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Abstract

This paper considers a self-triggered MPC controller design strategy for tracking piecewise constant reference signals. The
proposed triggering scheme is based on the relaxed dynamic programming inequality and the idea of reference governor; such
a scheme computes both the updated control action and the next triggering time. The resulting self-triggered tracking MPC
control law preserves stability and constraint satisfaction and also satisfies certain a priori chosen performance requirements
without the need to impose stabilizing terminal conditions. An illustrative example shows the effectiveness of this self-triggered
tracking MPC implementation.
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1 Introduction

In conventional Model Predictive Control (MPC) [20,21]
an open-loop optimal control problem is solved at each
sampling time resulting in a sequence of control inputs
of which only the first one is implemented. This leads to
an algorithmically defined feedback control law.

The classical MPC can be viewed as “time-driven” be-
cause the control input profile is updated repeatedly af-
ter each fixed time interval. Specifically, at each sam-
pling time a sequence of control values is computed, but
only the first element is applied to the system while the
rest is discarded. One may ask whether we can continue
using the sequence we have computed for as long as
possible while still guaranteeing stability and required
performance. The answer leads to the so-called “event-
driven” MPC in which the control computations only
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happen when some prescribed “event” occurs. This re-
duces the frequency of MPC updates and average com-
puting power required. For instance, in [3, 4], the MPC
computation is activated by comparing the measured
state and its past prediction. However, this requires con-
tinuously taking measurements and monitoring the sys-
tem.

In self-triggered MPC, the necessary measurement and
computation only take place at a triggered time at
which both the updated MPC control actions and the
next triggering time are determined. In particular, in [8]
a self-triggered linear quadratic control (LQR) strategy
is developed for linear systems without constraints. The
paper [13] considers a self-triggered receding horizon
controller for multiple-loop unconstrained linear time-
invariant (LTI) systems and proposes a co-design of
control and sensor sampling strategy. For self-triggered
MPC of constrained systems, in [9, 14, 18, 26], the con-
trol law and triggering conditions are co-designed to
satisfy a specified closed-loop performance requirement.
In particular, in [9], a self-triggered scheme is derived to
get “group sparse” control signals by holding the control
value at the triggering time to be constant for as long
as possible. A similar idea is also pursued in [14], where
control signals are kept the same between the triggering
time instants. However, keeping the control signal con-
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stant may cause the control and state mismatch as the
state is evolving with time. Thus, consecutive updates
may result which is undesirable. This kind of consecutive
triggerings also happen when uncertainty is present [26]
and it is necessary to guarantee a specified performance.

In order to guarantee recursive feasibility in MPC set-
ting most of the existing results including [3,4,9, 14,26]
exploit terminal cost and terminal set constraints. How-
ever, making the MPC controller satisfy terminal con-
straints can degrade performance, and even cause infea-
sibility in engineering practice.

In comparison, the recent paper by Lu and Ma-
ciejowski [18] provides an alternative approach for self-
triggered MPC, which makes full use of non-constant
control sequences MPC computes at triggering times
and can maintain stability and satisfy certain perfor-
mance requirements without terminal constraints and
penalties. Unlike [3,4,9,14,26], where terminal cost and
terminal constraints are used, the asymptotic stability
is ensured in [18] by exploiting the relaxed dynamic
programming (RDP) inequality without terminal con-
straints [11,12,17]. Furthermore, the occurrence of con-
secutive updates is significantly reduced by introducing
an extra slack variable in the RDP condition.

While all the existing self-triggered MPC schemes have
been extensively studied in the regulation case, i.e. when
the goal is to control the state of the system to the origin
(a fixed setpoint), a control law and triggering condition
co-design for reference tracking has not been addressed
when setpoint is changing with time, e.g., it is a piecewise
constant function in time. The synthesis approach of sta-
bilizing MPC may not be viable at the new setpoint and
the constraints could be violated [5,15,16]. For these rea-
sons, under piecewise constant reference signals, a regu-
lation self-triggered MPC, even with the extra slack vari-
able technique introduced [18], may exhibit consecutive
updates (cf. Fig. 3), which should be avoided to guaran-
tee certain inter-event time that is required by wireless
networked control systems (WNCS) [19,23]. Otherwise,
if consecutive updates exist, the MPC updates must be
computed intensively during some periods. The merits
of event-driven MPC are lost.

