðXÞ ¼ 0, were δΨðXÞ is the 29 × 1
column matrix with entries δV; δSν; δVν; δWν; δSν

0;
δSν

1; δS
ν
2; δS

ν
3,
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Aα ¼

2
6666666666666664

τεuα ρτQδ
α
ν βεδ

α
ν βnδ

α
ν ρτεuαδ0ν ρτεuαδ1ν ρτεuαδ2ν ρτεuαδ3ν

τPΔμα ρτQuαδ
μ
ν βεuαδ

μ
ν βnuαδ

μ
ν Πμ0α

ν Πμ1α
ν Πμ2α

ν Πμ3α
ν

−Δμα 04×4 uαδμν 04×4 04×4 04×4 04×4 04×4

04×4 04×4 04×4 uαδμν nΔμαδ0ν nΔμαδ1ν nΔμαδ2ν nΔμαδ3ν

04×1 −Δα
0δ

μ
ν 04×4 04×4 uαδμν 04×4 04×4 04×4

04×1 −Δα
1δ

μ
ν 04×4 04×4 04×4 uαδμν 04×4 04×4

04×1 −Δα
2δ

μ
ν 04×4 04×4 04×4 04×4 uαδμν 04×4

04×1 −Δα
3δ

μ
ν 04×4 04×4 04×4 04×4 04×4 uαδμν

3
7777777777777775

; ð55Þ

and

B¼

2
66666666666664

1 01×4 01×4 01×4 ρδ0ν ρδ1ν ρδ1ν ρδ3ν

04×1 ρδμν p0
εδ

μ
ν p0

nδ
μ
ν 04×4 04×4 04×4 04×4

04×1 04×4 04×4 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 04×4 04×4 04×4 04×4 04×4

3
77777777777775

:

ð56Þ

Wemust now obtain the eigenvectors of Eq. (37). However,
note that Aα above is exactly the same as the matrix Aα

m in
Eq. (27) with the difference that now the coefficients of Aα

are constants. We have already proven in Sec. V that the
matrix Aα

m in Eq. (37) has real eigenvalues and a complete
set of eigenvectors in R29. The same solution is true for Aα

in Eq. (37) if we change ξα → nα (and also Aα
m → Aα) in

the results for the matter sector in Sec. V. Thus, the 29 × 29

matrix ð−nαAαÞζβAβ is diagonalizable, completing the
requirements from Theorem III. This shows that the theory
is linearly stable in any other reference frame O0 connected
via a Lorentz transformation. Therefore, one then obtains
that our set of linearized second-order PDEs is stable in any
equilibrium state.

A. Fulfilling the causality, local well posedness,
and linear stability conditions

We now give a simple example that illustrates that the set
of linear stability conditions (and consequently, causality
and local well posedness, since those are part of the linear
stability conditions) is not empty. Let us analyze the case
where τQ ¼ τε and τP ¼ c2sτε, assuming an equation of
state P ¼ PðεÞ, with c2s ¼ p0

ε ¼ 1=2. Also, assume that
ζ þ 4η=3 > 0 (their specific values are not relevant as far as
they are positive and η > 0 for the sake of the stability and
well-posedness theorems). Then, one may easily verify that

the causality conditions (21) hold in their strict form, as
required, and that the remaining conditions (49) are also
observed when ρτε ¼ 8ðζ þ 4η=3Þ, κε ¼ κs=2 ¼ 1=4, and
in the three different situations, namely, σ=ðζ þ 4η=3Þ ¼ 0,
1=4, and 1.

VIII. CONCLUSIONS AND OUTLOOK

In this work, we presented the first generalization of
relativistic Navier-Stokes theory that simultaneously sat-
isfies the following properties: the system, with or without
coupling to Einstein’s equations, is causal, strongly hyper-
bolic, and locally well posed (see the content of Theorems I
and II); equilibrium states in flat spacetime are stable
(consequence of Theorem III); all dissipative contributions
(shear viscosity, bulk viscosity, and heat conductivity) are
included; and finally the effects from nonzero baryon
number are also taken into account. All of the above hold
without any simplifying symmetry assumptions and are
mathematically rigorously established. In addition, entropy
production is non-negative in the regime of validity of this
effective theory.
This is accomplished in a natural way using a general-

ized Navier-Stokes theory containing only the original
hydrodynamic variables, which is different than other
approaches where the space of variables is extended (such
as in Müller-Israel-Stewart theory). However, it is impor-
tant to remark that the meaning of the hydrodynamic
variables in our work is different than in standard
approaches, such as Refs. [15,52]. In fact, in the context
of the formalism put forward by Bemfica et al. [32,33] and
Kovtun [34], our formulation uses a definition for the
hydrodynamic variables (i.e., our choice of hydrodynamic
frame) that is not standard as there are nonzero out-of-
equilibrium corrections to the energy density and there is
energy and heat diffusion even at zero baryon density.
Despite these necessary differences (imposed by causality
and stability), the theory still provides the simplest causal
and strongly hyperbolic generalization of Eckart’s original
theory [52], sharing the same physical properties in the
hydrodynamic regime (for instance, both theories have
the same spectrum of hydrodynamic modes). However,
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differently than Eckart’s approach, our formulation is fully
compatible with the postulates of general relativity, and its
physical content in dynamical settings can be readily
investigated using numerical relativity simulations. In fact,
we hope that the framework presented here will provide the
starting point for future systematic studies of viscous
phenomena in the presence of strong gravitational fields,
such as in neutron star mergers.
Motivated by the task of establishing stability of general

equilibrium states in flat spacetime, in this work we also
proved a new general result (see Theorem III) concerning
the stability of relativistic fluids. In fact, we found con-
ditions that causal relativistic fluids should satisfy such that
stability around the static equilibrium state directly implies
stability in any other equilibrium state at nonzero back-
ground velocity. Theorem III is very general and its regime
of applicability goes beyond BDNK theories and it could
also be relevant when investigating the stability properties
of other sets of linear equations of motion as well. In this
regard, see the discussion in Sec. II B, and see also Secs VI
B 1 and VI B 2 for further examples of the applicability of
Theorem III.
Our generalized Navier-Stokes theory can be used to

understand how matter in general relativity starts to deviate
from equilibrium. An immediate application is in the
modeling of viscous effects in neutron star mergers. Our
approach can be useful in simulations that aim at determin-
ing the fate of the hypermassive remnant formed after the
merger of neutron stars, hopefully leading to a better
quantitative understanding of their evolution and eventual
gravitational collapse toward a black hole. Differently than
any other approach in the literature, the new features
displayed by our formulation and its strongly hyperbolic
character make it a suitable candidate to be used in such
simulations. This will be especially relevant also when
considering how viscous effects may modify the gravita-
tional wave signals emitted soon after the merger [12,14].
In this regard, we remark that previous simulations per-
formed in Ref. [11] employed a formulation of relativistic
viscous hydrodynamics where the key properties studied
here (causality, strong hyperbolicity, and local well posed-
ness) are not known to hold in the nonlinear regime.
Our work is applicable in the case of baryon-rich matter,

