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Challenges in solving chiral hydrodynamics
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We prove that ideal chiral hydrodynamics, as derived from chiral kinetic theory, is acausal and its initial-
value problem is ill posed, both in the linearized case around a local equilibrium solution and also in the full
nonlinear regime. Therefore, such theory cannot be used to determine how the chiral anomaly affects the
hydrodynamic evolution. We show that these fundamental issues can be fixed by using different definitions
(frames) for the hydrodynamic fields. This leads to a causal theory of ideal chiral hydrodynamics where the
vorticity strength is constrained by the coefficient that encodes the anomaly.
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I. INTRODUCTION

Relativistic fluid dynamics [1] is a fundamental tool in
various fields ranging from high-energy nuclear physics
[2-4] to astrophysics [5]. Considerable effort has been
made to study the novel phenomena displayed by chiral
systems arising from the interplay between quantum
anomalies and the electromagnetic and vortical fields.
Such effects can influence the dynamics of various systems,
from the quark-gluon plasma to Weyl semimetals [6-8].
While the chiral magnetic effect [9,10] is explicitly con-
nected to the axial anomaly, the microscopic origin of the
chiral vortical effect [11-17] may be understood in differ-
ent ways [18-24].

The chiral vortical effect was first investigated in [11,12]
and later in relativistic hydrodynamics in Refs. [13,14]
in the context of the fluid/gravity duality [25], which
predicted the inclusion of a new term in the standard
constitutive relations for the dissipative currents. In
Refs. [15,26,27], an entropy-current analysis was used to
reach a similar conclusion, showing that the presence of
quantum anomalies modifies the hydrodynamic equations,
and the associated transport phenomena can occur even
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without dissipation. Therefore, in chiral (or anomalous)
relativistic hydrodynamics, subtle quantum effects driven
by anomalies can become manifest even in the macroscopic
regime.

It is possible to derive the equations of motion of chiral
hydrodynamics from a kinetic theory formulation [28], the
so-called chiral kinetic theory (see also [29-35]), which, in
turn, can be obtained from quantum field theory using the
Wigner function [36-43] and the world-line formalism
[44,45]. While these approaches have provided great
insight into the physics of chiral matter, very little is
known about the properties of the chiral hydrodynamic
equations of motion and their solutions, especially in the
nonlinear regime. Such knowledge is relevant when study-
ing the consequences of the chiral anomaly in hydro-
dynamic simulations of the quark-gluon plasma formed in
heavy-ion collisions [46,47].

In this work, we take essential steps toward solving this
issue by investigating the initial-value problem of ideal
(i.e., dissipationless) chiral hydrodynamics, as derived from
chiral kinetic theory [28]. We prove that the initial-value
problem for these equations of motion is ill posed, both in
the linear and nonlinear regimes. In other words, given
arbitrary initial data there does not exist a corresponding
solution to the equations of motion or a solution is not
unique. Also, causality is violated in such a theory.
Therefore, our analysis implies that it is hopeless to
implement such equations of motion in numerical codes
that simulate the hydrodynamic evolution of the quark-
gluon plasma. We show that this issue can be fixed by
considering different definitions for the hydrodynamic
fields (i.e., different hydrodynamic frames) following
[48-52]. This procedure leads to a causal formulation
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of ideal chiral hydrodynamics where the magnitude
of the vorticity is constrained by the quantum anomaly
coefficient. For completeness, we also study the standard
formulation of viscous chiral hydrodynamics defined at
first order in gradients [15] and show that this theory also
violates causality.

This paper is organized as follows. In Sec. II, we present
the equations of motion of ideal chiral hydrodynamics as
derived from kinetic theory. In Sec. III, we study the initial-
value problem of this theory in the linearized regime
(around a solution of ideal hydrodynamics) and also in
the full nonlinear regime. We carefully examine both the
linear and nonlinear cases in this paper in a comprehensive
manner, so that the reader can clearly understand the
regime of validity of the statements made in either case.
In Sec. IV, we perform a similar study in the case where the
equations are written in the Landau hydrodynamic frame.
We investigate causality in the nonlinear regime of standard
chiral viscous hydrodynamics in Sec. V. Our conclusions
and outlook are presented in Sec. VI, and in the
Appendix we list the linearized equations of motion used
in Sec. III. Throughout this paper, we use a mostly plus
Minkowski metric g, = diag(—, +, -+, +), natural units
h = ky = c =1, and greek indices run from O to 3.