In this paper, we extend the recent result on self-
triggering MPC [18] to the case of changing references.
Our approach integrates reference governors [6,7] into a
novel control technique which governs the tail of shifted
MPC sequences and guarantees constraint satisfaction,
stability at the equilibrium and performance in a refer-
ence command tracking setting.

The organization of the paper is as follows. In Section
2, we give definitions and preliminary results that will
be used in the rest of the paper to formulate the self-
triggered tracking MPC problem. In Section 3, the re-
laxed dynamic programming approach is proposed with

an integration of reference governor design which for
piecewise constant in time reference commands is able
to reduce the number of consecutive triggering times.
Systematic implementation algorithms are developed for
the design of self-triggered tracking policy. An illustra-
tive example is presented in Section 4, and we conclude
the paper in Section 5.

Notation: Let R, R+, Z and Z+ denote the set of real
numbers, non-negative real numbers, integers, and non-
negative integers, respectively, and let Z[a,b) denote the
set {φ ∈ Z | a ≤ φ < b}. Throughout this paper,
t denotes sampling time, and k denotes the count of
time-steps within the prediction horizon. Given two sets
X , Y ⊆ Rn, the Minkowski set addition is defined by
X ⊕ Y := {x + y|x ∈ X , y ∈ Y }. The Pontryagin set
difference is defined by X 	Y := {z|z⊕Y ⊆X }. The
ball of radius ε is denoted by B(ε) = {x ∈ Rn : ‖x‖ ≤ ε}.
For a given set P containing the origin, we let intε(P)

denote the ε-interior of P, i.e., intε(P) , P 	B(ε).
Finally ‖x‖2Q := 1

2x
TQx.

2 Problem Setup

Consider a linear system,

x(t+ 1) = Ax(t) +Bu(t), x(0) = x̄, (1)

y(t) = Cx(t) +Du(t)− g(t), (2)

where x(t) ∈ Rn, u(t) ∈ Rm , y(t) ∈ Rp and g(t) ∈ Rp
are the state, input, (generalized) output and external
signal at time instant t, respectively. The convex sets
X ⊆ Rn and U ⊆ Rm are closed sets which represent
state and input constraints and contain the origin in
their interiors. We assume that:

(i) (A,B) is stabilizable.
(ii) Matrix D is of full column rank.

For the tracking problem, we can view g(t) as an artifi-
cial setpoint, gsp, or an artificial reference function, for
instance, gsp = Cxs+Dus where (xs, us) is a steady state
and input pair which guarantees the artificial setpoint
gsp is equal (or closest) to the desired setpoint rsp.

For unconstrained systems, gsp would essentially coin-
cide with and be set to the desired reference setpoint rsp.
Then, from (1)-(2), the steady state satisfies

 I −A −B
C D

[ xs

us

]
=

[
0

gsp

]
. (3)

The matrix on the left-hand side of equation (3) is an
(n + p) × (n + m) matrix. From linear algebra, for the
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linear equation (3) to have a solution for all gsp, it is suf-
ficient that the rows of the matrix on the left-hand side
are linearly independent, which requires p ≤ m. How-
ever, normally we have more (generalized) outputs than
manipulated references. So we choose a matrixH and set
gc = Hg to select particular linear combinations of the
generalized outputs. The variable gc ∈ Rnc is referred to
as the controlled variable. In particular, if the columns
of the matrix on the left-hand side are linearly indepen-
dent, the linear equation (3) has a unique solution. If the
solution is non-unique, the steady state pair (xs, us) can
be determined by solving an optimization problem

min
xs,us,gsp

(us − usp)TRs(us − usp) + φ(Hgsp − rsp), (4)

s.t.

[
I −A −B
HC HD

][
xs

us

]
=

[
0

Hgsp

]
,

xs ∈ intε(X),

us ∈ intε(U),

where the first term penalizes the control effort w.r.t the
desired steady input usp and φ(Hgsp − rsp) = ‖Hgsp −
rsp‖∞ penalizes the deviation between the desired set-
point rsp and the artificial setpoint gsp.

The set of admissible setpoints such that the constraints
are not active is defined as follows:

Gsp = {gsp = Cxs +Dus : xs ∈ intε(X), us ∈ intε(U)}.

2.1 Finite-horizon Tracking MPC

The objective of the reference tracking problem is to
steer the output y(t) to zero, while keepingHgsp as close
as possible to rsp. Here gsp can be computed based on
(4).