such as that formed in neutron star mergers or in low-
energy heavy-ion collisions. The latter include the exper-
imental efforts in the beam energy scan program at RHIC
[176], the STAR fixed-target program [176], the HADES
experiment at GSI [177], the future FAIR facility at GSI
[178], and also NICA [179]. For a discussion of viscous
effects in low-energy heavy-ion collisions at nonzero
density, see Refs. [85,113,180]. High-energy heavy-ion
collisions, such as those studied at the LHC, involve a
different regime than the one considered here where the net
baryon number can be very small and, thus, that case is
better understood using a different formulation such as the

one proposed in Ref. [35], also in the context of the BDNK
formalism.
In our approach, we only take into account first-order

derivative corrections to the dynamics. Therefore, the
domain of validity of our theory is currently limited by
the size of such deviations. Hence, further work is needed
to extend our analysis, incorporating higher-order deriva-
tive corrections, to get a better understanding of what
happens as the system gets farther and farther from
equilibrium. In this context, it would be interesting to
extend our equations to include second-order corrections
and consider also, more generally, the large order behavior
of the gradient expansion in an arbitrary hydrodynamic
frame. The latter will be different than most approaches to
the gradient expansion since in BDNK the constitutive
relations contain time derivatives even in the local rest
frame of the fluid. This essential difference has important
consequences in a kinetic theory formulation; see the
original references [32,33]. The large order behavior of
the relativistic gradient series has been recently the focus of
several works [84,181–194], and it would be interesting to
extend such analyses to include the type of theories
investigated here.
There are a number of ways in which our work could be

extended or improved. First, it would be useful to obtain a
better qualitative understanding of why some hydrody-
namic frames (such as the Landau-Lifshitz frame or the
Eckart frame) are not compatible with causality and
stability in the BDNK approach, given that the situation
is different in other formulations. In fact, the Landau frame
seems to display no significant issues in the case of MIS-
like theories in the nonlinear regime at least at zero
chemical potential, as demonstrated in Ref. [72]. Perhaps
a more in-depth investigation of how BDNK emerges in
kinetic theory, going beyond the original work done in
Refs. [32,33], can be useful in this regard (see also the
recent work [148]). Also, it would be interesting to use the
BDNK approach to investigate causality and stability in
more exotic cases, such as in relativistic superfluids.
Furthermore, the inclusion of electromagnetic field effects
in the dynamics of relativistic viscous fluids can also be of
particular relevance, especially in the context of neutron
star mergers [195] and high-energy heavy-ion collisions
[196]. This problem has been recently investigated using
other formulations of viscous fluid dynamics, see for
instance Refs. [197–202], and also most recently in the
BDNK approach in Ref. [203]. Consistent modeling of
relativistic viscous fluid dynamics coupled to electromag-
netic fields can also be relevant to determine the importance
of dissipative processes in the dynamics and radiative
properties of slowly accreting black holes, as discussed
in Ref. [197].
Further work needs to be done to understand the global

in-time features of solutions of relativistic viscous fluid
dynamics. For instance, one may investigate the presence
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of shocks, which is a topic widely investigated in the
context of ideal fluids [21,145,204–206] and was done in
Ref. [94] for the MIS theory (see Sec. II B for further
discussion on shocks). The importance of hydrodynamic
shocks has been recognized both in an astrophysical setting
[197] as well as in the study of jets in the quark-gluon
plasma [207–219]. We also remark that one task that we
have not done here was the construction of initial data for
the full Einstein plus fluid system by solving the Einstein
constraint equations. We believe that standard arguments to
handle the constraints [21] will be applicable in our case.
This will be investigated in detail in a future work.
We believe our work will also be relevant to give insight

into the physics of turbulent fluids embedded in general
relativity. The fact that the equations of motion of the
viscous fluid must be hyperbolic in relativity stands in
sharp contrast to the parabolic nature of the nonrelativistic
Navier-Stokes equations, usually employed in studies of
turbulence. Recent works in Refs. [18,220] tackled the
problem of turbulence in the relativistic regime and our
formulation may be very useful in this regard, as it provides
a simple strongly hyperbolic generalization of Eckart’s
theory that is fully compatible with general relativity.
In summary, in this paperwe propose a new solution to the

question initiated byEckart in 1940 concerning themotion of
viscous fluids in relativity. Our approach is rooted in well-
known physical principles and solid mathematics, displays a
number of desired properties, and extends the state of the art
of the field in a number of ways. Potential applications of the
formalism presented here spread across a numbers of areas,
including astrophysics, nuclear physics, cosmology, and
mathematical physics. This work establishes for the first
time a common unifying framework, from heavy-ion colli-
sions to neutron stars, that can be used to discover the novel
properties displayed by ultradense baryonic matter as it
evolves in spacetime.
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APPENDIX A: PROOF OF THEOREM I

We only consider the 10 independent components of the
metric and, thus, this system of equations can be written in

terms of a 16 × 1 column vector Ψ ¼ ðε; n; uν; gμνÞ, and its
equation of motion in Eq. (17) can be expressed in matrix
form asMð∂ÞΨ ¼ N, whereN contains the B terms that do
not enter in the principal part. The matrixMð∂Þ is given by

Mð∂Þ ¼
�Mð∂Þ bð∂Þ
06×10 I10gαβ∂2

αβ

�
; ðA1Þ

where the 6 × 10 matrix bð∂Þ contains the B̃ terms and

Mð∂Þ ¼

2
664

0 uαuβ nδðαν uβÞ

ðτεuαuβþβεΔαβÞ βnΔαβ ρðτεþ τQÞuðαδβÞν
ðβεþ τPÞuðαΔβÞμ βnuðαΔβÞμ Cμαβ

ν

3
775

×∂2
αβ: ðA2Þ

The system’s characteristics are obtained by replacing
∂α → ξα and determining the roots of det½MðξÞ� ¼ 0.
The system is causal when the solutions for ξα ¼
ðξ0ðξiÞ; ξiÞ are such that condition 1 (Cond-1) ξα is real
and condition 2 (Cond-2) ξμξμ≥0 [21]. It is easy to see that
det½MðξÞ� ¼ ðξαξαÞ10 det½MðξÞ�. The roots associated with
the vanishing of the overall factor ðξαξαÞ10 ¼ 0 coming
from the gravitational sector are clearly causal. The
remaining roots come from det½MðξÞ� ¼ 0, which we will
investigate next.
We first define b≡ uαξα and vα ≡ Δαβξβ, which

