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Domain adaptation for supervised integration of
scRNA-seq data
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Large-scale scRNA-seq studies typically generate data in batches, which often induce non-
trivial batch effects that need to be corrected. Given the global efforts for building cell atlases
and the increasing number of annotated scRNA-seq datasets accumulated, we propose a
supervised strategy for scRNA-seq data integration called SIDA (Supervised Integration using
Domain Adaptation), which uses the cell type annotations to guide the integration of diverse
batches. The supervised strategy is based on domain adaptation that was initially proposed in
the computer vision field. We demonstrate that SIDA is able to generate comprehensive
reference datasets that lead to improved accuracy in automated cell type mapping analyses.
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iven the increasing use of scRNA-seq and the global

efforts for building cell atlases in various biological con-

texts, large amounts of scRNA-seq data are generated and
accumulated. Large-scale scRNA-seq studies typically generate
data in batches, where samples are processed at different time
points, handled by different personnel and labs, prepared and
sequenced by different technology platforms, which are all
potential causes of batch effects!. It is well-documented that batch
effect is often strong in scRNA-seq, making it challenging to
effectively integrate multiple scRNA-seq batches around a com-
mon biological theme (e.g., tissues, organs) into a single com-
prehensive atlas that fully captures the heterogeneity of the
biological theme?. In the literature, a majority of the existing
scRNA-seq batch integration methods address batch effects in an
unsupervised manner, aligning the distributions of cells across
different batches. A few examples of popular methods include
canonical correlation analysis (SeuratV23), mutual nearest
neighbor approach (MNN Correct* and fastMNN?®, Scanorama®,
BBKNNY), nonnegative matrix factorization (LIGER®), and var-
iational autoencoder (scVI?, scGen!0). These unsupervised
methods assume that many cell types are shared among the
datasets to be integrated and run into the risk of aligning distinct
cell types when the assumption does not hold.

Since many scRNA-seq datasets come with clustering analysis
and cell type annotations performed by the researchers who
generated the data, there is an opportunity to perform supervised
data integration, using the cell type annotations to inform the
data integration. By construction, supervised integration should
outperform unsupervised approaches because the cell type
annotations can be used to encourage cells with the same anno-
tations across different batches to overlap and encourage cells
with different annotations to be separated. A few supervised
integration algorithms have been proposed recently. scAlign!! is
an integration algorithm that provides a fully supervised option
called scAlign+, which trains a deep neural encoder that incor-
porates cell type labels to map functionally similar cells to the
same coordinates in a latent representation space. LAmbDA!2
trains a classifier that maps cell type labels and removes batch
effects by constructing a label mask that determines the known
relationships between the cell type labels of two batches. SMNN13
and iSMNN!4 perform batch effect correction via supervised
mutual nearest neighbor detection. In this study, we are interested
in developing a supervised integration algorithm that can com-
pete with existing state-of-art integration algorithms for scRNA-
seq data. In computer science, one way to implement supervised
integration is supervised domain adaptation. In general, domain
adaptation is to leverage information to a target domain from a
different but related source domain, where the domains can be
different batches in the context of scRNA-seq data integration.

The discussion of unsupervised and supervised approaches for
scRNA-seq data integration is distinct from that in the context of
automated cell type mapping, which is a related computational
problem. Automated cell type mapping is typically supervised,
where machine learning models are constructed from either prior
knowledge of cell type marker genes!® or previously annotated
scRNA-seq reference datasets!®~1° and then applied to annotate
cells in newly generated query datasets. The machine learning
models could be based on invariant similarity metrics such as
correlations!®, tree-based classifiers!>!7, or nearest neighbor
classifiers!®19, etc. The nearest neighbor approach for cell type
mapping is sometimes referred to as cell type label transfer and is
typically implemented by unsupervised integration of reference
and query data without considering cell type annotations in the
reference data, followed by supervised classification that uses cell
type annotations of the reference data to label cells in the query
data. Therefore, although a majority of existing cell type mapping

algorithms are supervised, supervised approaches for scRNA-seq
data integration are less explored in the existing literature.

In this paper, we developed a supervised scRNA-seq data
integration algorithm using a domain adaptation deep neural
network called SIDA (Supervised Integration using Domain
Adaptation). Given multiple scRNA-seq batches to be integrated,
we implemented the Siamese Network? to learn a shared
embedding space that integrates multiple batches. The learning
objective is a combination of contrastive semantic alignment loss
and classification loss. We compared SIDA with three unsu-
pervised scRNA-seq data integration algorithms in a recent
benchmark study!, including SeuratV32! and Harmony?2, which
ranked highest in the benchmarking study, as well as limma?3,
which ranked relatively lowly in the benchmarking study. In
addition to the unsupervised algorithms, we also compared SIDA
with two supervised integration algorithms, scAlign+!! and
LAmbDA!2, Since scAlign+ also provides an unsupervised
option (scAlign), we included both the supervised and unsu-
pervised implementations of scAlign for completeness. According
to the evaluation metric in ref. 24, SIDA provided significantly
improved performance over both the existing unsupervised and
supervised algorithms. Intuitively, the improved performance of
supervised integration over unsupervised integration was expec-
ted because the supervised approach used additional information
on cell type labels to inform the integration. However, among the
three supervised integration algorithms, SIDA achieved overall
remarkable improvement compared to the unsupervised inte-
gration algorithms. The improvement of SIDA over the best
unsupervised algorithm was larger than the range of performance
among the unsupervised algorithms, suggesting that scRNA-seq
data integration should be performed in a supervised fashion
whenever possible. To further demonstrate the utility of SIDA, we
evaluated the integrated data in terms of its ability to serve as
reference data for automated cell type mapping algorithms. We
showed that SIDA generated more comprehensive references that
led to improved cell type mapping accuracy for new datasets.