II. EQUATIONS OF MOTION OF IDEAL CHIRAL
HYDRODYNAMICS FROM KINETIC THEORY

We first consider chiral hydrodynamics in the dissipa-
tionless regime, which can be directly derived using chiral
kinetic theory [28]. The starting point involves defining
the distribution function that describes local equilibrium. If
the collisional invariants are energy, momentum, charge,
and total angular momentum, the equilibrium distribution
function for massless fermions takes the form (the exten-
sion to antifermions is straightforward) [28] f.q . (x, p) =
[exp(g.) +1]7", where g.(x.p) = —u'p,/T —ps/T F
%S"”w}w, with #* being the relativistic flow velocity (with
u,u' = —1), T the temperature, u, the chemical potential
for right- and left-handed particles, @w" = —(1/2)
[0,(u,/T) —0,(u,/T)] the thermal vorticity, and S$* =
e p,n,/(pn®) the dipole-moment tensor that encodes
the Lorentz frame dependence through the frame vector n#
related to the side-jump effect [28,33,53,54]. Also, p,
is the particle 4-momentum. Using the distribution
function in phase space given above, one can employ an
h-gradient expansion to obtain the constitutive relations
that define the macroscopic quantities. At first order, one
obtains [28]

T = eu'u” + PA" + Er(0'u” + 0*u*),  (la)
Jy = nyut + &y, (1b)

T = naut + S, (lc)

where T is the energy-momentum tensor, J%, is the vector
current, Jﬁ is the axial-vector current, € = u, u, T is the
energy density, P = ¢/3 is the equilibrium pressure, and
ny,, are the vector (V) and axial-vector (A) densities,
respectively. We also introduced above A, = g, + u,u,,
which is a tensor projector orthogonal to the flow, and the
vorticity tensor

1
ot = ie””aﬂupaauﬁ, (2)

where e is the Levi-Civita symbol.

The essential novelty that distinguishes this chiral theory
from ideal relativistic hydrodynamics [1] is the explicit
presence of the vorticity tensor @* in the definition of the
quantities in (1), accompanied by the coefficients &7, &y,
and &, (which vanish for nonanomalous matter). Thus,
even though there is no dissipation in this theory, a nonzero
energy flux given by —A/ T*u, = Er* is present, and the
currents possess contributions transverse to the flow
velocity (note that w,u* = 0). These new contributions,
which stem from the quantum anomaly, have important
physical and mathematical consequences to the evolution
of the fluid, as we discuss below. The coefficients &, &y,
and &, are first order in the 7-gradient expansion and they
represent quantum corrections to the motion of the fluid.
Furthermore, the terms with coefficients &, and &, con-
stitute the chiral vortical and the axial-chiral vortical
effects, respectively. The coefficients in (1) can be explic-
itly computed from the equilibrium distribution function,
see, e.g., Refs. [28,41].

The hydrodynamic equations of motion associated with
the constitutive relations in (1) are the conservation laws,
i.e., energy-momentum conservation d,7"* =0, and the
conservation of the currents, 9,Jy, =0 and 9,J% = 0.
Without any loss of generality, in our analysis we use
the projections of 9, 7" = 0 parallel and orthogonal to u*;
i.e., we write the set of equations of motion as

u,0,T" =—=De—(e+ P)0—0,(ér*) +u,D(ra*) =0,
(3a)

A%9,T" = (¢ + P)Du® + A%0,P + Era* 9, u”
+ ASD(Era) + Era®0 = 0, (3b)

0,7y = Dny + ny0 + £y0,0" + 09, &y =0, (3c)
0, J%y = Dny +ny0 + 40,0/ + 09,64 =0, (3d)

where D = u,0" and 6 = d,u*. Below, we study the initial-
value problem of Eq. (3) in the linear and fully nonlinear
regimes.

054029-2



CHALLENGES IN SOLVING CHIRAL HYDRODYNAMICS

PHYS. REV. D 107, 054029 (2023)

III. INITIAL-VALUE PROBLEM OF IDEAL
CHIRAL HYDRODYNAMICS

We prove below that the initial-value problem of the
system of partial differential equations (PDEs) in (3) is ill
posed and the dynamics is necessarily acausal. The proof is
based on standard techniques from the theory of PDEs [55].
Consider a general quasilinear system of PDEs,

A(W,0)¥ = B, (4)

where ¥(x) € RY is a column vector of the N unknowns of
the system. A(‘P, 9) defines the so-called principal part of
the system of PDEs [56], which corresponds to an N x N
matrix differential operator, possibly depending on ¥ and
its derivatives, containing the higher-order derivatives of
each unknown in the system (the order of the higher
derivative of different unknowns need not be the same).
B is a column vector that may depend on the unknowns, as
well as their lower-order derivatives. The initial-value
problem consists of finding a solution of the system (4)
with given initial values of W and their lower-order
derivatives along a hypersurface X, which one can para-
metrize as ¢(x) =0 [in most physical contexts, it is
convenient to choose the hypersurface of vanishing initial
time, i.e., ¢(x) = x°]. The initial-value problem is locally
well posed if for arbitrary initial data on X there exists a
unique solution' in a neighborhood of X. For relativistic
theories, causality must also hold [56]. Examples of
theories of relativistic fluid dynamics where the initial-
value formulation has been proven to be locally well
posed and strongly hyperbolic [57], in the full nonlinear
regime, are the ideal relativistic fluid [56], Israel-Stewart
theory [58], including only bulk viscosity effects [59],
and the generalized first-order theories of viscous hydro-
dynamics [52].