gives ξα ¼ −buα þ vα and ξαξ
α ¼ −b2 þ v · v, where

v · v ¼ Δαβξαξβ. We proceed by also defining the tensor

Dμ
ν ¼ Cμαβν ξαξβ

¼
�
τPρ − ζ −

η

3

�
vμξν þ ½ρτQb2 − ηðv · vÞ�δμν ; ðA3Þ

which gives

det½AðξÞ� ¼ det

2
64

0 b2 nbξν
τεb2þβεðv ·vÞ βnðv ·vÞ ρðτεþ τQÞbvν
ðβεþ τPÞbvμ βnbvμ Dμ

ν

3
75

¼−b2½ρτQb2−ηðv ·vÞ�3
× ½Ab4þBb2ðv ·vÞþCðv ·vÞ2� ðA4aÞ

¼ −ρ4τ4QτεðuαξαÞ2
Y

a¼1;�
½ðuαξαÞ2 − caΔαβξαξβ�na ;

ðA4bÞ
where, to shorten notation in Eq. (A4a) we defined

A≡ ρτετQ; ðA5aÞ

B≡ −τε
�
ρc2sτQ þ ζ þ 4η

3
þ σκs

�
− ρτPτQ; ðA5bÞ

C≡ τPðρc2sτQ þ σκsÞ − βε

�
ζ þ 4η

3

�
; ðA5cÞ
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and used the fact that βε þ nβn=ρ ¼ τQc2s þ σκs=ρ. In
Eq. (A4a) it becomes evident that assumption (A1) guar-
antees that vμ ≠ 0, eliminating one of the possible acausal
roots. From Eqs. (A4a)–(A4b) we defined n1 ¼ 3, n� ¼ 1,
c1 ¼ ½η=ðρτsÞ�, and c� ¼ ½ð−B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p
Þ=2A�. Note

that since ξαξα ¼ −b2 þ ðv · vÞ, the roots in Eq. (A4b) can
be cast as b2 ¼ caðv · vÞ. Then, (Cond-1) demands that
ca ∈ R together with ca ≥ 0 and (Cond-2) that ca < 1 for
causality [221], which comes from the fact that the root
b2 ¼ cav · v must obey ξμξ

μ ¼ −b2 þ v · v ¼
ð1 − caÞv · v > 0. Thus, causality is ensured if 0 ≤ ca <
1 in the matter sector. Clearly, the root b ¼ uαξα ¼ 0 is
causal. Also, the six roots related to c1 are causal when
Eq. (21a) is observed. As for the roots c�, they are real if
B2 − 4AC ≥ 0, i.e., if the first inequality in Eq. (21b) holds.
On the other hand, c� ≥ 0 is obtained whenever c− ≥ 0,
which is guaranteed if −B ≥ 0 [second inequality in
condition (21c)] together with C ≥ 0 [second inequality
of Eq. (21a)], while c� < 1 is ensured if cþ < 1, which
demands that 2Aþ B > 0 [first inequality in condition
(21c)] and Aþ Bþ C > 0 [condition (21d)]. ▪
We observe that, although we employed the harmonic

gauge to calculate the system’s characteristics, the causality
established in Theorem I does not depend on any gauge
choices. This follows from well-known properties of
Einstein’s equations [22] and the geometric invariance of
the characteristics [144]. See the end of Sec. V C for further
comments in this direction.

The analysis above and the conditions we obtained for
causality are valid in the full nonlinear regime of the theory.
However, we remark in passing that the principal part
concerning only the fluid equations would have exactly
the same structure if one were to linearize the fluid dynamic
equations about equilibrium with nonzero flow in
Minkowski spacetime. This is a generic feature of the
BDNK approach (at least, when truncated at first order),
i.e., the analysis of the system’s characteristics, and thusof its
causality properties, is formally the same in the nonlinear
regime and in the linearization about a generic equilibrium
state.This isnot, however, ageneral featureof hydrodynamic
models as it does not hold in MIS-like theories. In fact, as
discussed at length in Refs. [71,72], in MIS the thermody-
namic fluxes explicitly enter in the calculation of the
characteristics, but they are not present in the linear analysis.

APPENDIX B: PROOF OF PROPOSITION I

To prove (i) we may compute the determinant
detðξαAαÞ ¼ detðξαAα

mÞ detðξαAα
gÞðuαξαÞ16. Note that

uαξα ≠ 0 if ξ is timelike. We must then look into the
matter and gravity sector in what follows. We again define
b ¼ uαξα and vμ ¼ Δμαξα, v · v ¼ Δμνξμξν, and introduce

Ξμ
ν ¼ vλΠ

μλα
ν ξα

¼ −ηðv · vÞδμν − ηvμξν þ
�
ρτP − ζ þ 2η

3

�
vμvν ðB1Þ

to obtain

detðξαAα
mÞ ¼ det

2
6666666666666664

τεb ρτQξν βεξν βnξν ρτεbδ0ν ρτεbδ1ν ρτεbδ2ν ρτεbδ3ν

τPvμ ρτQbδ
μ
ν βεbδ

μ
ν βnbδ

μ
ν Πμ0α

ν ξα Πμ1α
ν ξα Πμ2α

ν ξα Πμ3α
ν ξα

−vμ 04×4 bδμν 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 bδμν nvμδ0ν nvμδ1ν nvμδ2μ nvμδ3ν

04×1 −v0δ
μ
ν 04×4 04×4 bδμν 04×4 04×4 04×4

04×1 −v1δ
μ
ν 04×4 04×4 04×4 bδμν 04×4 04×4

04×1 −v2δ
μ
ν 04×4 04×4 04×4 04×4 bδμν 04×4

04×1 −v3δ
μ
ν 04×4 04×4 04×4 04×4 04×4 bδμν

3
7777777777777775

¼ b19 det
�
τεb2 þ βεðv · vÞ b2ðρτQξν þ ρτεvνÞ − nβnðv · vÞvν
ðτP þ βεÞvμ ρτQb2δ

μ
ν þ Ξμ

ν − nβnvμvν

�

¼ b19½ρτQb2 − ηðv · vÞ�3½Ab4 þ Bb2ðv · vÞ þ Cðv · vÞ2�
¼ ρ4τ4Qτεb

19
Y

a¼1;�
½b2 − caðv · vÞ�na ; ðB2Þ

where, as we have obtained in Eqs. (A4) and (A5), and in
the text below it,

A≡ ρτετQ; ðB3aÞ

B≡ −τε
�
ρc2sτQ þ ζ þ 4η

3
þ σκs

�
− ρτPτQ; ðB3bÞ

C≡ τPðρc2sτQ þ σκsÞ − βε

�
ζ þ 4η

3

�
; ðB3cÞ
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n1 ¼ 3, n� ¼ 1, c1 ¼ ½η=ðρτsÞ�, and c� ¼ ½ð−B�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p
Þ=2A�. It is worth mentioning that the assump-

