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Abstract—Subgraph Isomorphism is a fundamental
problem in graph analytics and it has been applied to
many domains. It is well known that subgraph isomor-
phism is a NP-complete problem. Thus, it generally
becomes bottle-neck of the applications to which it
is applied. There has been a lot of efforts devoted to
this problem in the past two decades. However, GPU-
based subgraph isomorphism systems are relatively
rare since the GPU memory is not big enough to hold
all the instances during the matching process. Most
current GPU subgraph isomorphism frameworks suffer
from the limited GPU main memory and redundant
computation. These issues restrict them on smaller
patterns and graphs and limit their performance. To
overcome these issues, we design a new GPU-based sub-
graph isomorphism system named DGSM. Our system
also efficiently utilize special architecture features to
improve data parallelism and memory bandwidth for
matching. We validate our techniques by comparing
with two state-of-the-art systems, CPU-based DAF and
GPU-based GSI. Our experimental results show that
our system achieve 2 orders of magnitude faster than
DAF and GSI on both labeled and unlabeled graph.

Indexr Terms—GPU, subgraph isomorphism, sub-
graph matching, backtracking, DFS, shared memory,
VertexSet, motif, clique

I. INTRODUCTION

The subgraph isomorphism (also called subgraph
matching) is a fundamental problem in graph analytics
and has a wide spectrum of applications including chem-
ical engineer [1], cybersecurity [2], bioinformatics [3], [4],
and artificial intelligence [5]. It has been well-known that
the subgraph isomorphism is an NP-complete problem. So
subgraph isomorphism is the bottleneck of any application
where it presents. Therefore, an efficient subgraph isomor-
phism algorithm is demanding and attracts attention from
many computer scientists.

Although the first subgraph matching algorithm [6] was
first put forward by Ullmann in 1970s using backtracking
approach, it is still an open question to discover an efficient
algorithm for such a problem. In the past decade, many
efforts [7]-[9] have been devoted to an efficient algorithm
such that it will reduce the searching space and pruning
branches as earlier as possible. Most of them focused on
discovering an efficient matching order to achieve these
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goals. These systems include Turbojso, CFL, and DAF.
However, these works do not scale well with data graphs
due to the data race of updating the auxiliary structures
used in these works. Furthermore, these systems need to
materialize all the results during the matching process and
cannot handle some large real-world graphs because of the
large amount of intermediate results. due to exponential
size of path embeddings, DAF [9] is not able to enumerate
all the matches and Turborgo [7] cannot handle large data
graphs or query graphs.

As many other graph algorithms, there are numerous
data parallelisms in subgraph isomorphism. To employ
massive data parallelism in subgraph matching, a few
works have implemented GPU-based algorithms to accel-
erate the matching process. To the best of our knowl-
edge, almost all of the GPU-based subgraph matching
systems adopt bulk synchronous parallel (BSP) model,
which consists of two stages, filter and join. The start-
of-the-art systems include Gunrock, GpSM, and GSI. In
these systems, the device needs to shake hand with the
host and then allocate memory on the device memory
at each iteration since it is not possible to know how
many subinstances will be generated by each execution
unit before hand [10]-[12]. Gunrock and GpSM do the join
computation twice to eliminate write conflicts in the join
phase. But GSI optimally pre-allocates memory buffers to
avoid such duplicate computation. All of these GPU-based
systems extend subpatterns by one vertex at a time until
the target size is reached. In other words, these systems
grow the potential subpattern instances in the fashion of
BF'S exploration strategy.

We summarize the disadvantages of BFS exploration as
follows. Firstly, all the subintances in the current iteration
need to be discovered before we can move on to the next
iteration. The number of subinstances at one iteration
grows exponentially as the size of a pattern. But the
global memory on a modern GPU device is a few tens GB.
This fact results in that the above systems cannot handle
subgraph matching with a larger pattern size on large real-
world graphs. Secondly, multiple kernels are necessary for
their implementations due to the usage of filter-join com-
putation model. A couple of grid level synchronizations



are needed in one iteration. For a query graph with N
vertices, there will be 2 x N grid synchronizations. So
many grid synchronizations can degrade the performance
significantly for a large query graphs. These downsides are
not avoidable in BFS exploration strategy.

Including the common disadvantages in BFS explo-
ration, there is another common issue with their systems.
The problem is that the same embedding will be materi-
alized multiple time when there are symmetries present
in the target pattern. These duplicates not only waste
memory but also lead to unnecessary computation. One
possible way to remove these duplicates is through an au-
tomorphism test. The automorphism test is expensive and
often leads to significant performance drop. Incorporating
such a test in each iteration will incur a lot of overhead.
Therefore, it is the reason why GSI retains these duplicates
throughout the entire computation.

To overcome the above issues in GPU-based subgraph
matching systems, we create a new framework that targets
these issues. The contributions of our work are

1) We implement a new subgraph matching system that
is able to do subgraph matching on large real-world
graphs with a larger pattern size which cannot be
done by other GPU-based systems.

2) We design a new data structure named VertexSet
keepubg track of candidates and facilitating coa-
lesced memory accesses.

3) We arrange the edge list of a data graph in a special
way that the filter phase can be avoided.

