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Cosmological consequences of first-order general-relativistic
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We investigate the out-of-equilibrium dynamics of viscous fluids in a spatially flat Friedmann-Lemaitre-
Robertson-Walker cosmology using the most general causal and stable viscous energy-momentum tensor
defined at first order in spacetime derivatives. In this new framework a pressureless viscous fluid having
equilibrium energy density p can evolve to an asymptotic future solution in which the Hubble parameter
approaches a constant while p — 0, even in the absence of a cosmological constant (i.e., A = 0). Thus, while
viscous effects in this model drive an accelerated expansion of the universe, the equilibrium energy density
itself vanishes, leaving behind only the acceleration. This behavior emerges as a consequence of causality in
first-order theories of relativistic fluid dynamics and it is fully consistent with Einstein’s equations.
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I. INTRODUCTION

Given the ubiquity of viscous phenomena around us, it is
only natural to wonder how cosmological observations can
constrain the presence, or not, of viscous effects at different
stages in the large-scale evolution of the Universe. In fact,
dissipative processes in the early Universe have been
studied for quite some time [1-3]. In isotropic and
homogeneous spacetimes dissipation can only appear from
scalar sources, which motivated early on the study of bulk
viscosity in the expansion of the Universe [4,5]. Since this
effect is expected to contribute negatively to the pressure of
an expanding universe, bulk viscosity-driven inflation has
also been examined [6-11]. More recently, after the
discovery of the current accelerated expansion of the
Universe [12], the possibility of unifying dark matter
and dark energy as a single viscous fluid generated a lot
of interest [13-27] (for a recent review, see [28]).

Before statements concerning the suitability of viscous
dark matter models to match cosmological observations can
be reliably made, it is important to keep in mind that there
are still fundamental theoretical questions concerning the
description of viscous effects in general-relativistic fluids
that are very relevant to this problem. In fact, in standard
approaches viscous processes fundamentally alter the
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equations of motion of relativistic fluids through the
addition of new terms containing spacelike derivatives'
of the hydrodynamic variables in the fluid’s energy-
momentum tensor. This occurs, for instance, in the famous
theories pioneered by Eckart [29] and Landau and Lifshitz
[30]. However, these modifications seem to be incompat-
ible with general relativity. Indeed, the theories proposed by
Eckart and Landau and Lifshitz are acausal [31,32], which
makes them unsuitable for the investigation of real-time
viscous processes in relativity. Furthermore, it is known
that such theories are unstable against perturbations around
the thermodynamical equilibrium state [32]. This is a
consequence of the more general statement that acausal
dissipative theories cannot be stable in relativity [33].
One could at first sight think that the Eckart and Landau
and Lifshitz theories are still suitable for cosmological
investigations despite their acausality and instability
because the symmetry assumptions made in cosmological
models imply that the dynamic evolution is described by a
system of ordinary differential equations, whereas causality
and stability are concepts applicable only to partial differ-
ential equations.2 Nevertheless, such a description given in
terms of ordinary differential equations implicitly assumes

'Hence, only spatial derivatives appear in the energy-momen-
tum tensor in the fluid’s local rest frame.

“One can of course talk about stability of ordinary differential
equations. But the type of stability discussed in the context of
Eckart and Landau and Lifshitz theories requires at least two
independent variables.

© 2023 American Physical Society


https://orcid.org/0000-0002-9817-0272
https://orcid.org/0000-0002-4464-214X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.023512&domain=pdf&date_stamp=2023-01-09
https://doi.org/10.1103/PhysRevD.107.023512
https://doi.org/10.1103/PhysRevD.107.023512
https://doi.org/10.1103/PhysRevD.107.023512
https://doi.org/10.1103/PhysRevD.107.023512

BEMFICA, DISCONZI, NORONHA, and SCHERRER

PHYS. REV. D 107, 023512 (2023)

that the underlying system of partial differential equations
(from which the ordinary differential equations arise upon
imposing symmetry conditions) is well-posed. More pre-
cisely, since the symmetry assumptions of cosmology are
only approximately satisfied (e.g., the Universe is not
perfectly homogeneous nor isotropic on large scales), the
actual system’s description is given in terms of the full
Einstein-matter equations as partial differential equations.
Only if the ordinary differential equations provide a good
approximation to the underlying partial differential equa-
tions can one take their solutions as a good approximation
to the actual, not perfectly symmetric, system. This requires
the system of partial differential equations to be well-posed
[34], a property that fails for the Eckart and Landau and
Lifshitz theories [31].

In sum, the above facts hamper the application of
Eckart’s and Landau and Lifshitz’s theories in questions
concerning the cosmological evolution of the Universe. The
same can be said about the fate of cosmological fluctua-
tions in such viscous fluid models. Therefore, conclusions
obtained from such models must be taken with a grain of
salt (at best).