tions of Proposition I guarantee that 0 < c1; c� < 1. Under
assumptions (A1), η > 0, and conditions (21) in the strict
form, then one obtains that detðξαAα

mÞ¼0 only if 0≤ca<1

(with the equality holding only in the case a ¼ 0); i.e., the
equation b2a − caðva · vaÞ ¼ 0 gives ξa;α such that ξa;αξαa ¼
−b2a þ va · va ¼ ð1 − caÞva · va > 0. Thus, if ξ is timelike,
then (i) is guaranteed for the matter sector as well. As for
the gravity sector, one obtains that

detðξαAα
gÞ ¼ det

2
6666664

bI10 −v0I10 −v1I10 −v2I10 −v3I10
−v0I10 bI10 010×10 010×10 010×10

−v1I10 010×10 bI10 010×10 010×10

−v2I10 010×10 010×10 bI10 010×10

−v3I10 010×10 010×10 010×10 bI10

3
7777775

¼ 1

b10
det

2
6666664

ðb2 − vνvνÞI10 010×10 010×10 010×10 010×10

−v0I10 bI10 010×10 010×10 010×10

−v1I10 010×10 bI10 010×10 010×10

−v2I10 010×10 010×10 bI10 010×10

−v3I10 010×10 010×10 010×10 bI10

3
7777775

¼ ðuαξαÞ30ðξαξαÞ10: ðB4Þ

Again, note that if ξ is timelike, then detðξαAα
gÞ ≠ 0. This

completes the proof of (i).
As for (ii), let us define ϕα ¼ ζα þ Λξα and make the

changes ξ → ϕ in the determinant calculations above.
Then, the eigenvalues Λ are obtained from the roots
of detðϕαAαÞ ¼ detðϕαAα

mÞ detðϕαAα
gÞðuαϕαÞ16 ¼ 0. Note

that the general form of the equations implies that the roots
ϕα ¼ −uαuβϕβ þ Δβ

αϕβ obey

ðuαϕαÞ2 − βΔαβϕαϕβ ¼ 0; ðB5Þ

where, from causality, in any of the above cases we have
that 0 ≤ β ≤ 1. Then, for each β, the eigenvalues Λ are

Λ ¼ βðΔαβξαζβÞ − ðuαξαÞðuαζαÞ �
ffiffiffiffi
Z

p

ðuαξαÞ2 − βΔαβξαξβ
; ðB6Þ

where, since ξαξ
α < 0, then ðuαξαÞ2 − βΔαβξαξβ > 0

because 0 ≤ β ≤ 1 and

Z ¼ βfΔαβζαζβðuμξμÞ2 þ ΔαβξαξβðuμζμÞ2 − 2ðuαξαÞðuβζβÞΔμνξμζν − β½ðΔαβζαζβÞðΔμνξμξνÞ − ðΔαβξαζβÞ2�g
> β½ΔαβζαζβðuμξμÞ2 þ ΔαβξαξβðuμζμÞ2 − 2ðuαξαÞðuβζβÞΔμνξμζν − ðΔαβζαζβÞðΔμνξμξνÞ þ ðΔαβξαζβÞ2�
¼ βfð−ξαξαÞðζβζβÞ þ ½ðuαξαÞðuβζβÞ − Δαβξαζβ�2g > 0: ðB7Þ

In the operations above we used the fact that 0 ≤ β ≤ 1,
ðΔαβξαζβÞ2 ≤ ðΔαβξαξβÞðΔμνζμζνÞ from the Cauchy-
Schwarz inequality and that ξ is timelike and ζ spacelike.
Thus, causality guarantees reality of the eigenvalues.
Now we turn to the problem of completeness of the set of

eigenvectors. We begin by counting the linearly indepen-
dent eigenvectors of ϕðmÞ

a;αAα
m, where ϕðmÞ

a;α ¼ ζα þ ΛðmÞ
a ξα

and ΛðmÞ
a are the eigenvalues of the matter sector and are

obtained by means of Eq. (B6) in the cases β ¼ c0 ¼ 0
when a ¼ 0 and β ¼ ca when a ¼ 1;�. Let us define an
arbitrary vector,

rðmÞ ¼

2
66666666666664

F

Gν

Hμ

Iμ

Jν0
Jν1
Jν2
Jν3

3
77777777777775

: ðB8Þ
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Then, for each of the eigenvaluesΛðmÞ
a , a ¼ 0; 1;�, wemust

verify howmanyof the 29variables in thevector (B8) are free

parameters under the equation ϕðmÞ
a;αAα

mr
ðmÞ
a ¼ 0. In fact, this

is the dimension of the null space of the matrix ϕðmÞ
a;αAα

m and
corresponds to the number of linearly independent eigen-

vectors of ΛðmÞ
a . The eigenvectors are the following.

(i) ΛðmÞ
0 : This root has multiplicity 19. The eigenvector

that obeys ϕðmÞ
0;αA

αrðmÞ
0 ¼ 0 is

rðmÞ
0 ¼

2
66666666666664

0

04×1

Hμ

Iμ

Jν0
Jν1
Jν2
Jν3

3
77777777777775

; ðB9Þ

where only 19 out of the 24 components Hμ; Iμ; Jνλ
are free variables because of the 1þ 1þ 3 con-

straints βεϕ
ðmÞ
0;ν H

ν þ βnϕ
ðmÞ
0;ν I

ν ¼ 0, Jλλ ¼ 0, and

ΔμλϕðmÞ
0;ν J

ν
λ þ ΔλβϕðmÞ

0;β J
μ
λ ¼ 0 (note that the last

four equations are not all independent since the
contraction with uμ is identically zero, resulting in
three independent constraints). Thus, the multiplic-
ity of Λ0 equals the number of LI eigenvectors,
i.e., 19.