The rest of the paper is organized as follows. We first
give the definition of subgraph isomorphism in section II.
The related works are discussed in section III. Section
IV presents the challenges of implementing a GPU-based
subgraph matching application and out solutions to these
challenges. Section 5 proposes our GPU-based subgraph
matching system and gives a detailed discussion about
the system. The evaluations of our system are shown in
the section VI and the conclusion is reached in the section
VII.

II. SUBGRAPH MATCHING

Before we give the definition of subgraph isomorphism,
we are going to first introduce the notations we use in the
paper. Note that the terms, subgraph isomorphism and
subgraph matching, are interchangeable. A vertex-labeled
undirected graph is denoted by G = (V, E,[,X) where V
is the set of vertices, £ C V x V is the set of edges, [
is a surjective mapping from V to X, and ¥ is the set of
labels which is finite and countable. We use Ny (G) and
Ng (G) to stand for the number of vertices and edges in
a graph G. The set of neighbors of a vertex v in graph G
is represented by Ng (v) = {v' € V(G) | (v,v') € E(G)}.
The degree or the size of the neighbor set of v is denoted by
dg (v). Armed with these concepts, it is ready to provide
the definition of subgraph isomorphism.

Definition 1: Given a pattern graph
Q = V(@),E(@),,Y) and a data graph
G = (V(G),E(G),l',Y), @ is isomorphic to G if

and only if there exists a injective mapping f from V (Q)
to V(G), that is f : V (Q) — V (G), such that

1) VueV(Q),l(u)=1(f(u))

2) V(u,u) € E(Q),(f (u), [f(u)) € E(G)
Figure 1 shows an example of matching a triangle in an
input graph. There are 1000 instances of the query triangle
in the data graph with the mapping {u; — wvi,us —
vo,ug — v; with ¢ € {3.--1002}} in this example. One
instance is also called an embedding.
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Fig. 1: Triangle Matching

Embeddings of the pattern @ in the graph G can be
induced either by a matching vertex subset Vs (G) of V (G)
or a corresponding matching edge subset. We call these
two kinds of embedding as vertex-induced matching and
edge-induced matching. The vertex-induced embedding is
represented by

{Vv = {f (u) € V(G)}a
E, = {V(f (u),f(u’)) € E(G)} 7Z’E}a

while the edge-induced embedding is defined as

{Ve={f(w) eV (G)},
Ee={(f(u),f () € E(G),Y(u,

The difference between two embeddings can be seen in the
case of searching a wedge pattern in a triangle data graph.
For convenience, we assume there is only one element in
Y. According to the definition, there is no vertex-induced
embedding in this case since the wedge requires that an
embedding induced by the three mapping vertices should
not contain the missing edge in the query. An embedding
induced by three vertices in a triangle violates this con-
dition. But there will be three edge induced embeddings
because constraint of the edge set.

u') € E(P)},1, %}

III. RELATED WORK

The original Ullmann algorithm [6], [13] needs to try
all the possible mapping for a vertex u of a query graph
and figure out a complete mapping at the end. Therefore,
it turns out to the slowest subgraph matching algorithm
so far. VF2 [14] improves the performance by imposing
more pruning constraints than the Ullmann algorithm .
VF2 requires that the next query vertex to be matched



has to be connected the query vertices which are already
matched.

A significant progress in subgraph matching has been
witnessed since the beginning of this century, especially
the past decade. Several proposals were made to speed
up the subgraph matching problem on CPUs. Boost-
ISO [15] exploits vertex relationships in the data graph
to reduce duplicate computation and speed up subgraph
isomorphism. But most works strive to search for a better
matching order limiting the search space. They can be
classified into two categories, vertex order and path order.
VF2 and QuickSI [16] are two typical systems in the former
category. QuickSI selects the most infrequent query vertex
as the next query vertex to be matched.

The well-recognized systems falling into the second
category include Turborso, CFL, and DAF. Turborso [7]
builds a spanning tree from a query graph by running a
BFS on the query graph and establish a matching order
based upon the size of potential matches of a path. The
edges in a query graph are classified into two classes
depending on the condition whether an edge in a query
graph is present in the corresponding spanning tree. The
edges which are not present in the query tree are called
non-tree edges. In Turboigp, the non-tree edges will be
taken into account at the end. But non-tree edges usually
have more pruning power than normal edges. Therefore,
such construction lead to poor pruning power in Turbojgo.
To cope with the symmetries in a pattern graph, it rewrites
the query graph to neighborhood equivalence class.

To overcome the issue with non-tree edges, CFL [§]
decomposes a query graph into three parts which are core,
forest and leaf. The core is the subgraph with the minimum
vertices containing all the non-tree edges. CFL will match
the core part first to apply the pruning power of non-tree
edges as early as possible. After the decomposition, CFL
designs an auxiliary data structure, compact path-index,
to facilitate the matching.

DAF [9] takes a different route from the above two
systems. It first builds a DAG from a query graph using
BFS. The non-tree edges, whose directions depend on
the the order of vertices, will appear in the DAG. Then
DAF will construct an auxiliary data structure, CS, to
enumerate the embeddings. DAF proposes an adaptive
matching order based on the path size and it introduces
failing set to reduce the searching space. Both DAF and
Turborso prefer path order [17] than vertex order.

