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Abstract— A Time-Distributed Model Predictive Control
(TDMPC) is applied to spacecraft attitude stabilization in the
Local Vertical Local Horizontal (LVLH) frame with concurrent
reaction wheel desaturation. This is accomplished without using
thrusters, i.e., with zero fuel consumption, and exploiting
gravity gradient torques. The TDMPC uses a warm-start, and
a fixed number of iterations of an optimization algorithm is
performed per time step to generate a suboptimal solution.
An analytical estimate of the minimum number of iterations
required to achieve closed-loop stability is compared to empir-
ical estimates determined through simulations. It is shown that
a small number of iterations is sufficient to perform reaction
wheel desaturation maneuvers. Procedures for estimating the
closed-loop regions of attraction of TDMPC are illustrated for
this system.

I. INTRODUCTION

The paper considers an application of suboptimal Model
Predictive Control (MPC) that we refer to, following [1],
as Time Distributed MPC (TDMPC), to spacecraft attitude
stabilization with concurrent desaturation of reaction wheels.
Many spacecraft use reaction wheels to maintain pointing
and for reorientation. Due to external moments acting on
the spacecraft over long periods of time, that change the
spacecraft total angular momentum, reaction wheels can
spin up and eventually need to be desaturated. Traditionally,
spacecraft reaction wheel desaturation is performed using
thrusters to produce moments that result in the decrease
of reaction wheel (RW) rotational speed. Unfortunately,
thrusters consume fuel, a limited resource that constrains
spacecraft operational life.

Alternative approaches (see e.g., [2]) for reaction wheel
desaturation include exploiting gravity gradients (moments
due to nonuniform gravity force distribution along the body
of the spacecraft). With this approach, the reaction wheel de-
saturation can be performed without the use of thrusters and
with zero fuel consumption. This is the approach considered
in this paper.

As control moments that can be applied to the spacecraft
by either thrusters or momentum exchange devices are
limited, and there could be exclusion zones for spacecraft
pointing, the use of MPC [3] is appealing for spacecraft
attitude control, see e.g., [4]. In [5], MPC was exploited
for reaction wheel desaturation using either gravity gradient
or magnetic torques while maintaining spacecraft attitude
deviation within the prescribed range.
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Suboptimal MPC strategies, in which the exact solution
to the finite horizon optimal control problem is replaced
by an approximate one which is easier to compute is of
interest for spacecrafts for which the onboard computing
capabilities are limited. Limitations may originate due to the
use of slow radiation-hardened processors, small size of the
spacecraft (CubeSat or SmallSat) or due to the need to reduce
electrical power consumption which depends on solar panels
for regeneration.

In TDMPC [1] and real-time iterations [6], a suboptimal
solution to the MPC problem is generated through the use,
at each time step, of a few iterations of an optimizer and
warm-starting. Such a suboptimal MPC can be viewed as a
dynamic controller with the controller states corresponding
to the solution estimate which is updated by a few iterations
of the optimizer applied, at every time step, to the optimal
control problem parameterized by the system state at that
time instant. Closed-loop stability guarantees can then be
obtained if a sufficient number of iterations is performed
by the optimizer at every time step using, for instance, the
small gain theorem-based analysis [1]. In [7], [8], analytical
methods to estimate the minimum number of iterations per
time step l∗ and generate estimates of closed-loop region
of attraction (RoA) have been developed for the case of
linear quadratic MPC (LQ-MPC) with input constraints and
a primal projected gradient optimizer.

The contributions of this paper are as follows. Firstly,
we demonstrate the application of TDMPC to simultaneous
spacecraft attitude stabilization and reaction wheel desat-
uration. It is shown that TDMPC can stabilize spacecraft
pointing in Local Vertical Local Horizontal (LVLH) plane
while reaction wheels angular momenta and their rotation
speeds are reduced. Secondly, for the case of primal pro-
jected gradient optimizer used in TDMPC, we compute and
compare the analytical and empirical estimates l∗ and closed-
loop RoAs for different prediction horizon lengths. It is
shown that the reaction wheel desaturation objectives for
the spacecraft with control constraints can be achieved with
the short horizon LQ-MPC and with the primal projected
gradient optimizer that uses a very small number of iterations
per time step. Even though LQ-MPC uses a linear model
for prediction, these conclusions are verified in simulations
on the nonlinear spacecraft model. Thirdly, we illustrate the
possibility of (conservatively) handling state constraints on
spacecraft pointing attitude by “scaling” the invariant closed-
loop RoAs.