(ii) ΛðmÞ�
1 : In this case each of the two eigenvalues have

multiplicity 3 since n1 ¼ 3 in Eq. (B2) (note that
since we assumed here that η > 0, then c1 ≠ 0 and,
thus, c1 ≠ c0 and the eigenvalues are different from
the case c0 ¼ 0). We may perform some elementary

row operations over the linear system ϕðmÞ
1;αA

αrðmÞ
1 ¼

0 to obtain, by imposing b2 − c1ðv · vÞ ¼ 0 (remem-
ber that b ¼ uαϕα and vα ¼ Δαβϕβ after the change
ξ → ϕ),

2
6666666666666664

τεb2 þ βεðv · vÞ bρτQϕν þ bρτεvν −
nβnðv·vÞ

b vν 01×4 01×4 01×4 01×4 01×4 01×4

04×1 Kνvμ 04×4 04×4 04×4 04×4 04×4 04×4

−vμ 04×4 bδμν 04×4 04×4 04×4 04×4 04×4

04×1
nvμvν
b 04×4 bδμν 04×4 04×4 04×4 04×4

04×1 −v0δ
μ
ν 04×4 04×4 bδμν 04×4 04×4 04×4

04×1 −v1δ
μ
ν 04×4 04×4 04×4 bδμν 04×4 04×4

04×1 −v2δ
μ
ν 04×4 04×4 04×4 04×4 bδμν 04×4

04×1 −v3δ
μ
ν 04×4 04×4 04×4 04×4 04×4 bδμν

3
7777777777777775

rðmÞ
1 ¼ 0; ðB10Þ

where

Kν¼
�
−ηξνþ

�
ρτP−ζþ2η

3
−nβn

�
vν

�

× ½τεb2þβεðv ·vÞ�− ðτPþβεÞ½b2ρτQξν
þb2ρτεvν−nβnðv ·vÞvν�: ðB11Þ

This enables us to find the eigenvectors,

�rðmÞ
1 ¼

2
66666666666664

F�
Gν

�
Hν

�
Iν�
�Jν0
�Jν1
�Jν2
�Jν3

3
77777777777775

; ðB12Þ

where, from the 29þ 29 ¼ 58 components of the

above eigenvectors (29 for ΛðmÞþ
1 and 29 ΛðmÞ−

1

cases), they are subjected to the following 26þ 26
constraints: 1þ 1 ¼ 2 constraints,

½τεb2� þ βεðv� · v�Þ�F� þ b�ρτQ
�
ϕðmÞ
1;νG

ν

þ b�ρτεv�ν Gν −
nβnðv� · v�Þ

b�
v�ν Gν

� ¼ 0;

1þ 1 ¼ 2 constraints K�
ν Gν

� ¼ 0, 4þ 4 ¼ 8 con-
straints b�H

μ
� ¼ vμ�F�, 4þ 4 ¼ 8 constraints

nvμ�v
�
ν Gν þ b2�I

μ
� ¼ 0, and the 16þ 16 ¼ 32 con-

straints b��Jμ�λ ¼ v�λ G
μ
�, where

�
ϕðmÞ
1;α ¼ �ΛðmÞ

1 ξα þ
ζα and b� and vα� are defined in terms of �

ϕðmÞ
1;ν .

Hence, there is a total of 3þ 3 ¼ 6 free parameters.
Once again, the degeneracy equals the number of LI
eigenvectors.
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(iii) ðΛ�Þ�: Since there is no degeneracy in these four
last eigenvalues and they are distinct from the others
because c� ≠ 0 in the strict form of the inequalities
in Eq. (21) and different among them, then one has
four LI eigenvectors.

Thus, the system has 19þ 6þ 4 ¼ 29 LI eigenvectors.
Therefore, there is a complete set in R29, namely,

frðmÞ
b g29b¼1 such that ϕðmÞ

a Aα
mr

ðmÞ
b ¼ 0. Hence, we can use

the 29 linearly independent set SðmÞ ¼ fRðmÞ
b g29b¼1 to verify

that

RðmÞ
b ¼

�
rðmÞ
b

066×1

�
ðB13Þ

obeys ðζα þ ΛðmÞ
a ξαÞAαRðmÞ

b ¼ 0.
Now, before we discuss the gravity sector fFA;F δ

Ag, let
us look at the sector containing the original fields ε, n, uν,
and gμν. In this case, let us define

RðdÞ ¼
�
079×1

rðdÞ

�
; ðB14Þ

where rðdÞ is a 16 × 1 column vector. Then, ðζα þ
ΛðdÞ
a ξαÞAαRðdÞ

a ¼ 0 reduces to the eigenvalue problem

uαϕðdÞ
α I16rðdÞ ¼ 0 whose eigenvalues are uαϕðdÞ

α ¼ 0, i.e.,
ΛðdÞ ¼ ζαuα=ξαuα. Thus, the eigenvectors may be any basis

ofR16. Let frðdÞa g16a¼1 be a basis ofR
16. Then, the set SðdÞ ¼

fRðdÞ
a g16a¼1 is a linearly independent set of 16 eigenvectors

of ϕðdÞ
α Aα.

To finalize the eigenvector counting we have to analyze
the sector containing FA and F δ

A. In this case, let us define

RðgÞ ¼

2
64

w

rðgÞ

016×1

3
75; ðB15Þ

where w is some 29 × 1 columns vector while rðgÞ is a
50 × 1 columns vector. The eigenvalues of this sector are in

Eq. (B4) and are given by ΛðgÞ
0 ¼ uαζα=uβξβ, coming from

uαϕðgÞ
0;α ¼ 0 (here ϕðgÞ

a;α ¼ ζα þ ΛðgÞ
a ξα) with multiplicity 30

and corresponding to β ¼ 0, and the two roots �ΛðgÞ
1 with

multiplicity 10 each coming from �
ϕðgÞ
1;α

�
ϕðgÞα
1 ¼

−½uα�ϕðgÞ
1;α�2 þ Δαβ�ϕðgÞ

1;α
�
ϕðgÞ
1;β ¼ 0, which corresponds to

β ¼ 1, i.e., gravitational waves moving at the speed of

light. Then, the eigenvalue problem ϕðgÞ
a;αAαRðgÞ

a ¼ 0
reduces to the two equations:

ϕðgÞ
a;αAα

mwa ¼ LαrðgÞa ; ðB16aÞ

ϕðgÞ
a;αAα

gr
ðgÞ
a ¼ 0: ðB16bÞ

For the eigenvalues �ΛðgÞ
1 , one obtains that det½�ϕðgÞ

1;αA
α
m� ≠

0 because the root β ¼ 1 has been eliminated from the
matter sector (remember that ca < 1). Thus, there exists a

solution of Eq. (B16a) for each rðgÞa in Eq. (B16b). One

needs to count the number of linearly independent rðgÞ1 for

ΛðgÞ
1 , i.e., the number of vectors in the basis of the kernel of

ϕðgÞ
1;αA

α
g . In this case, after some elementary row operations

[look at the second equality in Eq. (B4) after setting
b2 ¼ v · v] one obtains that