Results

SIDA framework. To achieve supervised integration, we propose
to use a domain adaptation deep learning network architecture,
which is able to incorporate cell type labels to inform data inte-
gration. As shown in Fig. 1, this network architecture takes
training pairs generated by cells from different batches as input
and passes the input cells through two identical network bran-
ches, “g” with shared weights, projecting the cells into a common
embedding space. The network and weights are trained to opti-
mize the classification and contrastive semantic alignment loss,
which includes a semantic alignment loss that minimizes the
distance between cells from different batches but of the same cell
type, a separation loss that maximizes the distance between cells
from different domains and cell types, and a classification loss
encourages high classification accuracy, and hence further max-
imizing the distance between cells of different cell types, which
further facilitate the integration process and the clustering of
different cell types. Given a scRNA-seq data collection of multiple
batches along with cell type labels of the cells, we sample cell pairs
from the batches to train the proposed domain adaptation deep
learning network, which is able to produce an embedding space
where the batch effect is minimized based on both the distribu-
tion of the data and the cell type labels. Details of the design are
described in the “Methods” section.

Data collection for evaluation. We evaluate SIDA on five col-
lections of scRNA-seq data in the contexts of the pancreas,
PBMC, gut, pancreatic islet, and hematopoietic stem cells
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contrastive semantic alignment loss. Training pairs of cells from different batches are fed into a convolution network “g" and projected to a shared
embedding space to optimize semantic alignment loss and separation loss. The embedded data are fed into a classification network “h” to optimize the

classification loss.

(HSCs). Each collection contains multiple datasets, which we
consider batches. The pancreas data collection consists of five
batches of human pancreatic cells, including Baron?>, Mutaro?9,
Segerstolpe?’, Wang?8, and Xin!»?%. In total, there are 15 different
cell types across the batches, among which four cell types appear
in all batches, and four cell types appear in only one of the
batches. The PBMC data collection consists of five batches of
peripheral blood mononuclear cells, including control, stim3C,
PBMC3k3], 10x 3’, and 10x 5'1:32. These batches contain a total of
11 different cell types, with 5 appearing in all batches and 1 being
batch specific. The gut data collection consists of four batches,
Bigaeva33, Huang?4, Parikh3®, and Wang3°. These four batches
contain 11 different cell types in total, among which 3 cell types
appear in all batches, and 1 cell type is batch specific. The pan-
creatic islet data collection consists of four batches of human
pancreatic islet cells, including CEL-Seq, CEL-Seq2, Fluidigm CI,
and Smart-Seq2!1-26, These four batches contain 13 different cell
types in total. Since all these 13 cell types appear across all four
batches, this pancreatic islet data collection does not contain any
batch-specific cell type. The HSCs data collection consists of two
batches of hematopoietic stem cells'!. These two batches contain
three different cell types in total, which appear across both bat-
ches, meaning that the HSCs data collection does not contain
batch-specific cell type. Detailed references to these data collec-
tions and individual datasets are provided in Supplementary
Note 1 and Supplementary Table 1.

SIDA leads to improved batch mixing and cell type separation.
We applied SIDA, four unsupervised integration methods
(SeuratV32!, Harmony??, limma?3, scAlign!!) and two supervised

integration methods (scAlign+!!, LAmbDA!?) to three data
collections (pancreas, PBMC, gut), generating integrated versions
for each data collection separately. The integrated datasets are
evaluated in terms of both batch mixing and cell type separation.
We use a k-nearest neighbor-based approach to define positive
rate and true positive rate, which quantify batch mixing and cell
type separation*. We also examined evaluation metrics used in a
recent benchmark paper for scRNA-seq data integration!,
including k-nearest neighbor batch-effect test (kBET), local
inverse Simpson’s index (LISI), average silhouette width (ASW),
and adjusted rand index (ARI). Details of these evaluation metrics
are described in the “Methods” section.

For the pancreas data collection, the integration results are shown
in the tSNE visualizations in Fig. 2a, b, colored by cell types and
batch labels. Seurat and Harmony successfully mixed the different
batches, as shown in the second and third columns in Fig. 2b.
However, when colored by cell type labels, the second and third
columns of Fig. 2a show that Seurat and Harmony improperly
aligned some of the distinct cell types in different batches, e.g.,
stellate and mesenchymal, acinar and ductal. From the fourth, fifth,
and sixth columns of Fig. 2a, b, we can observe that Limma,
scAlign, and scAlign+ performed poorly, where the same cell type
in different batches did not align and mix with each other.
LAmbDA successfully aggregated the same cell type and mixed the
different batches. However, the last column in Fig. 2b shows that
LAmbDA did not separate different cell types properly. As shown
in the first column of Fig. 2a, b, SIDA was able to correctly align
corresponding cell types across batches and separate different cell
types. As a quantitative comparison of the three supervised and the
four unsupervised algorithms on the pancreas data collection,
Fig. 3a shows six evaluation metrics for each algorithm. Among the
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Fig. 2 tSNE visualization of SIDA, four unsupervised algorithms (Seurat, Harmony, Limma, scAlign) and two supervised algorithms (scAlign-+ and
LAmbDA) applied to three data collections. a, b Integration of pancreas data collection colored by cell types and batch labels; ¢, d Integration of PBMC
data collection colored by cell types and batch labels; e, f Integration of gut data collection colored by cell types and batch labels.

six metrics, SIDA achieved the highest performance for four
metrics, the second highest for kBET, and the third highest for LISI.
This quantitative evaluation shows that SIDA achieved better cell
type separation and batch mixing compared to the four
unsupervised and the two supervised methods, which is consistent
with the visualization results in Fig. 2a, b.

