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Learning physics in any context, including undergraduate research experiences, requires learning its concepts
and the relational structure between those new concepts with what students already know. We use concept
maps, a knowledge elicitation method, for assessing mentees’ and mentors’ knowledge structures during Re-
search Experience for Undergraduates programs. The study looked at maps from seven mentor-mentee pairs
to understand how mentors and mentees use specific knowledge and strategies during the development of their
concept maps. A qualitative analysis of the maps showed mentors and mentees differed in their ways of organiz-
ing and displaying their knowledge in terms of structure, scale, language, and use of conceptual and procedural
knowledge. For instance, mentees used more procedural knowledge. It is perhaps due to their perception of
finishing their Research Experiences for Undergraduates (REU) projects and the fact that they may have only
limited and superficial knowledge of specific topics. However, mentors maps were smaller but more significant
in using more comprehensive conceptual knowledge and connecting their maps to the broader scientific context.
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I. INTRODUCTION

Students’ conceptual understanding and their ability to ap-
ply knowledge in problem-solving in a classroom setting have
been studied extensively over the last three decades [1-7].
Moreover, in order to characterize students’ scientific content
knowledge in different learning environments, some literature
have explored students’ development in different research-
related skills associated with undergraduate research pro-
grams [8—15]. Sadler et al. [10] reviewed 53 studies of scien-
tific research apprenticeship experiences and concluded that
all the studies documented some positive gains in participant
understanding of science content. However, they highlighted
the need for future studies to explore how participants learn
scientific knowledge in order to maximize potential gains.

Learning physics and thinking like a physicist require
learning the concepts, terms, and relational structure of
physics. In order to move forward on the path from novice to
expert, undergraduate students are required to develop their
understanding and knowledge to achieve an accurate scien-
tific mental model. Early descriptions outlined mental mod-
els as internal representations which are not directly observ-
able [16]. Craik discussed that mental models are a small-
scale model that people have in their minds [16]. Later, au-
thors argued that mental models are knowledge structures and
reasoning mechanisms that exist in either individuals’ work-
ing memory [17-19] or long-term memory [20, 21]. Scien-
tific mental models are able to be developed which help re-
searchers identify students’ current knowledge, their knowl-
edge structures, and their learning process [22-24]. Con-
sidering that mental models are internal cognitive structures,
we asked our participants to visually represent their men-
tal model of their Research Experiences for Undergraduates
(REU) project. The concept map is a tool to reflect and as-
sess students’ learning, and understanding [25, 26]. Concept
maps, which began in the 1970s by Novak and colleagues,
are a way to represent meaningful relationships between con-
cepts [27-30]. They are a diagrammatic method of looking
at the structure of these scientific mental models with a par-
ticular focus on which knowledge is used. Concept maps are
composed of nodes labeled with concepts and links that con-
nect them. In this paper, we discuss the characteristics of
mentees’ REU project maps and their paired mentors’ maps.
We examine how they put their knowledge together and link
their ideas throughout the development of their concept maps
process. The key idea of the map has characterized the type of
knowledge in their maps. The research questions that guide
this study are as follows:

* What types of knowledge are represented in mentees’
research project concept maps?

* How did mentees and their mentors organize their
knowledge around their research projects?

* What differences exist between mentors’ and mentees’
concept maps?
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II. BACKGROUND

Undergraduate research experiences have many benefits
for undergraduate students such as clarifying their career
goals [31-33], facilitating their research-based skill develop-
ment [31, 34-36], learning a wide variety of content knowl-
edge [35, 37], and improving their critical thinking skills [38].
However, assessing these outcomes is usually challenging
due to the complex nature and size of undergraduate research
programs [8, 39].