�
ϕðgÞ
1;αA

α
g ∼

2
6666666664

010×10 010×10 010×10 010×10 010×10

−Δ0α�ϕðgÞ
1;αI10 ðuα�ϕðgÞ

1;αÞI10 010×10 010×10 010×10

−Δ1α�ϕðgÞ
1;αI10 010×10 ðuα�ϕðgÞ

1;αÞI10 010×10 010×10

−Δ2α�ϕðgÞ
1;αI10 010×10 010×10 ðuα�ϕðgÞ

1;αÞI10 010×10

−Δ3α�ϕðgÞ
1;αI10 010×10 010×10 010×10 ðuα�ϕðgÞ

1;αÞI10

3
7777777775
; ðB17Þ

which has 40 pivots and 10 independent variables (corre-
sponding to the variables associated to the first 10 col-
umns). Thus, there are 10 linearly independent vectors for

each eigenvalue �ΛðgÞ
1 ; i.e., there is a set f−rðgÞ1;b;

þrðgÞ1;bg10b¼1 of

20 linearly independent vectors with corresponding w�
1;b ¼

½�ϕðgÞ
1;αA

α
m�−1La�rðgÞ1;b coming from Eq. (B16a) such that

SðgÞ
1 ¼ fþRðgÞ

1;b;
−RðgÞ

1;bg10b¼1, where

�RðgÞ
1;b ¼

2
64

w�
1;b

�rðgÞ1;b

016×1

3
75

is a linearly independent set of 20 eigenvectors

of ϕðgÞ
1;αA

α.
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As for the eigenvalue ΛðgÞ
0 , note that in this case

det½ϕðgÞ
0;αA

α
m� ¼ 0 because β ¼ c0 ¼ 0 is also a root of this

equation. Thus, for every solution rðgÞa in Eq. (B16b),
Eq. (B16a) can be either undetermined or have infinite
solutions. However, for any two different solutions, say, w1

a

and w2
a for one rðgÞa , the difference between RðgÞ1

a − RðgÞ2
a

corresponds to a vector in the space spanned by SðmÞ, that
lies in the kernel of ϕðgÞ

0;αA
α
m. Therefore, since we are

counting the number of linearly independent eigenvectors,
we must choose one particular solution wa, if it exists, for

each rðgÞa . We begin by solving Eq. (B16b). Let flμ1 ¼
uμ; lμ2; l

μ
3g be a set of linearly independent vectors that are

orthogonal to ϕðgÞ
0;α ¼ ζα þ ΛðgÞ

0 ξα, to wit, lαcϕ
ðgÞ
0;α ¼ 0 and

feag10a¼1 be any basis of R10. Then, one may verify that the
30 linearly independent vectors

rðgÞ0;ac ¼

2
6666664

010×1

l0cea
l1cea
l2cea
l3cea

3
7777775

ðB18Þ

satisfy ϕðgÞ
0;αA

α
gr

ðgÞ
0;ac ¼ 0. Now we must solve Eq. (B16a),

where

ϕðgÞ
0;αL

αrðgÞ0;ac ¼

2
666666664

013×1

ϕðgÞ
0;αY

μAα
0δ lδcðeaÞA

ϕðgÞ
0;αY

μAα
1δ lδcðeaÞA

ϕðgÞ
0;αY

μAα
2δ lδcðeaÞA

ϕðgÞ
0;αY

μAα
3δ lδcðeaÞA

3
777777775
¼Ka

2
666666664

013×1

ϕðgÞ
0;0l

μ
c

ϕðgÞ
0;1l

μ
c

ϕðgÞ
0;2l

μ
c

ϕðgÞ
0;3l

μ
c

3
777777775
; ðB19Þ

where we defined

Ka ≡ 1

2

�X
σ;β
σ≤β

ð2 − δσβÞuðσuβÞðeaÞσβ
�
:

Let us look for the particular solution

wac ¼

2
6664

0

−βεyνac
ρτQyνac
020×1

3
7775: ðB20Þ

Note that

ϕðgÞ
0;αA

α
mwac¼

2
666666664

013×1

βεϕ
ðgÞ
0;0y

μ
ac

βεϕ
ðgÞ
0;1y

μ
ac

βεϕ
ðgÞ
0;2y

μ
ac

βεϕ
ðgÞ
0;3y

μ
ac

3
777777775
;

ðB21Þ

and then, by inserting Eqs. (B19) and (B21) into
Eq. (B16a), one finds that

βεϕ
ðgÞ
0;νy

μ
ac ¼ Kaϕ

ðgÞ
0;νl

μ
c: ðB22Þ

This leads to the solution yμac ¼ Kal
μ
c=βε and, thus,

wac ¼

2
6664

0

−Kalνc
ρτQ
βε

Kalνc

020×1

3
7775: ðB23Þ

As a consequence, the set SðgÞ
0 ¼ fRðgÞ

1;1; R
ðgÞ
1;2; R

ðgÞ
1;3;…;

RðgÞ
10;1; R

ðgÞ
10;2; R

ðgÞ
10;3g with

RðgÞ
ac ¼

2
64

wac

rðgÞ0;ac

016×1

3
75

is a linearly independent set of 30 eigenvectors of ϕðgÞ
0;αA

α.

Thus, S ¼ SðmÞ ∪ SðdÞ ∪ SðgÞ
1 ∪ SðgÞ

0 contains a complete
set of eigenvectors R of ϕαAαR ¼ 0 in R95. This completes
the proof. ▪
We remark that the assumption that the inequalities hold

in strict form is technical. If equality is allowed, then the
multiplicity of the eigenvalues might change. This is
because with equality one can have ca ¼ 0 for a ¼ 1 or
� and thus the characteristics defined by b2 − caðv · vÞ ¼ 0
can degenerate into the characteristics b ¼ 0. Since the
latter is already present in the system, the multiplicity of the
characteristics would change. This does not mean that the
system would not be diagonalizable. Nor does it imply that
local well posedness, established in the next section, would
fail [222]. However, a different proof would be needed to
show diagonalization in the case ca ¼ 0 in the cases a ¼ 1
or �. We believe that treating this very special case here
would be a distraction from the main points of the paper.
We also recall that already in the case of an ideal fluid, a
different approach to local well posedness has to be
employed when the characteristics degenerate [223].