In tracking MPC, we take a finite horizon N ∈ Z+ and
solve the following optimization problem at each sam-
pling time, t:

min
u,[uT0 ,··· ,u

T
N−1

]T
J (N)(x̄, ḡ,u) ,

N−1∑
k=0

‖yk‖22, (5)

s.t. xk ∈ X, k = 1, . . . , N,

uk ∈ U, k = 0, 1, . . . , N − 1,

x0 = x̄,

gt = ḡ,

xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1,

yk = Cxk +Duk − gt, k = 0, 1, . . . , N − 1.

Solving the above optimization problem at each
sampling time for a particular x̄ and ḡ leads to
a unique sequence of optimal control laws from

time t to time t + N − 1, given by u∗(x̄, ḡ) =
[u∗0

T(x̄, ḡ), u∗1
T(x̄, ḡ), . . . , u∗TN−1(x̄, ḡ)]T.

The (finite-horizon) value function is defined as

V (N)(x(t), g(t)),J (N)(x(t), g(t),u∗). (6)

The tracking MPC control law is given by applying the
first control move of the open-loop optimal control se-
quence u∗(x(t), g(t)) to the system, i.e.

u(t) = µ(x(t), g(t)) := u∗0(x(t), g(t)). (7)

Then the closed-loop system is given by

x(t+ 1) = Ax(t) +Bµ(x(t), g(t)), (8)

yµ(t) = Cx(t) +Dµ(x(t), g(t))− g(t). (9)

2.2 Recursive Feasibility

In this subsection we review the background definitions
and results from [18] needed for the subsequent develop-
ments.

Definition 1 A control sequence u = {u(0), u(1), . . . ,
u(N − 1)} is said to be admissible for x(0) ∈ X, if
(x(t), u(t)) ∈ X×U for all t ∈ {0, 1, . . . , N − 1}. The set
of all admissible control sequences of length N is denoted
by U N (x(0)).

The N step feasible region is defined as

IN := {x ∈ X : U N (x) 6= ∅}.

The region I∞ is called viability kernel [2], which char-
acterizes the set of the infinite horizon feasible initial
conditions of system (1) subject to input and state con-
straints.

Remark 1 Any admissible equilibrium point xs is in the
viability kernel. If the initial state is in an equilibrium
point, then the proposed tracking MPC will be feasible.

The sequence of feasible sets IN ’s becomes stationary,
if there exists N0 ∈ Z+, such that IN = IN0

holds for
all N ≥ N0.

Definition 2 A set P ⊆ Rn is called a (controlled)
positively invariant (PI) set or a viable set for the closed-
loop system (1), if P ⊆ X and for all x ∈P, there is a
u ∈ U, such that Ax+Bu ∈P.

I∞ is also called the maximal positively invariant (MPI)
set, which includes all the possible PI set P, i.e. P ⊆
I∞.
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Definition 3 A set P is called RH N-invariant or re-
cursively feasible with respect to a horizon N ∈ Z+ if
P ⊆ IN is a PI set for the closed-loop system (8) under
the MPC controller (7) with a receding horizon (RH) N ,
i.e.

x(0) ∈P ⇒ x(t) ∈P, ∀t ∈ Z+.

The following proposition shows that for a sufficiently
large horizon N , MPC controller will generate recur-
sive feasibility on the whole feasibility kernel I∞. This
property is inferred from stationarity of the feasible sets
IN ’s [2].

Proposition 1 Suppose that gsp ∈ Gsp in (5). If

V (∞)(x(t), gsp) < c holds for some c ∈ R+ and all
x(t) ∈ I∞ and for all gsp ∈ Gsp, the feasible sets
IN ’s become stationary for some N0 ∈ Z+, i.e.,
IN0

= IN0+1 = IN0+2 = · · · = I∞.

Assumption 1 In this paper it is assumed that

sup
x∈I∞,g∈Gsp

V (∞)(x, g) = c <∞.

For a given horizon N and a positive scalar ν, in order to
determine a RH N-invariant set, we define the sub-level
SNν ⊂ Rn×Rnc of finite horizon value function V N (x, g)

SNν = {(x, g) ∈ IN × Rnc : V (N)(x, g) ≤ ν}.

2.3 Relaxed Dynamic Programming

In this paper, we use the relaxed dynamic program-
ming result in [17] to develop a triggering condition for
self-triggered MPC to ensure stability and to obtain a
performance guarantee in terms of the infinite horizon
quadratic cost.

The next proposition is a variant of the main proposi-
tion stated in [12, 17] for approximating the Bellman’s
equation based on the finite-horizon value function
V (N)(x(t), g(t)) defined in Section 2.1 and its corre-
sponding optimal control policy µ(x(t), g(t)).