For the PBMC data collection, the integration results are
shown in the tSNE visualization in Fig. 2¢, d, colored by cell types
and batch labels. The first column of Fig. 2¢, d shows that SIDA
performed well on this more difficult PBMC data collection,
achieving proper mixing of different batches. Based on the second
and third columns of Fig. 2¢, d, Seurat and Harmony mixed the
different batches, but Seurat and Harmony improperly aligned
two similar cell types: CD4 T and CD8 T. Based on the fourth,
fifth, and sixth columns of Fig. 2c, d, we observe that Limma,
scAlign, and scAlign+- failed to properly integrate the PBMC data
collection, which is consistent with their performance in the
pancreas data collection. From the last column of Fig. 2¢, d, we
can observe that LAmbDA did not separate different cell types
properly. As a quantitative comparison of the supervised and
unsupervised integration algorithms in the PBMC data collection,
Fig. 3b shows the six evaluation metrics for each algorithm in the
PBMC data collection. SIDA achieved the highest performances
for four metrics and the second highest for kBET and LISI,
among which improvement in the true positive rate was the most
significant.

Integration results for the gut data collection are shown in the
tSNE visualization in Fig. 2e, f, colored by cell types and batch

labels. As shown in the second to sixth columns of Fig. 2f, Seurat,
Harmony, Limma, scAlign, and scAlign+ did not effectively mix
the batches and, therefore, did not properly align corresponding
cell types in different batches, as shown in Fig. 2e. LAmbDA
successfully mixed the four different batches as shown in the last
column of Fig. 2f. However, when colored by cell type labels, the
last column of Fig. 2e shows that LambDA improperly aligned
different cell types. In contrast, tSNE visualization of SIDA
showed desirable batch mixing, alignment of corresponding cell
types in different batches, as well as separation among different
cell types. The performance difference shown in the tSNE
visualizations was also reflected in the quantitative comparison
shown in Fig. 3c, where SIDA consistently achieved the highest
performance for five metrics and the second highest for kBET.
Moreover, according to all six metrics, except for the positive rate,
the improvement of SIDA over the best unsupervised algorithm
was larger than the range of performance among the four
unsupervised algorithms.

In addition to the tSNE plots in Fig. 2, we also visualized the
integration results using UMAP shown in Supplementary Note 3
and Supplementary Fig. 1, where the observations and inter-
pretations are highly consistent with the tSNE visualizations.
Since both tSNE and UMAP are nonlinear dimension reduction
tools to visualize high-dimensional distributions in two-
dimensional space, the numerical values and range axes of tSNE
and UMAP plots are not interpretable. Therefore, we removed
the axis labeling of tSNE and UMAP plots, following the practice
in a previous benchmarking paper for scRNA-seq data
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Fig. 3 Comparing supervised and unsupervised integration algorithms using six quantitative evaluation metrics for batch mixing and cell type
separation. a Evaluation based on the pancreas data collections; b Evaluation based on the PBMC data collection; ¢ Evaluation based on the gut data

collection.

integration!. The numerical values of the quantitative metrics in
Fig. 3 are summarized in Table 1. Comparing the evaluation
metrics across the three data collections, we observed that all
integration algorithms performed well on the pancreas data
collection, whereas the integration performance was slightly lower
in the PBMC data collection and the lowest in the gut data
collection. Therefore, it seemed that the pancreas, PBMC, and gut
data collections were progressively more and more challenging to
integrate. It was encouraging to observe that SIDA achieved more
pronounced performance improvement over existing unsuper-
vised and supervised algorithms in the PBMC and gut data
collections that were relatively more challenging to integrate.

Comparison between SIDA and supervised scAlign+. To fur-
ther demonstrate the strength of SIDA, we performed an addi-
tional comparison with scAlign, which provides both
unsupervised (scAlign) and supervised (scAlign+) options!!. We
performed the comparison on the pancreas islet and the HSCs
data collections, which were used in scAlign’s tutorial demon-
strations (https://github.com/quon-titative-biology/scAlign). We
examined these data collections to make sure that we were able to
faithfully reproduce the integration results in scAlign’s tutorial
demonstrations, which would ensure a fair comparison with
SIDA. For completeness, our comparison included both unsu-
pervised and supervised options of scAlign. Figure 4a, b shows the
tSNE visualizations of integration results of the HSCs data

collection, colored by cell types and batch labels. Since the HSCs
data collection consists of only two batches and all three cell types
in the data collection appeared in both batches, it presented a
relatively simple data integration challenge. Based on the tSNE
visualizations in Fig. 4a, b, all three algorithms achieved decent
integration performance on this HSCs data collection, aligning
shared cell types across the two batches, among which SIDA and
scAlign+ more significantly separated different cell types. UMAP
visualizations shown in Supplementary Fig. 2 provided the same
observation and interpretation. In Fig. 4c, a comparison based on
the six quantitative metrics showed that SIDA achieved the best
performance in most metrics except for LISI, which shows the
effectiveness of SIDA over scAlign and scAlign+. The second and
third columns of Fig. 4a-c show that supervised scAlign+
achieved significantly improved performance compared to the
unsupervised scAlign, which is consistent with the intuition that
supervised integration is able to improve batch mixing and cell
type separation in scRNA-seq data integration.

