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Wireless Powered OFDMA-MEC Networks with
Hybrid Active-Passive Communications

Liqin Shi, Xiaoli Chu, Haijian Sun and Guangyue Lu

Abstract—In this article, we propose a novel system model
for a wireless powered mobile edge computing (MEC) network,
where the Internet-of-Things (IoT) nodes perform partial of-
floading to the MEC server via hybrid backscatter communi-
cation (BackCom) and active radio (AR) following an OFDMA
protocol, and maximize the system computation bits (SCB).
For the case of the system having more subchannels than
IoT nodes, we formulate the SCB maximization problem that
requires the joint optimisation of the transmit power and time,
subchannel allocation, computation frequency and time of the
MEC server, as well as the IoT nodes’ BackCom time and
reflection coefficients, transmit power and time for AR-based
offloading, local computing time and frequencies, subject to the
MEC server’s computation capacity and the quality-of-service
(QoS) and energy-causality constraints of each IoT node. By
applying the proof by contradiction and time sharing relaxation,
we transform the formulated problem into a convex one and
then solve it by using the existing convex tools. For the case of
the system having less subchannels than IoT nodes, we propose a
dynamic subchannel allocation scheme that allows each IoT node
to choose one task-offloading mode from three modes: HAPR,
BackCom only, and AR only, while ensuring that no more than
one IoT node occupies a subchannel at any time. The SCB
are maximized by first determining the subchannel allocation
and mode selection of each IoT node and then optimising the
remaining resource allocation for the MEC server and all IoT
nodes under the obtained subchannel assignment and mode
selection. Simulations validate the superior performance of the
proposed schemes over several benchmark schemes from the SCB
perspective.

Index Terms—Backscatter, hybrid active-passive communica-
tions, computation offloading, OFDMA.

I. INTRODUCTION

THE Internet of Things (IoT) is expected to provide
intelligent services by deploying massive IoT devices

to collect data from the environment and timely processing
the collected data. In practice, limited by the production cost,
most IoT devices are energy-constrained and with a limited
computation capacity. To overcome this problem, wireless
powered mobile edge computing (WPMEC), which allows IoT
nodes to harvest energy from a dedicated energy source (DES)
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and offload computation tasks to a nearby MEC server, has
been proposed.

In WPMEC, computation tasks can be offloaded from
IoT nodes to MEC servers via active radio (AR), passive
radio (PR), or hybrid active-passive radio (HAPR). In AR
[1], [2], an IoT node needs to generate carrier signals to
carry the offloaded data to a nearby MEC server, which
requires power-consuming active components, e.g., oscillator
and power amplifier, equipped at the IoT node. Considering
AR employed at each user, the sum power minimization
problem for a MEC network with multiple unmanned aerial
vehicles (UAVs) was studied in [3] and the total energy
consumption was minimized for a non-orthogonal multiple
access (NOMA) based MEC network in [4]. In PR [5], [6],
a.k.a., backscatter communication (BackCom)1, the IoT node
modulates an incident signal to carry its offloaded data and
reflects the modulated signal to the MEC server by adjusting
its antenna load impedance, thereby avoiding the use of power-
consuming active components. We note that PR consumes
much less energy than AR but at the cost of a lower offloading
rate. PR and AR have different tradeoffs between offloading
data rate and energy consumption. HAPR is the combination of
AR and PR and provides an opportunity to exploit the different
tradeoffs between energy consumption and offloading data rate
offered by AR and PR. Thus, HAPR was recently proposed
for data offloading in WPMEC [7].

In [7], the offloading time via AR and that via PR of
each IoT node were jointly optimized to minimize the ener-
gy consumption of the DES under the complete offloading
mode, while satisfying the minimum computation bits and
energy causality per IoT node. In [8], a deep reinforcement
learning (DRL) framework was developed for energy effi-
cient HAPR based data offloading in WPMEC. The authors
in [9] proposed a hierarchical multi-agent DRL to achieve
the minimum energy consumption at both the DES and the
MEC server for HAPR-based WPMEC. In [10], the total
computation bits of all IoT nodes were maximized by jointly
optimizing the time and power reflection coefficient (PRC) of
each IoT node for PR-based offloading, the time and transmit
power of each IoT node for AR-based offloading, and each
IoT node’s local computing frequency and time via convex
optimization. Considering the same optimization variables as
in [10], the computation energy efficiency (CEE) and the CEE
fairness among IoT nodes were maximized in [11] and [12],
respectively. In [13], the authors minimized the total delay for
completing given computation tasks of all IoT nodes by jointly

1In this paper, BackCom and PR are used interchangeably.
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optimizing the time of each IoT node for PR-based offloading
and AR-based offloading, each IoT node’s portions of task bits
for PR/AR based offloading and local computing, etc.

The above works [7]–[13] have shown that HAPR-based
WPMEC outperforms WPMEC based on AR or PR, yet
all of them considered a single-carrier scenario, which will
limit the achievable offloading data rate as compared with
multi-carrier transmission technologies, such as orthogonal
frequency division multiple access (OFDMA) [14]. Although
resource allocation has been studied for OFDMA-based WP-
MEC networks [15]–[17], which however have not considered
HAPR.

In this article, the resource allocation for wireless powered
OFDMA-MEC with HAPR is studied. Our main contributions
are given below.
• We study the system computation bits (SCB) maximiza-

tion for a wireless powered OFDMA-MEC network with
HAPR, thereby filling a gap in the existing works on
HAPR-based WPMEC. Specifically, we propose a novel
system model, where each IoT node harvests energy from
the energy signals emitted by the MEC server and uses its
harvested energy to offload part of its tasks to the MEC
server via HAPR and perform local computation of the
remaining tasks. Accordingly, each transmission block
duration is divided into five phases: the energy harvesting
(EH) phase, the BackCom phase, the AR phase, the task
execution phase, and the downloading phase. Letting K
denote the total number of IoT nodes and C denote the
total number of subchannels in the system, we maximize
the SCB for the two cases of K ≤ C and C < K ≤ 2C.

• For the case of K ≤ C, following the OFDMA protocol
(i.e., each subchannel is assigned to no more than one IoT
node), we formulate a SCB maximization problem that
jointly optimizes the energy transmission time, transmit
power, subchannel allocation, computation frequency and
time of the MEC server, as well as the IoT nodes’
BackCom time and reflection coefficients, transmit power
and time for AR-based offloading, and local computing
time and frequencies, subject to the constraints on the
quality-of-service (QoS), energy causality, latency, com-
putation capacity, and maximum transmit power. Since
the formulated problem is a non-convex mixed-integer
programming problem, which is difficult to solve directly,
we transform it into a convex one by means of proof by
contradiction and time-sharing relaxation, and then solve
it by using convex optimisation tools.

• For the case of C < K ≤ 2C, where the number of IoT
nodes is larger than that of subchannels, we propose a
dynamic subchannel allocation scheme that allows each
IoT node to choose one task-offloading mode from three
modes: HAPR, BackCom only (i.e., stay quiet in the AR
phase), and AR only (i.e., stay quiet in the BackCom
phase). Hence, a subchannel can be shared by an IoT
node performing BackCom only and another IoT node
performing AR only because they occupy it at different
time in a transmission block. With the offloading mode
selection indicators included as additional optimization
variables, the formulated SCB maximization problem

Fig. 1. The wireless powered OFDMA-MEC network with HAPR and its
frame structure.

becomes more complicated than that in the case of
K ≤ C, and cannot be solved by using existing methods.
To solve it, we first obtain the suboptimal solutions of
the subchannel assignment and mode selection for each
IoT node by leveraging the relevant constraints of the
formulated problem, and then obtain the optimal values
of the other variables by solving the problem under the
obtained subchannel assignment and mode selection of
all IoT nodes.