A minimal requirement for well posedness is that one
should be able to express the higher-order derivatives in
terms of the lower-order derivatives, so that one can
recursively determine all derivatives of a solution in terms
of the initial data. This will not be possible if, for any
covector ¢, = d,¢, where £ = {¢(x) = 0}, the character-
istic determinant vanishes, i.e.,

det[A(¥y, ¢)] = 0. (5)

where ¥, is the initial data (i.e., the values of ¥ and its
lower-order derivatives along X). In this situation, the
initial-value problem is locally ill posed; i.e., given arbi-
trary W, a solution of (4) either does not exist or, if it does,
it is not unique [60]. This is a strongly undesirable feature
to be displayed by fluid dynamic theories, which are

'One often also requires that solutions vary continuously with
the initial data, but here we focus only on existence and
uniqueness as these are essential features for physical theories.

supposed to give unique physical solutions that lead to
testable predictions.

Causality is verified by means of the system’s character-
istics, which are the roots of det[A(¥, )] = 0, where the
replacement d, — ¢, has to be applied. The system is
causal when the roots ¢, = (@y(¢;). ¢;) are such that [55]

(i) @, isreal and (ii) ¢*¢, > 0. (6)

For the sake of illustration, we give here two basic
examples that will be relevant for the discussion below.
(1) Let us consider the advection equation,

V, 0% =0, (7)

where ¥ is here one scalar function and V, is a
general vector. The principal part is thus given by
A(Y,0) = V,0". Following the prescription given
above, we need to study the roots of
det[A(¥, )] = V,¢" = 0. One can check that the
conditions in (6) are satisfied and, thus, the system is
causal, if and only if V# is time- or lightlike,
namely, V¥ V, < 0.
(i) Let us now consider the wave equation,

0,1, — A, #PW = 0, (8)

where again W is a scalar unknown and f is a
coefficient. The principal part is thus given by
A(Y.0) = (u,u, — pA,,)0"d". As shown in [61],
any root ¢, from the equation det[A(¥,¢)] =
(u,0")* — BA,,@"9* = 0 obeys (i) and (ii) if, and
only if, 0 <p < 1. This follows from ¢"¢, =
_(uﬂ¢ﬂ)2 + AM””(/)” = (1 - ﬂ)Aﬂu(pﬂ(py'

We shall now use the concepts discussed above to prove
that the initial-value problem of ideal chiral hydrodynamics
(3) is ill posed in the sense of (5). The first step consists of
recognizing that the nonlinear set of second-order PDEs in
(3) is of the form (4).

A. Linear regime

Let us first study the initial-value problem of the
system (3) in the linearized regime. We consider the
linearization around a general (nonlinear) solution of
conventional ideal hydrodynamics. We stress that the
background solution here does not need to be the one
describing the global equilibrium state. Perturbation around
such a state can be expressed in the following form:

w = uOk 4 syt o* = 0O + S,

Evia = 5&9/)A + 68y /4, 9)

e=e + 5e,
0
ny = ni,/)A +5nv/A,

where 0% = (1/2)0 99,14 ang
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1
b = e () 0,615 + Su,0,uy).  (10)
The background fields £, u(O# Ok ng)/) . and fg)/) , are,

in general, spacetime dependent and satisfy the equations
of motion of ideal hydrodynamics,

D0 ¢ §g<0>aau<°)“ =0, (11)

where we used the conformal equation of state and defined

DO = ;D92 and AOW — ¢ + u Oy 0% Note that the
background fields that we use include the global equilib-
rium state as a particular case. Plugging Eq. (9) into Eq. (3)
and keeping only terms at first order in the perturbations,
we obtain the linearized system of chiral hydrodynamics.
The explicit form of such equations is quite lengthy and
is given in the Appendix. One can show that such system
can be cast in the form of (4) with the unknowns ¥ =
(6, 6ny, 6ny, 6u”) and the principal part given by the 7 x 7

460 DO O 1 AOmag £0) = @, (12) matrix,
|
( u0a y 5(70,2 w(O)a) J, 5(7(2#’(0)“ 0, 5;% OLER 014
< 1 AOpa 5;01 O u(O)a) d, 5%"/&)(0)/4 uag, ,f;QLA Oy ey, % ‘f(TO) uElO)euzay u(O)ﬁaaaﬂ
A®.0) = . (13)
Boa, (0, w0)a, &, 00, O
Eluion, o, (w0, o

where we introduced the following notation for partial derivatives with respect to thermodynamic fields, e.g., é(T(? l = o0&y /0e
computed at perturbations equal zero. Note that the principal part contains first-order derivatives of de, ény, and on, and
second-order derivatives of du”. We can now compute the characteristic determinant and find

b 4 &0 &0, c© &, e 04 ]
LyOn 4 5%;,(0)@(0)” 5QLV H(0) (O 5$1Ab<0>w<0>y %59 A ug‘)) o0 et