Figure 5a, b shows the tSNE visualizations of integration results
of the pancreatic islet data collection, colored by cell types and
batch labels. Figure 5b shows that all three algorithms were able
to generate embedding spaces where cells in various batches were
mixed together. In the first panel of Fig. 5a colored by cell types,
SIDA successfully delineated various cell types in the data.
However, the remaining two panels of Fig. 5a show that scAlign
and scAlign+ were not as effective in properly separating distinct
cell types. For example, the ductal cell type was split into two
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Table 1 Comparing supervised and unsupervised integration algorithms using six quantitative evaluation metrics for batch
mixing and cell type separation.
Positive rate True positive rate kBET LISI ASW ARI
Pancreas SIDA 0.95 0.36 0.69 0.42 0.68 0.97
Seurat 0.87 0.26 0.57 0.52 0.57 0.95
Harmony 0.84 0.2 0.65 0.31 0.56 0.88
Limma 0.87 0.05 0.54 0 0.51 0.75
scAlign 0.61 0.06 0.59 0.24 0.51 0.54
scAlign+ 0.59 0.01 0.59 0.01 0.54 0.54
LAmbDA 0.28 0.26 0.93 0.51 0.46 0.35
PBMC SIDA 0.85 0.55 0.77 0.75 0.68 0.96
Seurat 0.8 0.25 0.74 0.58 0.59 0.77
Harmony 0.76 on 0.51 0.54 0.56 0.82
Limma 0.7 0 0.01 0.03 0.54 0.59
scAlign 0.47 0.003 0.16 0.7 0.54 0.61
scAlign+ 0.46 0.003 0.15 on 0.53 0.52
LAmbDA 0.15 0.13 0.93 0.65 0.50 0.56
Gut SIDA 0.89 0.78 0.87 0.76 0.68 0.93
Seurat 0.61 013 omn 0.39 0.53 0.44
Harmony 0.62 0.13 0.2 0.17 0.51 0.31
Limma 0.7 0.09 0.01 0 0.53 0.31
scAlign 0.37 0.008 0.13 0.06 0.51 0.43
scAlign+ 0.38 0.01 0.15 0.06 0.49 0.27
LAmbDA 0.32 0.32 0.92 0.68 0.49 0.26
Bold indicates the best performance for each metric in each data collection.

islands far away from each other in the embedding space. For
alpha, beta, and delta cell types, cells were co-located in close
proximity but separated in multiple small islands, where the
distance between islands corresponding to different cell types
could be smaller than the distance between islands corresponding
to the same cell type. UMAP visualizations of this comparison
shown in Supplementary Fig. 3 provided the same observation
and interpretation. The integration performance in terms of batch
mixing and cell type separation is also reflected in the quantitative
comparison shown in Fig. 5c. Interestingly, Fig. 5c¢ shows that
supervised scAlign+ achieved minimal improvement over
unsupervised scAlign when integrating this pancreatic islet data
collection, which was a relatively more difficult integration
challenge that involved multiple batches with a nontrivial number
of cell types. Meanwhile, SIDA consistently achieved significant
improvements over scAlign and scAlign+ across all six
quantitative evaluation metrics, which indicates the effectiveness
and robustness of SIDA.

SIDA improves the accuracy of automated cell type mapping.
To demonstrate the utility of SIDA in terms of cell type anno-
tation, we applied a leave-one-out strategy to each data collection.
For a given data collection, we first left out one batch and inte-
grated the remaining batches using either SIDA or an existing
integration algorithm. We then performed automated cell type
mapping to predict the cell type labels of the left-out batch using
the integrated data as a reference. The resulting cell type mapping
accuracy was used to evaluate which integration algorithm was
able to build a more comprehensive reference that led to better
performance in cell type annotation of left-out data that was not
used to generate the integrated data.

For an integrated dataset to serve as the reference in automated
cell type mapping, the integrated data in the low-dimensional
embedding space was insufficient. Instead, we needed to convert
the integrated data from the low-dimensional embedding space
back to the original high-dimensional gene space. To achieve this,
we picked one of the batches in the integrated data as the target
space, applied the Mutual Nearest Neighbors strategy in Seurat to

find anchors between the picked batch and the other batches in
the low-dimensional embedding space, and used weighted
differences of the anchors in the original gene space to convert
the integrated low-dimensional data to the original high-
dimensional gene space, so that the integrated data in high-
dimensional gene space resembled the picked batch. When
converting the integrated low-dimensional space to the high-
dimensional gene space, we could pick any of the integrated
batches as the target space; therefore, one integration algorithm
produced several integrated versions of integrated data, and the
number of versions was the same as the number of batches that
were integrated. After generating an integrated dataset using one
integration algorithm with one choice for the target space, the
integrated dataset was considered as the reference data for cell
type mapping, and the left-out batch was considered as the query
data. We applied the cell mapping pipeline in scanpy?’, which
first selected high variable genes and then used a PCA-based
function to predict the cell type labels for the query cells based on
the reference data. Figure 6 shows the results of the cell type
mapping.

Cell type mapping in the pancreas data collection is relatively
simple. The first row of the heatmaps in Fig. 6a shows cell type
mapping accuracies between each pair of individual batches in
the pancreas data collection. When Wang or Xin served as the
reference, the accuracies were lower compared to cases where the
other three batches served as the reference. This variation in
performance was expected because certain batches may not be
sufficiently comprehensive to serve as the reference for cell
type mapping. In the remaining rows of the heatmaps in Fig. 6a,
we generated integrated data by different algorithms and
converted the data to different choices of target space. Based on
the average of each row across all heatmaps in Fig. 6a, we
observed that all three supervised integration algorithms showed
similar performance, around 6-8% improvement in cell mapping
accuracy compared to individual batches serving as reference.
Among the unsupervised integration methods, scAlign achieved a
6% improvement, whereas the other three only achieved a 1-2%
improvement. Such improvement was more noticeable for target
spaces defined by Wang and Xin. Therefore, starting with a
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Fig. 4 Comparing SIDA, scAlign, and scAlign-+ on HSCs data collection. a tSNE visualization of SIDA, scAlign+, and scAlign colored by cell types; b tSNE
visualization of SIDA, scAlign+, and scAlign colored by batch labels; ¢ Evaluation metrics based on the HSCs data collection.

dataset that was a poor reference by itself, integrating other
datasets into this poor reference could significantly improve the
performance of cell type mapping. This is consistent with
the general intuition that proper data integration may lead to
more comprehensive atlases that serve as better references to
represent cellular distributions and heterogeneity.

