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SUMMARY

Sub-micrometer-thick ion-conducting polymer (ionomer) layers
often suffer from poor ionic conductivity at the substrate/catalyst
interface. The weak proton conductivity makes the electrochemical
reaction at the cathode of proton-exchange-membrane fuel cells
sluggish. To address this, here we report on a class of polysty-
rene-based ionomers having sub-nanometer-sized, sulfonated
macrocyclic calix[4]arene-based pendants (PS-calix). In films with
thickness comparable to that of ionomer-based binder layers, the
conductivity of PS-calix film (�41 mS/cm) is �13 times higher
than that of the current state-of-the-art ionomer, Nafion. We
observe a similar improvement in proton conductivity when PS-
calix interfaces with Pt nanoparticles, demonstrating the potential
of PS-calix in catalyst ink. Leveraging a favorable interfacial chem-
ical composition, PS-calix enhances proton conduction at the film-
substrate interface, a shortcoming of Nafion. Moreover, the water
in PS-calix films diffuses faster than bulk water and the water
confined in Nafion films, suggesting an important role played by
sub-nanometer-sized calix[4]arene cavities in creating unique
water/ion transport pathways.

INTRODUCTION

The proton-exchange-membrane fuel cell (PEMFC) is a unique, eco-friendly electro-

chemical device that can electrify and power automobiles, space shuttles, subma-

rines, andmany portable/stationary appliances. To generate electricity, PEMFCs uti-

lize H2 as a fuel, which can offer specific energy three times higher than gasoline, the

primary fuel of internal combustion engines (ICEs). To excel in PEMFC technology

and compete with ICE-based vehicles, we still need to strike the cost-perfor-

mance-durability targets set by the US Department of Energy (DOE).1,2 A major

requirement is to lower the loading of expensive platinum group metal (PGM) cata-

lysts (from 0.25 to 0.0625 g PGM/kW, or from 0.4–0.8 to 0.05 mg PGM/cm2),3 with a

working current density of 3–4 A/cm2 at 0.7–0.8 V.4 As catalyst loading is reduced, to

maintain satisfactory oxygen reduction reaction (ORR) activity, we must overcome

ion (proton) and gas (O2) transport limitations at the interface of catalyst and ion-

conducting polymers (ionomers). In PEMFCs, ionomers are not only used as mem-

brane separators transporting protons from anode to cathode but are also used

as catalyst binders and ion transporters to the catalyst active sites on electrodes.

The thicknesses of the ionomer-based membrane and the binder layer are different:

the membranes are typically several tens of micrometers thick, while the ionomer

binder layers are several tens of nanometers thick. Designing ionomers to make
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efficient membrane separators has been extensively pursued.5–11 To improve the

performance of the ionomer-catalyst layer, on the other hand, the emphasis has

mostly been on designing new catalysts12–15 and catalyst layer nanostructures.16–23

However, designing ionomers to fulfill the specific requirements of a catalyst binder

layer is still very limited.24–28 To date, the ionomers designed for membrane separa-

tors (like Nafion) have been used as binders as well.

It is just in the past two decades that researchers have revealed and realized that ion-

omer behavior, when confined in sub-micrometer-thick films (as in ionomer binder

layer), can be drastically different from that of its bulk membrane counterpart.24,29–34

For example, the proton conductivity of the current state-of-the-art ionomer Nafion

in a bulk free-standing membrane (�25 mm thick) is about an order of magnitude

higher than that of Nafion in a 25-nm-thick, spin-coated film in the hydrated

state.24,30,31 To identify the reasons behind the ion transport limitations, efforts

are being made to fundamentally understand the thin-film properties of proton-con-

ducting ionomers. The understanding in this area is gradually evolving based on the

insights obtained primarily from Nafion25,34–45 and a few hydrocarbon-based ion-

omers24,25,46,47 in thin films. The ion conduction in sub-micrometer-thick

ionomer films or at the ionomer-substrate interface is governed by a complicated

matrix of interdependent factors,31–33,48 such as dimensional constraints

(thin-film confinement),24,25,30,34,35,37,40,41,47 constraints due to ionomer-water

interfacial interactions,29,38,40,41, hydrophilic-hydrophobic phase segregation,34,37

ionic domain size,35,37 spacing,34,37 distribution,30 connectivity,37,40 water

uptake,24,25,34,37,40,41,47 swelling,34,47 and more. Especially, poor phase separation

and resulting small, scattered, and disconnected ionic domains/ion channels34,37,40

have been identified as some of the major issues negatively affecting thin-film ionic

conductivity. For example, Modestino et al.34 and Farzin et al.37 showed a high de-

gree of phase mixing in transmission electron microscopy (TEM) images as the film

thickness of fluorocarbon-based ionomers decreased. The phase mixing corrobo-

rated with the gradually diminishing ionic domain peaks in grazing-incidence

small-angle X-ray scattering (GISAXS) studies.18,34,38,39 Interestingly, in several

cases, the water uptake of ionomer thin films was reasonably high (even higher

than that of the bulk membranes),37,40 but still the proton conductivity was lower

than that of bulk membranes. The average size of ionic domains in these thin Nafion

films (�1–2 nm)37 was smaller than that in bulk Nafion membranes (�4 nm).49 It ap-

peared that�1- to 2-nm-sized ionic domains with poor interconnectivity caused very

weak proton conductivity, no matter how high the water sorption by the ionomer

films was.35,37,40 This suggested that having control over the size and connectivity

of ionic domains is critical to attain extended proton hopping pathways and improve

thin-film ionic conductivity. In our recent work, we looked beyond the average ion

conduction properties and found that the ion conduction environment can be very

different at different depths within an ionomer film. In Nafion thin films, proton con-

duction was very weak next to the substrate and gradually went higher as the air

interface was approached.30 This was attributed to the interactions happening at

the substrate interface among ionomer, water, and substrate functionalities. Such

interfacial interactions can be detrimental to water-polymer mobility25,40,41,47,50

and, therefore, proton conduction.25,30,40 Not only that, strong adsorption of ion-

omer chains on catalyst particles can cover the catalyst active sites to an extent

that leads to O2 transport resistance.
51,52 The lower electrochemically active surface