Although these three algorithms prove their efficiencies
to some extent, these algorithms are not easy to scale up
to real-world graphs, have poor data parallelism and suffer
severe load balance issue. To employ data parallelism in
subgraph matching, a few research groups have worked on
GPU-based implementations. Most of these GPU systems
adopt two-phase filter-join model [16]. The state-of-the-
art GPU systems include GpSM [11], Gunrock [10], and
GSI [12]. These systems extend the subpatterns by one ver-
tex at a time through BFS exploration. Such an approach

is easier to utilize data parallelism and to take care of load
balance in each phase. However, the biggest disadvantage
of this model is a large amount of intermediate results need
to be materialized in the global memory during matching.
Due to the limitation of global memory, it makes these
systems difficult to handle large query patterns and data
graphs.

An automorphism test is needed at the end of each ex-
tension in order to remove redundant results. They do not
incorporated automorphism test in the implementation
because such a test is expensive and there is no efficient
algorithm for the test. For clarity, let’s take the pattern in
Figure 2 as an example where swapping uz and u4 leaves
the pattern invariant. The outcome of this symmetry is
that the same subgraph induced by vertices vy, v2,v3 and
vy appears two times in the results by exchanging the
mapping of uz and uy.
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Fig. 2: Duplicate Computation in GSI

Moreover, GSI also introduces a data structure called
Signature and PCSR to single out candidates and then
do the join. Both data structures have memory overhead
and PCSR wastes memory bandwidth to look up the
candidates.

IV. CHALLENGES

Challenge I: A typical size of GPU main memory is

about a few tens of GB. However, the intermediate results
on some large graphs can reach TBs. The GPU systems
based on filtering-joining strategy need to obtain all the
subembeddings at the the current iteration to proceed
to the next iteration. This strategy is equivalent to the
BFS exploration. The number of these subembeddings is
exponentially proportional to the number of vertices in
data graphs. This turns out to be the biggest challenge in
a GPU-based subgraph matching system.
Challenge II: A massive amount of data are needed
to be fed to these threads in order to guarantee higher
hardware utilization and data parallelism. How to make
the memory accesses as efficient as possible is critical to
the matching performance. The best option is to render all
the memory accesses coalesced because GPUs prefer such
access pattern with relatively lower cycles. The irregularity
of a graph data often makes coalesced memory accesses
difficult.



Challenge III: In most GPU-based subgraph implemen-
tations, multiple threads will work collectively on a sube-
mbedding. The special features of GPU memory hierarchy
provide us flexible choices for sharing data among threads.
The registers have higher bandwidth and lower latency,
buy they are scarce on GPU. Overuse of registers will lead
to poor thread occupancy, data parallelism, and hardware
utilization. In order to avoid warp divergence, we will
normally let a warp extend instances. A warp needs to
shared some candidate sets during the matching process.
The minimum storage of these candidate sets should be
no less than 16 Bytes. The address of a buffer consumes
8 bytes, while the source vertex ID and the number of
elements in each buffer need 4 bytes each. If we naively
cache the meta information of sets in register, we will not
be able to achieve 100% thread occupancy for a pattern
with 4 vertices on a graph like Mico. If we cache these set
information into the global memory, the memory latency
will possibly outweigh the thread occupancy. So how to
maintain higher thread occupancy and lower memory
latency for large patterns and data graphs is important
to the performance.

Challenge IV: It has been shown in Turboigo [7]
that backtracking is a successful approach for subgraph
matching. Algorithms 1 shows the pseudo-code of naive
the backtracking implementation similar to VF2. However,
a GPU-based backtracking algorithm is quite challenging
since the recursive kernel function is not supported on
GPU devices. It would be impossible to directly transform
such algorithm into a CUDA kernel.

Algorithm 1: Subgraph Isomorphism
Input: G(P),G(g)
Output: Results

1 Function Main(G(P),

G(D):

2 Initialization: Results, M (p);
3 subMor(M (p), G(P), G(D), Results);
4 return Results;
5 ;
6 Function subMor (M (p), G(P),G(g), Results):
7 if M(p) and G(P) have the same number of
vertices then
‘ Append(M (p), Results);
9 else
10 CS = getNextCandidate(M (p), G(P));
/* The candidate set for next vertex
to be matched. *x/
11 for u in C'S do
12 M(p') =Extend(M (p), u);
13 subMor(M (p'), G(P), G(g), Results);
14 backTracking(M (p'));
15 end
16 return

An alternative and easy solution to the backtracking

is the BFS exploration strategy which is adopted by
the other GPU-based systems. The advantage of BFS
exploration is that the load balance is taken care of by
a separate kernel with different launch configurations at
each iteration. However, the BFS exploration suffers a lot
issues mentioned in Section III which will significantly hurt
the performance of a system.

Challenge V: The irregularity of graph data not only
incurs uncoalesced memory accesses but also suffers the
load balance issues. The load balance is always one of
the main concerns in an application’s performance. The
load balance is more difficult in GPU-based frameworks
than that in CPU-based frameworks because thread syn-
chronization and memory sharing on GPUs are more
complicated than CPUs.

V. DGSM

In this section, we will present our GPU-based subgraph
isomorphism implementation in details and how we sort
out the challenges in section IV on GPU devices.