det[A(W, ¢)] = det

e DO e, 8, Ot
D e o
0RO\ * b +§(TO.Z-C(O) fgvcm) 5’93“"(0)
_ ( o ) det| 00 pO 4 0 O 0| det [ugomgowuy} =0, (14)
fixo,)s 0 égojw RO pO 4+ giﬁjmcw)

where we defined 5 = uOrgp, ¢ =@Oky, and

vOr = Ak In the last step of (14), we made use

of the fact that the matrix uﬁo)véo)e’w”y has uf,o) as an
eigenvector with zero eigenvalue and, hence, its
determinant vanishes. The vanishing of the characteristic
determinant for any X = {@(x) =0} implies that the
initial-value problem of ideal chiral hydrodynamics in
the linear regime is locally ill posed. As a consequence,
it is impossible to find general solutions for these equations
of motion. Furthermore, in a relativistic theory, the vanish-
ing of the characteristic determinant implies acausality.
This is because it implies, in particular, that the equations of

|
motion are not hyperbolic and hyperbolicity is a necessary
condition for causality.

B. Nonlinear regime

For completeness, let us now consider the full non-
linear regime of the system (3). One can show that Eq. (3)
can be cast in the form Eq. (4) with the unknowns ¥ =
(&, ny, ny, u”) with the principal part formally given by the
same expression as (13), except that now the background
fields are replaced with the dynamical ones. Therefore, the
characteristic determinant is given by
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b + éT.ec §T,nvc éT.nAc Ol><4
ot + & b ny b0* n,b*  FErbuyv,et
det[ A(¥, g)] = det| 3" 7T ST bt gerbu (15)
SV,SC b + ‘SV,nVC gv,nAC 01><4
‘}:A,sc §A.nvc b + fA,nAC 01><4

where we defined b = u"¢,, c = @'¢,, and v = A",
defined, e.g., {7 = 0&r/0e, and followed the same steps
that we used to prove the result in Eq. (14). We thus
conclude that ideal chiral hydrodynamics defined by the
constitutive relations (1) is ill posed both in the linear and
fully nonlinear regimes. Therefore, given that anomalous-
free relativistic ideal fluid dynamics has a locally well-
posed initial-value problem and causal evolution [56], one
can see that the inclusion of quantum anomaly effects, even
in the dissipationless regime, leads to problems that render
finding a well-defined general solution of the equations of
motion impossible.

Concerning the physical origin of the problem discussed
above, in general, all terms with vorticity in the constitutive
relations (including the term proportional to @*u” + w"u*
which makes the system ill posed) appear from chiral
kinetic theory because of the spin-vorticity coupling which,
for massless fermions, couples the particle helicity with the
fluid vorticity. Therefore, those terms are of quantum
origin. In other words, quantum mechanics leads to
gradients at the hydrodynamic level even in the absence
of dissipation, and it is well known that gradients may lead
to issues when assessing well posedness, causality, and
stability of hydrodynamic theories [52,62].

IV. IDEAL CHIRAL HYDRODYNAMICS IN THE
LANDAU HYDRODYNAMIC FRAME

A given definition of the hydrodynamic fields is called
a hydrodynamic frame. There is, of course, an infinite set
of hydrodynamic frames [63], with the Landau [64] and
Eckart frames [65] being the most well-known definitions.
Even in the dissipationless regime, chiral hydrodynamics
already contains terms that are of first order in derivatives
and there is nonzero energy flux in (1). We show below
that a judicious choice of the hydrodynamic frame is
already sufficient to fix the issues displayed by the
original formulation of Ref. [28]. We also note that
the importance of different hydrodynamic frames in
chiral hydrodynamics was already discussed in various
contexts, including the definition of Kubo formulas for
anomalous transport coefficients [66] and the no-drag
frame [67,68].

Let us now consider (1) in the so-called Landau
frame [64]. In this case, the flow velocity is defined as
an eigenvector of the energy-momentum tensor, a definition
that is commonly employed in heavy-ion collision

|

applications [3]. The change to the Landau frame can be
done by shifting the velocity [66-68] as follows
u = uy — &l /(e + P), where uf is the Landau flow
velocity and @} =1e"*u;,d,u;5. Dropping terms of
higher order in derivatives, the constitutive relations (1)
become

T = eul ut + ATYP, (16a)
Jy = nyup + &y o, (16b)
Sy = naup + a0, (16¢)
where AV = g +ulul, &y =&y — Zf;, and &, =
&y — fﬁ Note that now u} T% = —eu;. The equations of
motion are thus given by
uLUa”TﬂD = —DL€—(€+P)0L :O, (173)
Ap,%0,T" = (e + P)Dpuf + A79,P =0, (17b)

0,J% = Dyny + ny0;, + &y 0,0] + @}, &y, =0, (17¢)
0, J% = Dpny + n,0p + £41.0,0; + @} 0,E4, =0, (17d)

where D; = ujd, and 0, = d,u;. We will now study
the initial-value problem in the linear and nonlinear
regimes.