We note that in the case of control input constraints, a
saturated LQR control, for which closed-loop RoAs can be



estimated, also provides a computationally efficient solution
to the problem. At the same time, MPC, which is aware of the
constraints over the prediction horizon, generally provides
better responses without oscillations and with shorter settling
time. Furthermore, MPC is able to simultaneously handle
state constraints. Explicit MPC [9] provides a computa-
tionally efficient solution for low dimensional problems;
however, in the case of spacecraft attitude control with
reaction wheel desaturation the problem is already medium-
size, and it is unclear if sufficient symmetries exist for the
spacecraft dynamics in LVLH frame that can be effectively
exploited for the dimensionality reduction (e.g., yaw and roll
dynamics are inherently coupled). Thus, we believe TDMPC
provides a suitable choice for the system considered.

The paper is organized as follows. We start with the
model in Section II for the spacecraft three-dimensional
(yaw-pitch-roll) attitude dynamics, and we also include a
lower dimensional model for the pitch only dynamics. In
Section III, we review TDMPC and discuss procedures
to estimate l∗ and RoAs. We illustrate the application to
spacecraft attitude control with reaction wheel desaturation
in Section IV. Finally, in Section V concluding remarks and
directions for future work are summarized.

Notations: Let Sn++, Sn+ denote the set of symmetric
n × n positive definite and positive semidefinite matrices
respectively. Im denotes the m ×m identity matrix. Given
W, M ∈ Sn++, λ−W (M), λ+W (M) denote the minimum and
maximum eigenvalues of

√
W

−1
M

√
W

−1
. Given x ∈ Rn

and W ∈ Sn+, the W-norm of x is ||x||W =
√
x⊤Wx.

Given P ∈ Sn++, BP (r) = {x ∈ Rn | ||x||P ≤ r}. Let
c(·) = cos(·), s(·) = sin(·).

II. PROBLEM SETTING

In this paper, we consider a spacecraft in circular motion
around a celestial body. The spacecraft is equipped with a
Reaction Wheel Array (RWA) that consists of three reaction
wheels, each along the corresponding principal axis of the
spacecraft. An extension to a RWA with 4 reaction wheels
will be addressed in future publications. The case of small
orbital radius is particularly relevant as the gravity gradients
effect is stronger. Note that, depending on the setting, other
external disturbances, such as drag, magnetic moments, solar
radiation pressure might affect the spacecraft dynamics.

A. Gravity gradients

Gravity gradients are torques that appear on an object in
a gravitational field due to the fact that the gravitational
force decreases with the square of the distance. As a result,
a spacecraft orbiting around a celestial body will have a
weaker pull on the parts it has further away from the body.
As the gravity gradient torque is an external torque, it is
able to change the total angular momentum of the spacecraft
and hence reduce reaction wheel angular momentum while
maintaining spacecraft pointing.

B. Model

Let I be an inertial frame, S be a body fixed frame aligned
with the principal axes of the spacecraft and G be a Local
Vertical Local Horizontal (LVLH) frame as described in [10].

The orientation of the body fixed frame S with respect
to LVLH frame G is specified by 3-2-1 Euler yaw-pitch-roll
angles, ψ, θ, ϕ. The angular velocity of spacecraft body
fixed frame with respect to the inertial frame is given by
ω⃗S/I

∣∣
S =

[
ω1 ω2 ω3

]⊤
. Then, following [10]:ϕ̇θ̇

ψ̇

 =
1

c(θ)

c(θ) s(ϕ)s(θ) c(ϕ)s(θ)
0 c(ϕ)c(θ) −s(ϕ)c(θ)
0 s(ϕ) c(ϕ)

ω1

ω2

ω3

 +

n

 c(θ)s(ψ)
s(ϕ)s(θ)s(ψ) + c(ϕ)c(ψ)
c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ)

 , (1)

n =
√

µ
r30

is the circular orbit gravitational parameter. The
Euler’s equations for the evolution of the angular velocity
are given byJ1ω̇1

J2ω̇2

J3ω̇3

 =

(J2 − J3)(ω2ω3 − 3n2C23C33)
(J3 − J1)(ω1ω3 − 3n2C13C33)
(J1 − J2)(ω1ω2 − 3n2C13C23)

+

M1

M2

M3

 .