Israel and Stewart (IS) put forward an approach [35]
where linearized disturbances around global equilibrium
can be causal and stable [36], if certain conditions for the
fluid’s equation of state and transport coefficients (e.g.,
bulk and shear viscosities) are fulfilled. However, despite
recent progress [37,38], very little is known about the
properties and the constraints that must be fulfilled in these
theories in the nonlinear regime, which can be important in
simulations already in flat spacetime [39] and, also, when
embedding such fluid models in dynamical spacetimes. In
fact, in the context of viscous dark fluid modeling, it is not
known how the recently found nonlinear constraints
[37,38] coming from causality affect previous conclusions
drawn from such Israel-Stewart-like models (e.g.,
[10,26,27]). The constraints become especially relevant
in the far-from-equilibrium regime where viscous effects
are large, which is probed in viscous dark fluid models that
attempt to unify dark matter and dark energy in an
accelerating universe. In addition, well-posedness of the
Israel-Stewart equations remains an open question, except
in some very particular cases [37]. This is a potential
drawback given the importance of well-posedness for an
accurate description of the evolution, as explained above.

In this work, we investigate how viscous effects can
affect the evolution of fluids in isotropic, homogeneous,
and spatially flat spacetimes using the new general effec-
tive-theory formalism originally proposed in [40] and
further developed in [41-44]. In this approach, known as
BDNK (Bemfica-Disconzi-Noronha-Kovtun) in the fluid
dynamical literature after the initials of the authors of
[40,41], the viscous contribution to the energy-momentum
tensor is expanded according to a well-defined power-
counting scheme in terms of all the possible timelike and

spacelike derivatives of the hydrodynamic variables (e.g.,
density, flow velocity) compatible with the symmetries, in
contrast to standard formulations [29,30] where only terms
defined using spacelike derivatives are included. The full
system of equations of motion describing the evolving
viscous fluid coupled to Einstein’s equations has been
proven to be causal and strongly hyperbolic [43], hence
well-posed, even in the full nonlinear regime.3 Therefore,
this framework is uniquely suited to investigate real-time
dynamical problems, and also mathematical questions,
concerning the coupling of Einstein’s equations to viscous
fluids in general relativity. Numerical solutions of this
theory can already be found in [45-48] while systematic
derivations of BDNK theory from kinetic theory and
holography were presented in [49,50] (see also [51]).
Some recent applications can be found in Refs. [52,53].

We focus in this work on the simple dynamics displayed
by a viscous fluid in Friedmann-Lemaitre-Robertson-
Walker (FLRW) spacetime [54], in the absence of a
cosmological constant (A = 0). We show through a variety
of examples that an initially dustlike matter component
(cold dark matter) can drive an accelerated expansion at late
times when viscous effects are included. This implies that
the previous intuition concerning the effects of viscosity
acquired from inconsistent, or less well understood, fluid
models was well motivated. However, the consistent treat-
ment of causality at all levels in our approach predicts a
curious new effect that is only possible in general relativity;
the viscous fluid does not asymptotically achieve a constant
equilibrium density in accelerating cosmologies. Instead,
this density decays away as a power of the scale factor. This
occurs even though the cosmological constant is set to zero.
In other words, the equilibrium contribution of the viscous
fluid disappears at late times leaving only the acceleration
of the universe behind even though there is no cosmologi-
cal constant. Surprisingly enough, this phenomenon is fully
consistent with Einstein’s equations.

This “Cheshire Cat”-like behavior [55] during acceler-
ated expansion is a consequence of causality in this
approach and it cannot be reproduced by any previous
model without a cosmological constant where the equilib-
rium density must remain nonzero when the universe is
accelerating. Although different types of behavior for the
evolution of the cosmological scale factor are possible, for
completeness we show that an appropriate choice of model
parameters can produce evolution that almost exactly
mimics ACDM. While we are not advocating here that
viscous fluids provide an alternative way to fully describe
cosmological observations by unifying dark energy and
dark matter, it is amusing to see that the more sophisticated
and theoretically consistent framework employed in this
work does not seem to be incompatible with this idea (at

3Hydrodynamic stability around equilibrium has also been
established, see [40-44].
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least when it comes to the average properties of the
universe).

This paper is organized as follows. In the next section we
lay out the general properties of first-order theories of
relativistic fluid dynamics and discuss their dynamics in
Friedmann-Lemaitre-Robertson-Walker spacetime. We dis-
cuss the case of radiation and also present some new
features of such theories in the case of accelerated expan-
sion. In Sec. III we analyze the stability property of the
equations of motion and their fixed points. In Sec. IV we
consider whether the theory presented here can lead to
cosmological evolution consistent with observations. Our
final remarks can be found in Sec. V.

Notation: We use natural units h=c=kz =1, a
4-dimensional spacetime metric g,, with a mostly plus
signature, and Greek indices run from O to 3 while Latin
indices run from 1 to 3.