Proposition 2 Consider the system (1)-(2) with the
feedback control law µ(x, g), and suppose that the follow-
ing inequality is satisfied:

V (N)(x(t), g(t)) ≥ V (N)(x(t+ 1), g(t+ 1)) + α‖yµ(t)‖22,
(10)

for a given scalar α ∈ (0, 1] and all (x(t), g(t)) ∈ SNν .
Then,

α

∞∑
t=0

‖yµ(t)‖22 ≤ sup
g∈Gsp

V (∞)(x(0), g), (11)

where x(t + 1) and yµ(t) are obtained by applying
µ(x(t), g(t)) to the closed-loop system, i.e., x(t +
1) = Ax(t) + Bµ(x(t), g(t)) and yµ(t) = Cx(t) +
Dµ(x(t), g(t))− g(t).

Throughout this paper, we make the following assump-
tion.

Assumption 2 The control horizonN ≥ N0 is assumed
so that the RDP inequality (10) is satisfied for a specified
α ∈ (0, 1] and all (x(t), g(t)) ∈ SNν .

Results to determine the smallest horizon N0 and com-
putation of α in the RDP inequality for stabilizing hori-
zons N for various systems can be found in the refer-
ences [1, 10,25].

While under reasonable assumptions on the system (1)
we can ensure N0 exists, it may be difficult to compute
it a priori. Our triggering mechanism detects if N was
chosen too small, so that its value can be adapted [18].

2.4 Reference Governor

Consider a control law for tracking a constant reference
r(t) = rsp, of the form,

u(t) = Kx+ Γr, (12)

where K is a feedback gain matrix such that A+BK is
Schur and Γ is a feedforward gain. The goal is to make the
selected output Hy(t) to be zero. Note that the steady
state for the closed-loop system is given by

xs = (I −A−BK)−1BΓr (13)

Hence, Γ should be chosen as the right inverse ofH((C+
DK)(I− (A+BK))−1B+D) to guarantee r = Hgsp =
HCxs.

The constraints (x(t), u(t)) ∈ X×U can be expressed as
inequality constraints

Ex(t) + Fu(t) ≤ h, t ≥ 0 (14)

Applying the control law (12) and replacing the desired
reference r(t) with v(t) in the system (1), the closed-loop
system has the form,

x(t+ 1) = Φx(t) +Gv(t), x(0) = x̄, (15)

where Φ = A+BK is Schur andG = BΓ. The inequality
constraints (14) can be restated as

[
Ψ Θ

] [ v(t)

x(t)

]
≤ h, t ≥ 0 (16)

4



where Θ = E + FK and Ψ = FΓ.

For system (15) with constraints (16), we define the max-
imal constraint admissible set O∞ for constant input v
as

O∞ =

{
(v, x(0)) :

[
Ψ Θ

][ v

x(t)

]
≤ h, ∀t ∈ Z+

}
.

(17)

A finitely determined approximation of O∞, Õ∞, can be
obtained by

Õ∞ =





Ψ Θ

ΘG+ Ψ ΘΦ
...

...

Λ ΘΦt
?

Ξ 0


[

v

x(0)

]
≤



h

h
...

h

(1− ε)h




(18)

where Λ = Θ(I − Φ)−1(I − Φt
?

)G + Ψ, Ξ = Θ(I −
Φ)−1G+ Ψ and t∗ is sufficiently large.

Õ∞ can be simplified by eliminating almost redundant
inequalities and tightening the remaining constraints to
obtain a closed set P satisfying

P ⊆ Õ∞, (19)

which can be expressed as set of linear inequalities of the
form

P = {(v, x) : Mxx+Mvv ≤ b}. (20)

The reference governor [6] behaves as a pre-filter which,
based on the current state x(t) and the desired reference
r(t), generates a modified reference v(t) which fulfills the
constraints (x(t), u(t)) ∈ X × U. The updates for v(t)
take the form

v(t) = v(t− 1) + κ(t)(r(t)− v(t− 1)), (21)

where the scalar κ(t) ∈ [0, 1] is chosen by solving the
optimization problem,

κ(t) , max
κ∈[0,1]

κ (22)

s.t. v = v(t− 1) + κ(r(t)− v(t− 1)),

(v, x(t)) ∈ P ⊆ Õ∞.