(2)
Here C13 = −s(θ), C23 = s(ϕ)c(θ), C33 = c(ϕ)c(θ),
J1, J2, J3 are the principal moments of inertia and M i

k,
k = 1, 2, 3, are the moments produced by the RWs.

The angular momentum of the kth reaction wheel is given
by hk = JRWk (ωk +Ωk), k = 1, . . . , 3, where Ωk [rad/s] is
the rotational speed of the corresponding reaction wheel. The
evolution of the reaction wheel angular momenta is given byḣ1ḣ2

ḣ3

 =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

h1h2
h3

−

M1

M2

M3

 . (3)

The equations of motion (1)-(3) can be aggregated into,

ẋ = f(x, u), (4)

with the state of the system x defined as

x = [ϕ, θ, ψ, ω1, ω2, ω3, h1, h2, h3]
⊤,

and with the control input given by

u = [M1, M2, M3]
⊤.

The control inputs are subject to saturation constraints:

u ∈ U ,

where the set U is a hyper-rectangle.
In the subsequent simulations, we consider a spacecraft on

ciruclar orbit around a body with µ = 3.986×105 [km3 ·s−2],
at an altitude of 500 [km] (n = 1.1086× 10−3 [s−1]) and an
orbital period Torb = 2π

n ≈ 1.58 hr. The moment of inertia
are J1 = 1000, J2 = 2200, J3 = 1400 [kg · m2].



C. Reduced order model for pitch-only dynamics
The pitch-only dynamics of the spacecraft are of interest as

they can be analyzed more easily, using a lower-dimensional
model. By setting

ϕ = ψ = ω1 = ω3 = h1 = h3 = 0, (5)

in (1), (2) and (3) and defining x =
[
θ ω2 h2

]T
, the

pitch-only dynamics can be represented by

ẋ =

 θ̇
ω̇2

ḣ2

 =

 ω2 + n

(J3 − J1)
3n2s(θ)c(θ)

J2
+ u2

J2
−u2

 , (6)

u2 =M2. (7)

Note that, for system (4), the set {x : ϕ = ψ = ω1 = ω3 =
h1 = h3 = 0} is forward invariant if u1 = u3 = 0; hence any
trajectory starting in this set and with no torques applied to
yaw and roll RWs evolves in a lower dimensional manifold
actually represented by the pitch-only model (6)-(7).

D. Equilibria, linearization and control model
Table I shows the state values at different unforced equi-

libria of the spacecraft model. All the equilibria presented
correspond to standard spacecraft attitude configurations, and
are parameterized by n, the angular velocity of G with respect
to I. Note that depending on the spacecraft orientation at a
particular equilibrium, the angular momentum of one of the
reaction wheels aligned with the axis of orbital rotation can
be arbitrarily set, while the other two reaction wheels have
zero angular momentum.

ϕ θ ψ ω1 ω2 ω3 h1 h2 h3
x0,1 0 0 0 0 −n 0 0 heq 0
x0,2 0 0 π

2
−n 0 0 heq 0 0

x0,3
π
2

0 0 0 0 n 0 0 heq

TABLE I: State values at different unforced equilibria. heq
is a free variable.

By the definition of the LVLH frame, the normal to the
orbital plane is along the second unit vector of the frame.
Because of this, x0,2 and x0,3 - both equilibria assume that
the orbital rotation takes place along a different unit vector
- are not physically relevant. Therefore simulations of the
spacecraft will aim to bring the state to x0,1. The equilibrium
x0,1 also corresponds to an equilibrium for the spacecraft
model with the pitch only dynamics. For the numerical
parameters given, this equilibrium is open-loop unstable.