• The superiority of the proposed schemes over several
benchmark schemes in terms of the SCB is verified
through simulations. Besides, the proposed scheme for
the case of C < K ≤ 2C will enable more IoT
nodes than conventionally allowed by the limited number
of subchannels to offload tasks in a wireless powered
OFDMA-MEC network.

II. SYSTEM MODEL

As depicted in Fig. 1, this article considers a wireless
powered OFDMA-MEC network, where K single-antenna IoT
nodes communicate with an MEC server via HAPR. The
whole system bandwidth is denoted by B MHz and divided
into C orthogonal subchannels of equal bandwidth. Each IoT
node operates in the half-duplex (HD) mode while the MEC
server operates in the full-duplex (FD) mode so that the
MEC server can receive the tasks backscattered by the IoT
nodes when it broadcasts the energy signals. Each IoT node
is equipped with a rechargeable battery. In order to prolong
the IoT nodes’ operation time, each IoT node only utilizes
the harvested energy to support task offloading and/or local
computing. Note that at the beginning of a transmission block,
each IoT node may use the energy already stored in its battery
to support its local computation and the consumed battery
energy will be compensated by harvesting energy from the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3241088

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Georgia. Downloaded on April 26,2023 at 16:36:06 UTC from IEEE Xplore.  Restrictions apply. 



3

energy signals of the MEC server. Each IoT node employs
the partial offloading scheme [1], [2], [5] and can choose to
offload part of its tasks to the MEC server while computing the
remaining tasks locally. To support tasks offloading and local
computation, all the IoT nodes have four separate circuits that
are the EH circuit, the computing circuit, the BackCom circuit
and the AR circuit. Specifically, each IoT node harvests energy
from the energy signals emitted by the MEC server, offloads
some of its tasks to the MEC server via HAPR, and executes its
remaining tasks locally. Following [1], [2], [5], [6], [12], [13],
we suppose that all the devices in the considered system are
time synchronized. All channels are modeled as quasi-static
fading, namely channel state information (CSI) remains static
within a transmission block but may change between adjacent
transmission blocks. Assume that the MEC server has perfect
CSI at the beginning of a transmission block. In what follows,
we discuss how the CSI of all links can be obtained by the
MEC server in practice. Firstly, the MEC server broadcasts a
pilot signal to the K IoT nodes. When the IoT nodes receive
the pilot signal, they take turns to reflect the received pilot
signal to the MEC server. Then the MEC server can perform
least-square estimation to obtain the product of the forward
channel gain and the backward channel gain, which are equal
due to the channel reciprocity, and hence the MEC server can
obtain the forward channel gain from the MEC server to each
IoT node by taking square root of the product.

Let T denote the transmission block duration, which is
divided into five phases, as shown in Fig. 1. In the EH phase,
the MEC server broadcasts energy signals via C downlink
subchannels and each IoT node works in the EH mode on its
allocated subchannel. Let τe and hc,k (c ∈ C = {1, 2, ..., C},
k ∈ K = {1, 2, ...,K}) denote the EH time and the channel
gain between the k-th IoT node and the MEC server on the
c-th subchannel, respectively, then the harvested energy of the
k-th IoT node in the EH phase is given as

Eh
k = ητe

C∑
c=1

αc,kP
e
c,khc,k, (1)

where P e
c,k is the transmit power of the MEC server to the

k-th IoT node on the c-th subchannel within the EH phase, η
(0 ≤ η ≤ 1) is the efficiency of energy conversion for the EH
circuit, αc,k ∈ {0, 1} is the subchannel allocation indicator
with αc,k = 1 indicating that subchannel c is allocated to the
IoT node k and αc,k = 0 otherwise. Note that the linear EH
model is assumed here for analytical tractability and this work
can been extended to a scenario with a non-linear EH model
by using the approach adopted in [2] or [10].

In the BackCom phase, the MEC server broadcasts prede-
fined carrier signals and each IoT node offloads its tasks to
the MEC server by backscattering the received signals on its
allocated subchannel. Thereby, in this phase, the offloaded task

bits from the k-th IoT node is written as2

Rb
k =

C∑
c=1

αc,kτbW log2

(
1 +

ξβc,kPc,kh
2
c,k

Wσ2

)
, (2)

where τb, βc,k (0 ≤ βc,k ≤ 1), Pc,k, and W = B
C denote the

time duration of the BackCom phase, the PRC of the k-th IoT
node on the c-th subchannel [18], the transmit power from the
MEC server to the k-th IoT node on the c-th subchannel in
the BackCom phase, and the bandwidth of each subchannel,
respectively, ξ expresses the performance gap between the
BackCom and the AR [12], [13], and σ2 is the noise power
spectral density.

The IoT nodes can harvest energy while backscattering
energy signals for task offloading, and the k-th IoT node’s
energy harvested during BackCom phase is given as

Eb
k = ητb

C∑
c=1

αc,k (1− βc,k)Pc,khc,k. (3)

The total harvested energy at the k-th IoT node during the
above two phases can be given as

Etot
k = Eh

k + Eb
k

= η

C∑
c=1

αc,khc,k
(
τeP

e
c,k + τbPc,k − τbβc,kPc,k

)
. (4)

In the AR phase, the MEC server stops broadcasting energy
signals and all IoT nodes transmit their tasks following the
OFDMA protocol. Let pc,k denote the transmit power of the
k-th IoT node on the c-th subchannel, then in this phase, the
task bits offloaded by the k-th IoT node are determined as

Ra
k =

C∑
c=1

αc,kτaW log2

(
1 +

pc,khc,k
Wσ2

)
, (5)

where τa represents the time duration of the AR phase.
Accordingly, at the end of the AR phase, the total task bits

received at the MEC server can be written as

Roff =

K∑
k=1

(
Rb
k +Ra

k

)
=

K∑
k=1

C∑
c=1

αc,kW

(
τblog2

(
1 +

ξβc,kPc,kh
2
c,k

Wσ2

)

+ τalog2

(
1 +

pc,khc,k
Wσ2

))
. (6)

In the task execution phase, the MEC server computes
the received task bits while all IoT nodes stop performing
task offloading. In particular, let fc and τc denote the MEC
server’s computing frequency and time, respectively, then the
maximum amount of bits that can be computed by the MEC
server in this phase is given by Rm = fcτc

Ccpu
, where Ccpu is the

MEC server’s required number of CPU cycles when computing

2Note that when the MEC server receives the backscattered signals from the
IoT nodes, it still broadcasts energy signals. This means the self-interference
(SI) at the MEC server exists and is cancelled in (2) since the MEC server
knows both the CSI of all channels and the transmitted energy signals, and
the successive interference cancellation (SIC) can be done at the MEC server
to remove SI.
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one bit. Note that if Roff > Rm, not all the received task bits
can be computed at the MEC server. Hence, the actual amount
of bits computed by the MEC server in this phase is given as

Rc = min{Roff , Rm}. (7)

In the downloading phase, the MEC server broadcasts the
obtained computation results to the corresponding IoT nodes.
Since the computation results are usually just a few bits, the
time for broadcasting computation results is negligible in this
article [1], [2], [5], [15], [19].

Each IoT node can perform local computing at any time
during a transmission block as long as its battery contains
sufficient energy, since the computing circuit is separate from
the EH circuit and the BackCom circuit. Let τk and fk
represent the computing time and frequency of the k-th IoT
node, respectively, then the amount of bits computed by the
k-th IoT node in each transmission block is given as

Rloc
k =

τkfk
Ccpu,k

, (8)

where Ccpu,k denotes the k-th IoT node’s required number of
CPU cycles when computing one bit.