area of catalysts has caused poor proton and gas transport for Nafion and several

aromatic ionomers.33,35,46,53 This suggested that any ionomer capable of address-

ing these issues could be beneficial to the design of more efficient ionomer-catalyst

layers on electrodes.
2 Cell Reports Physical Science 4, 101282, February 15, 2023
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To alleviate the ion transport limitation, we need ionomers that can strategically

design ion-conducting channels. Porous organic/inorganic materials, such as poly-

mers with intrinsic microporosity (PIMs),54 metal-organic frameworks (MOFs),55 co-

valent organic frameworks (COFs),56,57 and electrospun hollow nanofibers,58 have

been designed that can create channels for water, gas, and ion transport. A major

fraction of these porous systems relies on the interconnectivity of channels, and

the hollow cavities/channels in these systems have diameters above 1 nm to facili-

tate transport. Materials having sub-nanometer-sized hollow constrictions are

creating a buzz by transporting water and ions much faster. This class of materials

is mostly inspired by natural water- and ion-transporting channels like gramicidin

A.59 Gramicidin A is a biological ion channel with a diameter of �4 Å. While the un-

derstanding of transport through such narrow constrictions is still an ongoing pro-

cess, and there are different trains of thought based on experimental and computa-

tional efforts,60–68 a plausible mechanism put forward suggests that sub-nanometer

sized channels allow the formation of single strands of H-bonded water molecules,

known as 1D water wires.66,67 In such a narrow channel with a hydrophobic interior,

water can experience frictionless or slip flow69 and diffuse much faster than bulk wa-

ter. Also, while the H-bonded water network in bulk water is more branched and

random, the H-bonded path in 1D water wires is more controlled, with preferentially

aligned water dipoles facilitating faster proton hopping.66–68 Inspired by natural wa-

ter and ion channels, a range of synthetic materials have been developed that have

been majorly demonstrated for host-guest interaction, sensing, water/solvent/gas/

chemical purification, pharmaceutical, and blue energy harvesting applica-

tions.64,70–78 Some of the materials having sub-nanometer constrictions include

imidazole quartets79; triazole channels80; hexa(m-phenyleneethynylene) channels81;

aquafoldamers82; peptide-,83 hydrazide-,84 or ester-appended monomeric/dimeric

pillar[n]arenes85; MOFs86; graphene87,88; cyclic peptide nanotubes89; carbon nano-

tubes (CNTs)68,90,91; and cavity-forming polymers.24 One of the notable observa-

tions was by Noy and colleagues,90 showing how the water and ion transport perfor-

mance can be influenced by >1- and <1-nm-sized CNTs. The proton transport rate

was similar to that of bulk water when the diameter of the CNTs was �1.5 nm, but

when the diameter went below 1 nm (�0.8 nm), the protons moved faster than those

in bulk water. They attributed this faster-than-bulk water transport to the 1D water

wire effect, which was also validated by simulations of CNTs.68,92,93 Not only in

CNTs,90 but also in some other sub-nanometer-sized systems,79–81,85,94–96 water

and ions both got transported. In such studies, factors like the driving force to

move water from the surrounding channels (more bulk-like) into the sub-nanometer

sized channels,60,63,94,97 functionality61,62,81,85,96,98,99 and hydrophobicity63,90 of the

channel interior as well as the terminals, water dipole orientation across the water

wire,65–67,79,81 and reorientation relaxation59,66,90 have been considered critical for

proton transport through the channels. Typical ionomers, like Nafion, do not have

sub-nanometer constrictions and thus cannot avail themselves of the 1D water

wire and fast proton conduction,90 like gramicidin A or CNTs.

In our recent work, we have been able to successfully translate the fast proton-con-

duction capability to a set of oligomeric model ionomers by incorporating sub-nano-

meter-sized hollowmacrocyclic calix[4]arene cavities within the chemical structure of

the ionomers.24 Themotivation behind this ionomer design was the intriguing differ-

ences in water and ion transport capabilities of �1- to 2- and <1-nm-sized ionic

domains/ion channels. The diameter of calix[4]arene is �3 Å100 (can vary up

to +2 Å depending on the substituting groups101), and we saw an unprecedentedly

high proton conductivity in sub-micrometer-thick films of these calix[4]arene-con-

taining ionomers (calix-2). In addition, we showed experimental and computational
Cell Reports Physical Science 4, 101282, February 15, 2023 3



Figure 1. Synthetic procedure and thermal properties of PS-calix

(A) Synthetic scheme for the ionomer PS-calix.

(B and C) Chemical structure of Nafion (B) and sulfonated polysulfone (sPSf) (C).

(D) Thermogravimetric analysis (TGA) thermograms and (E) differential scanning calorimetry (DSC) of PS-calix with IECs 2 and 3.85.
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evidence supporting the role of macrocycles in improving ionic conduction and se-

lective ion permeation.24 The results clearly indicated the high potential of calix[4]ar-

ene-based ionomers in addressing ion transport limitation and permselectivity crit-

ical for energy conversion and storage technologies.

Herein, we report a new class of macrocycle-based, polymeric ionomer (PS-calix),

which consists of a polystyrene-based backbone and sulfonated calix[4]arene-based

pendants. While there have been a few reports on polystyrene-based ion-

omers,102–105 the incorporation of macrocycles within the chemical structure of poly-

styrene-based ionomers is very new. We examined the thin-film proton conduction

and water self-diffusion behavior of PS-calix (Figure 1A) in comparison with tradi-

tional ionomers (Nafion and sulfonated polysulfone [sPSf]; Figures 1B and 1C) using

electrochemical impedance spectroscopy (EIS) and diffusion-ordered nuclear mag-

netic resonance (DOSY NMR) spectroscopy, respectively. We also showed how PS-

calix can manipulate and significantly improve the overall as well as depth-specific

ion conduction behavior of ionomer thin films (confocal laser scanning microscopy