With the nonlinear model in the form (4), the linearized
spacecraft model is given by:

∆ẋ(t) = Ac∆x(t) +Bcu(t), (8)

where ∆x = x − x0,1, Ac,i,j = ∂fi
∂xj

and Bc,i,j = ∂fi
∂uj

.
A linear discrete-time model that is used for prediction
in MPC can then be obtained using the Zero-order hold
approximation and has the form,

∆xk+1 = A∆xk +B∆uk . (9)

In the subsequent simulations, discretization of the spacce-
craft model is made using a sampling period of Ts = 2 [s].

III. TDMPC DESIGN AND ANALYSIS

In this section, we first describe a general LQ-MPC
problem. We then consider TDMPC and, finally, discuss RoA
estimation.

A. Model Predictive Control
For a linear discrete-time prediction model with input

constraints,

xk+1 = Axk +Buk, (10)

u ∈ U , x0 = x0, (11)

where x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, LQ-
MPC determines the control action by solving the following
Optimal Control Problem (OCP),

min
ξ,ν

∥ξN∥2P +

N−1∑
i=0

∥ξi∥2Q + ∥νi∥2R (12)

s.t.
ξi+1 = Aξi +Bνi, i = 0, . . . , N − 1, (13)
ξ0 = x, νi ∈ U , i = 0, . . . , N − 1. (14)

Where N ∈ N is the prediction horizon length, Q ∈ Rn×n,
R ∈ Rm×m and P ∈ Rn×n are weighting matrices, and x
is the current state. The optimal solution to the OCP (12)-
(14) for ξ0 = x is given by ξ∗(x) = (ξ∗0 , . . . , ξ

∗
N ) and

ν∗(x) = (ν∗0 , . . . , ν
∗
N1

). The control input at the time instant
k is defined as uk = ν∗0 (xk), Where ν∗0 (xk) is the first
element of the sequence ν∗(x). At the next time step, the
state xk+1 is measured, the OCP with ξ0 = xk+1 is solved
and the next control action is computed.

Following [7], the following assumptions ensure that the
MPC feedback law is stabilizing:

Assumption 1: The pair (A,B) is stabilizable. Q ∈ Sn+,
R ∈ Sn++ and P satisfies the associated Discrete Algebraic
Riccati Equation (DARE).

Assumption 2: U is closed, convex and contains the origin
in its interior.

The OCP (12)-(14) can be rewritten in condensed form:

min
z∈Z

J(x, z) =

∥∥∥∥[xz
]∥∥∥∥2

M
(15)

where z =
[
ν⊤0 . . . ν⊤N

]⊤ ∈ RmN and

Z = UN , M =

[
H G
G⊤ W

]
. (16)

The expressions to compute matrices H, G, W are given in
[7]. If z∗(x) is the optimal solution of (15), then the MPC
control law is given by

uk = Ξz∗(xk), Ξ ≡
[
Im×m 0m×m(N−1)

]
. (17)

Additionally, the value function

V (x) =

∥∥∥∥[ xz∗
]∥∥∥∥2

M
, (18)

representing the optimal cost for a given x, serves as a
Lyapunov function for the closed loop system under the
optimal MPC feedback law, [11], [12].



B. Time Distributed MPC

Usually, (15) is solved by an iterative algorithm. Let us
denote by T l : Rn × RmN → RmN the mapping from a
starting (x, z) pair to the output of the algorithm after l ∈ N
iterations. Due to computational limitations, it is often not
possible to compute the optimal solution of (15) exactly;
hence a suboptimal approximation must be used. For the
TDMPC scheme studied in [8], the suboptimal solution at
time instant k is obtained by updating the solution computed
at the previous time-step, k − 1, through a fixed number of
primal Projected Gradient (PG) iterations:

TPGM(x, z) = ΠZ [z − α∇zJ(x, z)], (19)

T l(x, z) = TPGM(T l−1(x, z), x), (20)

where T 0(x, z) = z, ΠZ is the Euclidean projection onto Z .
and α = 2/(λ+(H)) + λ−(H)) is the optimal step length,
as described in [7]. Given that, for the spacecraft, U is a box
the projection operation is easy to compute.