The computation of the scalar κ reduces to finding the
maximum κ such that

Mxx(t) +Mv[v(t− 1) + κ(t)(r(t)− v(t− 1))] ≤ b.

The solution can be obtained in closed form as

κ(t) = min

{
min
j∈J+

{
bj −Mx,jx(t)−Mv,jv(t− 1)

Mv,j(r(t)− v(t− 1))

}
, 1

}
(23)

where Mx,j and Mv,j are the jth entry of Mx and Mv,
bj is the jth row of b, and J+ is the set of indices such
that Mv,j(r(t)− v(t− 1)) > 0.

3 RDP-Based Approach for Tracking

In this section, we will adapt the relaxed dynamic
programming inequality in Proposition 2 to the self-
triggered tracking MPC setting.

Define the triggering times {tl | l ∈ Z+}, which satisfy
tl+1 > tl for all l ∈ Z+ and tl+1 − tl < N . Within the
time interval [tl, tl+1), we set

u(t)= µ̃(t, x(tl), g(tl)) :=u∗(t−tl)(x(tl), g(tl)), t ∈ Z[tl,tl+1).

(24)

When MPC update (5) is triggered at time tl, we have to
decide on both the control and the next triggering time
tl+1 which should be as large as possible while reference
tracking is achieved and a certain required performance
is guaranteed. The computation of tl+1 will be based
on checking the RDP inequality and for the setpoint
changes.

In the self-triggered tracking MPC setting, multiple
open-loop control moves of MPC sequence at time tl
may be applied before the next MPC update at time
tl+1 is executed. We keep g(t) constant in-between the
triggering times tl and tl+1, and we amend the RDP
condition as follows:

V (N)(x(tl), g(tl))≥V (N)(x(tl+1), g(tl+1))

+α

tl+1−1∑
t=tl

‖yµ̃(t)‖22, (25)

where
∑tl+1−1
t=tl

‖yµ̃(t)‖22 denotes the sum of the running
costs at the triggering times tl, tl + 1, . . . , tl+1 − 1 with
the control policy u(t) defined as in (24). As the opti-
mal value V (N)(x(tl+1), g(tl+1)) at the next triggering
time is not available at tl, we will construct an upper
bound for it. Besides, we will also exploit an extra slack
variable which reflects the decay of the Lyapunov func-
tion V (N)(x(t), g(t)) at the previous triggering times.
The main theorem of this paper is presented below. It
demonstrates that after all of the above mentioned mod-
ifications to the RDP inequality, a certain bound on per-
formance and reference tracking are still guaranteed.

Theorem 1 Suppose (x(0), g(0)) ∈ SNν and an upper
bound V̄ (N)(x(t), g(t)) can be found for t ∈ {tl | l ∈ Z+}
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such that

V̄ (N)(x(t), g(t)) ≥ V (N)(x(t), g(t)). (26)

Suppose, furthermore, the inequality

V (N)(x(tl), g(tl))− V̄ (N)(x(tl+1), g(tl)) ≥

e(tl) + α

tl+1−1∑
t=tl

‖yµ̃(t)‖22, (27)

is enforced for a given scalar α ∈ (0, 1), where the se-
quence {e(tl)} is defined in (28) for all l ≥ 2 and if
g(tl) 6= g(tl−1) or t = t1, we set V̄ (N)(x(tl), g(tl−1)) =
V (N)(x(tl), g(tl)). Then:

α

∞∑
t=tl

‖yµ̃(t)‖22 ≤ sup
g∈Gsp

V (∞)(x(tl), g) = c, (29)

and yµ̃(t) asymptotically converges to 0.

The proof of this theorem can be found in Appendix A.

We note that as the update is triggered every time the
setpoint changes, the proposed approach is most effec-
tive in phases when the reference command is piecewise
constant or can be approximated by piecewise constant.

At an MPC update time tl ∈ Z+ with l ∈ Z+,
we compute the MPC control update according to
(5). In order to implement our RDP-based trig-
gering scheme, after obtaining u∗(x(tl), g(tl)) =
[u∗0

T(x(tl), g(tl)), u
∗
1
T(x(tl), g(tl)), . . . ,u

∗
N−1

T(x(tl), g(tl))]
T

at time tl, the first step is to find the last component
u∗
N̄−1

in u∗ sequence such that x(tl + N̄) ∈ Projx(P ),

where P is given by (19) and where N̄ ∈ Z[1,N−1].
Algorithm 1 is developed for this purpose.