[CLSM]). The stronger ion conduction behavior near substrate interfaces was ratio-

nalized based on the trends observed in viscoelastic properties (contact resonance

atomic force microscopy [CR-AFM]) and depth-specific elemental analysis (scanning
4 Cell Reports Physical Science 4, 101282, February 15, 2023
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electron microscopy with energy-dispersive X-ray spectroscopy [SEM/EDX]). Last

but not least, we looked into the performance of PS-calix in pseudo-catalyst systems

showing the great potential of PS-calix in addressing both gas and ion transport lim-

itations. The added advantage of PS-calix could be its perfluoroalkyl substance

(PFAS)-free nature, making it an eco-friendly and efficient substitute for the perfluori-

nated ionomer Nafion.106
RESULTS AND DISCUSSION

Chemical synthesis of ionomers

The synthesis of PS-calix ionomers (Figure 1A) started with the synthesis of mono-

meric divinylbenzylcalix[4]-arene derivative (1). Monomer 1 was synthesized with

80% yield by reacting calix[4]arene with 4-vinylbenzyl chloride in the presence of

anhydrous sodium carbonate (Na2CO3) as a base. The 1H NMR peak at 5.06 ppm

(Ar [calix[4]arene] OCH2Ar [styrene]) confirmed the attachment of vinyl benzene to

calix[4]arene, while the peaks at 5.28 (–CH=CHH), 5.81 (–CH=CHH), and 6.66

(–CH=CH2) ppm confirmed the presence of a terminal vinyl group (C=C double

bond) in monomer 1 (Figure S1). Subsequent polymerization of monomer 1 was car-

ried out in dry tetrahydrofuran (THF) using benzoyl peroxide as an initiator to yield

PS-calixn, the neutral precursor of PS-calix ionomers (Figure 1A). The vinyl proton

peaks between 5 and 6.6 ppm disappeared, and aliphatic proton peaks due to

the bridging of vinyl benzene units (1.12–1.27 ppm) appeared in 1HNMR (Figure S2),

indicating successful polymerization of monomer 1 to PS-calixn. Both monomer 1

and PS-calixn retained the cone conformation of macrocyclic calix[4]arene as

confirmed by the signature peaks in 1H NMR (�3.35 and�4.35 ppm, doublets). Sub-

sequent reaction of PS-calixn with freshly prepared acetyl sulfate gave the sulfo-

nated ionomers (PS-calix). The ratio of PS-calixn to acetyl sulfate was varied to obtain

PS-calix with ion-exchange capacities (IECs) of 2 (1:1), 3 (1:2), and 3.85 (1:2.5). To

confirm the success of sulfonation, the Fourier transform infrared (FTIR) spectra of

non-sulfonated (PS-calixn) and sulfonated polymers (PS-calix, IEC 2, 3.85) were

compared (Figure S3). The asymmetric and symmetric –S=O stretching (1,151,

1,090 cm�1) as well as –S–O stretching (903 cm�1) peaks were clearly seen in sulfo-

nated ionomer (PS-calix). The C–S stretching peak at 683 cm�1 also appeared upon

sulfonation. In addition, the –OH stretching peak (3,363 cm�1) became slightly more

intense upon sulfonation because of the additional –OH from the –SO3H groups in

PS-calix. The elemental analysis (wt %) showed 12.78% S in PS-calix (IEC 3.85), which

was close to the theoretical value (12.74% S). The experimental (4.23) and theoretical

(4.48) C:S ratios for this sample were also similar (Table S1). PS-calix ionomers with all

IECs (2–3.85) were soluble in dimethylacetamide (DMAc), and not soluble in water,

which is critical for the practical applications of these ionomers in energy conversion

and storage devices. Also, when spin-coated into sub-micrometer-thick films on

appropriate substrates, PS-calix formed smooth films.
Thermal properties

In PS-calix samples, threemajor thermal degradations were observed (Figure 1D): (1)

gradual dehydration up to 150�C; (2) the decomposition of –SO3H groups,107 which

was often ascribed to 200�C–300�C; and (3) aromatic backbone degradation, which

could be attributed to 350�C–550�C.108 The glass transition temperature (Tg) values

(Figure 1E) of dry PS-calix samples ranged between 130�C and 176�C, which were

higher than that for pure polystyrene (Tg �100�C).109,110 This could be attributed

to the bulky side chain (made of sulfonated calix[4]arene) in PS-calix. Please note

that this Tg was measured for the powdery polymer in a dry state. Like any polymer,

the Tg of PS-calix is subject to change when it is deposited into films/membranes,
Cell Reports Physical Science 4, 101282, February 15, 2023 5



Figure 2. Proton conductivity and water uptake of ionomer thin films

(A) Comparison of proton conductivity (s) of PS-calix (IEC 3.85) and Nafion as a function of %RH.

(B) Proton conductivity of �150- to 170-nm-thick films of Nafion, sPSf, and PS-calix as a function of IEC at 85% RH.

(C) Effect of film thickness on proton conductivity of PS-calix and Nafion at �85% RH.

(D–F) Hydration numbers (l as moles of sorbed H2O per mole of –SO3H) of �25- to 170-nm-thick films of PS-calix with IECs 2 (D), 3 (E), and 3.85 (F) as a

function of film thickness and %RH. The measurements were all performed at room temperature. The l values were bare-crystal-water-sorption

corrected and plotted. The error bars are calculated based on the standard deviations.
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exposed to humidity (plasticizing/antiplasticizing effects), and/or subjected to inter-

facial interactions.
Ionic conductivity and water uptake

Figures 2A–2C show the ion conduction performance of sub-micrometer-thick films

of PS-calix in comparison with Nafion and sPSf. We measured the conductivity of the

films with thickness ranging between 15 and 170 nm and at varied relative humidity

(%RH) conditions (please see Table S2, Figure S4, and relevant discussions in the

supplemental information for EIS fitting details). For the entire thickness range stud-

ied, PS-calix films always showed ionic conductivity significantly higher than Nafion

and sPSf films. For example, when the film thickness was �160–170 nm, the conduc-

tivity was 65.4mS/cm for the PS-calix (IEC 3.85) sample, while it was only 9mS/cm for

Nafion and 0.2 mS/cm for sPSf at 85% RH (Figure 2B). Moreover, in films with thick-

nesses comparable to ionomer-based binder layers (�15–20 nm thick), the conduc-

tivity of PS-calix (IEC 3.85) film (41.1mS/cm) was�13 times higher than that of Nafion