The plant-optimizer system is then given by:

xk+1 = Axk +BΞzk (21)

zk = T l(xk, zk−1). (22)

Under Assumptions 1-2, [8, Lemma 9] states that if l >
l∗ iterations are performed then there exists a set Σ ⊆
Rn × RmN that is forward invariant under the closed loop
dynamics. The procedure to compute l∗ in closed-form as a
function of the problem data is described in [8]. Additionally,
under the same assumptions and performing l > l∗ iterations,
[8, Theorem 4] states that the origin of the plant-optimizer
system is asymptotically stable (AS) with a forward invariant
RoA estimate Σ.

C. RoA estimates

The aforementioned set Σ is defined, from [8], as:

Σ = {(x, z) ∈ ΓN ×Z | ϕ(x, z) ≤ rϕ} , (23)
ΓN = {x ∈ Rn | ψ(x) ≤ rψ} , (24)

where ψ(x) =
√
V (x) is the square root of the value

function defined in (18), while ϕ(x, z) = ∥z − z∗(x)∥ is
the error between z and the solution of (15) for x. Values
of rψ, rϕ can be found in [8]. Finally, note that ΓN is a
sublevel set of the value function introduced by [12, Theorem
1]. All level sets of V (·) that are contained in ΓN are
forward invariant for the corresponding system, as shown
in [8, Corollary 2].

Note that ΓN and ϕ(x, z) depend, on the optimal MPC
solution z∗(x) and hence it is not possible to check online/in
real-time, if (x, z) ∈ Σ without losing the computational
advantages of the TDMPC. To circumvent this issue in [8,
section V-A] two subsets of ΓN are introduced. The first
subset, HN , is a polytopic approximation of ΓN obtained
by sampling, offline, a certain number of points x ∈ ΓN and
computing the associated convex hull. This set, HN , can
approximate ΓN with arbitrary precision given that enough
points are considered in the offline computations. The second

subset provides a more conservative approximation but does
not require offline sampling, and is defined as

BW (rψ) = {x ∈ Rn | ∥x∥W ≤ rψ} . (25)

In addition, a sufficient condition to ensure that ϕ(xk, zk) ≤
rϕ is given in [8, section V-B]. It should be noted that all the
RoA estimates presented in this section are for the controller
applied to (10)-(11).

IV. CASE STUDIES

A. Nominal control constraints and controller

The weighting matrices in (12) for the nominal con-
troller and full order spacecraft model are chosen as
Q = diag ([.1, .1, .1, .01, .01, .01, .001, .001, .001]),
R = diag

([
5000 5000 5000

])
, and P is chosen as the

solution of the associated Discrete Algebraic Riccati Equa-
tion (DARE). The control constraints represent the maximum
torque limit: abs(Mj) ≤ 0.08 [N · m], j = 1, 2, 3. The
horizon N is chosen as N = 25 steps. Assumptions 1 and
2 hold for the discretized linearized model of spacecraft
dynamics with these constraints. For the reduced order pitch-
only model the weights are chosen from the above Q an R
matrices associated with variables retained in the reduced
order model. In this paper, OCPs for LQ-MPC controllers
are solved using the quadprog() function from Matlab using
an interior-point algorithm[13].

Table II shows the analytical estimate of l∗ along with an
empirical estimate lmin of the necessary number of iterations
to maintain closed-loop asymptotic stability and convergence
properties similar to l = l∗. To estimate lmin we used
simulations of the controller in the loop with the discrete-
time linearized model and with 100 randomly selected initial
conditions. The value of lmin was the smallest value of l for
which the state and control vector deviated from zero by less
than a specified threshold (10−3, 10−5 respectively) in norm
over the last 20% of the simulation time (10 orbits) for all
100 initial conditions, and the same also held for l+1, l+2,
l+3 and l+4 iterations per time step. We confirmed that these
properties also held for l = l∗. The selected threshold was
found empirically to adequately assess the convergence of
the simulations. As Table II indicates, one iteration per time
step of TDMPC is sufficient based on simulations, and seven
iterations per time step are sufficient based on the theoretical
guarantees in [8].

l∗ l min
spacecraft dynamics 7 1
pitch-only dynamics 7 1

TABLE II: Estimated minimal number of iterations l∗ per
[8, Lemma 9] and the minimum number of iterations based
on simulations required to achieve closed-loop stability.