Figure 6b shows the cell type mapping results in the leave-one-
out analysis of the PBMC data collection. Based on the average
of each row across all heatmaps in Fig. 6b, we observed that
SIDA and existing supervised integration algorithms (scAlign+
and LAmbDA) showed similar performance compared to
individual batches as reference, ranging between 89 and 91%,
whereas the average performance of the four unsupervised
integration algorithms (Seurat, Harmony, Limma, and scAlign)
ranged between 89 and 90%. This result provided an example
that data integration was not always necessary for cell type
mapping.

Cell type mapping results in the gut data collection showed
very interesting variation. As shown in the last heatmap in Fig. 6c,
it seemed very challenging to predict cell types for one of the
batches (Wang). When the other three batches served as the left-
out query data, cell type mapping was able to achieve decent
performance depending on the choice of reference. Based on the
average of each row across all heatmaps in Fig. 6¢, the average

performance of individual batches as reference was 67%, the
average performance of SIDA integration as reference was 77%,
and the average performances of the other supervised integration
algorithms, scAlign4+ and LAmbDA, were 67 and 74%. The
average performances of the four unsupervised integration
algorithms, scAlign, Seurat, Harmony, and Limma, were
68%, 63%, 60%, and 69%, respectively. As described in the
previous section on integration metrics, Limma, scAlign, and
scAlign+ did not mix the batches in the gut data collection, and
therefore, integrated data based on these three integration
methods led to similar cell type mapping accuracy compared to
individual batches as reference. Although Seurat and Harmony
outperformed Limma, scAlign, and scAlign+ according to the
integration metrics, the batch mixing achieved by these two
algorithms was at the cost of improper alignment of some of the
different cell types, which negatively impacted cell type mapping
accuracy when Seurat and Harmony’s integrated data were used
as references. This result showed that evaluations based on
integration metrics and cell type mapping could provide
complementary perspectives of data integration performance. In
this gut data collection, SIDA integration as reference data led to
an average of 77% accuracy in cell type mapping, which achieved
the highest performance improvement over individual batches as
reference.
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Discussion
In this paper, we propose a supervised integration strategy for
scRNA-seq data called SIDA. The key idea is to use cell type
labels of individual datasets to inform the integration when cell
type labels are available in the datasets to be integrated. The
supervised integration is achieved using a deep neural network
optimized with a Classification and Contrastive Semantic Align-
ment loss function to encourage the alignment of the same cell
types across datasets and the separation of different cell types.
When integrating scRNA-seq datasets that do not have cell type
labels, SIDA is not applicable. However, when such cell type
labels are available, SIDA is able to achieve better batch mixing
and cell type separation, as well as improved accuracy in cell type
mapping of new datasets. As global efforts of cell atlases progress,
an increasing number of scRNA-seq are being accumulated, along
with analysis results and cell type annotations. SIDA can be useful
in any analysis that aims to summarize multiple previously
analyzed datasets into larger and more comprehensive atlases.
To evaluate SIDA, we compared it with existing unsupervised
and supervised integration algorithms. We applied two approa-
ches that probed orthogonal perspectives of the integration per-
formance. One approach was based on quantitative metrics that
were previously used to benchmark unsupervised integration
algorithms (i.e., positive rate, true positive rate, KBET, LISI, ASW,
and ARI). These metrics were designed to quantify batch mixing
and cell type separation in the embedding space. We observed

that SIDA led to improved scores in almost all metrics across
pancreas, PBMC, and gut data collections. When comparing with
the existing supervised integration algorithm scAlign+ on the two
data collections (HSCs and pancreas islet) provided in its tutorial
documentation, we observed that SIDA also led to improved
scores in the majority of evaluation metrics except for LISI in the
HSCs data collection. The robustness of SIDA over scAlign+ was
highlighted when integrating the pancreas islet data collection,
which involved multiple batches with a relatively large number of
cell types. The other approach was based on performance in cell
type mapping, which explicitly quantified the utility of the inte-
grated data in cell type interpretation of new data. We observed
that supervised and unsupervised integration achieved similar
performance in the pancreas data collection but showed moderate
to large improvements in the PBMC and gut data collections. It
was encouraging that SIDA showed improved performance based
on both evaluation approaches.

Implementation of one of the evaluation metrics, AR, involves
cell clustering in the integrated embedding space followed by a
comparison of the resulting clusters and the known cell type
labels. This clustering step requires a pre-specified definition of
the number of clusters k. In our implementation of ARI, we set k
equal to the number of known cell types. This may not be the
optimal choice because there is no guarantee that the k resulting
clusters will align with the k cell types even if the integration
result is perfect. However, setting k larger also does not guarantee
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Fig. 6 Evaluating supervised and unsupervised integration algorithms using cell type mapping and leave-one-out strategy. Each heatmap shows the
cell type mapping accuracies computed by leaving one batch out of a data collection to serve as the query data. Inside one heatmap, each element
corresponds to a particular choice of reference data. Elements in the first row of a heatmap represent cell type mapping accuracies when individual batches
were separately used as reference data. In the second row, the reference data were generated by SIDA results converted to different choices of target
space. In the remaining rows, the reference data were generated by the existing unsupervised and supervised integration algorithms, with results converted
to different choices of target space. a Cell type mapping accuracies in the pancreas data collection. Each heatmap corresponds to one left-out batch. b Cell
type mapping accuracies in the PBMC data collection. ¢ Cell type mapping accuracies in the gut data collection.

that the clustering results would capture all the known cell types,
especially relatively rare cell types. Given the fact that ARI is
sensitive to the number of clusters and penalizes over-clustering,
we decided to follow the practice of ARI calculation in published
benchmarking analysis for data integration, setting k to be the
same as the number of known cell types.