The existing studies around assessing outcomes of un-
dergraduate research experiences are mainly derived from
a combination of online self-reported surveys, such as the
Undergraduate Research Student Self-Assessment (URSSA)
[40] and the Survey of Undergraduate Research Experi-
ences (SURE) [31], and semi-structured interviews and focus
groups [32, 33]. The primary goal of much of this assess-
ment of undergraduate research is to measure students’ broad
progress to assess outcomes of research experiences priori-
tized by funding agencies [9, 41]. However, to measure more
detailed outcomes of the undergraduate research programs,
especially related to the conceptual understanding and struc-
ture of scientific knowledge, these self-assessment tools may
be insufficient. For instance, the URSSA self-assessment sur-
vey contains four main clusters of questions that ask students
about their perception of their learning gains through ques-
tions about how much they have gained in terms of skills
(e.g., writing scientific reports or papers), thinking and work-
ing like a scientist (e.g., problem-solving in general), per-
sonal gains (e.g., ability to work independently), and attitudes
as a researcher (e.g., feel a part of a scientific community).
The URSSA measures cognitive skills and affective learning
gains, but it is limited to documenting students’ progress and
distinguishing the challenges and benefits of the programs.
In addition, conceptual assessments such as the Force Con-
cept Inventory (FCI) and the Force and Motion Conceptual
Evaluation (FMCE) test students understanding of Newtonian
forces and motion and are not necessarily adapted to the vary-
ing content of a research experience.

As we mentioned in section I, learning physics requires
learning its concepts and the relational structure between
those concepts. These structural relationships impact how we
teach and learn physics. Under the family of methods known
as Cognitive Task Analysis (CTA) [42], which is a knowledge
elicitation method, we select concept mapping to capture the
knowledge and cognitive processes. Concept map are repre-
sented by meaningful relationships between concepts in the
form of propositions that are linked with directional arrows,
and labeled by words [43—45]. This tool reflects and assesses
students’ learning, and understanding [25, 26] by encourag-
ing them to use meaningful knowledge and develop the rela-
tionships between the concepts [26, 46].

III. METHODOLOGY

The current research, including interview transcripts and
diagrammatic representation of the linkages among the dif-
ferent pieces of knowledge, examines the quality of partici-



pants’ maps and how mentees and mentors put their knowl-
edge together and link their ideas throughout the develop-
ment of their concept maps in the context of REU program.
To recruit students, we requested the REU coordinators who
host their REU program remotely to forward our invitation
email to their REU students. When seven students volun-
teered to participate in our study, we contacted their paired
mentors. Participation incentives were offered in the form
of $20 Amazon gift cards for each interview. Data was gath-
ered through weekly semi-structured interviews with mentees
(N=1 female and N=6 males) and seven paired male mentors
from six REU programs in the summer of 2020. Before par-
ticipants constructed their own concept maps, they were given
the concept mapping tutorial. The concept mapping tutorial
included a verbal explanation of what is concept map and
mental model is and what a concept map is used for. Next, the
interviewers showed participants two different concept maps.
Then, we asked participants to brainstorm concepts related to
their project and place those concepts in circles, then connect
the concepts with arrows and place the linking words above
lines drawn between the concepts which define the relation-
ship between the connected concepts.

We collected concept maps from mentees during weeks
four and seven and from mentors in week five. Concept maps
were created in a Google Slides presentation that was editable
and viewable by both the interviewer and interviewee. Par-
ticipants were asked to use the drawing tools within Google
Slides to create their maps. We recorded their explanations
as they drew the diagrams. Mentees developed their first con-
cept maps in week four of the REU program, and in week
seven of the program they refined the old concept maps by
adding more nodes and connections. Since this paper was
limited in size and scope, we only focused on mentees’ con-
cept maps from week seven and their paired mentors’ con-
cept maps from week five. Our analysis involved both the
structure and the types of knowledge present in the concept
maps. The structural analysis focused on the ways of con-
nections, number of nodes, and the scale of knowledge that
was depicted. Identifying conceptual knowledge and proce-
dural knowledge was based on participants’ descriptions of
nodes and the links connected to those nodes. The results sec-
tion explains more about the distinction between procedural
and conceptual knowledge. In addition to our findings on the
structural differences between mentors’ and mentees’ maps,
we presented a case study about Eli and his paired mentor,
Dr. E (both pseudonyms), in this paper to illustrate specific
themes from the broader analysis.