The energy consumption of the k-th IoT node when per-
forming local computation is given as [19]

Ecos
k = εkf

3
k τk, (9)

where εk expresses the effective capacitance coefficient (ECC)
from the processor’s chip at the k-th IoT node.

III. SCB MAXIMIZATION FOR K ≤ C
Here, we maximize the SCB for the case of K ≤ C, i.e.,

the number of subchannels is no less than the number of IoT
nodes. In particular, we assume that each subchannel is as-
signed to no more than one IoT node, i.e.,

∑K
k=1 αc,k ≤ 1, ∀c,

and formulate a SCB maximization problem that requires the
joint optimisation of the EH time, transmit power, subchannel
allocation, computation frequency and time of the MEC server,
and the IoT nodes’ BackCom time and reflection coefficients,
transmit power and time for AR-based offloading, computing
time and frequencies, subject to the constraints on the QoS,
energy causality, latency, computation capacity and maximum
transmit power.

A. Problem Formulation

The SCB consist of two parts: the computation bits achieved
by all IoT nodes through local computing and the computation
bits at the MEC server. According to (7) and (8), we can
calculate the SCB as

Ctot = Rc +

K∑
k=1

Rloc
k . (10)

The QoS constraint requires that the total computation bits
of each IoT node are not less than its minimum required
computation bits. Let Cmin,k denote the minimum required
computation bits of the k-th IoT node. We introduce the
auxiliary variables {λk}Kk=1 (0 ≤ λk ≤ 1, ∀k ∈ K) to
denote the portion of Cmin,k that are executed at the MEC

server. Then, the QoS constraint for the k-th IoT node can be
expressed as

Rb
k +Ra

k ≥ λkCmin,k, ∀k, (11)∑K

k=1
λkCmin,k ≤ Rm, (12)

Rloc
k ≥ (1− λk)Cmin,k, ∀k, (13)

where (11) and (12) assure that at least λkCmin,k task bits can
be offloaded from the k-th IoT node and executed at the MEC
server, and (13) assures that at least (1− λk)Cmin,k task bits
can be executed by the k-th IoT node locally.

The energy-causality constraint requires that each IoT node
only uses its harvested energy to perform task offloading and
computing. That is, the total energy consumption for task of-
floading and computing at each IoT node should not exceed its
harvested energy in the whole transmission block. Following
[6], [20], [21], we suppose that the power consumption of
BackCom at the k-th IoT node is fixed at Pb,k. Based on (9),
the energy-causality constraint of the k-th IoT node can be
expressed as

C∑
c=1

αc,k (Pb,kτb + pc,kτa) + εkf
3
k τk ≤ Etot

k , ∀k. (14)

For the MEC server’s transmit power constraints in the EH
and BackCom phases, we have

0 ≤
∑K

k=1

∑C

c=1
αc,kP

e
c,k ≤ Pmax, (15)

0 ≤
∑K

k=1

∑C

c=1
αc,kPc,k ≤ Pmax, (16)

where Pmax is the maximum allowed transmit power of the
MEC server.

Using (10)-(16), we arrive the following SCB maximization
problem, i.e,

P0 : max
V

Ctot

s.t. C1 : (11)− (13),
C2 : (14),
C3 : 0 ≤ fc ≤ fmax, 0 ≤ fk ≤ fmax

k , ∀k,
C4 : τe + τb + τa + τc ≤ T, τe, τb, τa, τc ≥ 0,
C5 : 0 ≤ τk ≤ T, ∀k,
C6 : (15), (16), P e

c,k ≥ 0, Pc,k ≥ 0, ∀k, ∀c,
C7 : 0 ≤ βc,k ≤ 1, ∀k, ∀c,
C8 : 0 ≤ λk ≤ 1, ∀k,
C9 :

∑K
k=1 αc,k ≤ 1, αc,k ∈ {0, 1} , ∀k, ∀c,

where V =
{
τe, τb, τa, τc, {τk}, {P e

c,k}, {Pc,k}, {αc,k}, {βc,k},
{pc,k}, {fk}, fc, {λk}

}
denotes the set of the optimization

variables, fmax
k and fmax are the maximum allowed

computing frequencies for the k-th IoT node and the MEC
server, respectively.

In P0, C1 and C2 are the QoS and energy-causality
constraints for all IoT nodes. C3 limits the maximum allowed
computation frequencies of the MEC server and IoT nodes.
C4 and C5 guarantee that all the time allocation is within
one transmission block T . C6 sets the maximum allowed total
transmit power of the MEC server in the EH and BackCom
phases. C7 and C8 are the constraints on the PRC of each IoT
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node and λk, ∀k, respectively. C9 ensures that each subchannel
is allocated to at most one IoT node during each transmission
block.

It is obvious that P0 is non-convex. This is because the
subchannel allocation indicator αc,k is a binary integer and
there exist several coupling relationships among multiple op-
timization variables except for αc,k, i.e., P e

c,k and τe, Pc,k, βc,k
and τb, pc,k and τa, fk and τk, etc, in the objective function
and constraints. Therefore, P0 is generally hard to solve.

B. Solution

In this subsection, we first simplify P0 to make it more
tractable and then transform it into a convex problem. To
reduce the complexity of P0 caused by Rc as given in (7),
we introduce a slack variable ∆ = Rc = min{Roff , Rm},
substitute it into the objective function of P0 and obtain

P1 : max
V,∆

∆ +
∑K
k=1R

loc
k

s.t. C1− C9,

C10 :
∑K
k=1

(
Rb
k +Ra

k

)
≥ ∆,

C11 : Rm ≥ ∆.

According to (2) and (5), both Rb
k and Ra

k contain a sum of
log functions, making C1 and C10 rather complicated. Hence,
we simplify the expressions of Rb

k and Ra
k by removing the

sum of log functions. Since each subchannel is assigned to
no more than one IoT node, Rb

k and Ra
k can be equivalently

rewritten as

Rb
k = τbW log2

(
1 +

ξ
∑C
c=1 αc,kβc,kPc,kh

2
c,k

Wσ2

)
, (17)

Ra
k = τaW log2

(
1 +

∑C
c=1 αc,kpc,khc,k

Wσ2

)
. (18)

Next, we introduce the following proposition to deal with
the coupled relationships between fk and τk, as well as
between fc and τc in P1, and obtain the k-th IoT node’s
optimal computing time, denoted by τ∗k , and the MEC server’s
optimal computation frequency, denoted by f∗c .

Proposition 1: The amount of bits computed by the consid-
ered network is maximized when the MEC server executes all
the received task bits with its maximum allowed computing
frequency and each IoT node executes tasks locally during
the whole transmission block, i.e., f∗c = fmax and τ∗k = T ,
∀k ∈ K.

Proof. The detailed process of this proof can be found in
Appendix A. �

Substituting fc = fmax, τk = T , (17) and (18) into P1, the

following optimization problem can be obtained, given by,

P2 : max
V′,∆

∆ +
∑K
k=1

fkT
Ccpu,k

s.t. C1′ :τbW log2

(
1 +

ξ
∑C

c=1 αc,kβc,kPc,kh
2
c,k

Wσ2

)
+τaW log2

(
1 +

∑C
c=1 αc,kpc,khc,k

Wσ2

)
≥ λkCmin,k, ∀k,∑K

k=1 λkCmin,k ≤ fmaxτc
Ccpu

,
fkT
Ccpu,k

≥ (1− λk)Cmin,k, ∀k,

C2′ :
C∑
c=1

αc,k (Pb,kτb + pc,kτa) + εkf
3
kT ≤ Etot

k , ∀k,

C3′ :0 ≤ fk ≤ fmax
k , ∀k,

C4,C6−C9,

C10′ :
∑K
k=1 τbW log2

(
1 +

ξ
∑C

c=1 αc,kβc,kPc,kh
2
c,k

Wσ2

)
+τaW log2

(
1 +

∑C
c=1 αc,kpc,khc,k

Wσ2

)
≥ ∆,

C11′ : fmaxτc
Ccpu

≥ ∆,

where V ′ =
{
τe, τb, τa, τc, {P e

c,k}, {Pc,k}, {αc,k}, {βc,k},
{pc,k}, {fk}, {λk}

}
.