(3.3 mS/cm) (Figure 2C) and �3 orders of magnitude higher than that of sPSf

(0.01 mS/cm). These results showed a high potential of PS-calix as a catalyst-binding

ionomer. We saw an IEC-dependent increase in the proton conductivity of PS-calix

films (Figures 2B and 2C). But interestingly, at high IEC (3.85), the ionic conductivity

of PS-calix films was not very sensitive to film thickness, i.e., proton conductivity did

not drop significantly as the films became thinner (Figure 2C). This high-IEC

variant of PS-calix was also not water soluble and, therefore, was useful for practical
6 Cell Reports Physical Science 4, 101282, February 15, 2023
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water-mediated ion transport. These characteristics make PS-calix an attractive

alternative to Nafion, the typical ionomer, which often suffers from low conductivity

in low-thickness films.24,25 Another interesting observation was that, at similar IEC

values, PS-calix (5.9 mS/cm) was a better proton conductor than sPSf (0.2 mS/cm)

(Figure 2B), a well-accepted hydrocarbon-based ionomer, which conducts protons

as efficiently as Nafion in bulk membranes but fails to conduct protons efficiently

in sub-micrometer-thick layers.33,35,46,53

We looked into the water uptake of these ionomer samples (Figures 2D–2F). Water

uptake of PS-calix films increased with the increase in IEC, which is a rational trend

due to the increased degree of sulfonation. Interestingly, an �170-nm-thick Nafion

film (l� 9, Figure S5) absorbed more water than a PS-calix (IEC 3.85) film (l� 7, Fig-

ure 2F), but the Nafion film showed proton conductivity (9 mS/cm) lower than that of

PS-calix film (65 mS/cm) (Figure 2B). Such higher water uptake by thinner films and

uncorrelated water uptake-conductivity trends have repeatedly been seen earlier

for Nafion37,38 and many other ionomers24,25,35,40,111 in sub-micrometer-thick films.

Several reasons have been identified, but in general, the amount of water uptake was

found to be less important than how the sorbed water molecules segregate to form

ionic domains/ion channels/ion transport pathways. We also saw that PS-calix film

(IEC 3.85) had water uptake only 1.28 times higher than Nafion in�25-nm-thick films

(Figures 2F and S5). However, the proton conductivity of PS-calix was much stronger

than that of Nafion (14 times) (Figures 2A–2C) at this thickness. This is why it may not

be appropriate to attribute the higher ionic conductivity of the PS-calix films solely to

higher water uptake. Rather, it likely suggests that the water molecules in PS-calix

films are more efficient in conducting ions compared with Nafion films.

An important observation along that direction was the swelling of these ionomer

films. At similar water uptake, the swelling of a PS-calix film was less than that of a

Nafion film. The percentage swelling of an�180-nm-thick film was�13% for Nafion,

but just 1.3% for PS-calix (based on CLSM analysis). This suggested that the macro-

cyclic hollow cavities within PS-calix were likely accommodating a large fraction of

the upcoming water molecules without making the films swell much. In a typical sce-

nario, protons hop across a network of water and –SO3H groups appended to the

ionomers. But our prior working experience with macrocycle-based ionomers24

made us hypothesize that in addition to this traditional pathway the water/ion trans-

location capability analogous to biological59/synthetic79–81,85,90,94–96 ion channels

may make a contribution to the unprecedentedly high proton conductivity of PS-

calix, owing to the sub-nanometer-sized, sulfonated macrocyclic calix[4]arene

features.

Water diffusion across ionomer films

In the quest to understand how the water molecules in PS-calix were more efficient in

conducting ions, we lined up a proof showing that macrocycle-containing ionomers

make water diffuse faster. Using DOSY NMR, we measured the water self-diffusion

coefficient (Dself, water) within �300-nm-thick, hydrated PS-calix and Nafion films

(see Figure S6 and relevant section in the supplemental information for detailed

experimental protocol). Dself, water captures how fast or slow water diffuses under

the influence of a negligible driving force (i.e., Brownian motion). Dself, water of the

Nafion film at 100% RH was 2.5 3 10�10 m2/s, while the Dself, water increased to

3.9 3 10�9 m2/s for PS-calix (IEC 3) and 7.1 3 10�9 m2/s for PS-calix (IEC 3.85) films

with similar thicknesses (Figure 3A). Simultaneous observation of very high Dself, water

(water transport) and s (proton conductivity) of PS-calix suggested that the macro-

cycle-containing ionomers likely have the capability to create unique and faster
Cell Reports Physical Science 4, 101282, February 15, 2023 7



Figure 3. Water diffusion behavior within ionomer thin films

(A) Water self-diffusion coefficients (Dself, water) of Nafion, PS-calix (IEC 3, 3.85), CNTs with >1 nm and sub-nanometer diameters, and bulk water. Nafion

and PS-calix data were obtained for�300-nm-thick films at 100% RH using DOSY NMR for this work (error bars calculated based on standard deviations).

CNT and bulk water data were taken from the literature for comparison.91,112–115

(B) 1H NMR of �300-nm-thick Nafion and PS-calix (IEC 3, 3.85) films.
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water and ion-transport pathways, in agreement with our prior work.24 Not only that,

but in some cases, the values of Dself, water in PS-calix films were even higher than

what is reported for bulk water (2.3 3 10�9 m2/s).112–115 Using CNTs, Noy and col-

leagues91 showed that ‘‘faster-than-bulk’’ water transport behavior can be achieved

when the diameter of the CNT is narrowed down to sub-nanometer sizes (shown in

Figure 3A for comparison). The sub-nanometer-size constrictions have also been

found beneficial to make water move very fast through a range of natural (gramicidin

A [4 Å])35 and artificial channels,79–84,116 as angstrom-scale conduits can compel wa-

ter molecules to align into a single file (1D water wire) and enable their frictionless