Algorithm 1 Determine N̄

Input: Triggered state x(tl), u
∗(x(tl), g(tl))

Output: N̄ , x(tl + N̄)

1: for k = 1 to N do
2: compute x(tl + k) = Ax(tl + k − 1) +Bu∗

k

3: store x(tl + k)
4: end for
5: for k = N − 1 : −1 : 0 do
6: if x(tl + k + 1) ∈ Projx(P ) then
7: save N̄ = k
8: break
9: end if

10: store x(tl + N̄)
11: end for

The next MPC update time tl+1 can be calculated by

tl+1 = tl + Ntl(x(tl)), (30)

where the inter-triggering interval Ntl(x(tl)) is given by

Ntl(x(tl)) ,max{Ntl ∈ Z[1,N̄−1]} (31)

s.t. (i) V (N)(x(tl), g(tl))−V̄ (N)(x(tl +Ntl), g(tl))

≥ e(tl) + α

tl+Ntl
−1∑

t=tl

‖yµ̃(t)‖22

 , (32)

(ii) g(tl +Ntl) = g(tl). (33)

In order to calculate the upper bound V̄ (N)(x(tl +
Ntl), g(tl)) and the forward predicted state x̄(tl+ N̄ + i)
for i ∈ Z[1,Ntl

] at time tl, we apply a “shifted” input

sequence ŪN (x(tl +Ntl)) = [u∗Ntl

T(x(tl), g(tl)), . . . ,

u∗
N̄−1

T(x(tl), g(tl)), ū
T(tl+N̄),. . ., ūT(tl +Ntl + N̄ − 1)]T.

The reason for adding the tail inputs ū(tl + N̄ + i −
1), i ∈ Z[1,Ntl

] for extending the sequence at the end

is to avoid violating the constraints.

For a given x(t) ∈ Projx(P ), we can determine v(t) to

guarantee (v(t), x(t)) ∈ P ⊆ Õ∞, for instance, by solv-
ing the following QP:

min
v

(v(t)− g(t))T(v(t)− g(t)), (34)

s.t. Mxx(t) +Mvv(t) ≤ b.

To get ū(tl + N̄ + i− 1), i ∈ Z[1,Ntl
], we set v(tl + N̄)

from (34) for t = tl + N̄ and solve (23) for v(tl + N̄ + i)
for i ∈ Z[1,Ntl

]. The sequence x̄(tl + N̄ + i) and then

ū(tl+ N̄ + i−1) can be obtained by forward simulation.

Then we have Algorithm 2:

Algorithm 2 Tail sequence computation for ŪN (x(tl +
Ntl))

Input: r(tl + N̄) := g(tl), v(tl + N̄), x(tl + N̄)
Output: x̄(tl + N̄ + i), ū(tl + N̄ + i− 1), i ∈ Z[1,Ntl

]

1: x̄(tl + N̄ + 1) = Φx(tl + N̄) +Gv(tl + N̄) and set r(tl +
N̄ + 1) = r(tl + N̄)

2: for i = 1 to Ntl do
3: compute κ(tl + N̄ + i) by (23)
4: update v(tl + N̄ + i) = v(tl + N̄ + i− 1) +κ(tl + N̄ +
i)(r(tl + N̄ + i)− v(tl + N̄ + i− 1))

5: compute x̄(tl + N̄ + i) = Φx̄(tl + N̄ + i−1) +Gv(tl +
N̄ + i− 1)

6: update ū(tl + N̄ + i − 1) = Kx̄(tl + N̄ + i − 1) +
Γv(tl + N̄ + i− 1)

7: end for

Remark 2 The requirement for Algorithm 2 to work is
to guarantee (v(tl+N̄), x(tl+N̄)) ∈ P ⊆ Õ∞. In between
the triggering times, the closed-loop state trajectory might
go out of P .
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e(tl) =

{
0, if g(tl) 6= g(tl−1) or t = t0,

e(tl−1) + α
∑tl−1
t=tl−1

‖yµ̃(t)‖22 + V̄ (N)(x(tl), g(tl−1))− V̄ (N)(x(tl−1), g(tl−2)), otherwise.
(28)

Remark 3 Typically in practice, we start the system
in steady-state corresponding to some v0 for which con-
straints strictly hold. Then the system starts respond-
ing to changing reference g(t) for t > 0. So if we start
with x(0) in a steady state, Algorithm 1 and Algorithm
2 will guarantee that at every triggering point x(tl) is in
Projx(P ).