A. Linear regime

Let us linearize Eq. (17) around a solution of ideal
hydrodynamics as done in Sec. III A. We thus obtain the
following system of equations:

4 4
DO5e + 5uf 0, + §e<°)aa5um +-095e =0, (18a)

3
4 ODOsy + 2 5409 4O 1 2 56D 0
3¢ D éuL+§€ oufoau +§58D u
1 1
+3 Ay se + 3 (uOksus + usuk )a,e® =0,
(18b)

DOsny + suanY + n\” 0%u, + o1y 00 + &) 0,5w%
+ 80 0,E)) + 000,08, + 86,000 =0, (18¢)
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DOsn, + 5utd,nY + n'Vonsu, + on0© + 00,508

+ 802 0,EY) + @ ©90,62,, + 584, 0,00 =0.  (18d)

Equations (18) form a system of first-order PDEs with
unknowns ¥ = (8¢, dny, ény, Suy ). For simplicity, let us
first consider the case with vanishing vector chemical
potential, which implies J4, = 0 [28,41], but nonzero axial
chemical potential y4. In this case, the principal part reads

u0e 0
A(P.0)=| 5a0k 041

0 a a 0 a
e e (WO, @)

2e0)5¢
%8(0) u(O)a(Sff aa’
H(0)a

v

(19)

where

T

1
HO®, = 057 + 2 (E400,ur) +ulo, 800 e, (20)

The characteristic determinant reads

det[A(W, 9)] = (g 5(0))4(17(0))3 [(b(o))z _ % (U(O)V}
x (b0 4 fixoL),nAC(O))’ (21)

where b0 = u,(,o)cp”, vf,()) = A,(,(,),>g0”, 0 = a),(,o)gof‘, and
€© > 0. We notice that the factors in (21) have the same
structures as the examples discussed in Sec. IIL
Specifically, (b(©)? =1 (»(©)? =0 has the same form as
the characteristic determinant of the wave equation (8),
|

which leads to causal roots, »© =0 is causal. The
remaining root comes from

bO 4 £f) O =) + &5, o) =0, (22)

which has the same form as the characteristic determinant
of the advection equation. Since fgoz.nA is real, we have that

(1) in (6) automatically holds. Thus, we can conclude that
Eq. (22) leads to causal roots if, and only if, the vector

(ufy + €5, wh) is time- or lightlike, namely,

€t ot < 1, (23)
where a)go) = a)(LO)” a)(L(L) (recall that a)(LO)” is spacelike).

Using the results in [69], one obtains local well posedness
in Gevrey spaces. Thus Eq. (23) is the condition for
causality and local well posedness. We note that
Eq. (23) sets a bound for the vorticity strength in terms
of the anomaly coefficient.” This provides a clear example
in which quantum effects restrict how fast fluids can spin in
relativity.

For completeness, let us now consider the general case
where J/, is also present. Using similar steps as before, we
obtain

det[A(W, 9)] = G g<0>)4(b<0>)3 ((b<°>)2 _ % (v<°))2>

x (b — {0 (p©) —

where

0 0 0 0 0 0
(()) o _(égL).nA + fg/z.nv) :t \/(522.}“ - ég/L)ﬁnv)z + 451(42,)1‘/5&/2/1/4

ay

The conditions read

2
5 (25)
0 0 0 0
(fz(ﬂz,nA - é:g/z,nv)z + 4§§/L),nV§§/L),nA =0, (263)
0 0 0 0 0 0 0
=€+ €00 + VL, = 0 4, 6, ol <2 (260
0 0 0 0 0 0 0
=60, + 80 - 0, — 0 P 4 4, 8L, 0l > 2 (260

*Using the results in [28,41], one can show that Eq. (23) becomes simply 6w(LO)[5(/4£‘0))3+ﬂ2/4£‘0>(T<0>)2]/ [15(/420))44-

622 (W (TO)2 4+ 724(T©)4] < 1.
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Concerning (i) in (6), the roots are real if, and only
if, ay’ are real, i.e., if (26a) is verified. Furthermore, in
analogy with what has been done above, the condition to
guarantee (ii) and that the determinant (24) is different from
zero is that the vectors are time- or lightlike, namely,

|a$))|a)(LO) <1, which corresponds to (26b) and (26c).
Again, one obtains local well posedness in Gevrey spaces.
Thus, the Landau frame formulation in the linear regime
(18) admits a causal and well-posed initial-value problem.