A. Solution to Challenge I

As pointed out in Section IV, the root of large interme-
diate results is the BF'S exploration strategy. Instead of the
BF'S exploration, we choose the recursive DFS exploration
strategy to solve the large memory requirement issue. The
benefits of such exploration over BFS are three folds.
First, the number of potential instances are limited in DFS
exploration. Not the entire subembeddings in the data
graph are necessary to move on to the next iteration. Only
the subembeddings already discovered by the warps needs
to be materialized in the memory. Second, many grid level
synchronizations are eliminated. A warp will continue to
extends its own subembeddings until the last query vertex
is finished. Therefore, no communications among warps
or thread blocks are required in DFS exploration. The
majority grid level synchronizations in GSI are not present
in our implementation. Third, we fuse the kernels in the
filter and join phase together. So no control transfer is
needed between the host and the device in order to make
dynamic memory allocations inside each iteration. With
the help of DFS exploration, we are able to preallocate a
memory buffer before the matching starts on GPUs.

B. Solution to Challenge IT

We use a data structure VertexSet to store the infor-
mation of a candidate set in order to achieve coalesced
memory accesses for set operations. All the possible map-
pings of a query vertex w are stored in a continuous
chunk of memory. Different warps will maintain their own
VertexSets. There will be no communication among warps.
This structure also makes the backtracking process and
references to the VertexSets in previous iterations a lot
easier. Most importantly, it supports us to reuse some of
VertexSets to avoid duplicate connectivity check in GSI.



struct VertexSet{
uint32 t xdata;
uint32 t vid;
uint32 t size;
}

Listing 1: VertexSet

Therefore, there would be no extra memory overhead and
no memory bandwidth will be wasted with the help of the
VertexSet structure.

C. Solution to Challenge IIT

To minimize warp divergence, the threads in a warp
work collectively on the embeddings emanated from a can-
didate vertex. Therefore, they are going to share and work
on the same VertexSets. How to share these VertexSets will
affect the performance. Caching the meta data of these
VertexSets into global memory or registers is not the best
solution. If they are stored in thread private registers,
the lowest latency is achieved. But the thread occupancy
might be reduced significantly for large patterns because
each thread needs 16 bytes for one VertexSet. Algorithm 2
shows that 6 VertexSets are required for a pattern with
4 vertices. The computation resource will not be fully
saturated without register spilling. There will be many
more VertexSets for a larger pattern and it will lead to
either register spilling or lower thread occupancy. Putting
these VertexSets in the global memory will not reduce
thread occupancy, while it incurs higher memory latency
to access them. Both options will not help improve the
performance for large query patterns. However, GPUs
expose a programmable L1 cache, called shared memory,
to us. The shared memory can be used to shared data
among threads in a thread block. So we can resort to the
shared memory to reduce the register pressure mentioned
above. Caching VertexSets in the shared memory will
help us get better occupancy without sacrificing too much
latency.

D. Solution to Challenge IV

The backtracking or DFS approach cannot be naively
ported to GPUs since recursive kernel is not supported
on GPUs. However, we can simulate the backtracking
process with the help of the data structure VertexSet and
the matching order of a query pattern. DGSM matches
a query vertex at a time. So the matching process can
be abstracted as a nested for loop. The matching process
of the pattern 2a can be written as Algorithm 2, where
N (mo, C) stands for the neighbors of mg with label C, N
is the intersection operation of two sets, and — denotes the
difference of two sets. As seen in Algorithm 2, we enforce
the partial order through a bound on the target VertexSet
c¢- The VertexSet set ¢4 will be used for matching both
uz and uy. So it should be computed in the nested for
loop as earlier as possible to avoid redundant computa-
tion. In this case, it is computed inside the second for

loop. Therefore, we don’t waste memory and hardware for
duplicate subembeddings and compute the set intersection
twice like GSI for the pattern 2a. The VertexSet ¢4, which
is the intersection of the neighbor list of my and m; with
label B, has been calculated in the second for loop. In the
third for loop, we will use the result by dereference the
VertexSet ¢4. It should be emphasized that the overhead
of the analysis on a query graph is negligible since the
query graph is usually small and the analysis is done on
the host side.

Algorithm 2: Backtracking Unrolling

1 VertexSet ¢g = getCandidate(A);
2 for auto mgy € ¢y do

3 VertexSet ¢; = N(myg, C);
4 VertexSet ca = N(mg, B);
5 for my € ¢; do
6 VertexSet ¢5 = N(mq, B);
7 VertexSet ¢4 = coNes ;
8 for ms € ¢4 do
9 VertexSet ¢; = N(ms, B);
10 VertexSet ¢ = {m | m € ¢4 — ¢5 and
m < ms };
11 end
12 end
13 end

Although recursive calls are not supported on GPUs,
we can implement the DFS approach by viewing the
backtracking process as a nested for loop and generate a
plan based on the nested for loop. A nest for loop can be
simulated with an array of counters on GPUs. The plan
maintains the topology of subpatterns at each step, speci-
fies the matching order and partial orders among vertices
of a query graph, and has an one-to-one correspondence to
a nested for loop. Once such a plan is generated, it will be
moved to a GPU to guide the computation on the GPU.