IV. RESULTS
Our analysis looks at seven paired mentor-mentee maps to
understand how mentors and mentees use specific knowledge
and strategies during the development of their concept maps.

A. Categorizing knowledge types

In this study, concept maps were created as a way to as-
sess mentors’ and mentees’ knowledge structures and types.
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These maps illustrated the various ideas in their research
projects, which we divided into two types of knowledge: pro-
cedural and conceptual. Generally, conceptual knowledge is
a block of principled ideas or a mental model of how some-
thing works. In the present context, we effectively assign
the code to the conceptual and procedural knowledge based
on previous literature reviews [47, 48]. After, characterized
knowledge, multiple categories emerged from our data based
on both scale of the knowledge and characteristic. Next, after
several iterative cycles of analysis and refinement, the cod-
ing scheme was judged stable by two researchers. We orga-
nized conceptual knowledge into the three major categories:
Fields, topics, and quantities. “Field” described subfields of
Science, such as “Optics”, “Cosmology”, “Acoustics”’, and
“Chemistry.” “Topics” described big scientific knowledge in
the REU projects. For instance, we observed the topics “En-
ergy”’, “Atomic structures”, “Topological Constraint Theory”,
and “Sound and pressure resonance.” The last category of
conceptual knowledge is “quantities,” which defines not only
as a scientific concept but also a measurable physical property
such as “Entropy”, and “damping rate.”

Sometimes interviewees had labeled the edges between
that node and other nodes with descriptive words (e.g., ex-
plains, describes, deals with,...), which help us to understand,
to what degree interviewees, can describe, and explain why
those combinations of theories and methods work. It is likely
variable how strong the links are; some are perhaps very
strong links, while others may be more akin to guesses. Most
of these linking words were borrowed from the everyday lan-
guage. One mentee said, “We have this idea of ‘selection’,
what it means, what is a signal? What is its background?
How do we do things to do that. [We understand] the ‘de-
tector’ and definitions. So, we have a ‘particle detector’;
we have to understand how these things work. We do these
things to do the selection that improves the background sig-
nal, which is we make discovery.” The text demonstrate the
student’s attempt to link “signal” to “detector.”

On the other hand, procedural knowledge is the series of
steps or actions taken to approach the problem-solving pro-
cess or communicate about the results of their project (e.g.,
conference presentation or publication). In the context of our
study, participants used procedural knowledge in two ways:
Explicit and implicit. Explicit procedures included actions
such as “predict”’, “compare”, “determine structure”, “vary
parameter”, “evaluate the system”, “observe”,“formulate”,
“count”, “analyze”, “calculate”, “modify”, “measure”, “ex-
pand results”. These procedural words were usually involved
directly in observation, calculation, and simulation. One
mentee said, “Then that results in measured cross sections
for a certain event which will be compared with the predic-
tions for experimental results.”

The implicit procedures were tools, such as programming,
simulation, and data analysis tools (e.g., ROOT, C++ or MAT-
LAB). These implicit procedural knowledge nodes in the con-
cept maps were nouns, but they imply particular actions as
part of a procedure. The verbal description in the transcripts



further clarified their use in a process. In addition, this in-
cluded outcomes for reporting their results to the larger com-
munity. For instance, one participant said, “We are using the
Monte Carlo to find a prediction for cross-section probabil-
ity...we are using those predictions plus specifications of the
detector.” One mentor said, “Then we prepare talk...here we
find a model. Now we take this [concept box], a paper and
share with colleagues in UK, Greece and Penn state.”
Analysing the maps showed that mentees tended to use
more procedural knowledge than conceptual knowledge
(PK=64% and CK=32% (total 137 nodes)). However, men-
tors used more conceptual knowledge with fewer nodes in
their maps (PK= 40% and CK=57% (total 66 nodes)). Over-
all, for 7% of the nodes, we could not label as procedural or
conceptual due to the complex nature of their projects.