Figures 1, 2 compare the spacecraft desaturation maneu-
vers using MPC (exact solution) and TDMPC with l =
1 with the reduced order pitch-only nonlinear model and
full order nonlinear model, respectively. For the pitch-only
closed-loop simulations (Figure 1), the initial value of RW



angular momentum is h2(0) = 10 [N·m·s] and θ(0) = 0. The
controllers tilt the spacecraft, with θ reaching values around
−0.6 [rad]. Note that to maintain the spacecraft tilted the
RW has to maintain a non-zero angular acceleration and by
this process the angular momentum of the RW is reduced.
The RW is desaturated and the original attitude is regained
in about 6 orbits. Figure 2 shows simulations with the full
order nonlinear model for the initial RW angular momenta
given by [h1, h2, h3]

⊤ = [5, 10, 5]⊤ [N · m · s]. The bottom
graph of Figure 2 shows the inputs to the system. Note that
the control limits are not reached in this simulation and no
apparent differences are seen between MPC and TDMPC
with l = 1.

0 2 4 6
-0.5

0

0 2 4 60
5

10

Fig. 1: State evolution for the pitch-only dynamics desatu-
ration maneuver in two cases: using MPC (solid lines) and
using a TDMPC with 1 iteration per time step (dashed lines).

0 1 2 3 4 5 6-1-0.50
0.5

0 1 2 3 4 5 6
-50
510

0 1 2 3 4 5 6
-2
0
2 10-3

Fig. 2: State and input evolution for the spacecraft desatura-
tion maneuver with the full order model in two cases: using
MPC (solid lines) and using TDMPC with 1 iteration per
time step (dashed lines).

B. Tighter control constraints and more aggressive con-
troller

We next modify the control constraints and weights as
follows:

|u1| ≤ 0.04, |u2| ≤ 0.04, |u3| ≤ 0.04, (26)
Qa = diag ([.1 .1 .1 .01 .01 .01 .1 .1 .1]) , (27)

Ra = diag
([
50 50 50

])
. (28)

The combined effect of tighter control constraints and a more
aggressive controller is that control constraint activation in
desaturation maneuvers becomes more likely. The required
number of iterations in this case is l∗ = 66, lmin = 1, for
both the reduced order and full order spacecraft dynamics.
Compared to the nominal case in Section IV-A, the ana-
lytically computed value of l∗ has increased while lmin has
not changed. This suggests that the analytically computed
estimate becomes more conservative with tighter control
constraints.

Figure 3 shows the state/input evolution starting from
h2(0) = 1 [N · m · s] for the pitch-only nonlinear model of
spacecraft dynamics and controllers based on (26)-(28). The
closed-loop response with TDMPC and l∗ iterations is very
close to that of the exact MPC, however, the TDMPC with
lmin iterations shows oscillations during the first 1o steps.

5 10 15 201
1.5

2

5 10 15 20-0.04
-0.02

Fig. 3: State and input evolution for the desaturation of
the pitch-only dynamics with controllers based on (26)-(28).
Simulations show the nonlinear system controlled by: a MPC
(solid black lines), a TDMPC with l∗ = 66 iterations (dashed
red lines), a TDMPC with l∗ = 1 iterations (dotted green
lines). Convergence to the origin is observed in approxi-
mately 3 orbits (not shown).

C. Differences between MPC and TDMPC

In order to further characterize the discrepancy between
optimal and suboptimal trajectories, we run simulations,
for the pitch-only dynamics, with MPC and with TDMPC
performing lmin or l∗ iterations.

Both the nominal weight and constraint choices in Sec-
tion IV-A and the modified ones in Section IV-B are
considered resulting in 4 controller choices, respectively:
TDMPC1,l, MPC1, TDMPC2,l, MPC2.