‘‘slip’’ flow.64,77 Noy and coworkers also showed that the sub-nanometer-sized

CNTs conduct protons faster than their larger-than-1-nm counterparts.90 From these

works, they inferred that sub-nanometer-sized hydrophobic channels should

enhance the proton transport rate due to the 1D water wire.90 Our macrocycles in

PS-calix also have similar features (sub-nanometer-sized cavities made of bridged ar-

omatic rings, creating a hydrophobic interior and confining water into 1D sub-nano-

space). While it is difficult to experimentally quantify the relative contributions of

macrocycles and –SO3H-water-based conventional proton hopping pathways (exte-

rior to macrocyclic units) on the overall s, in our previous work, we showed that a

non-macrocycle-containing analog of a macrocycle-containing ionomer could

have several orders of magnitude weaker proton conductivity.24 We also showed

the possible presence of H-bonded 1D water wires across macrocyclic calix[4]arene

cavities in another ionomer via molecular dynamics (MD) simulations.24 Further-

more, the water peak in 1H NMR shifted to lower parts per million (ppm) and became

narrower for PS-calix compared with Nafion in thin films at 100% RH (Figure 3B). This

suggested improved mobility of protons and relatively looser H bonding of water

molecules50,117 in PS-calix, both of which are expected63,118 within the hydrophobic

interior of the sub-nanometer-sized macrocyclic cavities. All this evidence sug-

gested that sub-nanometer-sized macrocycles in PS-calix, a missing feature in Na-

fion, may play an important role in making both water and proton transport faster

in PS-calix films.

Depth-specific proton conduction behavior across ionomer films

We not only explored the overall proton conductivity but also explored the distribu-

tion of the proton conduction environment across ionomer thin films. This
8 Cell Reports Physical Science 4, 101282, February 15, 2023



ll
OPEN ACCESSArticle
measurement was critical, as the interactions near interfaces can predominantly con-

trol the properties across thin polymeric and biological systems.30,40,41,47,119 In fact,

interfacial interaction-induced substrate pinning is considered responsible for low

water-ionomer mobility41,47 and low ionic conductivity30,40 of ionomer thin films.

In our prior work,30 we reported the distribution of the ionic conduction environment

across Nafion thin films. In those films, we consistently saw a flat, very poor proton-

conducting region spanning up to half of the film thickness, starting from the sub-

strate interface. Similar observations (i.e., better ionomer-water mobility and ionic

conductivity away from the interface) were reported by others via molecular simula-

tion.120 This suggested that if we can improve the interfacial ionic conductivity, we

may be able to improve the overall ion conduction performance of the ionomer

thin films. Interestingly, we found that PS-calix improved the interfacial ion conduc-

tion behavior (Figures 4A and 4B). We performed CLSM of photoacid stained Nafion

and PS-calix films. The workingmechanism of photoacid (8-Hydroxypyrene-1,3,6-tri-

sulfonic acid trisodium salt, HPTS) and the strategy to obtain CLSM-derived proton

conduction profile are discussed in our prior work24 and in the supplemental infor-

mation. Briefly, the photoacid shows ratiometric (green/blue) fluorescence (Id/Ip),

which increases when the ionic conductivity in a position within a film increases.

Therefore, a higher Id/Ip at a certain depth within a film indicates a more favorable

proton conduction at that location within the film. Figures 4A and 4B show the pro-

ton conduction profile (Id/Ip) across �140- to 280-nm-thick Nafion and PS-calix (IEC

3.85) films. We saw that the proton conduction property (Id/Ip) at the substrate inter-

face significantly improved when Nafion was replaced by PS-calix. The Id/Ip at the

substrate interface for �140-nm-thick Nafion film was 0.09, while it was 0.26 for

PS-calix film with similar thickness (Figure 4A). The ion conduction at the air interface

also significantly improved when PS-calix was used (Id/Ip � 0.58 [PS-calix] and 0.17

[Nafion] for �140-nm-thick films, Figure 4A). A similar 3–4 times improvement in

interfacial proton conductivity (both substrate and air interface) was experienced

with thicker (280-nm-thick) PS-calix films (compared with Nafion), achieving an Id/

Ip value as high as 0.9 at the air interface of the PS-calix film (Figure 4B). The corre-

sponding xy-plane images (pseudo-colored) are shown in Figure S7. The improve-

ment of interfacial proton conductivity, especially at the substrate interface, is a ma-

jor milestone achieved. Also, the improvement in conduction at the substrate

interface (from Id/Ip) may be the reason we consistently saw high overall proton con-

ductivity (s) from PS-calix (IEC 3.85) samples irrespective of film thickness.

The origin of improved interfacial ionic conduction

Alterations of interfacial interactions may modulate the interfacial proton conduc-

tion properties, as seen in the CLSM results (Figures 4A and 4B). Here, we measured

the overall viscoelastic properties and depth-specific elemental composition across

ionomer films to assess the extent of interfacial interactions and rationalize the

improvement in interfacial proton conduction behavior of PS-calix films. Using

SEM/EDX, we made some interesting observations on the sulfur content (%S,

Figures 4C and 4D) and sulfur-to-carbon ratio (Figures 4E and 4F) at different depths

within Nafion and PS-calix films. In general, the substrate interface was more S rich

than the air interface of Nafion films (e.g., %S 5.63% [substrate] vs. 3.04% [air] for

150-nm-thick Nafion film). In contrast, PS-calix films had a smaller %S near the sub-

strate interface (1.14%) compared with the air interface (3.29%). Moreover, a higher

accumulation of –SO3H next to the substrate was evident for Nafion films, as it con-

tained higher %S than PS-calix films at the substrate interface (%S 5.63% [Nafion] and

1.14% [PS-calix] in 150-nm-thick films). The element S is a constituent of –SO3H

groups that is supposed to conduct protons. However, if the –SO3H groups at the

substrate interface bind intensely with the functionalities of the substrate (–SiOH
Cell Reports Physical Science 4, 101282, February 15, 2023 9



Figure 4. Depth-specific ion conduction behavior, elemental distribution at interfaces, and phase segregation within ionomer films

(A and B) Proton conduction profile (Id/Ip) across (A) �140- to 150-nm-thick and (B) �280-nm-thick PS-calix (IEC 3.85) and Nafion films measured using

CLSM. The term z/d represents thickness-normalized distance within a film starting from the substrate interface. The value of z/d will thus be 0 and 1 at

the substrate and air interfaces, respectively.