Hence, the upper bound can be defined as

V̄ (N)(x(tl +Ntl), g(tl)) ,

J (N)(x(tl +Ntl), g(tl), ŪN (x(tl +Ntl))). (35)

Remark 4 In the existing self-triggered MPC papers
[8, 9, 13, 14, 18, 26], the authors add the tail of “shifted”
input sequence by keeping the last input element constant,
i.e. ŪN (x(tl +Ntl)) = [u∗Ntl

T(x(t)), . . . , u∗N−1
T(x(t)),

repmat(uT
s , 1, Ntl)]

T, or by adding constant steady input,
ŪN (x(tl +Ntl)) = [u∗Ntl

T(x(t)),. . . ,u∗N−1
T(x(t)),

repmat(u∗N−1
T(x(t)), 1, Ntl)]

T. These tails add the con-

trol and state mismatch for the constructed V̄ (N)(x(tl +
Ntl), g(tl)), especially when the reference changes and it
is moved close to the constraint boundary, this shifted
sequence will make the open-loop trajectory have over-
shoot and thus violate the constraints very easily. Thus
consecutive updates keep occurring quite often in the im-
plementation (cf. Section 4). Otherwise, the closed-loop
trajectory would diverge.

Under Assumption 1, in virtue of Theorem 1, we can con-
clude that if the RDP checking condition (32) is satisfied,
(x(tl+Ntl), g(tl+Ntl)) ∈ SNν . Thus, state constraints are
always satisfied by our RDP-based self-triggered MPC
scheme and SNν is a RH N -invariant w.r.t. N .

4 Illustrative Example

We consider a helicopter flight envelope protection ex-
ample studied in [22,24]. The linearized continuous-time
model for the helicopter dynamics is described by

ẋ = Acx+Bcu,

where five states and one input are:

• γ: forward speed;
• q: pitch rate;
• θ: pitch angle;
• a: pitch angle of the virtual rotor disk;

• c: angle of the rotor stabilizer bar;
• δs: swash plate angle;

and

Ac =



−0.0505 0 −9.81 −9.81 0

−0.0561 0 0 82.6 0

0 1 0 0 0

0 −1 0 −21.7391 14

0 −1 0 0 −0.342


,

Bc =



0

0

0

−2.174

−0.7573


, x =



v

q

θ

a

c


, u = δs.

The discrete-time linear model of (1) is obtained assum-
ing a sampling frequency of 60Hz. As the problem is
a tracking problem, the output is chosen to be yk =
Cxk +Duk − gk+t, where

C=



7.0711 0 0 0 0

0 0.3162 0 0 0

0 0 1 0 0

0 0 0 3.1623 0

0 0 0 0 0.3162

0 0 0 0 0


, D=



0

0

0

0

1


,

HC =
[

7.0711 0 0 0 0
]
, HD = 0

and gt is the set-point for γ provided by a human op-
erator or a higher level planner in the overall helicopter
control system.

The state and input constraints are enforced within the
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ranges



−5

−5

−3

−1

−2


≤ x ≤



10

5

3

1

2


,−5 ≤ δs ≤ 5.

The control horizon is chosen as N = 40 and the perfor-
mance degradation parameter as α = 0.7. The simula-
tion results are presented in Fig. 1 and Fig. 2.

If we do not add the self-triggering mechanism to the
MPC algorithm, it takes 510 MPC updates. The results
by Lu et al. [18] are shown in the first and third rows in
Fig. 1, which has 78 MPC updates. The responses with
the proposed triggering scheme are shown in the second
and fourth rows in Fig. 1. In this case, our self-triggered
tracking MPC only needs 19 updates. Hence, the pro-
posed strategy can significantly reduce the number of
MPC update times while achieving reference tracking.
The triggering instants are recorded in Fig. 3.

In our triggering scheme, α plays a role of a “discount
factor” and the values of α close to 1 result in improved
performance but more frequent update triggering.

In order to further demonstrate the effectiveness of our
controller in reducing computations while still maintain-
ing performance guarantees, we next increase the value
of α in our self-triggered tracking MPC and plot the trig-
gering instants for α = 0.8 and α = 0.9 in Fig. 4. For
α = 0.8, it takes 23 updates and for α = 0.9, it takes 29
updates. This shows our self-triggered tracking MPC is
able to save computation and communication resources
with no noticeable performance degradation.