E. Solution to Challenge V

The load balance in DFS exploration can be very com-
plicated. A good understanding of the cause of load im-
balance helps us find better solutions to this issue. DGSM
targets the origin of load imbalance in subgraph matching:
the skewness of vertex degrees. With the knowledge of
source of load imbalance, we cope with the issue in sub-
graph matching with three techniques. The first solution
is that we reorder the vertex ids according to the degrees.
The more neighbors a vertex has, the less its id will be. A
graph is stored in the most compacted CSR format. We
further sort the neighbors of a vertex based on its label.
The neighbors of a vertex with the same label are saved
continuously in the edge list and are sorted in ascending
order in that memory chunk. Please see Figure 3 for the
details of how we organize an edge list. This organization
of edges will not only improves the load balance issue, but



also validates the design of the VertexSet struct when GPU
memory access patterns are concerned. It is the reason
why we don’t need to preallocate the memory buffers for
some VertexSets which are neighbors of vertices and we
are able to assign them to addresses of the edge list on the
fly. Note that vertex reordering can be done offline and it
is done only once. Secondly, a naively parallel strategy is

N(v1) N (va02)
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CRREEE = [
—_— A

;\“Y(l’l, B) JV(Ul, C) AN(I’QQDQ. A) JV(UQDUQ, C)

Fig. 3: Edge List

data parallelism on the the set ¢y in Algorithm 2. This
strategy might suffer severe load imbalance due to the
skewness of vertex degrees shown in the Figure 4. The red
wavy arrows indicate the data parallelism on the vertices
in the VertexSet ¢y. The workload assigned to the thread
T is 100 times more than that of T5; However, perfect load
balance is achieved if each edge connecting labels A and
C is assigned to a thread indicated by green wavy arrows.
In such case, each thread will have the same amount of
work. Thirdly, we adopt dynamic scheduling to deal with

U912

U1011

Fig. 4: Example of load imbalance

the potential load balance in deeper iteration.
Putting these solutions together, we are presenting
DGSMin Algorithm 3.

F. Other Optimizations

DGSM has two main components, plan generator on
line 6 and matching kernel line 8 in Algorithm 3. The
main purpose of plan generator is to devise a matching
order which has more pruning power. The matching order
is determined by the connectivity analysis on the patter
graph only. Please see the paper [18] for the details
about how the matching order is generated. This approach
considers multiple paths through a query vertex at a time
during the extension, while DAF proceeds with one path
at a time. The benefit of our approach is that our system

Algorithm 3: GPU-based Subgraph Isomorphism
Input: G(P),G(g)
Output: Results
1 Function Main(G(P), G(D)):
Initialization: Results;
Load(G(g));
Preprocess(G(g));
allocateMemory(G(P));
plan = generatePlan(G(P));
copyH2D(plan);
kernel< <<
grid, block >>>(plan, G(g), Results);
9 copyD2H (Results);

0w N O A W N

10 return Results;
11 ;
12 Function
kernel (plan, G(P),G(g), Results,buf fer):
13 wid = getWarpld();
14 tid = laneid();
15 initSharedMem;
16 init(VertexSet, buffer);
17 if tid==0 then
18 | cid = atomicAdd(edge);
19 while eid < num__edges do
20 Extend(plan, eid, VertexSets);
21 if tid==0 then
22 | eid = atomicAdd(edge);
23 end
24 return

will backtrack immediately once one path containing the
query vertex fails. DAF might waste computation on
some full paths before the failing path. This ordering also
takes care of the non-tree edges on the fly. Moreover,
it serves to remove redundant computation. Note that
redundant computation comes from three perspectives.
First of all, there are duplicate instances when symme-
tries exist in a pattern graph. One way to get rid of
these duplicates is to do an automorphism test once all
the subembeddings in the current iteration are obtained.
However, an automorphism test is very expensive. An
efficient parallel automorphism test on both CPUs and
GPUs is still an open question for now. In order to avoid
the expensive automorphism test, we will do an analysis
on the pattern graphs first to find all the vertices which
are interchangeable. Then we impose a partial order on the
IDs to each group of symmetrical query vertices to break
the symmetries in the pattern. Each symmetrical query
vertices is equivalent to the NEC class in Turboigp. Take
the query graph Figure 2a as an example. It is pointed out
that two vertices ug and u4 are interchangeable. Exchange
the mapping of these two vertices will lead to the same
subgraph. If we specify the partial order on the two
vertices shown at the bottom of Figure 5 to the pattern,



we will remove the duplicate embeddings of the query in
the data graph Figure 2b. In this case, only the map-
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Fig. 5: Pattern with Partial Orders

ping {u; — vo, us — v1,u3 — v4,ug — v3} is valid, while
the other mapping {u; — va,us — v1,us — v3,ug — V4}
violates the partial order requirement us < uy. Here we
assume that the subscript in the data graph is the id for
a vertex.

Secondly, the DFS strategy allows us to preallocate
memory buffesr for the VertexSets of each warp even for
large query patterns and data graphs. Each VertexSet
owns a continuous chunk in the memory buffer. This
preallocation is only done once before the kernel starts. It
will free us from the duplicate join computation in Gun-
rock and GpSM. Also it will not incur memory allocation
overhead for each query vertex in GSI.

Thirdly, there exists duplicate connectivity computation
in some patterns. The query vertices uz and u4 in Figure 5
are both connected to the query vertices u; and ug. GSI
will do set intersections with matched vertices of u; and
ug twice to get the candidate embeddings, once for uz and
once for uy. With the help of our VertexSet data structure,
we only need to compute duplicate sets once [19]. We cache
the candidate of us and u4 in the VertexSet ¢4 and directly
retrieve the results when we match uy. Besides redundant
computation, our plan already encodes the connectivity
among query vertices. It leads to a unique subpattern at
each matching step. Therefore, automorphism tests can be
safely avoided.