For each controller the same 100 initial conditions are
simulated. Those are taken from a uniform distribution with
θ ∈ [−1 1], ω2 ∈ [−2n 2n], h2 ∈ [−20 20]. We use

eTDMPCi,l
(t) = log10

(∥∥∥∥[xTDMPCi,l
(t)

uTDMPCi,l
(t)

]
−
[
xMPCi

(t)
uMPCi

(t)

]∥∥∥∥) ,
(29)

where i = 1, 2 for the error characterization. Figure 4 shows
median, mean, lower and upper quartile as well as minimum
and maximum values of the maximum error of states and
inputs of max(eTDMPCi,l

). The maximum value of the error
occurs, in most cases, within the first 0.1 [orbit]. When con-
sidering l∗ iterations, both TDMPC1,l∗ and TDMPC2,l∗ give
small deviation values, median maximum error being around
10−5 and 10−4 respectively. When considering TDMPC1,lmin

and TDMPC2,lmin the difference between medians reaches
values of around 10−2.5 and 10−2 respectively. The increase
in the error that occurs for the case of tighter constraints and
more aggressive weights is attributed to the underlying OCP
becoming harder to solve so that the accuracy obtained with
a single iteration is reduced.

Fig. 4: Estimation of the maximal error on states and
inputs, as described by (29), i.e. error with respect to the
regular MPC solution. Errors are presented for two TDMPC
controllers differing by the number of iterations performed.
Boxes represent the lower and upper quartiles. The line
within the box is the median value. The round marker
shows the mean value. The horizontal bars at the end of
the whiskers, the minimum and maximum values.

D. RoA Estimation

Figure 5 (left) show 2D projections of the set ΓN in
(24) for the pitch-only model and nominal weights/control
constraints (Section IV-A). On the same figures, RoA esti-
mates HN (Section III-C) and BW (rψ) (see (25)) are also
shown. The sublevel set-based estimate, BW (rψ), of RoA is

a fairly accurate approximation of ΓN . Also, as the polytopic
approximation HN can be refined to an arbitrary degree
the set ΓN and HN overlap almost completely. Due to
overlapping of the sets, colors in Figures 5-6 differ from
their legends: dark orange at the intersection of the three
sets and purple at HN ∩ ΓN .

Similarly, Figure 5 (right) shows 2D sections of the RoA
estimates for the full-order model of the spacecraft. The
sections, along θ, ω2, h2, match closely those for the pitch-
only dynamics. Note that desaturation of up to 30 [N ·m ·s] is
possible provided the spacecraft angular velocity is not too
large (e.g. up to 7n ≈ 0.074 [rpm] is permissible).
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Fig. 5: 2D section of the RoA estimates ΓN (blue), HN

(pink), BW (rψ) (orange) for the TDMPC controlled pitch-
only model (left) and spacecraft model (right). 2D section
along pitch angle, ω2, h2.

The conservatism of the sublevel-set approximation,
BW (rψ) depends on the prediction horizon, N . Figure 6
shows the same sections as in Figure 5 (upper row) for
N = 125 (left) and N = 625 (right). While ΓN grows
monotonically with N [12] (although no perceivable change
can be seen here), BW (rψ) progressively shrinks as N
increases. Considering that

BW (rψ) = {x ∈ Rn | ∥x∥W ≤ rψ} ,
λ−In(W )∥x∥2In ≤ ∥x∥2W , (30)

as well as the values of λ−In(W ), rψ in Table III it is not
surprising that the set BW (rψ) is reduced as N increases.



Another way to see this is by noting that

W = Q+
[
I A . . . AN

] [IN ⊗Q 0
0 P

] [
I A . . . AN

]⊤
,

(31)
where C ⊗ D ∈ Rpm×qn denotes the Kronecker product
between matrices C ∈ Rp×q and D ∈ Rm×n. As the system
is open-loop unstable, the matrix A possesses eigenvalues
outside the unit circle. Therefore, some eigenvalues of AN

grow larger in magnitude with N and hence it is expected
that the norm ∥x∥W increases with N . This, combined with
the values of rψ in Table III showing little variation leads to
the deterioration of the sublevel set estimate.

N l∗ lmin λ−I (W ) rψ
25 7 1 1.7 1.07·10−9

125 16 1 1.93 5.79·10−10

625 225 1 2.91 3.15·10−11

TABLE III: Values of l∗, lmin, λ−I (W ), rψ for N =
{25, 125, 625}

.

Table III also shows that while l∗ increases with N , lmin
does not change.
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Fig. 6: θ- ω2 section of the RoA estimates ΓN (blue),
HN (pink), BW (rψ) (orange) for the TDMPC controlled
spacecraft. Considering N = 125 (left) and N = 625 (right).