The preprocessing of SIDA involves principle component
analysis to reduce the space of high variable genes down to the
first 50 PCs, which serves as the input to the SIDA network. The
choice of working with the PCs was largely driven by computa-
tional complexity. If the top 2000 high variable genes served as
the input space, the SIDA network would include a substantially
larger number of parameters, leading to significantly increased
computational cost. As a separate note, when we generated the
PCA space to integrate multiple batches in a data collection, we
performed PCA on each batch separately. As a result, the first 50
PCs from various batches typically did not align with each other.
This actually represented a more challenging situation compared
to using highly variable genes where the features in different
batches are the same.

The training process of SIDA involves the sampling of a subset
of cells from various batches to form training pairs for SIDA to
learn the differences of corresponding cell types across different
batches. It is important to evaluate the robustness and reprodu-
cibility of SIDA with respect to the stochasticity involved in
random sampling. We tested SIDA’s consistency by applying it to
the pancreas, PBMC, and gut data collections multiple times with
different random seeds (see Supplementary Note 4: Evaluation of
robustness and reproducibility of SIDA). In Supplementary
Figs. 4 and 5, we observed low variation in the evaluation metrics
and highly stable tSNE visualization of the embedding space with
respect to random sampling, both indicating SIDA’s robustness
and reproducibility.

Since scRNA-seq data integration often aims to create com-
prehensive atlases that include a large number of cells, compu-
tational efficiency is an important consideration. We examined
the running time of SIDA, four unsupervised algorithms (Seurat,
Harmony, Limma, scAlign), and two supervised algorithms
(scAlign+ and LAmbDA) across three data collections (pancreas,
PBMC, and gut). The result is summarized in Supplementary
Table 2 and Supplementary Note 2. Algorithms without deep
learning strategy (Seurat, Harmony, and Limma) were compu-
tationally much cheaper than the other four deep-learning-based
algorithms (SIDA, scAlign, scAlign+, and LAmbDA). Among all
the algorithms, SIDA achieved the best integration performance
and required the longest computing time. This result represents a
trade-off between performance and computational cost.

Our current deep learning network for supervised integration
provides integrated data in a low-dimensional embedding space,
which is not able to directly serve as the reference data for cell
type mapping. In order to perform cell type mapping, we apply
the Mutual Nearest Neighbor strategy to convert the integrated
low-dimensional embedding space to the original high-
dimensional gene space, where we need to choose one of the
original datasets as the target space. One future direction is to
expand our deep learning network to include an encoder-decoder
module which is trained to map the low-dimensional embedding
space back to the high-dimensional gene space. This will lead to
an end-to-end supervised integration method specifically opti-
mized for automated cell type mapping applications.

Methods

Data preprocessing. The first step of data preprocessing is to consolidate cell type
annotations in the batches to be integrated because cell type annotations in dif-
ferent batches may have different terminologies at different levels of granularity
(e.g., different abbreviations or naming conventions or different levels of details of
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cell types and subtypes). To apply SIDA, we manually consolidate the cell type
labels across different scRNA-seq batches to be integrated. We use the following
rules to consolidate the cell type annotations. (1) We unify cell type annotations to
be the most general level across the batches to be integrated. For example, if
monocytes in one batch are annotated as “CD14 monocytes” or “CD16 monocytes”
while monocytes in another batch are annotated just as “monocytes”, we convert
both “CD14 monocytes” and “CD16 monocytes” annotations in the first batch to
“monocytes”. (2) We unify different abbreviations and spellings of the same cell
type. For example, annotations of dendritic cells may be “Dendritic Cells” in one
batch, “DCs” in another batch, and “DC” in a third batch. We update the anno-
tations so that the dendritic cells in all batches are annotated with an

identical name.

The second step of data preprocessing is gene selection and dimension
reduction. We filter out the nonoverlapping genes across the batches to be
integrated. We then apply library size normalization and log transformation to the
raw data. After that, we apply PCA to each batch respectively, and keep the first 50
PCs in each batch. The subsequent domain adaptation neural network operates in
the space of the first 50 PCs instead of the space of high variable genes, which
reduces the size of the neural network and makes the computational complexity
tractable.