B. Nonlinear regime

The equations of motion (17) are first-order PDEs, but
they are fully nonlinear rather than quasilinear since there
are nonlinear first-order derivative terms [i.e., N(O‘I‘)z, as

the ones coming from the conservation of the currents J5, "

which are of the form d,a; =%e"*0,u;,0,u;5 and
@"0,Eyr/ar)- This implies that local well posedness and
causality cannot be studied in a straightforward way using
standard techniques that apply to quasilinear systems as
discussed above. However, a more detailed analysis reveals
that (16) is causal and locally well posed in Gevrey spaces
if the same conditions as those in the linear case hold,
namely, Eq. (26), where the background quantities are now
replaced by the full fields (e.g., w(LO) is replaced with w;).
Below, we give the proof of such statement.

If we assume that the initial data are prescribed along a
hypersurface at constant given initial time x° = ¢, the
extension to a generic initial condition is straightforward.
Hence, the initial data are given by ¥(zy,x’). In order to
prove well posedness and causality, we proceed in two
steps. The first step consists of finding the conditions for
expressing dy'¥(¢y, x') in terms of W(zy, x') and 9, (¢,, x').
This is a minimal requirement for a solution to be found.
Since we want to study the evolution given initial data
prescribed on a general hypersurface (not necessarily at
constant time), it is convenient to work in a covariant way.
We decompose the derivative into a parallel and
perpendicular part with respect to a normalized timelike
vector ¢* (¢"q, = —1), i.e.,

o = —q*D + V°, (27)
with D = ¢%d, and V¥ = (¢ + ¢*q")d,. Hence, our
system can be written as

ug
A(¥.0) = | Lul“am)
fAL,e”(Law/Z> ”(Z”[Z

+ éAL.nA M<Laa)€)

-M®q,D¥ + F =0, (28)
where ¥ = (&,ny,ny,uy) and F are 7 x 1 column matri-
ces, with F containing all the remaining terms that do
not contain a time derivative along g“ of the fields ¥, and
M*® are 7 x 7 matrices. Thus, we search for the conditions
such that the matrix —¢,M* is invertible, namely,
det(—g,M*) # 0. For the sake of simplicity, let us first
consider the case of vanishing vector chemical potential,
which implies ny = 0 and J§, = 0. The matrix —g,M?* is
now 6 x 6 and it reads

b 0 %eqy
—q M* = | Lom O tebsy |, (29)
Eapc (b+ Earn,C) H,

where we made used of the conformal equation of state
P=¢/3 and defined b= upq’, = A*gq, =
%qlle"m/juu(@auw), and

- 1 ~ ~
H" =nyq" + 5 (284 Vattrs + ursVolar)qe® . (30)
The determinant of the matrix in (29) is given by

4 Vo2 1o\ 5 =
det(—g ,M?*) = §£ b’ b _§U (b+&arn,c). (31)

which is different from zero if

b + §AL.nA5 = CI,;(”’Z + §AL.I‘1A(’UIZ) ;é 0 (32)
for any timelike g*.

The second step of the proof consists of converting the
first-order system (17) into a quasilinear second-order one,
so that standard techniques to study well posedness and
causality can be applied [55]. This can be achieved by
acting with u%d, onto (17). In this way, we obtain the new
second-order system, which is of the form (4), where the
6 x 6 matrix linear differential operator of the principal part
is given by

0 %8145‘(15{/})
(O deuful 8} | 0405, (33)

HY
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with the notation, e.g., u\"w! = (1/2)(u¢e/} + 1l w?),
and

Q a 1 a
HY = ”AM(L &) + 5 (2842015 + ’MaﬂfAL)dM( P (34)

The characteristic determinant of (33) is given by

det[ A(¥, )] = (g 8)4199 <b2 - % 02> (b+Eun,c). (35)

where b, v#, and ¢ are defined as in the main text with u’z
instead of u#. This determinant has the same structure as
(24) and we can thus conclude that the roots » = 0 and
b* —1v? = 0 are causal. The remaining root comes from
the equation

b+ fAL,nAC = %(“’Z + gAL,nAwlZ) =0. (36)

In order for conditions (32) and (36) to be satisfied for any
timelike g, and for any ¢, such that (ii) in (6) is obeyed, the
vector (uy + €47 ,, @} ) must be time- or lightlike, namely,
Eq. (23) in the main text must hold. Using the results in
[69], one obtains local well posedness in Gevrey spaces.

Let us now consider the general case where J¥, is also
present. Using similar steps as before, we obtain

det(—g,M*) = @ e>4133 (132 - % 172> (b—a.¢)(b-a.t),

aL =

After applying the operator u,0” the determinant of the
principal part is now given by

det[A(¥.¢)] = <§e>4b‘° <b2 —%vz> (b—a.c)(b—a_c).
(39)

Concerning (i), the roots are real if, and only if, o, are real,
i.e., if (26a) is verified. Furthermore, in analogy with what
has been done above, the condition to guarantee (ii) and
that the determinant (37) is different from zero is that the
vectors are timelike, namely, |ai|w; < 1, which corre-
sponds to (26b) and (26¢). Again, one obtains local well
posedness in Gevrey spaces.