It can be observed that P2 is still a mixed integer pro-
gramming problem, which is hard to solve, e.g., the tradi-
tional Brute-force method suffers from a high computational
complexity. In order to solve P2 with a lower computation
complexity, we relax the binary subchannel allocation indica-
tor αc,k to be a continuous real variable in the range [0, 1]
[5], [22]–[24], which can be regarded as a time-sharing factor
for the k-th IoT node on the c-th subchannel. As a result,
more than one IoT nodes can share the same subchannel by
occupying different time/OFDM symbols.

Although the time-sharing relaxation avoids integer opti-
mization variables, P2 is still non-convex due to the cou-
pled relationships among several variables. To address this
problem, the auxiliary variables, xc,k = αc,kβc,kPc,kτb,
yc,k = αc,kPc,kτb, zc,k = αc,kpc,kτa, ac,k = τbαc,k and
bc,k = τeP

e
c,kαc,k, are introduced to replace the variables

βc,k =
xc,k

yc,k
, Pc,k =

yc,k
ac,k

, pc,k =
zc,kτb
ac,kτa

, αc,k =
ac,k
τb

and
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P e
c,k =

bc,kτb
ac,kτe

, in P2 and we obtain

P3 : max
V′′,∆

∆ +
∑K
k=1

fkT
Ccpu,k

s.t. C1′′ : τbW log2

(
1 +

ξ
∑C

c=1 xc,kh
2
c,k

τbWσ2

)
+τaW log2

(
1+

∑C
c=1 zc,khc,k

τaWσ2

)
≥λkCmin,k, ∀k,∑K

k=1 λkCmin,k ≤ fmaxτc
Ccpu

,
fkT
Ccpu,k

≥ (1− λk)Cmin,k, ∀k,

C2′′ :
C∑
c=1

(Pb,kac,k + zc,k) + εkf
3
kT

≤ η
C∑
c=1

hc,k (bc,k + yc,k − xc,k), ∀k,

C3′,C4,C8,C11′,

C6′ : 0 ≤
∑K
k=1

∑C
c=1 bc,k ≤ τePmax,

0 ≤
∑K
k=1

∑C
c=1 yc,k ≤ τbPmax,

C7′ : 0 ≤ xc,k ≤ yc,k, ∀k, ∀c,
C9′ :

∑K
k=1 ac,k ≤ τb, 0 ≤ ac,k ≤ τb, ∀k, ∀c,

C10′′ :
∑K
k=1 τbW log2

(
1 +

ξ
∑C

c=1 xc,kh
2
c,k

τbWσ2

)
+τaW log2

(
1 +

∑C
c=1 zc,khc,k

τaWσ2

)
≥ ∆,

where V ′′ =
{
τe, τb, τa, τc, {bc,k}, {yc,k}, {ac,k}, {xc,k},

{zc,k}, {fk}, {λk}
}

.
Proposition 2: P3 is convex and can be efficiently solved

by means of the existing convex tools.
Proof. The detailed process of this proof can be found in

Appendix B. �

IV. SCB MAXIMIZATION FOR C < K ≤ 2C

In this section, we maximize the SCB for the case of
C < K ≤ 2C, i.e., the number of IoT nodes is larger than that
of subchannels. In this case, it is not possible to allow each
IoT node to occupy a distinct subchannel for the duration of
a transmission block. To address this problem, we propose
a dynamic subchannel allocation scheme, where some IoT
nodes perform HAPR, some IoT nodes perform BackCom only
(i.e., stay quiet in the AR phase), while the other IoT nodes
perform AR only (i.e., stay quiet in the BackCom phase) in
a transmission block. Hence, a subchannel can be shared by
an IoT node performing BackCom only and another IoT node
performing AR only because they occupy it at different time
in a transmission block.

In order to characterize the dynamic subchannel allocation
of all IoT nodes, we let αh

c,k = 1 denote the allocation of
the c-th subchannel to the k-th IoT node for the HAPR mode,
otherwise αh

c,k = 0; let αb
c,k = 1 denote the allocation of the

c-th subchannel to the k-th IoT node for the pure BackCom
mode, otherwise αb

c,k = 0; and let αa
c,k = 1 denote the

allocation of the c-th subchannel to the k-th IoT node for
the pure AR mode, otherwise αa

c,k = 0. Accordingly, we
have

∑C
c=1 α

h
c,k + αb

c,k + αa
c,k ≤ 1 to ensure that the k-th

IoT node is allocated with at most one subchannel and one
mode. For the c-th subchannel, both

∑K
k=1 α

h
c,k + αb

c,k ≤ 1

and
∑K
k=1 α

h
c,k + αa

c,k ≤ 1 should be satisfied to avoid the
co-channel interference. Accordingly, the task bits offloaded

by the k-th IoT node in a transmission block are determined
as

RD
k =

∑C

c=1

[ (
αb
c,k + αh

c,k

)
τbW log2

(
1 +

ξβc,kPc,kh
2
c,k

Wσ2

)

+
(
αa
c,k + αh

c,k

)
τaW log2

(
1 +

pc,khc,k
Wσ2

)]

= τbW log2

1 +
ξ
∑C
c=1

(
αb
c,k + αh

c,k

)
βc,kPc,kh

2
c,k

Wσ2


+ τaW log2

1 +

∑C
c=1

(
αa
c,k + αh

c,k

)
pc,khc,k

Wσ2

 . (19)

Therefore, the SCB can be calculated as

CD
tot = min

{∑K

k=1
RD
k , Rm

}
+
∑K

k=1
Rloc
k . (20)

At the end of the BackCom phase, the k-th IoT node’s total
harvested energy is given by

ED
tot,k = η

C∑
c=1

hc,k

[ (
αa
c,k + αh

c,k + αb
c,k

) (
τeP

e
c,k + τbPc,k

)
−
(
αh
c,k + αb

c,k

)
τbβc,kPc,k

]
. (21)

A. Problem Formulation

In this subsection, we formulate a SCB maximization prob-
lem for C < K ≤ 2C, subject to the constraints of QoS,
energy causality, and the MEC server’s transmit power, as
follows
P4 : max

VD
CD

tot

s.t. C12 : RD
k ≥ λkCmin,k, ∀k, (12), (13),

C13 :
C∑
c=1

((
αh
c,k + αb

c,k

)
Pb,kτb +

(
αh
c,k + αa

c,k

)
pc,kτa

)
+εkf

3
k τk ≤ ED

tot,k, ∀k,
C3− C5,C7,C8,

C14 :
∑K
k=1

∑C
c=1

(
αh
c,k + αb

c,k

)
P e
c,k ≤ Pmax,∑K

k=1

∑C
c=1

(
αh
c,k + αb

c,k

)
Pc,k ≤ Pmax,

P e
c,k ≥ 0, Pc,k ≥ 0, ∀k, ∀c,

C15 :
∑C
c=1 α

h
c,k + αb

c,k + αa
c,k ≤ 1, ∀k,

C16 :
∑K
k=1 α

h
c,k + αb

c,k ≤ 1,
∑K
k=1 α

h
c,k + αa

c,k ≤ 1, ∀c,
αh
c,k, α

b
c,k, α

a
c,k ∈ {0, 1} , ∀k, ∀c,

where VD = {τe, τb, τa, τc, {τk}, {P e
c,k}, {Pc,k}, {αh

c,k}, {αb
c,k},

{αa
c,k}, {βc,k}, {pc,k}, {fk}, fc, {λk}}, C12, C13 and C14

are the constraints on the QoS, energy causality and the MEC
server’s transmit power, respectively, C15 ensures that each
IoT node is allocated with at most one subchannel and one
mode to offload tasks, and C16 ensures that each subchannel
is allocated to no more than one IoT node in the BackCom
or AR phase.