II. COSMOLOGY WITH FIRST-ORDER
GENERAL-RELATIVISTIC VISCOUS FLUID
DYNAMICS

Let us briefly review the effective theory approach to
relativistic viscous fluid dynamics introduced in Ref. [40]
and further developed in [41-44]. As usual [34], one starts
by decomposing the energy-momentum tensor of a fluid in
a general out of equilibrium state in terms of irreducible
structures constructed using a timelike future-directed

4-velocity vector u* (where u,u* = —1),

T = Eulu? + PA™ + 7 + ' Q* + Q" (1)

where £ = u,u, T" is the total energy density seen by an
observer comoving with the fluid, P = A, T#* /3 is the total
fluid pressure defined using the spacelike projector A, =
G + u,u, orthogonal to u¥, QY = —Afu,T" describes
energy diffusion, and 7 = A””"/’Ta/j is the shear-stress
tensor defined using the symmetric, rank-4 traceless projec-
tor A#F — %(A"ﬁAW + AFIAYP) — % ARV AP [34].

In an equilibrium state, z#* and Q¥ vanish, £ becomes
the equilibrium energy density p, and P the corresponding
thermodynamic pressure P(p) of the system determined by
its equation of state. The corresponding equilibrium
energy-momentum tensor is then 79" = putu* + PAM.
In a general out-of-equilibrium state, one may write £ =
p+ A and P =P +TI, where A and the bulk scalar IT
represent the out of equilibrium corrections to the energy
density and pressure, respectively, as long as they vanish
in equilibrium. In this case, the most general energy-
momentum tensor that can describe an out-of-equilibrium
state can be written as

™ = (p+ Au'u’ + (P(p) + ) A"
+ 7" + ut QY + ur QH. (2)

Constraints on the out-of-equilibrium contributions can be
readily obtained by the dominant energy condition [56],
which imposes that p+.A >0 and Q,Q" < (p+ A)%.
This naturally places a bound on the size of some of the
out-of-equilibrium corrections. However, we note that the
conservation of energy and momentum, V,T* = 0, is not
enough to fully determine the evolution described by the 14
dynamical variables {p,u*, A,II, O* 7#*}. Therefore,
some procedure must be implemented to fully specify
the system’s dynamics. Instead of treating the nonequili-
brium corrections as new degrees of freedom (and con-
sequently postulating new additional equations of motion
for them) as in Israel-Stewart-based approaches and
extended irreversible thermodynamics [57], here we con-
sider the case where the effective theory describing the
macroscopic motion of the system is defined solely in terms
of the standard hydrodynamic variables already present in
equilibrium, which in our case are {p, u#}. In this approach,
the dissipative contributions must be given in terms of the
hydrodynamic fields {p, u#} and their derivatives, which
may be organized through a relativistic derivative expan-
sion. Assuming that deviations from equilibrium are small,
the most general theory compatible with the symmetries
that can be written in terms of first-order derivatives is
defined by

u*v p u*v,p
= V a, H - “ v aa
}(1P+P+)(2 ol Z3p+P+Z4 ol
AV P
Q# - l(pﬂ+yp + uaVa””) ’ A = _2;76#”’ (3)

where 6, = A%V,,u,; is the shear tensor. Above, the shear
viscosity 7, and the coefficients A and y4, y», ¥3, and y,4 are
in principle known functions of p, which are determined
from the underlying microscopic theory. The bulk viscosity
coefficient is given by the combination [41,42]

C=xs—xa+ 2 —x), (4)

where ¢? = dP/dp is the equilibrium speed of sound
squared. The transport coefficients # and ¢ determine
how the long wavelength limit of hydrodynamic modes
(i.e., sound and shear disturbances) are damped and the
amount of entropy produced [41], while three out of the
four y coefficients determine the scales associated with
nonhydrodynamic4 modes.

It is important to stress a few properties of the expres-
sions above. First, given that in equilibrium u, /T (with T
being the temperature) is a Killing vector [36] and
p = p(T), every single term in A and IT separately vanishes

= +u*Vou, =0= Q, =0.

in equilibrium, while

“Those describe linearized disturbances around equilibrium
that carry energy even in the homogeneous limit.
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We also note that in this approach timelike derivatives of
the density, u®V ,p, appear in the constitutive relations. This
fact is crucial for ensuring that the evolution is causal [40]
and linearly stable around equilibrium. Indeed, precise
conditions for the coefficients {#, 1,1, x2.x3, x4} can be
found that guarantee causality, stability, strong hyperbol-
icity and, thus, local well-posedness of solutions of
Einstein’s equations coupled to the viscous fluid equations
[42,43]. These conditions are violated in the Landau-
Lifshitz theory [30], which corresponds to setting y; =
X2=x3=A4A=0and y4 =—(.