We thus see that the Landau frame formulation of ideal
chiral kinetic theory admits a well-posed initial-value
problem both at the linear and full nonlinear regimes, with
causal evolution, as long as the nontrivial conditions (26)
that effectively place a bound on the vorticity are satisfied.
Therefore, ideal chiral hydrodynamics defined by (16) can
be solved and numerical simulations of such a fluid can be
performed [one can test whether inequalities (26) hold at
each time step in order to verify whether causality holds].
Finally, our results show that quantum effects in chiral
fluids influence the choice of the hydrodynamic frame,
even in the absence of dissipation.

V. ACAUSALITY OF VISCOUS CHIRAL
HYDRODYNAMICS

For completeness, we now investigate the case of viscous
chiral hydrodynamics following the entropy-current analy-
sis of Ref. [15] and write the energy-momentum tensor and

(37)
where
|
—(&aLn, +évin,) £ \/(fAL,nA —Eyrny)? 4L, Evin,
_ . (38)
2
I
the current in this way,
T = eutu’ + (P — {out) AW — 26, (40a)

JH = nut — 6TAM0, (%) + oEF 4 (¥ + EgBF,  (40b)

where 7 is the particle number density and the shear tensor
is 6" = AP9,uy with A = (AF*AYP + AP AVT) [2—
A*A% /3. Also, we defined the covariant electric and
magnetic fields, E* = F*u, and B* = (1/2)e""u,F
respectively, with F* being the electromagnetic field
tensor (assumed to be nondynamical [15]). The coefficients
¢ and 7 are the bulk and shear viscosities, respectively,
while ¢ is the conductivity. Following [15], we restrict
ourselves here to the case of a single axial current with the
associated chemical potential u (the generalization involv-
ing multiple currents, as in the previous section, is
known [26,27]).

We note that the hydrodynamic fields in (40) are
expressed in the Landau hydrodynamic frame [64]. In
the presence of the anomaly, the conservation laws are
given by

0,T" =F"J,,  0,J* = CE,B", (41)
where C is the anomaly coefficient, which determines the
coefficients & and & (see [15]). We prove below that the set
of nonlinear PDEs given by (41) violates causality.

We again notice that the set of second-order PDEs
in (41) is a quasilinear system of the form (4).
We use the projections of the first equation in (41), i.e.,
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u,(9,T" — F**J,) = 0 and A%(9,T* — F**J,) = 0. Also,
we choose the unknowns to be ¥ = (e,u/T,u”). The
principal part is given by

u(laa 0 01><4
AW, 0) = | C*9, 041 ~Di"0,0, |, (42)
G, —oTA"9,0; 0
where
O = (P, — Lo ) A — 0%, (43)
D = (c + g) Aved) A, (44)

G*=n.u"—(oT) A% 0 <;{> +o B + & +Ep B, (45)

and we made use again of the notation for the partial
derivatives, e.g., P, = dP/de. One can show that the
characteristic determinant is given by

det[A(V, ¢)] = —GT(AMD(p/‘(p“)Sb(C + %) (46)

This result implies acausality, since v* = A% g, p5 =0
corresponds to @,p* = —b> + v> = —b* < 0, which, in
turn, implies that the system is not hyperbolic [56].
Therefore, the constitutive relations defined by (40) do
not provide a viable causal viscous generalization of ideal
chiral hydrodynamics. In particular, its inherent acausal
nature forbids numerical simulations of such theory in
relativistic fluids, such as the quark-gluon plasma.

We observe that standard Landau-Lifshitz theory [64]
corresponds to the limit of the constitutive relations (40) in
which both £ and &g vanish (with F*¥ = 0). In this regard, it
is well known that Landau-Lifshitz theory displays acausal
behavior when linearized around equilibrium [70].
However, one can show that Landau-Lifshitz theory has
the same characteristic determinant as in (46), which
implies that this theory is acausal also in the nonlinear
regime. Finally, we note that (40) and Landau-Lifshitz
theory become identical when linearized around equilib-
rium (for F*¥ =0), so (40) also suffers from the same
unphysical instabilities known to plague Landau-Lifshitz
theory [70], which render such formulation unsuited for
numerical simulations.

Even though [48-52] initially considered only anomaly-
free theories, the same arguments used there should apply
when investigating the macroscopic evolution of relativistic
fluids in the presence of quantum anomalies. All the
possible terms of first order in spacetime derivatives, which
in this case will involve also w,, must be included when
writing the most general constitutive relations that define

the energy-momentum tensor and the currents. Since the
simple first-order shift to the Landau frame was shown here
to cure the issues displayed by ideal chiral hydrodynamics
(1), one can see that the choice of the hydrodynamic frame
should play a key role in chiral hydrodynamics. Therefore,
in the presence of quantum anomalies, questions concern-
ing the nature of hydrodynamic frames are unavoidable and
crucial already in the dissipationless regime.