Due to the multiple integer variables and the coupled
relationships among different optimization variables, P4 has
a non-convex objective function and non-convex constraints
hence is hard to solve directly.
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B. Solution

By introducing a slack variable ∆′ = min{
∑K
k=1R

D
k , Rm}

to remove the min operation in the objective function (given
in (20)) of P4, we have

P5 : max
VD,∆′

∆′ +
∑K
k=1R

loc
k

s.t. C3− C5,C7,C8,C12− C16,

C17 :
∑K
k=1R

D
k ≥ ∆′,C18 : Rm ≥ ∆′.

To solve P5, we present the following proposition to
determine the optimal local computing time {τ∗k} of the k-th
IoT node and the MEC server’s optimal computation frequency
f∗c .

Proposition 3: The amount of bits computed by the inves-
tigated network is maximized when each IoT node executes
its task bits locally during the whole transmission block, i.e.,
τ∗k = T , ∀k, and the MEC server computes its received task
bits with its maximum allowed computation frequency, namely
f∗c = fmax.

Proof. We can prove Proposition 3 by using proof of
contradiction in a way similar to Appendix A, and omit the
proof here for brevity. �

According to Proposition 3, P5 is transformed as

P6 : max
V′D,∆′

∆′ +
∑K
k=1

fkT
Ccpu,k

s.t. C12′ :RD
k ≥ λkCmin,k, ∀k,

∑K
k=1 λkCmin,k ≤ fmaxτc

Ccpu
,

fkT
Ccpu,k

≥ (1− λk)Cmin,k, ∀k,

C13′ :
C∑
c=1

((
αh
c,k + αb

c,k

)
Pb,kτb+

(
αh
c,k + αa

c,k

)
pc,kτa

)
+εkf

3
kT ≤ ED

tot,k, ∀k
C3′,C4,C7,C8,C14− C17,

C18′ : fmaxτc
Ccpu

≥ ∆′,

where V ′D = {τe, τb, τa, τc, {P e
c,k}, {Pc,k}, {αh

c,k}, {αb
c,k},

{αa
c,k}, {βc,k}, {pc,k}, {fk}, {λk}}. It can be observed that

P6 is a mixed integer programming problem and the coupled
relationships between the integer variables (such as αa

c,k, αb
c,k

and αh
c,k) and the continuous variables (such as τe, τb, τa, P e

c,k)
make it difficult to solve.

To transform P6 into a more tractable form, we introduce
the following binary integer variables, s1c,k = αa

c,k + αh
c,k,

s2c,k = αb
c,k + αh

c,k and s3c,k = αa
c,k + αb

c,k + αh
c,k. By

substituting αb
c,k = s3c,k − s1c,k, αa

c,k = s3c,k − s2c,k and

αh
c,k = s1c,k + s2c,k − s3c,k into P6, we have

P7 : max
V′′D,∆′

∆′ +
∑K
k=1

fkT
Ccpu,k

s.t. C12′′ :τbW log2

(
1 +

ξ
∑C

c=1 s2c,kβc,kPc,kh
2
c,k

Wσ2

)
+τaW log2

(
1+

∑C
c=1 s1c,kpc,khc,k

Wσ2

)
≥λkCmin,k,∀k,∑K

k=1λkCmin,k≤fmaxτc
Ccpu

, fkT
Ccpu,k

≥(1−λk)Cmin,k,∀k,

C13′′ :
C∑
c=1

(s2c,kPb,kτb + s1c,kpc,kτa) + εkf
3
kT

≤ η
C∑
c=1

hc,k

(
s3c,k

(
τeP

e
c,k + τbPc,k

)
−s2c,kτbβc,kPc,k

)
, ∀k,

C3′,C4,C7,C8,C18′,

C14′ :
∑K
k=1

∑C
c=1 s2c,kP

e
c,k ≤ Pmax,∑K

k=1

∑C
c=1 s2c,kPc,k ≤ Pmax,

C15′ :
∑C
c=1 s3c,k ≤ 1, ∀k,

C16′ :
∑K
k=1 s2c,k ≤ 1,

∑K
k=1 s1c,k ≤ 1, ∀c,

s1c,k, s2c,k, s3c,k ∈ {0, 1} , ∀k, ∀c,

C17′ :
∑K
k=1 τbW log2

(
1 +

ξ
∑C

c=1 s2c,kβc,kPc,kh
2
c,k

Wσ2

)
+τaW log2

(
1 +

∑C
c=1 s1c,kpc,khc,k

Wσ2

)
≥ ∆′,

where V ′′D = {τe, τb, τa, τc, {P e
c,k}, {Pc,k}, {s1c,k}, {s2c,k},

{s3c,k}, {βc,k}, {pc,k}, {fk}, {λk}}.
It can be found that P7 is still a non-convex optimiza-

tion problem mainly due to the binary integer variables
{s1c,k}, {s2c,k}, and {s3c,k}. In the following, we first ob-
tain suboptimal solutions of {s1c,k}, {s2c,k} and {s3c,k} by
leveraging the relevant constraints of P7, thereby determine
the subchannel assignment and mode selection for all the
IoT nodes. Then, we obtain the optimal values of the other
variables in V ′′D by solving P7 under given s1c,k, s2c,k and
s3c,k, ∀c, ∀k.

1) The subchannel assignment and mode selection for each
IoT node with C < K ≤ 2C: Based on C15′ and C16′,
each subchannel is either allocated to one IoT node for HAPR
or shared by two IoT nodes performing pure BackCom or
pure AR, respectively. In the case of C < K ≤ 2C, at least
K − C IoT nodes need to share a subchannel with another
IoT node, and hence at most 2C −K subchannels can each
be allocated to a distinct IoT node for performing HAPR.
Previous results in [8], [10], [12], [13], [21], [25], [26] have
shown that via a given subchannel, HAPR always offloads
more computation bits than pure BackCom/AR. Therefore, to
maximize the SCB, as many subchannels as possible, i.e.,
2C − K subchannels, should be allocated to different IoT
nodes to perform HAPR, while each of the remaining K −C
subchannels will be shared by a pair of IoT nodes that perform
pure BackCom or AR, respectively. Considering that pure
BackCom/AR relies more on a high-gain subchannel to offload
a large amount of computation bits than HAPR, the subchannel
that offers the largest channel gains to two of the IoT nodes
will be selected to be shared by those two IoT nodes for pure
BackCom or AR. Such selection will be repeated among the
remaining subchannels and remaining IoT nodes until K −C
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subchannels have been selected. Then, each of the remaining
2C −K IoT nodes will perform HAPR and will be assigned
with a distinct subchannel that offers the largest possible
channel gain among the remaining 2C −K subchannels. The
above subchannel assignment and mode selection scheme is
presented in Algorithm 1.

Similar to sort algorithms, the complexity of Algorithm
1 mostly depends on the number of instructions that find
the subchannel with the largest channel gain for each IoT
node. Thus, the complexity of Algorithm 1 is determined by
O(K(K − C)).