Domain adaptation network. We propose a deep domain adaptation neural
network called SIDA to achieve supervised integration. The network architecture is
shown in Fig. 1b. The preprocessed low-dimensional data (50 dimensions after
PCA) is fed into the network as input. The network is composed of a Siamese
network and a classification network. First, the input data is fed into the Siamese
network, which has two shared-weight identical branches, “g”, the first branch is
for source domain data, and the second is for the target domain data. Here, the
source and target domains are different batches to be integrated. “g” is a con-
volutional network for feature extraction, which is trained to map each batch into a
common low-dimensional embedding space. To further facilitate the integration of
multiple batches, a two-layer feed-forward classification network “h” is included,
appended after the first branch (source domain branch). The Siamese network
takes a pair of cells from two different batches for training. The two cells in the
training pair are passed through the two shared-weight branches and thus are
mapped into a common embedding space. As shown in Fig. 1a, training pairs are
drawn from different batches in a rotated fashion. For example, if there are 3
batches to be integrated, cell pairs are generated by randomly drawing from batch 1
and 2, batch 1 and 3, batch 2 and 3, batch 2 and 1, batch 3 and 1, batch 3 and 2, and
then rotating back to batch 1 and 2. Such a rotated fashion allows all batches to
serve as the source domain of the Siamese network with respect to another batch as
the target domain, which ensures that the network “g” is able to properly align cells
from all possible pairs of batches to be integrated. Although the classification
network “h” is only appended after the source domain branch, the rotated fashion
of the training cell pairs enables “h” to be trained for all cell types in all batches to
be integrated. This is especially important when there exist cell types that are
unique to one of the batches to be integrated. When creating training cell pairs in
the analyses shown in the “Results” section, we randomly selected 400 cells per cell
type for each batch in the pancreas data collection, 800 cells per cell type for each
batch in PBMC and gut data collections, and 250 cells per cell type for each batch
in pancreas islet and HSCs data collections. We apply the Classification and
Contrastive Semantic Alignment loss (Fig. 1c) to train the whole network.

The Classification and Contrastive Semantic Alignment loss function is composed
of two separate loss functions: a contrastive semantic alignment loss and a
classification loss. The Contrastive Semantic Alignment loss is applied to the output
of network “g”. The Contrastive Semantic Alignment loss function contains two
components: a semantic alignment loss Lga and a separation loss Lg. Intuitively, the
semantic alignment loss Ls, minimizes the distance between cells from different
batches domains with the same cell type label, which encourages the alignment of
cells of the same cell type across batches. The separation loss Lg maximizes the
distance between cells with different cell type labels, which encourages the separation
of cells of different cell types. More specifically, given two cells in a training pair from
source and target batches (XS and X), if they are of the same cell type label,
minimizing Lg, (g) = Zgzl % | g(X3) — g(X") || will encourage X3 and X, to be close
to each other in the embedding space, and if they are of different cell type labels,
minimizing Lg(g) = X, ;. 3 max(0, m— || g(X3) — g(X}) [I)* will encourage X3 and
X}, to be far away from each other, where C is the number of cell types and m is the
fixed margin that specifies the separability in the embedding space. The classification
loss L(f) = E[I(fiX®), Y)] is applied to train “h”, which is a standard cross entropy
loss. The classification-based training process further encourages the separation of
different cell types and the aggregation of the same cell type, including cell types that
appear in multiple batches, as well as batch-specific cell types. The output of the
second feature extraction layer of “h” is the final integrated embedding space.

Execution of pancreas, PBMC, and gut data collections. We applied SIDA, four
unsupervised integration methods (SeuratV32!, Harmony?2, limma?3, scAlign'!)
and two supervised integration methods (scAlign+!1, LAmbDA!2) to three data
collections (pancreas, PBMC, gut), generating integrated versions for each data
collection separately. The integrated datasets are evaluated in terms of both batch

mixing and cell type separation. We use a k-nearest neighbor-based approach to
define positive rate and true positive rate, which quantify batch mixing and cell
type separation24, We also examined evaluation metrics used in a recent bench-
mark paper for scRNA-seq data integration!, including k-nearest neighbor batch-
effect test (kBET), local inverse Simpson’s index (LISI), average silhouette width
(ASW), and adjusted rand index (ARI).

Execution of pancreatic islet and HSCs data collections. We performed an
additional comparison with scAlign, which provides both unsupervised (scAlign)
and supervised (scAlign+) options!'!. We performed the comparison on the pan-
creas islet and HSCs data collections which were used in scAlign’s tutorial
demonstrations (https://github.com/quon-titative-biology/scAlign). We decided to
use these data collections to make sure that we properly reproduced the results in
the tutorial demonstrations, which ensures a fair comparison with SIDA. For
completeness, our comparison included both unsupervised and supervised options
of scAlign. We use a k-nearest neighbor-based approach to define positive rate and
true positive rate, which quantify batch mixing and cell type separation?. We also
examined evaluation metrics used in a recent benchmark paper for scRNA-seq data
integration!, including k-nearest neighbor batch-effect test (kBET), local inverse
Simpson’s index (LISI), average silhouette width (ASW), and adjusted rand
index (ARI).

Execution of automated cell type mapping. We applied a leave-one-out strategy
to each data collection. For a given data collection, we first left out one batch and
integrated the remaining batches using either SIDA or an existing integration
algorithm. We then performed automated cell type mapping to predict the cell type
labels of the left-out batch using the integrated data as reference.

We first converted the integrated data from the low-dimensional embedding
space back to the original high-dimensional gene space. To achieve this, we picked
one of the batches in the integrated data as the target space, applied the Mutual
Nearest Neighbors strategy in Seurat to find anchors between the picked batch and
the other batches in the low-dimensional embedding space, and used weighted
differences of the anchors in the original gene space to convert the integrated low-
dimensional data to the original high-dimensional gene space, so that the
integrated data in high-dimensional gene space resembled the picked batch. When
converting the integrated low-dimensional space to the high-dimensional gene
space, we could pick any of the integrated batches as the target space; therefore, one
integration algorithm produced several integrated versions of integrated data, and
the number of versions was the same as the number of batches that were integrated.

After generating an integrated dataset using one integration algorithm with one
choice of target space, the integrated dataset was considered as reference data for
cell type mapping, and the left-out batch was considered as query data. We applied
the cell mapping pipeline in scanpy3’, which first selected high variable genes and
then used a PCA-based function to predict the cell type labels for the query cells
based on the reference data.