In this work we initiate the investigation of the possible
cosmological consequences of this approach. We consider
the viscous fluid theory defined by (2) and (3) coupled to
Einstein’s equations (without a cosmological constant) in
spatially flat Friedmann-Lemaitre-Robertson-Walker space-
time described by the line element [58]

ds* = —di* + a*(1)8,;dx'dx, (5)

where a(t) is the cosmological scale factor. Homogeneity and
isotropy impose that the shear-stress tensor and the energy
diffusion exactly vanish, and our tensor becomes simply

a

Vap
p+ P

u

™ = (p + 11 +J{2Vau“> u'u”

a

u*V,p
+{ P+ .
( SR

+)(4vaua) AR, (6)

We use u® = (1,0,0,0) and V,u* = 3H(t), where H(t) =
a(t)/a(t) is the Hubble expansion rate (with notation
a = da/dr). Using (5), Einstein’s equations dictate that the
spatial derivative 0,p = 0, and one finds the following set of
equations of motion for p and H:

: 1 33+,
H+H?=—— 3p A3 AL, L33 H|,
+ 6[p+ e Pt (Bxa +x2)
(7a)
1 X
H?=— 3y.H |, 7b
3<ﬂ+p+PP+ ye > (7b)

where we have appropriately normalized the fields above to
take into account the 8z#G constant factor present in Einstein’s
equations. As in the ideal fluid case, the equations of motion
of the fluid V,7** = 0 follow directly from those above.
Since causality requires y; > 0 [42], it is convenient to
rewrite (7) as

. 1 3
H+H?>=—— P_)Qp_i_u[_p_?’%z(ij_ﬁ)[_]]
2 X1 X1 1 X2
(8)

Finally, it is useful to define the variable

w=— (9)

to investigate the out-of-equilibrium properties of the fluid for
different types of equation of state.

A. Radiation
For radiation w = 1/3 and the imposition of conformal
invariance implies that y = y; = y» = 3y3 = 34 ~p*/*
(hence, { = 0) [40] and we obtain from (7b) and (8)

p+3Hp(1+wl) =0 and H+2H>=0, (10)

where wgg =1+ ﬁ(p —3H?). One recognizes that the

Hubble parameter decouples from the energy density as it
obeys the well-known equation found for radiation in
equilibrium in FLRW [58], with general solution H(t) =
H,/(1 + 2H,t). Furthermore, we note that p = 3H? is a
solution of the equation of motion for the energy density.
Though at first one may think that the equation of motion
for p in (10) should have a complicated solution, the
uniqueness property to the solutions of the equations of
motion (i.e., well-posedness) directly implies that the
general solution for the energy density equation is indeed
simply p = 3H?, just as in the ideal fluid case. Therefore, as
expected, out-of-equilibrium corrections vanish exactly for
pure (conformal) radiation in FLRW where { = 0. This is
also true in the Landau-Lifshitz theory.

Besides indicating theoretical consistency, this result is
also important from the standpoint of observational cos-
mology as the behavior of the universe when it is
dominated by radiation is tightly constrained both by big
bang nucleosynthesis (BBN) [59] and by observations of
fluctuations in the cosmic microwave background (CMB)
[60]. Thus, any model for viscosity that strongly alters the
expansion history of the Universe during the radiation-
dominated era can be ruled out. As our theory produces no
change in the radiation equation of state, it automatically
satisfies this constraint.

B. Zero entropy production limit
away from conformal invariance

Above, we saw that for conformal radiation viscous
effects drop out of the Friedmann equation entirely and no
entropy is produced, as expected. We have no similar
requirement on the values of the y’s for other equations of
state, but we can derive the requirements on these param-
eters such that out-of-equilibrium corrections vanish. One
can see that if y3 = y, in (8) and y; = y, in (7b), then again
3p = H? is a solution of the equation of the equations of
motion, which reduce to those of an ideal fluid. Again,
well-posedness implies that the solutions are unique and,
thus, as long as these two conditions for the y parameters
are satisfied, the out-of-equilibrium corrections to the
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Friedmann equations vanish. Note that this conclusion is
independent of the p-dependence of any of the y param-
eters. Also, we remark that when y; = y, and y; = y, one
finds that { = 0, so indeed no entropy [41] is produced in
this case.

C. Landau-Lishitz theory

In the absence of a cosmological constant, in Landau-
Lifshitz theory where y; = ¥, = y3 = 0 and y, = —{ the
viscous dark matter evolves, at late times, to a fluid with a
constant density thus mimicking the evolution of dark
energy. This can be easily understood because in this model
there are no out-of-equilibrium corrections to the energy
density (A = 0) and Einstein’s equations become (taking
w = 0 for simplicity)

H =" and H+H = —é(p—%’H). (11)
One can see that here a constant energy density implies a
constant Hubble expansion rate, with nonzero solution
H = ¢ that is positive for { > 0. Therefore, in Landau-
Lifshitz theory it is possible for viscous matter to behave at
late times as dark energy at the background level.” This
result motivated the creation of many unified viscous dark
matter scenarios [28] and, in fact, it is known that this
model can provide a good description of the background
expansion of the Universe [15]. However, density pertur-
bations in this scenario based on Landau-Lifshitz theory are
rapidly damped out, which leads to severe constraints when
attempting to reconcile it with precision cosmology data
[15,21,62].