Algorithm 1 Subchannel Assignment and Mode Selection
Scheme for C < K ≤ 2C

1: Subchannel set: C = {1, 2, . . . , C}, IoT nodes set: K =
{1, 2, . . . ,K}, s1c,k = s2c,k = s3c,k = 0, ∀c ∈ C, ∀k ∈
K, and subchannel gains set: H = {hc,k}c∈C,k∈K;

2: Set i = 1 and ii = 1;
3: Find (c∗, k∗) = arg maxc∈C,k∈K(H);
4: Set {hc,k∗}c∈C = 0 and update H;
5: Set kk(i) = k∗, cc(i) = c∗, αh

c∗,k∗ = 1 and αb
c∗,k∗ =

αa
c∗,k∗ = 0;

6: repeat
7: Find (c∗, k∗) = arg maxc∈C,k∈K(H);
8: if c∗ ∈ {cc(j)}j=1,...,i then
9: Set {hc∗,k}k∈K = 0 and update H;

10: if ii ≤ K − C then
11: Set {hc,k∗}c∈C = 0 and update H;
12: Set αa

c∗,k∗ = 1 and αh
c∗,k∗ = αb

c∗,k∗ = 0;
13: Find jj = argj({cc(j)}j=1,...,i == c∗) and set

αb
cc(jj),kk(jj) = 1, αh

cc(jj),kk(jj) = αa
cc(jj),kk(jj) =

0;
14: Set i = i+ 1, ii = ii+ 1, kk(i) = k∗ and cc(i) =

c∗;
15: end if
16: else
17: Set {hc,k∗}c∈C = 0 and update H;
18: Set i = i+ 1, kk(i) = k∗ and cc(i) = c∗;
19: Set αh

c∗,k∗ = 1 and αb
c∗,k∗ = αa

c∗,k∗ = 0;
20: end if
21: until i = K.
22: for i = 1 to K do
23: Compute s1cc(i),kk(i) = αa

cc(i),kk(i) + αh
cc(i),kk(i),

s2cc(i),kk(i) = αb
cc(i),kk(i) + αh

cc(i),kk(i) and
s3cc(i),kk(i) = αa

cc(i),kk(i) + αb
cc(i),kk(i) + αh

cc(i),kk(i);
24: end for

2) Optimal resource allocation given s1c,k, s2c,k and s3c,k:
With s1c,k, s2c,k and s3c,k determined by Algorithm 1, P7

can be transformed as follows

Psub : max
Vs

∆′ +
∑K
k=1

fkT
Ccpu,k

s.t. C3′,C4,C7,C8,C12′′,C13′′,C14′,C17′,C18′,

where Vs = {τe, τb, τa, τc, {P e
c,k}, {Pc,k}, {βc,k}, {pc,k}, {fk},

{λk},∆′}.
Due to the coupled relationships among multiple optimiza-

tion variables, e.g., βc,k, Pc,k and τb, Psub is a non-convex

problem. To tackle this problem, we replace βc,k, Pc,k, pc,k,
and P e

c,k with xD
c,k = βc,kPc,kτb, yD

c,k = Pc,kτb, zD
c,k = pc,kτa,

and bDc,k = τeP
e
c,k, in Psub and obtain

P′sub : max
V′s

∆′ +
∑K
k=1

fkT
Ccpu,k

s.t. C3′,C4,C8,C18′,
C7′ : 0 ≤ xD

c,k ≤ yD
c,k, ∀c, ∀k,

C12′′′ : τbW log2

(
1 +

ξ
∑C

c=1 s2c,kx
D
c,kh

2
c,k

τbWσ2

)
+τaW log2

(
1+

∑C
c=1 s1c,kz

D
c,khc,k

τaWσ2

)
≥λkCmin,k,∀k,∑K

k=1λkCmin,k≤ fmaxτc
Ccpu

, fkT
Ccpu,k

≥(1−λk)Cmin,k,∀k,

C13′′′ :
∑C
c=1

(
s2c,kPb,kτb + s1c,kz

D
c,k

)
+ εkf

3
kT

≤η
∑C
c=1hc,k

(
s3c,k

(
bDc,k+yD

c,k

)
−s2c,kxD

c,k

)
, ∀k,

C14′′ :
∑K
k=1

∑C
c=1 s2c,kb

D
c,k ≤ Pmaxτe,∑K

k=1

∑C
c=1 s2c,ky

D
c,k ≤ Pmaxτb, ∀k, bDc,k ≥ 0, ∀c,

C17′′ :
∑K
k=1 τbW log2

(
1 +

ξ
∑C

c=1 s2c,kx
D
c,kh

2
c,k

τbWσ2

)
+τaW log2

(
1 +

∑C
c=1 s1c,kz

D
c,khc,k

τaWσ2

)
≥ ∆′,

where V ′s = {τe, τb, τa, τc, {bDc,k}, {yD
c,k}, {xD

c,k}, {zD
c,k}, {fk},

{λk},∆′}, βc,k =
xD
c,k

yDc,k
, Pc,k =

yDc,k
τb
, pc,k =

zDc,k
τa

, and P e
c,k =

bDc,k
τe

.
Proposition 4: P′sub is convex, and can be efficiently solved

by applying the convex optimization tools.
Proof. The detailed process is similar to Appendix B and is

omitted here for brevity. �
Based on Algorithm 1 and Proposition 4, P7 can be solved

by first using Algorithm 1 to obtain the subchannel assignment
and mode selection for each IoT node and then using the
existing convex optimization tools, i.e., the Lagrange duality
method, to optimally solve P′sub.

V. NUMERICAL RESULTS

The basic simulation parameters are set as T = 1 s, B =
40 MHz, C = 40, Ccpu,k = 1000 cycles/bit, Ccpu = 1000
cycles/bit, Pb,k = 10 µW, Pmax = 1 W, η = 0.7, ξ = −15
dB, σ2 = −120 dBm/Hz, K = 4, εk = 10−26, fmax

k = 500
MHz, fmax = 10 GHz, and Cmin,k = 500 kbits [2], [10], [12],
[19]. Here a standard channel fading model with the small-
scale fading h′c,k, the path loss exponent ς and the distance dk
is applied to model the channel gain from the k-th IoT node
to the MEC server on the c-th subchannel. Accordingly, we
set ς = 3, d1 = 10 m, d2 = 9 m, d3 = 12 m and d4 = 11 m.

In the following part, we first introduce four benchmark
schemes which are wireless powered AR for MEC, backscatter
assisted MEC, the complete offloading scheme and the fully
local computing scheme, respectively, and illustrate the supe-
riority of the proposed schemes by comparing the computation
performance under the proposed schemes with that under the
above four benchmark schemes.
• Wireless powered AR for MEC: In the wireless powered

AR for MEC, the partial offloading scheme is considered,
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where a part of tasks at each IoT node will be offloaded
to the MEC server for computation via AR and the
others will be computed locally. In order to avoid co-
channel interference among different IoT nodes, each
subchannel is assigned to no more than one IoT node for
task offloading. Note that when K > C, at least one IoT
node can not access a subchannel, leading to unsatisfied
QoS constraints. Thus, the wireless powered AR for MEC
is only applicable for the case of K ≤ C.

• Backscatter assisted MEC: In the backscatter assisted
MEC, each IoT node offloads its part of tasks via Back-
Com and computes the other tasks locally. Likewise, each
IoT node only chooses a distinct subchannel to backscat-
ter tasks to avoid co-channel interference. Similar to the
wireless powered AR for MEC, the backscatter assisted
MEC is only applicable for the case of K ≤ C.