(C–F) The %S (C and D, with error bars based on standard deviations) and the S-to-C ratio (E and F) at air and substrate interfaces of �150-nm-thick (C

and E) and 300-nm-thick (D and F) Nafion and PS-calix films.
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Figure 4. Continued

(G–J) Cross-sectional SEM/EDX images of �150-nm-thick Nafion (G and H) and PS-calix (IEC 3.85) (I and J) films showing elemental mapping at the

substrate and air interfaces (boxed regions). The elements F, S, O, and C are presented by pink, cyan, green, and red colors, respectively.

(K and L) TEM images of �50-nm-thick Nafion (K) and PS-calix (IEC 3.85) (L) films. Here, the dark and bright regions correspond to the hydrophilic ionic

domains and hydrophobic phases, respectively. TEM samples were stained with Pb2+ ions.
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here) and interfacial water molecules, even a high percentage of interfacial –SO3H

can be detrimental to proton conduction. The intense binding can lead to a higher

stiffness, which was evident from the higher storage modulus of Nafion films

compared with PS-calix films (519.36 MPa [Nafion] vs. 237.29 MPa [PS-calix] at

90% RH, 300-nm-thick films). The storage and loss moduli of the ionomer films,

measured using CR-AFM and an in situ humidity chamber (Figure S8), are shown

in Table S3.

The side chain of PS-calix is bulky due to the presence of calix[4]arene units in

addition to the phenyl groups. Such bulky side chains of PS-calix can exert steric

hindrance on the side chains of neighboring repeat units. As a result, the flexible

backbone of PS-calix may adopt a non-linear conformation, where the side chain

(and its –SO3H groups) is less likely to line up along a single straight line. If such

non-linear chains of PS-calix reach next to the substrate interface, they should

have a smaller number of points of contact with the substrate as compared to Na-

fion, which aligns its backbone parallel to the substrate and directs its side chains

toward the substrate, initiating sticky interfacial interactions. The weaker interfacial

interactions corroborated with the smaller %S near the substrate interface of PS-

calix films (Figures 4I and 4J) compared with Nafion films (Figures 4G and 4H).

Overall, both the SEM/EDX and the CR-AFM data greatly supported our proton con-

duction profiles (CLSM), where the PS-calix films exhibited 3 times better proton

conduction near the substrate interface compared with Nafion films at the same

region (Figures 4A and 4B). These results pointed out how strongly the substrate

interface influences the overall properties of ionomer thin films and the need to un-

derstand the phenomena occurring at the substrate interface.

In contrast, being away from the substrate interface, the air interfaces of the films were

relatively free of undesired interfacial interactions. Thus, the –SO3H groups at film-air

interfaces were able to conduct protonsmore effectively (as seen in Figures 4A and 4B).

It can, therefore, be inferred that the high proton conductivity at the air interface of PS-

calix films was a combined effect of high %S and weak interfacial interactions. The high

proton conductivity across the film was also supported by better hydrophilic-hydro-

phobic phase segregation observed in the TEM image of PS-calix film (Figure 4L,

dark regions, ionic domains; bright regions, hydrophobic domains). The higher degree

of phase mixing (i.e., poor dark-light phase contrast) in Nafion films (Figure 4K), on the

other hand, was in agreement with prior works of us and others.20,37

Ionomer-catalyst mixed layer

Observing the high thin-film conductivity of PS-calix, we decided to explore the

dispersion and conduction behavior of ionomers in the presence of a catalyst (Pt

nanoparticles with�3 nm diameter). We, therefore, made spin-coated films contain-

ing two components of typical catalyst inks, ionomer (Nafion or PS-calix) and catalyst

(carbon was not included), and performed the elemental mapping of the films

(Figures 5A–5J) using TEM/EDX. The TEM/EDX did not show any evidence of aggre-

gation of Pt nanoparticles (Figure 5A) or PS-calix (Figures 5B–5D) in the mixed films.

Rather, the Pt nanoparticles were uniformly dispersed within the PS-calix matrix. This

is a desired property of a good catalyst ink.21,121 More interestingly, the Pt
Cell Reports Physical Science 4, 101282, February 15, 2023 11



Figure 5. PS-calix-Pt nanoparticle mixed-layer performance

(A–E) TEM/EDX elemental maps (Pt, O, S, and C [A, B, C, and D, respectively] and overlay [E]) of an �50-nm-thick PS-calix (IEC 3.85) film in which Pt

nanoparticles were dispersed.

(F–J) TEM/EDX elemental maps (Pt, O, S, and C [F, G, H, and I, respectively] and overlay [J]) of an�50-nm-thick Nafion film in which Pt nanoparticles were

dispersed. Scale bars, 50 nm.

(K) Impedance spectra of mixed thin films containing Nafion or PS-calix with Pt nanoparticles at 85% RH.

(L) Conductivity values of the same samples at 25% and 85% RH. The thickness of the films was �50 nm, and the diameter of the Pt nanoparticles was

�3 nm. The mass ratio of ionomer to Pt nanoparticles in the mixed suspension used to make the films was 10:0.013.
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nanoparticles were more visible in the overlaid TEM/EDX images, suggesting that

the catalyst particles were less masked by ionomer chains in PS calix-Pt nanoparticle

mixed systems (Figure 5E) compared with Nafion-based ones (Figure 5J). The

considerably smaller overlap of ionomer and catalyst in PS-calix-Pt systems was

also evident from the Pt/C (w/w) ratio (0.015 [PS-calix] and 0.0025 [Nafion]) obtained

from the TEM/EDX images. This observation agrees with what the literature has re-

ported on Nafion-based catalyst inks, where the Nafion chains are shown to adsorb

on the catalyst active sites via interaction between –SO3H (ionomer) and Pt. In fact,

the –SO3H groups on the long and flexible side chains are shown to be more prone

to adsorb on Pt surfaces.52 Such coverage blocks the catalyst active sites, impedes

the O2 transport to those sites, and is thus detrimental to the ORR. Compared with