We emphasize that such constraints relied on theories
known to be acausal or for which nonlinear causality
remains open. We contend that decisive conclusions about
the viability of the viscous dark matter idea should be based
exclusively on viscous theories that satisfy causality and
well-posedness, in the nonlinear regime and also when
coupling to Einstein’s equations, and for which linear
stability in flat spacetime also holds. In Ref. [61] it was
proven that IS theories, in the absence of shear viscosity
and heat flow, fulfill these requirements (we note that
cosmological perturbations in bulk viscous IS-like theories
were studied in [20]). However, we point out that since
effects from shear and heat flow do contribute when the
spacetime is not homogeneous and isotropic, their influ-
ence on the evolution of cosmological perturbations must
also be investigated [63]. To the best of our knowledge, the
general first-order theory studied here is now the only
framework that fulfills the consistency conditions men-
tioned above and can, thus, be used to reliably study the
effects of bulk, shear, and heat flow even in viscous

>The same result holds for standard IS theories such as those
considered in [61].

inhomogeneous cosmological applications in a model
independent manner.

D. The Cheshire Cat mechanism

We show below that our approach differs from earlier
attempts to model dark energy as a viscous phenomenon in
an interesting way. In the model investigated here, the
equilibrium component of the density of the viscous dark
matter is driven asymptotically to zero. Because of the way
that the Friedmann equation is altered by viscous effects in
this model, the universe continues to accelerate even after
the driver of this acceleration effectively disappears.
Therefore, we refer to this as the “Cheshire Cat” mecha-
nism for generating accelerated expansion.6

This effect can be most easily illustrated by the following
analytical example. For simplicity, let us assume a constant
non-negative w < 1 so the viscous matter has very small
equilibrium pressure, which works as the small parameter
in the perturbative argument that follows. Assume that the
matter is such that # >0 and { = 217w(% —w). The con-
ditions for causality, well-posedness, and stability are
satisfied if, for instance, y; =1 =4nw, y, =2n(1 —w),
x3 = wy, and y, = 4nw/3 [42]. We note that the viscosity
coefficients are, thus, very small and when w =0 we
recover an ideal fluid with a matterlike, pressureless
equation of state.” We take n (and, thus, {) to be constant.
Under these conditions, assuming that H is constant and
non-negative, the general solution of the equations of
motion (7b) and (8) can be found analytically

poP
(po + B)e?* — pq

H=Hy=——

d p(t)=
I+w and p(1)

. (12)

where a=4nw/(14+w) and f=aH,(3—w)/2w. Therefore,
even though H is constant, we note that the energy density
still varies with time, decreasing exponentially towards
zero even though there is no cosmological constant.® We
remark that for this type of matter the Hubble constant is
very small, as small as w, and that the energy density still
varies in time (i.e., it is not a cosmological constant).

In an accelerated expansion driven by dark energy, the
universe expands at a constant rate and the dark energy

®Note that the term “Cheshire Cat” has been used in an entirely
different way in the context of quantum measurement theory [64].

Note that # and 4 need not to be zero even though shear and
heat flux vanish. The latter vanish because of symmetries and not
because the coefficients are zero.

8Fora comparison, consider the evolution of an ideal fluid with
equation of state given by P = wp, in the presence of a positive
cosmological constant A (constant dark energy). Asymptotically,
3H?> - A and the ideal fluid energy density vanishes. The
difference here in the viscous case is that the energy density
evolves toward zero when H is constant and in the absence of a
cosmological constant.
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density remains constant. In the example above, the
cosmological scale factor a(z) increases exponentially
but causality generally imposes that the energy density
must lag behind, varying on time scales of the order of
x1/(p(1 4+ w)). According to the theory presented here, this
is a general consequence of causality and energy-momen-
tum conservation in out of equilibrium systems described
by first-order theories of relativistic viscous fluid dynamics.
We shall return to the Cheshire Cat mechanism in Sec. I'V.

III. FIXED POINT ANALYSIS

Here we setw = 0, i.e., P = 0, and study the fixed points
and the stability properties of the equations of motion. We
also assume that y; > 0. We start by rewriting the relevant
equations of motion as

x1p + 3Hpy, + p(p = 3H?*) =0 (13)

and

2 H = y3p = 3H?(x1 + y3) + 3H(rors — ixa). (14)
We assume as before that y; = y;(p). Let py and H be the
fixed points of the equations above so HO = po = 0.
Consider now fluctuations around the fixed points p(7) —
po + 8p(t) and H(t) — Hy + 6H(t). Note that fluctuations
also act on the transport coefficients, ie., y;(p) —
xi(po) + xi(po)dp(t), where ' = dy;/dp. To zeroth order
in the fluctuations we obtain

po(po + 3Hox2(po) = 3H5) = 0 (15)
and
3Hox,(po)(Ho + x4(po))
= x3(po)(po + 3Hoxa(po) —3H).  (16)

We see that Eq. (15) implies that py =0 or py+
3Hoya(po) = 3H3. Clearly, the latter can be complicated
since one must know how y, depends on p to solve it.