B. Structural analysis of the maps

The seven mentors’ and seven mentees’ maps were com-
pared pairwise to distinguish the differences in each mentor
and mentee map. A quick observation across all the maps
indicates that all interviewees tended to be more hierarchical
(arrows connect nodes in a top-down dendrogram fashion)
than network (where one or more nodes have many edges
pointing to it.

Connectivity or Structure By looking across all the
maps, we noticed that mentees’ maps had high connectivity
expressed by a more significant number of links and nodes 1,
part a). That indicates that mentees took many different steps
and used different knowledge to achieve their project goals.
Mentees spent between 10 to 50 minutes building their maps
during weeks four and seven. However, mentors’ maps are
more abstract, had fewer connections, no labels on the links,
and were usually completed in less time (5-20 minutes). Men-
tors were usually quiet while creating their concept maps, per-
haps because they were focused on comprehending a project
instead of giving the interviewer a detailed description of each
connection (See Figure 1, part b)).

Scale These two sets of maps from mentors and mentees
also differ in terms of scale, language, and how these affect
the types of explanations provided by mentors and mentees.
In the context of our study, scale is defined as how the men-
tors were focused on how their projects fit within a larger sci-
entific endeavor, while the mentees saw their projects from
the vantage point of a person carrying out the detailed steps
in a project. For instance, one mentor described the concept
of Big Bang theory as a big idea behind their project, while
the mentee talked about different particles such as Helium-4
and how to refine the old analysis code as the main step in
his project. Another interesting finding to note is that over-
all mentees used more time to develop their maps in weeks
four and seven, compared to mentors who only worked on
their maps in week five. Mentees tended to write ideas as
they came to their mind in a chain of knowledge. In contrast,
mentors were interested in developing their maps in a way to
embrace a cohesive plan for their project.
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FIG. 1. Each circle represents an element of knowledge and arrows
show the connection between elements of knowledge. a) A sample
of mentees’ map and b) A sample of mentor’s map.

C. One paired mentor-mentee case study

Eli is a physics major who switched from a computer
science major after taking a programming class. His REU
project was about characterizing the efficiency of a detector
and learning about details of nuclear reaction simulations and
refining them. Eli’s map shows a detailed description of the
internal process of his REU project and an application of the
wide variety of mathematical tools and simulations that he
used. Eli’s and Dr. E’s concept maps depicted in Figures 2
show a clear hierarchy, linking words and connections. How-
ever, the linking words are terse. The first impression is that
Eli’s concept map is richer, and he used many more concepts
than the concept map created by Dr. E.

The first aspect of their maps is related to procedural and
conceptual knowledge. Eli elaborated his REU project as a
series of procedural steps to refine and understand how simu-
lation works in addition to conceptual knowledge that he in-
cluded in his maps. He focused more on procedural explana-
tions and task completion for his project.Eli felt more com-
fortable talking about different procedural steps in his project.
He said, “The way we do it is, within ROOT, we can plot the
number of particles, ...and compare it to the particles that
we actually like, put it into the simulation, because we can
put in 100 but only 80 will make it to the detector. We're
also trying to figure out how to relate that to the location of
the particle when it goes in and as the angle. Then, a lot of
this just understanding of the simulation deals with program-
ming... Probably the big picture is the simulation and what
we seem to get out of it...I went through the code and kind
of seeing what broke when I added it here and then trying to
fix that.” On the other hand, Dr. E’s map provides a cohesive
picture of the project including a limited number of nodes. He
omitted some procedural steps, resulting in a less connected
map. The qualitative analysis reveals that Eli used the smaller
knowledge scale compare to Dr. E. Eli stated that the big goal
of the REU project is learning the simulation. He explained,
“Simulation describes the efficiency [which is] described by
using our ROOT analysis because we like plots.” However,
Dr. E’s map is shown more general approach to represent the
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FIG. 2. a) Eli’s conceptual map. b) Dr. E’s conceptual map has
no labels on the links. Conceptual knowledge are represented in
a purple bubbles while procedural knowledge are represented in a
blue bubbles and connecting lines represent the links between these
knowledge.