Nafion, the side chains of PS-calix are bulky (due to calix[4]arene units) and subject to

more steric hindrance with respect to the neighboring ones. Such effects may pre-

vent –SO3H at neighboring calix[4]arene units from lining up toward Pt. This sug-

gested a milder interaction between –SO3H of PS-calix (unlike Nafion) with Pt.
12 Cell Reports Physical Science 4, 101282, February 15, 2023
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Also, a concern often raised about polyaromatic ionomers46,122,123 is that their ben-

zene rings may adsorb on Pt. Based on the highly exposed Pt surfaces in the ionomer

matrix (Figure 4E), it can be inferred that the benzene-Pt interactions may not be that

aggressive in the case of PS-calix. This could be attributed to the non-planar config-

uration of benzene ring-based macrocycles, which may prevent the positioning of

benzene rings parallel to the substrate and potentially minimize the area of contact

of the ionomer with Pt. Such mild interaction may also be the reason we saw better

interfacial proton conduction in the CLSM study of PS-calix films on glass (SiO2) sur-

faces (Figures 4A and 4B). The low blockage of catalyst active sites along with the

intrinsic open structure of macrocycles with appropriate pore size124 may make

gas transport to Pt-active sites facile. In that respect, macrocycle-based ionomers

can satisfy a critical design need of ionomer binder layers and show an effective

way to address gas transport limitation, increase catalyst active site utilization, and

thereby increase ORR efficiency.

We also found that, not only in simple thin films on substrates but also in ion-

omer-catalyst mixed systems, PS-calix offered higher proton conductivity

compared with Nafion (Figures 5K and 5L). At 85% RH, PS-calix-Pt mixed films

showed a conductivity of 69.58 mS/cm, while it was 6.12 mS/cm for Nafion-Pt-

based ones. With the contributions from both (1) the traditional surface proton

hopping pathways (exterior to macrocyclic units) and (2) the open macrocyclic

features (facilitating the formation of exposed pathways), PS-calix offered a

high thin-film proton conductivity that makes PS-calix a strong ionomer candidate

to address both ion and gas transport limitations at ionomer-catalyst interfaces of

PEMFC cathodes.

In summary, here, we report a new class of ionomer (PS-calix) having a styrene-

based backbone and sulfonated calix[4]arene-based pendants. Leveraging its hol-

low, sub-nanometer-sized macrocyclic cavities, PS-calix was able to form unique

and faster water and ion transport pathways and enhanced the proton conductivity

in sub-micrometer-thick ionomer films, a system mimicking the ionomer binder

layers on PEMFC electrodes. Nafion and sPSf, the two most promising proton con-

ductors in bulk membrane separators, conduct protons poorly in such thin systems.

But PS-calix (IEC 3.85) showed proton conductivity (41.1 mS/cm) �13 times higher

than Nafion and �3 orders of magnitude higher than sPSf. The exceedingly high

proton conductivity over Nafion was attributed to an order of magnitude faster wa-

ter diffusion across PS-calix films. The water transport in PS-calix films was even

faster than in bulk water. This faster-than-bulk water transport in thin films was

likely mediated by the 1D water wires across macrocyclic cavities, a feature missing

in Nafion. We simultaneously investigated the distribution of the ion conduction

environment and elemental composition at different interfaces of ionomer films.

The lower –SO3H accumulation and thus reduced interfacial interactions next to

the substrate interface elevated the ion conduction next to the substrate interface

as well as across the entire PS-calix film. This was in contrast with Nafion, which

stiffened as a higher percentage of –SO3H localized near the substrate and inter-

acted, making Nafion films suffer from poor proton conductivity next to the sub-

strate interface. PS-calix outperformed Nafion even when it interfaced with Pt-cata-

lyst in a mixed film and offered an order of magnitude higher proton conductivity

than a Nafion-Pt-based system. In addition to addressing ion transport limitation,

PS-calix showed the potential to alleviate gas transport limitations by masking the

catalyst nanoparticles less than Nafion. Overall, the elevated ion and gas transport

potentials of PS-calix at nanothin catalyst interfaces open new avenues to advance

ionomer design principles. By guiding the water and ions through appropriate
Cell Reports Physical Science 4, 101282, February 15, 2023 13
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sizes of constrictions, we can construct effective ionomer-catalyst interfaces/cata-

lyst binder layers for fuel cells, electrolyzers, batteries, and many other sustainable

energy technologies.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Shudipto K. Dishari (sdishari2@unl.edu).

Materials availability

All unique and stable reagents generated in this study will be made available from

the lead contact with a completed Materials Transfer Agreement.

Data and code availability

Data generated and used in this study are provided in this article and the supple-

mental information. Additional data are available from the lead contact

(sdishari2@unl.edu) upon reasonable request. The article does not report any orig-

inal code.

Synthesis and analytical characterization of 25,27-bis-(4-vinylbenzyloxy)-

26,28-dihydroxycalix[4]arene (monomer 1)

A suspension of anhydrous sodium carbonate (4.78 g, 45.08 mmol) and calix[4]arene

(9.43 g, 22.21 mmol) in dry acetonitrile (CH3CN, 200 mL) was stirred under a N2 at-

mosphere for 5 min. After that, 4-vinylbenzyl chloride (6.88 g, 45.08mmol) and 20 mL

of nitrobenzene was added. The reaction mixture was stirred vigorously at 70�C and

refluxed under an N2 atmosphere for 7 days. After cooling, the solvent was removed

by vacuum evaporation. The residue was treated with 100 mL of aq HCl solution

(5 vol %) and extracted using CHCl3. After vacuum evaporation of the solvent

(CHCl3), recrystallization of the residue using CHCl3-n-butanol gave monomer

1 as a white solid (11.67 g, yield 80%). Chemical formula: C46H40O4 (MW

656.82 g/mol). Anal. calcd. for C46H40O4: C 84.12; H 6.14; O 9.74. Found: C

84.14; H 6.26; O 9.60. 1HNMR (CDCl3, 400 MHz): dH = 7.82 (2H, Ar-OH), 7.64–

7.40 (4H each, d each, Ar-H of vinyl benzene), 7.07 (4H, s, ArH of calix unit), 6.89

(4H, s, ArH of calix unit), 6.75 (4H, s, ArH of calix unit), 6.66 (2H, dd, each –

CH=CH2), 5.81 (1H each, d, –CH=CHH), 5.28 (1H each, d, –CH=CHH), 5.06 (4H, s,

ArOCH2Ar), 4.34 (4H, d, ArCH2Ar), 3.38 (4H, d, ArCH2Ar).
13C NMR (CDCl3, TMS,

100 MHz): 153.37 (–OH-C of calix, 2C), 151.9 (–O–C of calix, 2C), 137.33

(–CH=CH2, 2C), 136.37 (Ar, 4C), 133.20 (Ar, 4C), 129.05–125.46 (Ar, 20C), 118.96

(Ar, 4C), 114.14 (–CH=CH2, 2C), 78.12 (–O–C–Ar, 2C), 31.44 (Ar–CH2–Ar, 4C).