A. p0=0 and H0=0

It is easy to see that p, = H = 0 is a fixed point. In fact,
this fixed point is very general as it does not depend on the
properties of the y;’s. Let us now study the linear stability
properties of this fixed point. The linearized equations for
the fluctuations are

(17)

)(3(0)

2O =" 0)

6p +3(2(0)x3(0) — x1(0)x4(0))6H.  (18)

We can write this in matrix form, which reveals that the
eigenvalues of the matrix are 0 and (3/2)(y,(0)y3(0)—
x1(0)x4(0)). Since one of the eigenvalues vanishes (in fact,
the determinant of the matrix vanishes), this is a marginal
case where one does not have an isolated fixed point. In this
case, a linear stability analysis is not guaranteed to give the
correct information about the stability properties of the
system [65]. In any event, this is not a physically interest-
ing case.

B. pp=0and H), # 0
In this case, assuming that y;(0) + y3(0) # 0, one finds

(12(0)x3(0) = x1(0)x4(0))
21(0) + x3(0) ‘

Hy= (19)

We will now find the conditions that ensure that Hy > 0
and py = 0 is an attractor (i.e., a stable isolated fixed point).
In this case, the equations for the linearized fluctuations
v = 6(4,) become

dv
- = A_'
; v, (20)

where A is a 2 x 2 matrix that depends on y;(0) and y;(0).
The eigenvalues of A are

ay =3Hy(Hy - x»(0)),

3
a, = —2)(1—@ [r2(0)x3(0)

Thus, a stable fixed point occurs when a; < 0 and a, < 0
(note that both eigenvalues are real). We see that a, < 0
implies that

— 010z (0)].  (21)

¥2(0)x3(0) = x1(0)x4(0) > 0. (22)
Since that quantity appears in H, which we consider to be
positive, we see that this occurs then if y;(0) + y3(0) > 0.
The condition that a; < 0 then occurs when y, > —y».
When those conditions are met, the fixed point is hyper-
bolic (see Chapter 6 of Ref. [65]), which means that the
qualitative behavior of the system’s phase portrait near the
attractor is not changed even when small nonlinear terms
are included. As a matter of fact, the Hartman-Grobman
theorem [65] states that the local phase portrait near a
hyperbolic fixed point is topologically equivalent to the
phase portrait obtained via linearization and, thus, the
conclusions regarding the stability of the fixed point are
the same as in the linearized system (in other words, the
phase portrait near this attractor is structurally stable).

Summarizing, we conclude that p =0 with constant
Hy, > 0 is an attractor when the following conditions
are met:
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22(0)x3(0) = 71(0)74(0) > 0 (23)
x1(0) +x3(0) >0 (24)
X4 > =X (25)

which are compatible with the conditions found for
causality and also linear stability around equilibrium
presented in Ref. [42].

IV. TOWARD A REALISTIC COSMOLOGY

In this section we investigate whether the viscous fluid
presented here can produce cosmological evolution con-
sistent with observations, within a variety of different
scenarios. In particular, we will be interested in the types
of models discussed in Refs. [16,17] in which the universe
contains a pressureless dark matter component whose
viscosity drives the accelerated expansion.

From an observational point of view, it is useful to
redefine our evolution equations in terms of the scale factor
a instead of the time. Measurements of the dark energy
density are effectively determinations of H(z), where the
redshift z is related to the scale factor as a = 1/(1 + z).
Using d/dt = Had/da, we can rewrite Eqs. (7a) and (7b)
with the scale factor as the independent variable,

3 P 1y 3
Ha+>"H=———— — 2 (26
ats 2H 283,y P T oM (26)
»_ 1 p

where we denote ' = d%' When P = 0, Egs. (26) and (27)
become

3 1 3
H’a+§H: —5)(3;61—5)(4, (28)
21 P

The y parameters must satisfy the conditions for nonlinear
causality and linear stability, which were obtained in
Ref. [42]. When P = 0 these conditions are

4n
Mo =M+ s o <§ —;m) >0, (30)

4n
1 (7 ‘){4) +43(A+22) +xxox3 20, (31)

4
It 2+ F =20 (32)

subject to the constraints A,y; >0, >0, and 1> 7.
Furthermore, when P = 0, the bulk viscosity becomes

¢ = y3 — x4, which must be non-negative in accordance
with the second law of thermodynamics. Hence, we have
the further requirement here that

X3 2 X4 (33)

A. Constant yq, x», x3, and x4

Let us first consider the case where all of y coefficients
are constant. As noted in the previous section, there is
generically an attractor solution with H — H|, = constant,
with

:)(2)(3 —X1X4

Hy
X1 T X3

(34)

as long as both the numerator and denominator on the right-
hand side are positive. Substituting this attractor into
Egs. (26) and (27), we find that ap’/p also evolves to a
constant, given by