E. State Constraints

During the reaction wheel desaturation, the orientation
of the spacecraft may need to be maintained within the
prescribed range for pointing, communication or attitude
exclusion zone avoidance. To address such state constraints,
sublevel sets of ΓN defined as

ΓN,α = {x ∈ Rn | ψ(x) ≤ αrψ} , 0 < α ≤ 1 , (32)

are useful. Such subsets are forward invariant provided l >
l∗; hence if α is chosen such that ΓN,α is state constraint
admissible, any initial state in ΓN,α will result in RW
desaturation without violation of state constraints.

As an example, assume state constraints given by

ϕ ∈
[
−.4 .4

]
, θ ∈

[
−.4 .4

]
, ψ ∈

[
−.4 .4

]
,

which can be written concisely as x ∈ X . Using the
procedure in [14, Proposition S1] for TDMPC with weights
and control constraints from Section IV-A the value α∗ =
0.0201 was computed, for which ΓN,α∗ ⊆ X [8, Section
V-A].

Figure 7 shows several 2D projections of ΓN,α∗ as well as
the same sections of ΓN . Looking at the h1-h3 projection,
for example, we see the set ΓN,α∗ is much smaller (about
1/30) than ΓN .

Figure 8 shows the closed-loop response
for the full order model with x(0) =[
0 0 0 n/2 −n/4 n/2 1 0.85 1

]⊤ ∈ ΓX ,α∗ .
As expected, the state constraints are satisfied. However
and due to the conservatism of the method, even though
we chose an initial state close to the boundary of ΓN,α∗

the states do not come close to the constraints, e.g., the
maximum absolute value of the angle deviations is 0.2 [rad],
a half of the maximum permissible value.

For the reduced order model of pitch-only dynamics the
small size of ΓN,α∗ in h1, h2, h3 direction can be mitigated
by integrating ΓN,α∗ into a scheme that gradually decreases
the target value of h2 rather than setting it to zero; however,
similar strategies for the full order model are less clear as
values of h1 and h3 can only be zero at equilibria.
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Fig. 7: Different 2D sections of the ΓN,α∗ set for the
full order nonlinear model of spacecraft dynamics. State
constraints appear, on relevant sections, as dashed back lines.

If the pointing constraints are tight and the initial RW
angular momentum is large, state constrained MPC will need
to be used. Unfortunately, the results in [8] do not apply to
this type of OCP. In practice, however, simulations show
that, for soft constraints at least, implementations that rely
on a reduced number of iterations still provide acceptable
closed-loop responses. In Figure 9 RW desaturation from
the same IC as in Figure 2 is considered with identical
input constraints. Soft constraints on the angles are imposed:
all must remain within 10o ≈ 0.17 [rad] of the nominal
position. The optimal solution using the Fischer–Burmeister
solver (FBRS) from [15] (dashed lines) and one obtained by
limiting the FBRS solver to a maximum of 3 iterations per
time step and using warm-starting (solid lines) are presented.
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Fig. 8: TDMPC (l = 1) controlled nonlinear spacecraft desat-
uration maneuver with state constraints active: the amplitude
of ϕ, θ, ψ must remain smaller than 0.4 [rad].

In both cases desaturation is achieved. When comparing with
the unconstrained case (Figure 2), the suboptimal solution
is able to keep the constraint exceedances small. The time
required for desaturation is smaller than 8 orbits. Notably,
limiting the number of iterations to less than 3 leads to
significant constraint violation.

V. CONCLUSION

The Time Distributed MPC (TDMPC) with a small num-
ber of iterations per time step can successfully achieve space-
craft attitude stabilization with the concurrent spacecraft
reaction wheel desaturation while exploiting the gravity gra-
dient torques and satisfying control constraints. In fact, the
results indicate that one iteration per time step of TDMPC is
sufficient despite the fact that the coupled spacecraft attitude-
reaction wheel dynamics are nonlinear and relatively high
order. The developed in recent publications procedures for
estimating the required number of iterations and constraint
admissible closed-loop regions of attraction can be exploited
for this application, and their use has been illustrated in
several case studies. Future work will be directed towards
less conservative handling of state constraints on spacecraft
attitude and to treating desaturation of reaction wheel arrays
with more than three reaction wheels.
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