FIRST-ORDER GENERAL-RELATIVISTIC VISCOUS FLUID … PHYS. REV. X 12, 021044 (2022)

021044-33



APPENDIX C: PROOF OF THEOREM II

As usual in studies of the initial-value problem for
Einstein’s equations [22], we embed Σ into R × Σ and
work in harmonic coordinates in the neighborhood of a
point. Observe that we already know the system to be
causal under our assumptions, thus localization arguments
are allowed.
The equations to be studied read

uαuβ∂2
αβnþnuαδβν∂2

αβu
νþ B̃1ðn;u;gÞ∂2g¼B1ð∂n;∂u;∂gÞ;

ðC1aÞ

uνuαuβ∂α∂βuν þ B̃2ðn; ε; u; gÞ∂2g ¼ B2ð∂n; ∂ε; ∂u; ∂gÞ;
ðC1bÞ

βnðuμΔαβ þ ΔμðαuβÞÞ∂α∂βnþ Eμαβ∂α∂βεþ C̄μαβν ∂α∂βuν

þ B̃μ
3ðn; ε; u; gÞ∂2g ¼ Bμ

3ð∂n; ∂ε; ∂u; ∂gÞ; ðC1cÞ

gαβ∂α∂βgμν ¼ B4μνð∂n; ∂ε; ∂u; ∂gÞ; ðC1dÞ

where

C̄μαβν ¼
�
τPρ − ζ −

η

3

�
ΔμðαδβÞν − ηΔαβδμν

þ ρðτε þ τQÞuμΔðα
ν uβÞ þ τQρuαuβδ

μ
ν ; ðC2aÞ

Eμαβ ¼ uμðβεΔαβ þ τεuαuβÞ þ ðβε þ τPÞΔμðαuβÞ; ðC2bÞ

and the notation for the B̃’s and B’s follow the same
construction as in Sec. IV.
We can write Eq. (C1) in matrix form as

Mð∂ÞΨ ¼ Nð∂ΨÞ; ðC3Þ

where Ψ ¼ ðε; n; uν; gμνÞT is a 16 × 1 column vector (we
count only the 10 independent gμν),Bð∂ΨÞ is also a 16 × 1

column vector containing the N’s, i.e., the lower-order
terms in derivatives of each equation, and

Mð∂Þ ¼
�
Mð∂Þ bð∂Þ
010×6 gαβ∂α∂βI10

�
: ðC4Þ

The 6 × 10 matrix bð∂Þ contains the terms B̃∂2g, while

Mð∂Þ¼
2
64

0 uαuβ nδðαν uβÞ

0 0 uνuαuβ

Eμαβ βnðuμΔαβþΔμðαuβÞÞ C̄μαβν

3
75∂2

αβ: ðC5Þ

Let us compute the characteristic determinant of the system
and its roots, i.e., det½MðξÞ� ¼ det½MðξÞ�ðξαξαÞ10 ¼ 0,
where the substitution ∂ → ξ takes place. The pure gravity

sector has the roots ξαξα ¼ 0. As for the matter sector, by
again defining b ¼ uαξα, vμ ¼ Δμνξν, v · v ¼ vμvμ, and

C̃μν ¼ C̄μαβν ξαξβ

¼ ½τQρb2 − ηðv · vÞ�δμν þ
�
τPρ − ζ −

η

3

�
vμξν

þ ρðτε þ τQÞbuμvν; ðC6aÞ

Dμ
ν ¼

�
τPρ − ζ −

η

3
− nβn

�
vμξν þ ½τQρb2 − ηðv · vÞ�δμν ;

ðC6bÞ

Ẽμ ¼ Eμαβξαξβ

¼ ½βεðv · vÞ þ τεb2�uμ þ ðβε þ τPÞbvμ; ðC6cÞ

where Dμ
ν is the same as the one defined in Eq. (A3), we

obtain that (by carrying out some elementary row operations)

det½MðξÞ�¼det

2
64

0 b2 nbξν
0 0 b2uν
Ẽμ βn½uμðv ·vÞþbvμ� C̃μν

3
75

¼ b3

τQρb2−ηðv ·vÞ

×det

2
64

0 b nξν
τεb2þβεðv ·vÞ βnðv ·vÞ ρðτεþτQÞbvν
ðβεþτþPÞbvμ βnbvμ Dμ

ν

3
75:

ðC7Þ

The last determinant is the same as the one obtained in
Eq. (A4) and the result turns out to be

det½MðξÞ� ¼ −b4½ρτQb2 − ηðv · vÞ�2
× ½Ab4 þ Bb2ðv · vÞ þ Cðv · vÞ2�

¼ −ρ4τ4QτεðuαξαÞ4
Y

a¼1;�
½ðuαξαÞ2 − caΔαβξαξβ�ña ;

ðC8Þ

where, as in Eqs. (A5),

A≡ ρτετQ; ðC9aÞ

B≡ −τε
�
ρc2sτQ þ ζ þ 4η

3
þ σκs

�
− ρτPτQ; ðC9bÞ

C≡ τPðρc2sτQ þ σκsÞ − βε

�
ζ þ 4η

3

�
; ðC9cÞ

while c1 ¼ ½η=ðρτsÞ� and c� ¼ ½ð−B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p
Þ=2A�,

while ñ1 ¼ 2 and ñ� ¼ 1. Note that the characteristics are
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still the same as in Sec. IV, as expected, although the
multiplicity of the roots changed (and there was no reason
for the multiplicities to be the same). We conclude that the
characteristic determinant of the system is a product of strictly
hyperbolic polynomials.Weverify at once that the system is a
Leray-Ohya system [21,224] for which the results of
Ref. [225] (see also Ref. [105]) apply. Thus, if the initial
data are quasianalytic (see Ref. [75]), we obtain quasianalytic
solutions.
Denote the initial dataset in the theorem by D and let Dl

be a sequence of quasianalytic initial data converging to D
in HN (see Ref. [27] for the definition of HN). Let Ψl be
solutions corresponding to Dl (which exist by the fore-
going). In order to finish the proof of the theorem, it
suffices to show that Ψl has a limit in HN . The limit will
then be a solution with the desired properties because we
can pass to the limit in the equations since N ≥ 5.