/
ap—=—362+)(4>. (35)
P 1+ X3

Furthermore, we define an effective w.g; given by

1 /
1+Weff:_§a% (36)

and we note that, in particular, the special case y, + y4 =
x1+xs gives wey = 0. Because the general solution
of (35) is

p X a_?’(lJchﬂ‘)’ (37)

one can again see the Cheshire Cat behavior noted earlier.
When H — constant, the scale factor evolves as a ~ 0, so
the equilibrium energy density of a fluid with constant wg
will decay as a power-law in a, but exponentially in ¢.
The evolution is particularly simple for the special case
x3 = 0. In this case, we can solve Eq. (28) exactly to yield

H = Ca™3/? — X4, (38)

with C a constant. As long as y4 < 0, the Hubble parameter
will evolve from initial dark matter dominated evolution
(H ~ a=>?) to evolution resembling a cosmological con-
stant dominated universe (H ~ constant). Note, however,
that p in this case does not evolve asymptotically to a
constant. If we take H to be equal to its asymptotic constant
value (H = —y,) in Eq. (29), we obtain

3xa(x2 +xa)

- Da3letxa)/n +1 ’ (39)

with D a constant. The causality and stability conditions
require y; > 0, and we need y, +y4 > 0 to ensure a
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positive density. Although Eq. (28) in this case becomes
exactly what one would obtain in Landau-Lifshitz theory
with constant { [and the evolution of H(a) is therefore
identical], the value of p in the corresponding Landau-
Lifshitz case evolves to a constant. In our approach, we
once again see p evolving to zero while viscous effects
mimic a constant-density evolution for H.

B. Power-law density dependence of the y parameters

Now consider the more general case where the y
parameters are not constant but evolve as functions of p.
For simplicity, we will assume a power law behavior and
take all of the y parameters to evolve as the same power of
p, namely, y; = y:,p", i =1, 2, 3, 4, where the y,’s are
constant. This is the analog of the case considered by [15]
in Landau-Lishitz theory where it was assumed that { ~ p™.

For this case, Eqgs. (26) and (27) become

/

3 1 )3
H'a +§H = —Elspmza —5)(4,0’", (40)
21 r

H* =3 p+)mp’”;aH+3)(zp’"H . 4D

At early times, the density of the dark energy is observed to
be negligible, and the Universe is dominated by dark matter
with a density scaling as a~>. Thus, if we require that the
“dark energy” corresponds to viscous corrections to the
dark matter evolution, then these corrections must vanish in
the limit where a — 0. In this limit, we require p to scale as
a=3 and H to scale as a=>/?. Then in order for the viscous
corrections to be subdominant in Egs. (40) and (41) as
a — 0, we need either y; = y, and y3 = y4 (so that there
are no viscous corrections at all), or m < 1/2.

For 0 <m <1/2, we find attractor solutions with
w — constant, but H — 0. Hence, these do not correspond
to the observed universe if we want viscous effects to drive
the present-day accelerated expansion. When m < 0, we
find an attractor solution for which H — oo. This corre-
sponds to phantomlike behavior [66], and can be consistent
with observations depending on the exact parameters of the
expansion.

C. Inclusion of baryons

Finally, in order to derive results that could in principle
be compared with observations, we must include both a
viscous dark matter component and the nonviscous baryons
(see, e.g., similar treatments in Refs. [14,15]). If pp is the
density of baryons and pp is the density of viscous
pressureless dark matter, then we can rewrite Eqgs. (28)-
(29) as

1 /
H? = 3 <pD +p5 +11/p@aH + 3;(2H>~ (43)
D

These equations can be reexpressed in the form

3 3
Ha=->(1+2 g +2 (28 _,,
2 2\ x

X1 1
L (x3\prp+rs
— (42 44
+2(X1) y (44)
L a =P (3 PP PB4 45
Pp
X1

The baryon density pg scales exactly as a~>. In standard
nonviscous models of cold dark matter we also have pp
a3 but here the evolution of p,, is determined instead by
Eq. (45). However, observational limits on the present-day
dark matter density combined with high-redshift estimates
of pp from the cosmic microwave background indicate that
pp must evolve approximately as a=3 up to the present.

By an appropriate choice of the y coefficients it is
possible to derive a model satisfying this constraint on pp
that also closely approximates ACDM. We first take

X3 ==X (46)

X4 = —X2 (47)
where we choose y, yo» > 0, so that y3, y4 < 0. This choice
is consistent with the causality constraints. Indeed, if we
substitute Eqgs. (46) and (47) into the causality constraint
equations (30)—(32), we find that there exist values for A
and 7 for which all of the constraint equations are satisfied
as long as 4/3 > y,/y: = 1. Substituting these values for
x3 and y,4 into our evolution equations above, Eq. (44) is
unchanged, while Eq. (44) becomes

_Lpptps

Ha =
“TTyTH

(48)

If we neglect pp, these equations can be solved exactly.
Dividing Eq. (48) by Eq. (48) yields