Evaluation metrics. To evaluate the performance of the data integration, we use a
k-nearest neighbor-based approach to quantify both batch mixing and cell type
separation?%, We also examined evaluation metrics used in a recent benchmark
paper for scRNA-seq data integration!, including k-nearest neighbor batch-effect
test (kBET), local inverse Simpson’s index (LISI), average silhouette width (ASW),
and adjusted rand index (ARI).

To quantify both batch mixing and cell type separation, we used the metric in
ref. 24 based on the k-nearest neighbors (kNNs) of cells. First, we classify all cells into
‘positive’ and ‘negative’ cells. ‘Positive’ cells are those surrounded mostly by cells from
the same cell type. In our analysis, one cell is classified as ‘positive’ if at least 95% of its
k-nearest neighbors are of the same cell type, and k is set as 50. Then, the ‘positive’
cells are further classified into ‘true positive’ and ‘false positive’ cells. “True positive’
cells are those surrounded by appropriate proportions of cells from different batches.
A ‘positive’ cell is classified as ‘true positive’ if the batch distribution of its
neighborhood is consistent with the global batch distribution. The three-sigma rule is
used to measure the consistency of distribution. For a ‘positive cell’ of a certain cell

type, assume the number of cells of this cell type in the n batches are N, N, ..., N,

and therefore, the distribution of this cell type’s cells across the batches is

pi= ZnN'N ,i=1,2,...,n. For the ‘positive cell’, we focus on its k = 50 neighbors
j=1 1]

and denote the number of neighbors from the batches as My, M5, ..., M,,. If the
batches are well mixed and integrated, we expect the distribution of M; to be within
three standard deviations around the distribution of p;. More specifically, m; should
be in the range of [max(0, kp; — 3/kp,(1 — p,)), kp; + 3+/kp,(1 — p,)] for all
i=1,2,...,n. The percentage of ‘positive’ cells and the percentage of ‘true positive’
cells serve as metrics to quantify integration performance.

kBET measures batch mixing at the local level, which compares the kNN local
distribution against global distribution using Pearson’s y? test. First, a k-nearest
neighbor graph is constructed based on the integrated embedding space. Then, 10%
of the cells are chosen, and the batch distribution of the nearest neighbors of each
chosen cell is compared with the global distribution of the batches using the y2-test.
If the local distribution is sufficiently similar to the global distribution, the y? test
does not reject the null hypothesis that there is a good batch mixture around the
chosen cell. The rejection rate ranges from 0 to 1. Here, we use (1-rejection rate) as
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the final kBET value, and a kBET value close to 1 signifies the batches are
well mixed.

LISI measures the effective diversity of local distributions, which can be applied
to quantify both cell type separation and batch mixing. First, LISI selects the
nearest neighbors based on the local distribution of distance with a fixed perplexity.
Then, it computes the inverse Simpson’s index for the diversity of selected
neighbors, which reflects how many different types are in a neighborhood and how
evenly distributed the population of each type is. For a given neighborhood, the
formula to calculate inverse Simpson’s index is 1/ Zle p(b). The probabilities
p(b),b=1,2, ..., B here refer to the batch probabilities in the local neighborhood
distributions described above. When the type in LISI is defined by batch, the
resulting score (iLISI) quantifies batch mixing, and a higher iLISI value indicates
better batch mixing. When the type in LISI is defined by cell type, the resulting
score (cLISI) quantifies cell type separation, and a lower cLISI value indicates better
cell type separation. The harmonic mean of cLISI and iLISI is computed to
combine the evaluations for cell type separation and batch mixing into an overall
score B, — 2(=cLISDGLISH.

Lust 1—CcLISI-HLISIT

ASW uses the average silhouette score to quantify cell type separation and batch
mixing. For one data point, its silhouette score is computed by subtracting its
average distance to other members in the same cluster from its average distance to
all members of the nearest neighboring cluster and then dividing by the larger of
the two values. The resulting score ranges from —1 to 1, where a higher value
indicates that the data point fits well in its cluster. When the distances are
computed in the integrated embedding space, and the clusters are defined by cell
types, the ASW is denoted as ASW cliype, With a higher value indicating cell clusters
are well separated in the embedding space. When the distances are computed in the
integrated embedding space, and the clusters are defined by batch labels, the ASW
is denoted as ASW e, With a lower value indicating batches are well mixed in the
embedding space. The harmonic mean of the two ASW values is used to combine
20— ASWiy o (ASW i)
= T AWy FASW g

ARI measures the agreement between two sets of cluster labels, which can be
applied to quantify both cell type separation and batch mixing. First, k-means is
applied to cluster cells in the integrated embedding space and generates predicted
clustering labels, where k is the number of unique cell types in the batches to be
integrated. Then, the ARI between the k-means predicted cluster labels and the true
cell type labels is calculated and denoted as ARI , where a higher value

them into an overall score: F;

celly,
corresponds to better cell type separation. A second ARI value between the k-
means predicted cluster labels and the batch labels is calculated and denoted as
ARlpyecn, Where a lower value corresponds to better batch mixing. The harmonic

mean of the two ARI values is used to combine the two aspects into an overall score
21— ARl )(ARI gpirype)
Lart = 1=ARlyy AR e

Statistics and reproducibility. The statistical tests used in this study were per-
formed using R 4.2.1 or Python 3.7, and details of statistical analyses are described
in the “Methods” section. We have provided the reproducibility evaluation in
Supplementary Note 4: Evaluation of robustness and reproducibility of SIDA.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The references of data that support the findings of this study are provided in
Supplementary Table 1.

Code availability

SIDA code is available at https://github.com/syt960909/SIDA. This code is implemented
in Python, and all the required packages are listed in requirement.txt in the GitHub
repository.
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