Synthesis of PS-calixn

Monomer 1 (1 g, 1.52mmol) and benzoyl peroxide (BPO; 3.63mg, 0.015mmol) were

dissolved in 10 mL of dry THF and stirred at 60�C under a N2 atmosphere for 48 h.

The reaction mixture was then cooled down to room temperature and quenched

subsequently in an ice bath with stirring. The residue was dissolved in a minimum

amount of dichloromethane and precipitated in methanol. The precipitation process

was repeated twice to make the polymer free of unreacted monomers. After drying

in a vacuum oven at 65�C, the polymer PS-calixn was obtained as a white solid (0.4 g,

yield 40%). Chemical formula: (C46H40O4)n (MWof repeat unit 656.82 g/mol). Molec-

ular weight (Mn 11,450 g/mol, PDI 2.13). Anal. calcd. for (C46H40O4)n: C 84.12; H

6.14; O 9.74. Found: C 82.84; H 7.46; O 9.70. 1HNMR (CDCl3, 400 MHz):

dH = 8.43 (2H, s, ArOH), 7.82–7.41 (6H, br, ArH), 7.08–6.75 (14H, br, ArH),
14 Cell Reports Physical Science 4, 101282, February 15, 2023
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4.86 (4H, br, Ar-OCH2-Ar), 4.35 (4H, d, ArCH2Ar), 3.35 (4H, d, ArCH2Ar), 1.27–1.12

(6H, br, aliphatic H).
Synthesis of acetyl sulfate (sulfonation reagent)

The acetyl sulfate was freshly prepared prior to each sulfonation reaction. To do so,

first, dichloromethane (5 mL) and acetic anhydride (1 mL, 9.70 mmol) were mixed for

3 h under an inert N2 atmosphere. The solution was then cooled down to 0 �C, and
95% sulfuric acid (0.9 mL, 16.65 mmol) was added. This reaction mixture was stirred

until a homogeneous and clear solution was obtained at room temperature. About

8 mL of acetyl sulfate was obtained following this procedure.
Sulfonation reaction for PS-calix (IECs 2, 3, 3.85)

PS-calixn (1 g) was dissolved in 5 mL of dichloromethane in a three-neck round-

bottom flask equipped with a stirrer, thermometer, and dropping funnel. The flask

containing the solution was heated to 40 �C to obtain a clear homogeneous solu-

tion of PS-calixn and then purged with N2 for 30 min. A freshly prepared acetyl sul-

fate solution was added dropwise using a dropping funnel. The ratio of PS-calixn

to acetyl sulfate was maintained at 1:1, 1:2, and 1:2.5 to yield PS-calix ionomers

with IECs of 2, 3, and 3.85, respectively. The reaction mixture was maintained at

0 �C under stirring for 5 h. The reaction mixture was filtered, and the residue

was dissolved in methanol. The methanol solution was washed with NaOH solution

(10% aqueous) to neutralize the excess acetyl sulfate and subsequently dialyzed

(MWCO of the dialysis membrane <6,000) for 3 days and dried in a vacuum

oven at 50 �C overnight. Finally, light gray powders were obtained (0.12 g, 10%

[IEC 2]; 0.16 g, 12% [IEC 3]; 0.18 g, 12% [IEC 3.85]). Molecular weight

(Mn 12,120 g/mol, PDI 2.87 [IEC 2]; Mn 12,880 g/mol, PDI 3.2 [IEC 3]; Mn

13,001 g/mol, PDI 3.68 [IEC 3.85]). FTIR (cm�1): 3,340–3,363 cm�1 (–OH stretch-

ing), 2,924 cm�1 (sp2 aromatic C–H stretching), 1,581 cm�1 (aromatic C=C stretch-

ing), 1,151, 1,090 cm�1 (–S=O asymmetric and symmetric stretching), 903 cm�1

(S–O stretching), 683 cm�1 (C–S stretching). See the supplemental information

for further details of materials, methods, and characterization.
SUPPLEMENTAL INFORMATION
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B., Góra, A., Hinds, B., et al. (2018). Structure
and function of natural proteins for water
transport: general discussion. Faraday
Discuss 209, 83–95. https://doi.org/10.1039/
C8FD90019A.

61. Pfeffermann, J., Goessweiner-Mohr, N., and
Pohl, P. (2021). The energetic barrier to single-
file water flow through narrow channels.
Biophys. Rev. 13, 913–923. https://doi.org/10.
1007/s12551-021-00875-w.

62. Epsztein, R., DuChanois, R.M., Ritt, C.L., Noy,
A., and Elimelech, M. (2020). Towards single-
species selectivity of membranes with
subnanometre pores. Nat. Nanotechnol. 15,
426–436. https://doi.org/10.1038/s41565-
020-0713-6.

63. Wang, H., Yang, C., Wang, S., and Hu, S.
(2022). Tunable ion transport through
ultimately small channels. Advanced
Membranes 2, 100043–100112. https://doi.
org/10.1016/j.advmem.2022.100043.

64. Song, W., and Kumar, M. (2019). Artificial
water channels: toward and beyond
desalination. Curr. Opin. Chem. Eng. 25,
9–17. https://doi.org/10.1016/j.coche.2019.
06.007.

65. Barboiu, M. (2012). Artificial water channels.
Angew. Chem., Int. Ed. Engl. 51, 11674–
11676. https://doi.org/10.1002/anie.
201205819.
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