6

P _ =, — 2B 1 6%2H, (49)
X1 1

with solution

3
pp = Ce*/x +3H? = 3(y, —)(1)H—§)(1 (r2=x1). (50)

where C is again a constant of integration. At early times
(H = c0) we must have p =3H? so C=0 and our
solution is
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3
pp = 3H? = 3(y» —)(1)[‘1—5)(1()(2—)(1)- (51)

Note that when y; = y,, we once again obtain the evolution
appropriate for nonviscous matter, namely p, = 3H>
(which is consistent with the fact that in this case
¢ = 0). Substituting Eq. (51) back into Eq. (45), we see
that pp evolves as

/

3
P04 — =3+ -x11)/H. (52)
Pp

In order for Egs. (51) and (52) to mimic ACDM, we
make one further requirement: we take y,/y; = 1 + ¢, with
0 <e<x 1. (Note that this assumption means that the
causality constraint 4/3 > y,/y, > 1 will automatically
be satisfied.) With this assumption, the second term on
the right-hand side of (51) is always subdominant, and we
have

H2 = 2pp 32l —10). (53)
This has the form of standard ACDM, where we identify
pa = (3/2)x1(x> — x1). Furthermore, Eq. (53) implies that
H? > (1/2)x1(x2 — x1), so that 3 (y, — x1)/H < 1. Thus,
pp scales almost exactly as a~>, as required. Note that this
behavior for H, while identical to ACDM, is once again an
example of Cheshire Cat evolution; the acceleration is
driven by viscous effects from the dark matter, whose
equilibrium density is driven to zero by the expansion.
While we neglected pp in this derivation, it is easy to see
that the evolution will be unchanged when pjp is included
since it scales in exactly the same way as pj, (~a~>), a result
we have verified with numerical integration of Egs. (44)
and (45).

Finally, we do not mean to imply that our choices for the
y coefficients in this case are the single set of “correct”
values of these parameters for pressureless dark matter.
Instead, we simply wish to demonstrate that causal and
stable first-order viscous fluid theories can reproduce
ACDM for at least one choice of these parameters. It is
quite possible that other choices for these parameters can
similarly reproduce the current observations.

V. CONCLUSIONS

This work represents the first examination of cosmology
with a causal, stable, first-order theory of relativistic
viscous fluid dynamics (the BDNK theory). We have
shown that this effective theory approach to relativistic
viscous fluids has two very attractive properties from the
standpoint of cosmology. First, viscosity has no effect on
the behavior of radiation, i.e., fluids with w = 1/3. Thus,
the standard cosmology during the radiation-dominated era

simply carries over in this case without modification,
including all of the successes of BBN and the CMB.
Second, under very general conditions on the viscosity
parameters, a matterlike fluid (i.e., one with w = 0) can
generate an accelerated expansion, just as in the case of
Landau-Lifshitz theory.

The major difference between this approach for relativ-
istic viscous fluids and other previously-investigated mod-
els such as the Landau-Lifshitz model lies in the
modification to Eq. (7b). Previous models have modified
Eq. (7a), altering the effective pressure, but leaving the
relationship between H and p as in the standard cosmology
(i.e., H> = p/3). By altering this relationship, we decouple
the behavior of H from that of the equilibrium energy
density p. Thus, while Landau-Lifshitz viscosity can cause
a zero-pressure dark matter fluid to behave as an effective
dark energy component with constant density at late times,
the BDNK theory can produce an accelerated expansion
even as the equilibrium density of the dark matter fluid goes
to zero, an effect we have dubbed the Cheshire Cat
mechanism. It is important to remark that it is H(a),
and not the evolution of the dark energy density, that is
actually the observable quantity in cosmology, so the model
presented here can be made consistent with current obser-
vations of dark energy. Indeed, by a suitable choice of
model parameters, this model can nearly exactly mimic
ACDM at the background level.

As we have already noted, previous attempts to use
Landau-Lifshitz viscosity with pressureless dark matter to
account for the accelerated expansion of the universe have
produced acceptable results at background level but have
foundered on the issue of perturbation growth [15,21,62].
Thus, the results presented here are necessary but not
sufficient evidence that a viable cosmology can be con-
structed with dark matter and BDNK viscous effects alone.
The next step will be to examine perturbation growth in this
theory to see if it survives this further level of scrutiny.
Only then one would be able to conclusively answer
whether or not viscous effects are compatible with cos-
mological observations.

Finally, it is important to remark that an accurate
description of this vanishing equilibrium energy density
behavior is, formally, beyond the regime of applicability of
the hydrodynamics expansion. This occurs because in this
case the out of equilibrium correction, A, becomes larger
than the equilibrium piece p. This issue is also present when
considering higher-order theories, such as the generalized
Israel-Stewart theories constructed using a general hydro-
dynamic frame in Ref. [67]. Those should also display the
properties found here, given that BDNK can be seen as the
first-order truncation of such generalized second-order
theories. Therefore, further investigation of this type of
solution is needed. We defer a systematic investigation of
that to future work.
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