REU project. He began the concept map by explaining the
broad topic of “Electromagnetism”. Dr. E placed the com-
prehensive concept “E&M” on top and then continued that,
“In the context of the REU project, what we are doing is sim-
ulating the trajectories and the behavior of particle.” He ex-
plained that ionizing radiation consists of particles able to de-
tach electrons from them, and the continued that “interface of
charged particle which is moving into the material, creating
ionization and [which] is the subject of nuclear physics.” Af-
ter analyzing the transcript, we noticed Eli progressed slowly
and spent approximately eleven minutes on week four and
ten minutes on week seven to create his map. He did not
complete the links’ labels until week seven. Dr. E only spent
approximately five minutes on developing his map and ex-
plained it to interviewers without writing labels on the links.

V. DISCUSSION AND CONCLUSION
Here, an attempt is made to investigate to what extent the

concept map can be used as an undergraduate research as-
sessment tool. The qualitative analysis of the maps showed
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mentors’ and mentees’ had different ways of organizing and
displaying their knowledge. Research suggests that devel-
oping concept maps helps students to understand concepts
better [49] and to think “inside and outside the box™ [50].
The mentees’ concept maps help reveal the interplay between
ideas and how to apply those ideas to achieve their project
goals. They had ten weeks to learn some new knowledge (not
necessarily with rich connections), and use procedures to fin-
ish their REU project and achieve their project goals. Concept
maps drawn by mentors were smaller but more significant in
using more comprehensive knowledge effectively (e.g., big
picture science ideas, major theories, or fields) due to their
greater grasp of knowledge and connecting it to the broader
scientific context. Evidence from previous studies indicates
that expert maps are usually associated with more detailed
knowledge and a well-connected structure [51-54].

It was beyond the scope of this paper, but we observed
mentees’ maps grow between week four and week seven in
terms of using more conceptual knowledge in their refined
maps. This may be because students learn about their project
better after three more weeks and also understand by prac-
ticing self-reflection on their own progress. During week
seven, they added new nodes and links and sometimes pre-
dicted their future steps in the project. An interpretation of
the above results is that concept mapping is a flexible method
for eliciting and creating a cognitive model for all sorts of
REU projects. As an assessment tool, concept maps allow
us to document mentors’ and mentees’ knowledge represen-
tation, including conceptual and procedural ways they were
thinking and talking about their project. In concluding this
analysis, it is important to acknowledge that this paper aims
to provide a potential starting point for developing a concept
map as an assessment tool to measure students’ conceptual
understanding during the undergraduate research programs.
Using concept maps as a new assessment tool raises several
new research opportunities for PER community. However, a
more systematic approach is needed to collect accurate data
and elicit knowledge systematically.

We acknowledge the number of limitations in this study.
First, we conducted a short training on developing a concept
map with few examples; more systematic training is needed
for future data collection. There were technical limitations
in our data collection because Google slides are not the eas-
iest or quickest way to develop concept maps, but they were
convenient and widely accessible tool for participants. Other
tools are easier for drawing but require specialized software
on the participant’s computer. Additionally, concept maps are
representations with nodes and links that rely on an individ-
ual’s description and understanding, however, it was difficult
to get participants to include their knowledge in the written
concept map during the online interviews. To avoid this, the
interviewer can strengthen the interviews by asking intervie-
wees to describe each concept and relationship clearly.
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