The inclusion of all the possible first-order terms should
naturally fix the acausal nature displayed by chiral viscous
hydrodynamics (40), as it did in the anomalous-free case. In
particular, the presence of terms such as u“d,T and u®d,u
in the constitutive relations fundamentally changes the
structure of the equations, turning the system hyperbolic
and well posed. A detailed study of causality, stability, and
well posedness in this case is extremely lengthy and
complex (see [52,62] for a simpler example), and it will
be presented elsewhere.

VI. CONCLUSIONS

In this paper, we investigated causality and the initial-
value problem of the ideal chiral hydrodynamic equations
derived from kinetic theory [28]. We performed a com-
prehensive study of such properties both in the linear and
nonlinear regimes of these equations. The linear regime
describes perturbations around a general (e.g., nonlinear)
solution of the ideal hydrodynamic equations, which
includes the rotating global equilibrium state. We found
that ideal chiral hydrodynamics, in a general hydrodynamic
frame where energy diffusion is nonzero, has an ill-posed
initial-value problem and is acausal. This issue appears
both in the linear and nonlinear regimes. Having an ill-
posed initial-value problem means that a general solution of
the partial differential equations does not exist or is not
unique, which implies that the system cannot be solved and
numerical simulations cannot be performed. However,
when using other choices of hydrodynamic frames, namely,
the Landau frame, the theory becomes locally well posed
and causal if certain conditions are met. Thus, the version in
Eq. (16) of the theory proposed by [28] is free from
unphysical features and can be numerically solved. In
particular, we found that the magnitude of the vorticity is
directly constrained by the coefficient that encodes the
anomaly due to causality. This provides a concrete example
where the size of the gradients of classical, macroscopic
quantities (i.e., the vorticity) is bound by the relativistic
quantum nature of the fluid constituents. These constraints
appear both in the linear and nonlinear regimes.

Furthermore, for completeness, we also studied the well-
known first-order formulation of viscous chiral hydro-
dynamics in the Landau frame constrained from the entropy
current [15] and proved that this theory is also acausal,
which should be expected given that the nonanomalous
terms in the equations reduce to Navier-Stokes theory,
which is known to be acausal and unstable. We argued that
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such issues can be naturally fixed in the derivative
expansion by taking into account all the possible terms
at first order, in the context of [48-52].

Our work shows that the choice of hydrodynamic frame
plays an important role in chiral hydrodynamics already in
the dissipationless limit due to quantum effects. Indeed, a
bad choice of hydrodynamic frame can render the theory
not only acausal but also ill posed. Additionally, our results
illustrate that defining local thermodynamic equilibrium in
relativistic fluids where chirality and vorticity are consid-
ered is nontrivial and deserves further investigation. We
note that conceptual problems related to the definition of
local equilibrium for hydrodynamic theories where spin
degrees of freedom are promoted to dynamical variables
(the so-called spin hydrodynamics) have been pointed
out in different works before [71-75] (see also related
work [76-84]).

Finally, it would be interesting to investigate causality
and the initial-value formulation in approaches to chiral
hydrodynamics that differ from the derivative expansion,
such as Israel-Stewart theory [58]. Gorbar et al. [85]
investigated chiral hydrodynamics in this approach, but
their analysis was mostly limited to the linearized regime

|

4 4
M<0)aa(15€ + 51/!“0(16(0) 3 ( )aaéua + = 3 560{}!”&

+ 5§Ta)(0)au}jo)aﬂu((lo) + é:gf))&wau/(jO)aﬁu{(lO) + 559)0)(0

4
3
+§ Oag u Ok 4 5&,0 029 uo)”—l—f(TO)&a)“a u0”+cf
+ A0 )”a6D(§( ) (0 )a) + AOr, DO (56,007) + AOk D

+ E95000 + &9 pOnsg = 0,

w0, 5ny + 5uto,nl) + nl #u, + 5nyd,u®% + &9 50" + (9,650 + (0,680

w0, 5n, + sutd,ny) + n' #su, + ns0,u O + V9,600 + (9,EY)5w" + (9,584) @

+ 0“(§T a)a ) + 0%(8&r a)a ) + O(I(ET dw,) + §T

>aauﬂaﬂu,§°> =0,

4 4 1 1
— DO gy 4 ge( Su0,u O 4 = 3 5eD©)y O §A<O>”"0058 + 3

around a rotating global equilibrium state. Using the results
from Ref. [61], a general analysis of the nonlinear behavior
of Israel-Stewart-like chiral hydrodynamic theories (written
in a general hydrodynamic frame [86]) is possible. This
challenging problem is left for future work.
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APPENDIX: EQUATIONS OF MOTION

The system (3) in the linearized case discussed in
Sec. III A takes the form

09 81,0

(Ala)

(u(o)"éu” + u(o)"éu")dae’(o)

O, 6ut + AC (fr 0%) +6A5D1 (fT 0))
O 507) + EP @O0 1 58,0 Ore0)
(Al1b)
4 68y0,0 " =0,  (Alc)
Ok 4 6840, =0.  (Ald)
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