After GPU receives the plan, the kernel will be launched
right away. We assign a warp to collectively working on
some embeddings to reduce the warp divergence as much
as possible. It can be seen that we need to instantiate
7 VertexSets even for a pattern graph with 4 vertices.
The register file size on our GPU is 256KB and each SM
supports maximum 2048 threads. It leads to the fact that
each thread can use up to 32 registers to achieve 100%
occupancy. Obviously, registers will rapidly be consumed
up by a larger query graph. The application will suffer
either lower occupancy or register spills for large query
graphs. Both cases are not what we expect. The former
results in lower data parallelism, while the latter has
higher memory latency. To overcome the register pressure,
we use dynamic shared memory to cache the meta data
of these VertexSets for fast accesses. The VertexSets will
be visited millions of times, so it is perfect to cache the

meta data in the shared memory. We also use the shared
memory to store a counter for each VertexSet (¢; and ¢y
in this case) which we will iterate through. Figure 6 shows
the layout of 6 VertexSets of the query Figure 2a for a
thread block. Bearing the organization of the edges shown
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Fig. 6: Arrangement of VertexSets

in Figure 3 in your mind, it would be reasonable to see
why we could use the neighbor list as the buffers for some
VertexSets.

Incorporating all these techniques together into Algo-
rithm 3, we implement our subgraph matching application,
which is able to do both vertex-induced and edge-induced
matching. Algorithm 2 gives the process of vertex-induced
matching. For the edge-induced matching, the difference
is that we only need to take the VertexSet ¢4 bounded by
ms.

VI. EVALUATION

We will present our experiment results in this section.
Both vertex-induced matching and edge-induced matching
are implemented in our system. We will show the per-
formance of both matching schemes and their difference
using some patterns in motifs and cliques. Then we will
demonstrate the performance benefits after we incorporate
the techniques we introduced in the section V. Finally, we
will evaluate the performance of our system by compar-
ing against with the-state-of-the-art CPU-based subgraph
matching system DAF and GPU-based system GSI on
some random query graphs.

A. FEzxperiment Setup

We are going to evaluate our system on 7 real-world
graphs in Table I. All of our experiments are conducted on
a host with Intel(R) Xeon(R) CPU E7-4830v3 2.10GHz 24-
core CPUs and 256GB DRAM equipped with an NVIDIA
TITAN V GPU 12GB of RAM. The GPU has an array of
80 streaming processors and each SM can support up to
2048 threads. We use the NVCC compiler version 11.0.221
(g++ version 7.5.0) with O3 to compile all the programs.
The operating system is Ubuntu Linux 18.04 with Linux
kernel version 5.4.0. The GSI source code is available and
can be obtained from its codebase on GitHub. DAF is not



Dataset (G) |V (G)] |E(G) ] dmax(G)
Enron 36692 367662 1383
Amazon 1134890 1851744 549
DBLP 317080 2099732 343
Mico 96638 2160312 1359
Patents 3774768 33037894 793
Livejournal = 4846609 85702474 20333
wiki-Vote 7115 201524 1065

TABLE I: Statistics of Datasets

open-sourced but the executables are available on GitHub.
The default number of threads is set as 24 when DAF is
concerned.

B. Effectiveness of Our Techniques

We will first show the effectiveness of our techniques
on unlabeled subgraph matching on some patterns since
the an unlabeled query bears more the symmetries and
the number of instances than a labeled one for a certain
query graph. The baseline of our implementation is that
all the VertexSet meta data are stored in registers, data
parallelism is carried out on vertices, and static scheduling
is chosen. Without using the shared memory to cache
VertexSet meta data, only thread 50% occupancy can be
achieved because of aggressive usage of registers in the
baseline implementation. Table II presents the baseline
performance of our system answering patterns in motif-4
on the graphs in Table I. The conventions are that PA,
ST, RE, CR, TT, and CL stand for the patterns path-4,
star-4, rectangle, chordal rectangle, tailed triangle, and
clique-4 in motif-4.

Graph PA ST RE CR TT CL
Livejournal | 34.9 | 1288.74 8.95 6.9 150.1 | 4.03
Patents 2.83 3.99 2.67 | 2.61 | 2.62 | 2.78
Mico 0.37 6.43 0.215 | 0.48 | 10.97 | 0.23
DBLP 0.2 0.41 0.2 0.19 | 0.83 | 0.21
Amazon 0.21 0.63 0.2 0.2 0.28 | 0.22
Enron 0.47 3.98 0.13 | 0.16 | 0.74 | 0.07
wiki-Vote 0.12 2.81 0.05 | 0.04 | 0.43 | 0.03

TABLE II: Baseline Performance(Second)
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Fig. 7: Speedup utilizing shared memory

To show the benefit of each technique, we will present

the speedup of implementations incorporating different
techniques against the baseline. Fig. 7 shows speedup
after implementing the shared memory optimization.
There is improvement for each query pattern. Some
queries can obtain a tremendous speedup on Patents,
DBLP, Amazon because of higher thread occupancy. The
speedup on patterns Q1 and Q2 are not as great as other
patterns. The reason behind it is that the computation
on hot vertices dominates the execution and leads to load
imbalance. It can be seen from Fig. 7 that the improved
shared memory implementation is an order of magnitude
faster than the baseline on average.