According to the arguments given in Sec. 16.2 of
Ref. [146] or in Refs. [107,108], the diagonalization
obtained in Sec. V B implies that Ψ defined in Eq. (24)
admits a uniform bound in HN−1, and uniform difference
bounds in HN−2 also holds. We apply these bounds to the
vector Ψl corresponding to Ψl. We see at once that the
uniformHN−1 bounds forΨl imply uniformHN bounds for
Ψl, and the difference bounds imply that Ψl is a Cauchy
sequence in HN−3, thus converging in this space. But low-
norm convergence combined with high-norm boundedness
implies that the limit is in fact in HN [226]. ▪
We observe that a similar local well-posedness result

holds for the fluid equations in a fixed background.
We recall that a standard tensorial argument [22]

guarantees that the solution established in Theorem II is
intrinsically defined; i.e., given the data, which are defined
independently of coordinates or gauge choices, there exists
a spacetime where Einstein’s equations are satisfied, and
this spacetime is defined without any reference to coor-
dinates or gauge choices—even if in the process of proving
that this spacetime exists one has to work in a specific
gauge and coordinate system. Therefore, even though we
used the harmonic gauge in the proof, the existence of the
solution is guaranteed for other choices as well. This logic
is similar to showing that a map from a finite-dimensional
vector space into itself is invertible: one can choose a basis,
write the matrix of the linear transformation with respect to
that basis, and compute its determinant. The map is
invertible if and only if the determinant is nonzero, and
this conclusion (the invertibility or not of the linear map) is
independent of any basis choice—even if to show that the
map is invertible we picked a basis and computed the
determinant with respect to that basis.
We note, however, the following subtlety which is very

relevant for numerical simulations. The fact that a unique
solution is guaranteed to exist for given initial data, and that
this solution is well defined regardless of gauge choices,
does not imply that such a solution can always be

reconstructed from an arbitrary gauge. In other words,
supposewewrite the equations in a different gauge. Ifwe can
numerically integrate them, wewill obtain the solution found
in Theorem II written on that gauge (modulo numerical
accuracy). However, it is possible that the gauge we chose is
not adequate to solve the equations numerically, so that our
numerical simulation will not produce a solution. This does
not mean, of course, that solutions do not exist; it simply
means that the guaranteed-to-exist solution given by
Theorem II cannot be accessed from that specific gauge.
To use again our analogy with determinants, suppose we
computed the determinant on a basis b1 and found it to be
nonzero, but now we are interested in computing the
determinant numerically using another basis b2.
Depending on the basis b2 and the numerical algorithm
we use, this might not be possible, which, of course, does not
mean that the determinant is zero or ill defined.
Thus, the practical matter of solving the equations

numerically is not settled by an abstract existence and
uniqueness result as Theorem II. Such theorems are
naturally important as they provide the foundations on
which numerical investigations can be built; i.e., it makes
sense to look for solutions numerically because solutions
do exist. But these theorems do not, in general, point to how
to recover solutions numerically. That is why there is a
great deal of work dedicated to writing Einstein’s equations
in different forms and special gauges, even if basic
existence results for Einstein’s equations coupled to most
matter models are known, as reviewed in Refs. [2,29].

APPENDIX D: PROOF OF THEOREM III

From causality one obtains that detðnαAαÞ ≠ 0 as far as n
is timelike. Thus, we can rewrite Eq. (35) as

iΩδΨðKÞ ¼ −iκð−nαAαÞ−1ζβAβδΨðKÞ
− ð−nαAαÞ−1BδΨðKÞ: ðD1Þ

Since the eigenvalue problem (37) contains N linearly
independent vectors ra, one may write Eq. (37) as

ð−nαAαÞ−1ζβAβra ¼ Λara ðD2Þ

and define the N × N invertible matrix R ¼ ½r1 � � � rN �
whose columns are the eigenvectors r1;…; rn and the
N × N matrix

L≡ R−1 ¼

2
64
l1

..

.

lN

3
75;

where the rows la are the left eigenvectors of ð−nαAαÞζβAβ

which, consequently, obey larb ¼ δab (because RL ¼ IN).
Then, we can write
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δΨðKÞ ¼ RLδΨðKÞ ¼
X
a

caðKÞra ¼ Rc; ðD3Þ

where caðKÞ ¼ laδΨðKÞ is a c-number and c is the N × 1
matrix

c ¼ LδΨðKÞ ¼

2
664
c1ðKÞ

..

.

cNðKÞ

3
775:

Therefore, Eq. (D1) becomes

iΩRc ¼ −iκRDc − ð−nαAαÞ−1BRc; ðD4Þ

where D is the N × N real diagonal matrix D ¼
diagðΛ1;…;ΛNÞ and, thus, ð−nαAαÞ−1ζβAβR ¼ RD. By
multiplying Eq. (D4) by c†R−1 from the left one obtains that

iΩjcj2 ¼ −iκc†Dc − c†R−1ð−nαAαÞ−1BRc: ðD5Þ

Since D is real and diagonal (which gives c†Dc ∈ R),
Ω ¼ γnð−iΓþ cikiÞ, and κ ¼ γζð−id̂jciΓþ d̂jkjÞ, then

ΓRc†ðγnIN þ γζd̂
jcjDÞc ¼ −Re½c†R−1ðnαAαÞ−1BRc�: ðD6Þ

On the other hand, note that γnIN þ γζd̂
jcjD is diagonal

with elements

ðγnIN þ γζd̂
jcjDÞaa ¼ γn þ γζd̂

jcjΛa > 0 ðD7Þ

because jd̂jcjj ≤ jcij < 1, Λ ∈ ½−1; 1�, and γn ≥ γζ from

Eq. (36). Hence, γnIN þ γζd̂
jcjD is a positive Hermitian

matrix and c†ðγnIN þ γζd̂
jcjDÞc > 0. The consequence is

that ΓR ≤ 0 if and only if

Re½c†R−1ðnαAαÞ−1BRc� ≥ 0: ðD8Þ

Now, letO be the LRF andO0 some other boosted frame.
The connection between the two frames is given by the
Lorentz transform t0 ¼ γðt − vixiÞ, x0ik ¼ γðxik − vitÞ, and
x0i⊥ ¼ xi⊥, where k and ⊥ stand for the components parallel
and perpendicular to vi, respectively. This can be com-
pactly written as X0μ ¼ Λμ

νXν. Thus, one obtains that K0μ ¼
Λμ
νKν and δΨ0ðK0Þ ¼ MδΨðKÞ from the structure of

Eq. (33) (where M is an N × N invertible matrix), leading
to A0μ ¼ Λμ

νMAμM−1 and B0 ¼ MBM−1. In particular,
ζαAα ¼ M−1ζ0αA0αM and nαAα ¼ M−1ðn0αA0αÞM. From
Eq. (37), these relations give R0 ¼ MR, with the same
eigenvalue Λ in both frames. Then, since δΨðKÞ ¼ Rc and
δΨ0ðK0Þ ¼ R0c0 ¼ MRc, one concludes that c ¼ c0, i.e.,
c0aðK0Þ ¼ caðKÞ. Therefore, one arrives at the following
identity:

c0†R0−1ð−n0αA0αÞ−1B0R0c0 ¼ c†R−1ð−nαAαÞ−1BRc: ðD9Þ

However, if the system is stable in the LRF, then Eq. (D8)
holds and, from Eq. (D9), one automatically obtains that
Γ0
R ≤ 0, proving that the system is also stable in any other

frame O0 obtained via a Lorentz transformation. ▪
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