5 Conclusions

This paper proposed a self-triggered tracking MPC co-
design procedure for constrained linear systems based on
the relaxed dynamic programming inequality and refer-
ence governor scheme. The inter-triggering time is maxi-
mized by governing the tails of shifted control sequences
for constructing triggering conditions of tracking MPC
such that the overall closed-loop system can not only
maintain asymptotic stability, but also achieve a cer-
tain prescribed performance level. The illustrative ex-
ample showed that the number of consecutive updates in
the self-triggered tracking MPC is significantly reduced
compared to the existing self-triggered MPC schemes for
regulation problem. An extension of the idea to robust
case is being explored currently.
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Figure 1. State response trajectories with α = 0.7. The upper
figure shows the fuselage states and the reference (the speed
reference is in red dash line, γ is in blue, q is in magenta and
θ is in cyan), and the bottom figure shows the rotor states
(a is in blue and c is in red).
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Figure 2. Control input trajectory with α = 0.7.
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Figure 3. Event triggering instants with α = 0.7. The trig-
gering instants are marked with the circles with the value 1.
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Figure 4. Event triggering instants with α = 0.8 (upper) and
α = 0.9 (lower).

Appendix A Proof of Theorem 1

The proof of Theorem 1 can be divided into two parts.
First, it is proved that for any change of the reference, the
recursive feasibility holds, i.e. if the reference is abruptly
changed, the controller is well defined. In the second
part, we prove the asymptotic convergence, i.e. if the
reference holds constant subsequently, the system con-
verges to the reference.

Recursive feasibility: In our setting, the inequality
V (N)(x, g) ≤ V (∞)(x, g) holds. Hence, SNν contains S∞ν .

The feasibility region of the controller is IN . From
Proposition 1, taking N ≥ N0 we have that IN = I∞
(stationarity of the feasible sets). From Assumption 1,
V (∞)(I∞, g) is bounded for any g ∈ Gsp, then SNν con-

tains I∞ for ν ≥ supg∈Gsp
V (∞)(I∞, , g), hence SNν also

contains I∞, which implies that I∞ is contained in the
domain of attraction. Therefore, the domain of attrac-

tion is forward invariant for any g, and then, it is recur-
sively feasible under any change on the reference.

Asymptotic convergence: Consider at triggering time tl,
g(tl) 6= g(tl−1), i.e. tl is the first triggering time after
reference switching from g(tl−1) to g(tl).

Consider a time interval [tl, tl+T ] with g(tl) = g(tl+1) =
· · · = g(tl+T ) = g ∈ Gsp and g(tl+T+1) = g̃ ∈ Gsp, where
g 6= g̃ and T ∈ Z+.

From (28), we get e(tl) = 0 and derive e(tl+T ) by induc-
tion as

e(tl+T ) =e(tl+T−1)+α

tl+T−1∑
t=tl+T−1

‖yµ̃(t)‖22+V̄ (N)(x(tl+T ), g)

− V̄ (N)(x(tl+T−1), g) = · · · = e(tl+1)

+ α

tl+T−1∑
t=tl+1

‖yµ̃(t)‖22 + V̄ (N)(x(tl+T ), g)

− V̄ (N)(x(tl+1), g) = α

tl+T−1∑
t=tl

‖yµ̃(t)‖22

+V̄ (N)(x(tl+T ), g)− V (N)(x(tl), g).

It follows

0 ≤ α
tl+T−1∑
t=tl

‖yµ̃(t)‖22 = e(tl+T )− V̄ (N)(x(tl+T ), g)

+V (N)(x(tl), g). (36)

Furthermore, from (27), we have

e(tl+T ) ≤ V (N)(x(tl+T ), g)− V̄ (N)(x(tl+T+1), g).

Insert this into (36) gives

α

tl+T−1∑
t=tl

‖yµ̃(t)‖22 ≤ V (N)(x(tl), g)− V̄ (N)(x(tl+T ), g)

+V (N)(x(tl+T ), g)− V̄ (N)(x(tl+T+1), g).

Because

V (N)(x(tl+T ), g)− V̄ (N)(x(tl+T ), g) ≤ 0,

we get

α

tl+T−1∑
t=tl

‖yµ̃(t)‖22 ≤ V (N)(x(tl), g)− V̄ (N)(x(tl+T+1), g)

≤ V (N)(x(tl), g) ≤ V (∞)(x(tl), g).
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As T →∞, we get (29). Furthermore, given the bound-
edness of V (∞)(x(t0), g), and the positive definiteness of
the term ‖yµ̃(t)‖22, we get yµ̃(t) asymptotically converges
to 0.

This completes the proof. 2
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