Fig. 8 shows the speedup of the implementation of
dynamic scheduling. It can be seen that the speedups has
been improved with dynamic scheduling by looking at
Fig.7 and Fig. 8. The skyline of the speedups in Fig. 8
is the similar to that in Fig. 7. It tells us that although
dynamic scheduling is helpful for load imbalancing to a
certain extent, dynamic scheduling alone cannot solve
the load imbalance of hot vertices. Fig. 9 illustrates the
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Fig. 8: Speedup of Dynamic Scheduling

final speedup after we adopt the following techniques
including shared memory, dynamic scheduling and
the edge mapping shown in Fig. 4. Table X lists the
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Fig. 9: Speedup of Edge Parallelism Mapping

performance of vertex-induced matching incorporating
the above techniques for the same patterns in Table II.
As mentioned earlier, our system can not only perform



10 Q1 00 Q200 Q3 08 Q4 11 Q5 M
2. 107 ‘
51015
> ® . ‘ & e @
& & P S
U o ¥ &
\)\

Fig. 10: Edge-induced Matching Speedup

vertex-induced matching, but also carry out edge-induced
query answering.

The edge-induced matching results for the same patterns
are presented in Table III. The difference between

. Motif 4
Graph Motif-3 DA T RE CR TT
Livejournal 113 17494 | 65169 | 4471 | 1663 | 2959
Patents 24 153 256 113 53 52
Mico 2 202 91 83 38 101
DBLP 1 9 18 7 6 8
Amazon 0.9 5 8 4 3 4
Enron 0.3 31 64 7 3 5
wiki-Vote 0.2 17 14 6 2 4

TABLE III: Edge-induced Matching Performance(ms)

vertex-induced and edge-induced matching is whether the
missing edges between vertices are verified or not. The
vertex-induced matching needs to validate missing edges,
while edge-induced does not need this process. Table III
introduces the performance of edge-induced matching
when the vertices of a query is less than 4. In general, the
edge-induced matching outperforms the vertex-induced
matching. This fact can been seen by compare Table X
and Table III. However, the edge-induced matching will
discover more patterns than the vertex-induced one.
The performance discrepancy between two matching
approaches depends on the balancing between the missing
edge check and the difference in the number of discovered
instance. There are only a few edge-induced queries
slower than the corresponding vertex-induced queries.
The reason is that those queries have a larger ratio of the
number of edge-induced instances to the vertex-induced
instances. Since the triangle pattern is trivial, we combine
the wedge and triangle performance together in motif-3.

Fig. 10 illustrates the speedup of the edge-induced
matching to the baseline and Fig. 11 shows the speedup
of dynamic scheduling to the static scheduling for edge-
induced matching. For clique-4, there are no missing
edges. So its edge-induced performance is the same as
vertex-induced matching. Therefore, we do not show the
speedup for the clique-4 pattern. We cut the speedup
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Fig. 11: Edge-induced Dynamic vs Static Speedup
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Fig. 12: Speedup with DAF

of Q4 on Enron down to 2 in Fig. 11. Its actual value is 14.

C. Comparison with DAF and GSI

DAF and GSI are not able to do the vertex-induced
matching. For the fairness, we compare our edge-induced
matching performance with theirs. DAF sets a threshold of
the number of instances of a pattern in a data graph. The
default value of that threshold is 10%. Table IV presents the
performance of our system once that threshold is reached.
Fig. 12 shows the speedup compared against DAF. Our

Graph PA ST RE CR TT CL
Livejournal | 2.26 | 0.29 | 1.81 | 1.87 | 2.37 | 1.52
Patents 0.55 | 0.23 | 06 | 0.62 | 0.8 | 0.72
Mico 0.34 | 0.22 | 0.28 | 0.32 | 0.37 | 0.28
DBLP 0.22 | 0.28 | 0.24 | 0.26 | 0.23 | 0.24
Amazon 03 | 029 | 04 | 034 | 0.31 | 0.59
Enron 0.3 0.3 | 029 | 032 | 03 | 0.33
wiki-Vote 0.27 | 0.23 | 0.27 | 0.29 | 0.28 | 0.25

TABLE IV: Performance with threshold (ms)

system is 108X faster than DAF on average. The minimum
and maximum speedup is 32 and 527, respectively. The
DAF suffers the load imbalancing issue presented in Fig. 4
since DAF maps each thread to a vertex in a candidate set.