• Complete offloading scheme: In this scheme, all the task
bits at each IoT node will be offloaded to the MEC server
for computation and all IoT nodes choose the HAPR to
transmit their tasks. Note that this scheme is applicable
for both cases of K ≤ C and C < K ≤ 2C. Specifically,
for the case with K ≤ C, each IoT node can access a
distinct subchannel for task offloading while for the case
with C < K ≤ 2C, 2C − K subchannels are allocated
to 2C − K IoT nodes to perform HAPR and the rest
K−C subchannels are assigned to 2(K−C) IoT nodes
to perform BackCom or AR. The subchannel assignment
and mode selection of each IoT node can be determined
by Algorithm 1.

• Fully local computing scheme: In this scheme, each
IoT node only computes its tasks locally. This scheme is
applicable for both cases of K ≤ C and C < K ≤ 2C.
For convenience, Algorithm 1 is used to decide the
subchannel assignment of each IoT node.

It is worth noting that the above four benchmark schemes
can be obtained by using the similar methods for solving
P1 and P4 after making a few changes. Specifically, for the
wireless powered AR for MEC with K ≤ C, the convex
optimization tool is used to solve P3 by letting τb = 0 and
xc,k = yc,k = 0, ∀c, ∀k. For the backscatter assisted MEC with
K ≤ C, this scheme is optimized by solving P3 with τa = 0
and zc,k = 0, ∀c, ∀k. For the complete offloading scheme with
K ≤ C, this scheme is obtained by solving P3 with fk = 0
and λk = 1, ∀k. For the complete offloading scheme with
C < K ≤ 2C, Algorithm 1 is adopted to determine the
subchannel assignment and mode selection of each IoT node
first and then the existing convex optimization tool is used to
solve P′sub with fk = 0 and λk = 1, ∀k. Likewise, the fully
local computing scheme with K ≤ C is achieved by solving
P3 with τb = τa = τc = 0, xc,k = yc,k = zc,k = 0, ∀c, ∀k
and λk = 0, ∀k. As for the fully local computing scheme with
C < K ≤ 2C, Algorithm 1 is used to decide the subchannel
assignment of each IoT node first and then the existing convex
optimization tool is used to solve P′sub with τb = τa = τc = 0,
xD
c,k = yD

c,k = zD
c,k = 0, ∀c, ∀k and λk = 0, ∀k.

Fig. 2. SCB versus Pmax for the case of K ≤ C.

A. Computation performance for the proposed resource allo-
cation scheme with K ≤ C

Fig. 2 shows the SCB versus the maximum allowed transmit
power of the MEC server Pmax under different schemes. It
can be observed that the SCB under the proposed scheme, the
wireless powered AR for MEC and the backscatter assisted
MEC increase with the increasing of Pmax, while the SCB
under the complete offloading scheme and the fully local
computing scheme are always 0. The reasons are given below.
For the proposed scheme, the wireless powered AR for MEC
and the backscatter assisted MEC, a larger Pmax allows each
IoT node to harvest more energy and transmit/backscatter
stronger signals, thus offloading more computation bits; while
for the complete offloading scheme and the fully local com-
puting scheme, the QoS constraint for each IoT node cannot
be satisfied for all the considered values of Pmax, leading
to the poor performance. By comparison, we observe that
the proposed scheme outperforms the wireless powered AR
for MEC and the backscatter assisted MEC in terms of the
SCB since the proposed scheme combines the advantages of
the BackCom and AR, bringing a more flexibility to utilize
resources for maximizing the SCB.

Fig. 3 demonstrates the effect of the MEC server’s com-
putation capacity on the SCB, where the ratio of fmax to
fmax
k varies from 10 to 50. From this figure, we can see that

the SCB under the proposed scheme, the wireless powered
AR for MEC, the backscatter assisted MEC and the complete
offloading scheme increase as the MEC server’s computation
capacity improves. This is due to the fact that a larger com-
putation capacity at the MEC server means shorter computing
time at the MEC server and more time for each IoT node’s
task offloading, bringing higher offloading task bits and an
improvement to the SCB. Since the improvement of the MEC
server’s computation capacity does not influence the SCB
under the fully local computing scheme, the SCB under the
fully local computing scheme keeps unchanged. Note that the
fully local computing scheme achieves 0 computation bit due
to the unsatisfied QoS constraint. By observations, we can also
see that the SCB under the proposed scheme are higher than
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Fig. 3. SCB versus the ratio of fmax to fmax
k for the case of K ≤ C.

Fig. 4. SCB versus Cmin for the case of K ≤ C.

those under the other schemes, which illustrates the superiority
of the proposed scheme.

Fig. 4 plots the SCB versus the minimum required compu-
tation bits at each IoT node Cmin with Cmin,1 = Cmin,2 =
Cmin,3 = Cmin,4 = Cmin. Cmin varies from 500 kbits to
1300 kbits and K is set as 4 and 10, respectively. From this
figure, we can observe that the SCB under all the schemes
decrease when Cmin increases since a higher Cmin brings a
more strict QoS constraint for each IoT node and the IoT
nodes with worse channels can be allocated more resources
in order to satisfy the QoS constraint, resulting in a reduction
to the SCB. Besides, we can also observe that when Cmin is
small, a larger K brings higher SCB, while with a large Cmin,
not all the IoT nodes can satisfy the QoS constraint when
K is larger, leading to the poor computation performance.
Moreover, by comparing with the wireless powered AR for
MEC and the backscatter assisted MEC, we find that the
proposed scheme always achieves the highest SCB, which
indicates the superiority of the proposed scheme.

Fig. 5 shows the SCB versus the number of IoT nodes
K, where K varies from 5 to 25 and Cmin is set as 5
kbits. Suppose that the distance from each IoT node to the

Fig. 5. SCB versus K for the case of K ≤ C.

MEC server randomly varies from 5 m to 10 m. It can be
observed that when K is small, the SCB under the proposed
scheme, the wireless powered AR for MEC and the backscatter
assisted MEC increase with the increasing of K, while when
K is large, there is a slight upward trend. The reasons are
as follows. When K is small, the subchannels with good
channel conditions will be allocated to the IoT nodes to satisfy
the QoS constraints and achieve higher SCB, bringing an
improvement to the SCB. When K is large, some subchannels
with bad channel conditions may be assigned to some IoT
nodes. In this case, more resources should be assigned to
these IoT nodes to satisfy the QoS constraints, leading to a
slight improvement to the SCB. Besides, by comparison, we
also observe that the proposed scheme can achieve the best
computation performance.

B. Computation performance for the proposed resource allo-
cation scheme with C < K ≤ 2C

In the following part, we illustrate the computation perfor-
mance under the proposed resource allocation scheme for the
case of C < K ≤ 2C in both Fig. 6 and Fig. 7. Here we set
K = 50 and Cmin = 5 kbits. We consider that the distance
from each IoT node to the MEC server randomly varies from 5
m to 10 m for convenience. In order to illustrate the superiority
of the proposed scheme, the computation performance under
the complete offloading scheme and the fully local computing
scheme is plotted in above figures for comparisons. Note
that the wireless powered AR for MEC and the backscatter
assisted MEC are not included since they are not applicable
for C < K ≤ 2C.

Fig. 6 demonstrates the effect of the SCB achieved by
the different schemes on Pmax, where Pmax ranges from 0.5
W to 2.5 W. It can be seen that the SCB under all the
schemes increase when Pmax increases. By comparison, we
can see that the proposed scheme yields largest SCB among
all the schemes due to the superiority of the partial offloading
scheme. Besides, it can also be found that when Pmax is
small, the fully local computing scheme is superior to the
one achieved by the complete offloading scheme, while with
a large Pmax, the complete offloading scheme can achieve
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Fig. 6. SCB versus Pmax for the case of C < K ≤ 2C.