As far as the unlabeled graphs and queries are concerned,
GSI cannot process many patterns in motif-4 even for a
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relatively small graph, wiki-Vote, because of the memory
limitation. GSI is able to answer clique-4 query on most
the graphs in the dataset except Mico and Livejournal.
The query time of clique-4 on Patents, DBLP, Amazon,
Enron, and wiki-Vote is 39.5, 153.3, 3.2, 23, and 20.6
in second. Fig. 13 presents the speedup of our system
with GSI. GSI can answer 5 queries out 6 in motif-
4. The corresponding speedup is shown in Fig. 14. Our
performance is at least 3 orders of magnitude faster than
GSI for motif-4 query graphs. We profile GSI for these

Graph PA ST RE CR TT CL
Livejournal | 23920 | 92253 | 2633 | 3129 | 12716 | 768
Patents 311 427 130 81 123 68
Mico 106 153 19 121 371 28
DBLP 10 22 5 11 17 5
Amazon 6 11 4 5 7 4
Enron 40 84 4 5 21 1
wiki-Vote 24 37 4 7 18 1

TABLE V: Vertex-induced Matching Performance(ms)

query graphs and find there are 42 kernel calls on average
in GSI on data graph Amazon ranging from 39 to 47.
So many grid level synchronizations and three memory
allocations hurt the performance significantly. It is the
reason why our implementation is much faster than GSI.
Beside patterns in motif-4, we also measure the perfor-
mance of our system on dense queries clique 5 through 10.
Their performance is reported in Table VI and Table VII.
The cliques 8 through 10 take over a day to answer the
queries for data graphs Livejournal and Mico. Therefore,
we don’t report their performance in the paper.

Graph C5 C6 cr C8 C9 C10
Patents 0.06 0.08 0.14 0.23 0.29 0.32
Amazon 0.004 | 0.004 | 0.004 | 0.004 0.004 0.004

DBLP 0.035 0.7 15.62 | 331.13 | 5632.65 | 78513.3

Enron 0.006 | 0.037 | 0.131 0.343 0.704 1.255

wiki-Vote | 0.004 | 0.013 | 0.043 | 0.117 0.234 0.398

TABLE VI: Clique Performance(s)

Graph C5 Cé6 C7
Livejournal | 22.79 | 1075.96 | 44205.7
Mico 0.96 34.6 1255.98

TABLE VII: Clique Performance(s)

Since our system is able to find all the instances of a
query pattern in a data graph, we will know the count
of those instances. Therefore, we can compared our per-
formance with mining frameworks, for instance the CPU-
based AutoMine and GPU-based Pangolin.

D. Labeled Graph Performance

For labeled queries, we randomly assign a unique label
out of 10 labels to a vertex of a data graph in Table I.
We generate 6 sparse query patterns through a random
walk on the labeled data graphs. Table VIII and Table IX
shows the performance of these 6 queries on the data
graphs. The performance of Q6 on Livejournal and Mico
is excluded because it takes more than 1 day to answer
these two queries. Table X shows the performance of 6

Graph Q1 Q2 Q3 Q4 Q5 Q6
Patents 13.9 | 44.65 72.01 55.3 562.91 12908.8
DBLP 1.98 4.08 31.5 305.13 | 4425.91 | 46942.5
Amazon 0.68 0.6 1.3 1.8 0.8 1.72
Enron 0.94 7.43 58.95 125.03 727.63 22009.4
wiki-Vote | 10.94 | 53.88 | 164.01 | 674.96 | 5500.78 | 98658.9

TABLE VIII: Performance of 6 Labeled Patterns(ms)

Graph Q1 Q2 Q3 Q4 Q5
Livejournal | 87.44 | 6460.88 | 51320.1 | 5988970 | 113077000
Mico 45.85 131.1 3370.69 | 67786.6 1521.49

TABLE IX: Performance of 5 Labeled Patterns(ms)

labeled queries when the threshold is specified. Fig. 15

Graph Q1 Q2 Q3 Q4 Q5 Q6
Livejournal | 0.42 | 0.96 | 3.92 1.1 1.2 1
Patents 1 0.58 | 0.84 5.4 5.27 | 5.28
Mico 0.39 | 0.43 | 0.44 | 0.44 0.5 0.49
DBLP 0.38 | 0.39 | 042 | 0.41 | 0.41 | 0.42
Amazon 0.35 0.4 0.39 0.4 0.4 | 0.46
Enron 0.12 | 0.12 | 0.13 | 0.13 | 0.14 | 0.13
wiki-Vote 0.08 | 0.08 | 0.09 | 0.09 | 0.1 0.1

TABLE X: Labeled Performance with Threshold(ms)

shows the speedup of these 6 queries to DAF. DAF cannot
answer queries on Livejournal and Patents. Therefore,
their speedups are not displayed in the Fig. 15. We achieve
57X speedup with DAF on average. The speedup ranges
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Fig. 15: Speedup with DAF for Labeled Queries
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Fig. 16: Speedup of Labeled Queries on Amazon with GSI

from 18X to 795X. For GSI, no query can be done on
Livejournal. The first 2 queries can be answered on most of
the rest data graphs. All the 6 queries can be answered on
Amazon. The average speedup is 160X. The range is from
104X to 311X. Fig 16 shows the speedup on these 6 queries.
The average speedup of the two queries is about 95X.
Fig. 17 presents the speedup of the first two queries where
the missing bar denote the query cannot be answered.
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Fig. 17: Speedup of Two Queries with GSI

VII. CONCLUSION

In this paper, we introduce our new GPU-based sub-
graph matching system. The system is able to answer both
vertex-induced and edge-induced query. The DFS explo-
ration grants our system the ability to handle large data
graphs and queries. After adopting the shared memory
and load imbalance optimizations, our system is boosted
significantly. Our system outperforms the two state-of-
the-arts systems including both CPU-based and GPU-
based application. Our system is about 2 and 3 orders of
magnitude faster than DAF and GSI for unlabeled queries,
while it is 2 orders of magnitude faster on labeled queries.
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