Fig. 7. SCB versus K for the case of C < K ≤ 2C.

a better computation performance. This is because with a
small Pmax, each IoT node may not harvest enough energy
to support task offloading, leading to the poor computation
performance, while with a large Pmax, offloading tasks is more
energy efficient than computing tasks locally.

Fig. 7 depicts the SCB versus K, and K is from 45 to
65. One observation is that when K increases, the SCB under
the proposed scheme and the fully local computing scheme
also increase, while the SCB under the complete offloading
scheme decrease. This is because for the complete offloading
scheme, when K is large, some subchannels with bad channel
conditions may be assigned to some IoT nodes, leading to
unsatisfied QoS constraints and bringing a reduction to the
SCB. Another observation is that among these schemes, our
proposed scheme achieves the best computation performance,
which verifies its superiority again.

VI. CONCLUSION

In this work, we have investigated the SCB maximization
problem in a wireless powered OFDMA-MEC network with
HAPR, where each IoT node will offload part of tasks to
the MEC server while computing the remaining tasks locally.
For both cases of K ≤ C and C < K ≤ 2C, we have

formulated and solved the SCB maximization problem by
jointly managing the EH time, transmit power, subchannel
allocation, computation frequency and time of the MEC server,
and the IoT nodes’ BackCom time and reflection coefficients,
transmit power and time for AR-based offloading, and local
computing time and frequencies, as well as the IoT nodes’
offloading mode selection (among HAPR, BackCom only, and
AR only) in the latter case. Simulation results have shown
that as compared with the benchmark schemes, including the
wireless powered AR for MEC, the backscatter assisted MEC,
the complete offloading scheme and the fully local computing
scheme, the proposed schemes achieve a higher amount of
the SCB because they effectively exploit the complementary
tradeoffs between energy consumption and offloading data rate
offered by BackCom and AR. For the case of C < K ≤ 2C,
the proposed scheme enables more IoT nodes than convention-
ally allowed by the limited number of subchannels to offload
tasks in a wireless powered OFDMA-MEC network.

Based on this work, there are some research directions that
can be further explored. First, this work can be extended to the
scenario where the binary offloading mode is adopted at each
IoT node. Second, when considering the battery level of each
IoT node, the resource allocation scheme for the considered
network will need to be carefully redesigned. Third, it will be
interesting to consider multiple MEC servers and redesign the
resource allocation scheme.

APPENDIX A

A. Proof for f∗m = fmax

We assume that
{
τ∗e , τ

∗
b , τ
∗
a , τ
∗
c , {P e∗

c,k}, {P ∗c,k}, {α∗c,k}, {β∗c,k},
{p∗c,k}, {f∗k}, {λ∗k}, {τ∗k} , f∗c ,∆∗

}
is the optimal

solution to P1, where f∗c < fmax and ∆∗ =

min

{
K∑
k=1

C∑
c=1

α∗c,kW

(
τ∗b log2

(
1 +

ξβ∗c,kP
∗
c,khc,k

Wσ2

)
+ τ∗a log2(

1 +
p∗c,khc,k

Wσ2

))
,
f∗c τ
∗
c

Ccpu

}
hold. Then the maximum

SCB for the considered network C∗tot can be
computed as ∆∗ +

∑K
k=1

f∗k τ
∗
k

Ccpu,k
. Besides, we

can also construct a feasible solution, denoted by{
τ+
e , τ

+
b , τ

+
a , τ

+
c , {P e+

c,k}, {P
+
c,k}, {α

+
c,k}, {β

+
c,k}, {p

+
c,k}, {f

+
k },

{λ+
k },

{
τ+
k

}
, f+

c ,∆
+
}

, where τ+
e = τ∗e , τ

+
b = τ∗b , τ

+
a =

τ∗a , τ
+
c = τ∗c , P

e+
c,k = P e∗

c,k, P
+
c,k = P ∗c,k, α

+
c,k = α∗c,k, β

+
c,k =

β∗c,k, p
+
c,k = p∗c,k, f

+
k = f∗k , λ

+
k = λ∗k, τ

+
k = τ∗k , f

+
c = fmax

and the constructed solution satisfies all the constraints of
P1. Thus, the SCB under the constructed solution, denoted
by C+

tot, can be given by ∆+ +
∑K
k=1

f+
k τ

+
k

Ccpu,k
, where ∆+ =

min

{
K∑
k=1

C∑
c=1

α+
c,kW

(
τ+
b log2

(
1 +

ξβ+
c,kP

+
c,khc,k

Wσ2

)
+ τ+

a log2(
1 +

p+c,khc,k

Wσ2

))
,
f+
c τ

+
c

Ccpu

}
. Since f+

c = fmax > f∗c is

satisfied, we have ∆+ ≥ ∆∗ and C+
tot ≥ C∗tot, which

contradicts the above assumption of f∗c < fmax. Thus, the
assumption of f∗c < fmax does not hold for maximizing the
SCB and f∗c = fmax should be satisfied for maximizing SCB
in the considered network.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3241088

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Georgia. Downloaded on April 26,2023 at 16:36:06 UTC from IEEE Xplore.  Restrictions apply. 



12

B. Proof for τ∗k = T

When all the optimization variables expect fk and τk are
fixed, fk and τk should be jointly optimized to maximize
the SCB of the considered network. Suppose that f∗k and
τ∗k < T are the optimal solutions which can satisfy all
the constraints of P1 when other optimization variables are
fixed. Then the maximum SCB C∗tot should be calculated as
∆ +

∑K
i=1,i 6=k

τifi
Ccpu,k

+
τ∗k f
∗
k

Ccpu,k
. Besides, we can also construct

another solution {f+
k , τ

+
k } with τ+

k = T and τ+
k f

+
k (f+

k )2 =
τ∗k f

∗
k (f∗k )2. Obviously, all the constraints of P1 hold for our

constructed solution. Let C+
tot denote the SCB under the con-

structed solution, where C+
tot = ∆+

∑K
i=1,i 6=k

τifi
Ccpu,k

+
τ+
k f

+
k

Ccpu,k
.

Since τ+
k = T > τ∗T and τ+

k f
+
k (f+

k )2 = τ∗k f
∗
k (f∗k )2, we have

f+
k < f∗k and τ+

k f
+
k > τ∗k f

∗
k . Therefore, C+

tot > C∗tot can
be obtained, which disagrees with τ∗k < T . Thereby, τ∗k = T
should be satisfied for achieving the maximum SCB of the
considered network.

APPENDIX B

By observing P3, we know the objective function and the
constraints, i.e., C3′, C4, C6′, C7′, C8, C9′ and C11′, are
convex, which means that P3 is convex if C1′′, C2′′ and C11′

are convex.
1) The convexities of constraints C1′′ and C11′: It can

be observed that the convexity of C1′′ and C11′ depends
on the convexity of f(x, y) = x log2

(
1 + y

x

)
with respect

to x and y. Since the convexity can be preserved by the
perspective function, both f(x, y) and log2 (1 + y) have the
same convexity. Recall that log2 (1 + y) is concave, then, we
can say that f(x, y) is concave on x and y. This indicates that
C1′′ and C11′ are convex.

2) The convexity of constraint C2′′: The convexity-
concavity of C2′′ is determined by the left side of C2′′ whose
convexity-concavity depends on the function f1(x) = x3 with
x ≥ 0. It is not hard to prove that f1(x) = x3 with x ≥ 0 is
convex, thereby, C2′′ is also convex. Using the above results,
P3 is proved to be convex.
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