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Highlights
e Substrate selection is a key step in designing protease-
activatable drugs or sensors

e Promiscuous peptide substrates are typically discarded due
to lack of specificity

e A computational method, SLICE, is developed to make use of
promiscuous substrates

e Mixtures of 11 proteases are classified with high accuracy
using SLICE substrates
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In brief

Holt et al. present a computational
method to select promiscuous peptide
substrates—which are typically
discarded—for the design of protease-
activatable drugs or diagnostics. Using
this method, they demonstrate that as
few as two promiscuous substrates can
accurately classify complex mixtures of
11 proteases in plasma.
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MOTIVATION Proteases drive key biological processes, and their dysregulation underlies pathological
conditions like cancer and inflammatory diseases. Protease-activatable sensors and therapies are under
development, yet their design typically requires screening for peptide substrates specific to target prote-
ases, which becomes increasingly difficult with multiple target proteases because many peptides can be
promiscuously digested by multiple proteases. Drawing from a signal processing technique called com-
pressed sensing, we developed a computational method for selecting libraries of promiscuous substrates
that can classify distinct protease mixtures without relying on specific substrates. Using this method, we
showed that a panel as small as two substrates could accurately differentiate plasma samples that con-
tained different mixtures of 11 proteases.

SUMMARY

The development of protease-activatable drugs and diagnostics requires identifying substrates specific to
individual proteases. However, this process becomes increasingly difficult as the number of target proteases
increases because most substrates are promiscuously cleaved by multiple proteases. We introduce a
method—substrate libraries for compressed sensing of enzymes (SLICE)—for selecting libraries of promis-
cuous substrates that classify protease mixtures (1) without deconvolution of compressed signals and (2)
without highly specific substrates. SLICE ranks substrate libraries using a compression score (C), which
quantifies substrate orthogonality and protease coverage. This metric is predictive of classification accuracy
across 140in silico (Pearsonr=0.71) and 55 in vitro libraries (r = 0.55). Using SLICE, we select a two-substrate
library to classify 28 samples containing 11 enzymes in plasma (area under the receiver operating character-
istic curve [AUROC] = 0.93). We envision that SLICE will enable the selection of libraries that capture informa-
tion from hundreds of enzymes using fewer substrates for applications like activity-based sensors for imag-
ing and diagnostics.

INTRODUCTION ment and differentiation® to pathological conditions such as can-

cer, neurodegenerative disorders, and inflammatory diseases.®

Proteases are a major class of enzymes; more than 600 en-
zymes, comprising ~3% of the human genome,” are classified
as proteases due to their ability to hydrolyze peptide bonds
and degrade proteins (i.e., proteolysis). Protease activity is a
driver of important biological processes, ranging from develop-
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However, due to the irreversible nature of proteolysis, protease
activity is tightly regulated via mechanisms such as inhibitory
prodomains, cofactor binding, and protein inhibitors.* Given
this degree of posttranslational regulation, quantifying protease
activity, rather than transcriptomic or proteomic analyses, is
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often required to understand the biological roles of proteases.”
This has motivated the development of activity-based sensors
that have been applied to early disease diagnostics—for
example with imaging probes®® and synthetic biomarkers in
urine®'" and breath'>—as well as therapies including protease
inhibitors'®>'* and masked biologics.'>"'” The two primary com-
positions of activity-based sensors are (1) substrates that pro-
duce a signal upon proteolysis and (2) probes that bind active
proteases.”'® For the former approach, a major bottleneck
is substrate design, which involves screening for peptide
substrates that are specific to the target protease (Figure 1,
step 1). However, finding substrates with high specificity be-
comes increasingly difficult as the number of target enzymes in-
creases because most proteases are characterized by promis-
cuous activity.>'°

To accelerate the process of designing specific substrates,
methods to generate and screen libraries of peptide se-
quences have been developed, including positional scanning
libraries,?®?" peptide microarrays,”>*® fluorogenic peptides,**
other mixture-based peptide libraries,?>® and multiplex mass
spectrometry assays.?’” These libraries are either degenerate or
diversified at certain positions based on consensus cleavage
motifs from the literature®® or computational approaches to pre-
dict peptide sequences based on the structure of the active site
of atarget protease®®*° (Figure 1, step 2). To generate potentially
novel specific substrates, high-throughput evolution-based
methods display and iteratively screen randomized peptide
sequences on the surface of bacteria (e.g., CLIPS)®"*? or bacte-
riophages (e.g., phage display)®® and have been extended
for screening endogenous protease activity®* (Figure 1, steps
3-4). To further increase substrate specificity, approaches
have been developed to broaden the chemical diversity of pep-
tide libraries, such as via the introduction of non-natural amino
acids®>®% or cyclic peptide libraries.®” In cases where prote-
ase-substrate kinetics are known, signal deconvolution algo-
rithms can infer the activity levels of individual enzymes in a com-
plex mixture®*®®; this approach works well on controlled
reactions involving recombinant enzymes. With these methods,
libraries of up to 10-20 substrates, each of which have unique
molecular barcodes, have been constructed to sense dysregu-
lated protease activity for early detection of disease.®'"*° How-
ever, the current paradigm in substrate design methods is to
favor specific substrates over promiscuous candidates.

Here, we embrace enzyme-substrate promiscuity by devel-
oping a substrate design method—substrate libraries for
compressed sensing of enzymes (SLICE) —for selecting comple-
mentary promiscuous substrates to compile libraries of activity-
based sensors that can classify distinct protease mixtures
without specific substrates or signal deconvolution (Figure 1,
step 5). Rather, SLICE, inspired by the signal processing tech-
nique compressed sensing,’®™? evaluates different combina-
tions of substrates to find the most complementary library that
maximally senses all target proteases. We accomplish this by
designing a compression score, C, which scores substrate li-
braries according to two features: (1) substrate orthogonality,
which measures the uniqueness of protease-substrate kinetics,
and (2) protease coverage, which measures the total fraction of
target proteases sampled. In a simulated disease-detection
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challenge based on a melanoma gene microarray dataset,*®> C
was predictive of classification accuracy across 140 in silico li-
braries (Pearson r = 0.71) and 55 in vitro libraries (Pearson r =
0.55). Further, we used SLICE to design a 2-substrate library
(C = 0.94) that classified 28 complex samples containing one
of two distinct 11-protease mixtures in the presence of murine
plasma with high accuracy (area under the receiver operating
characteristic curve [AUROC] = 0.93). Looking forward, produc-
ing smaller libraries will reduce the number of readouts, the over-
all cost, and the processing time, which is ideal for imaging- and
activity-based diagnostics. We envision that SLICE will enable
the selection of promiscuous substrate libraries that capture in-
formation from hundreds of enzymes using fewer activity-based
sensors than is currently possible.

RESULTS

Computational pipeline for evaluating classification
performance of simulated substrate libraries

Given an initial pool of candidate substrates, our goal was to
develop a method for predicting which libraries of promiscuous
substrates should be selected to accurately classify distinct mix-
tures of proteases. Therefore, we sought to create a simulation
pipeline for evaluating the classification performance of sub-
strate libraries with known protease-substrate cleavage kinetics
(e.g., catalytic constants [k.4). To simulate a disease detection
problem, we used a microarray gene expression dataset*® con-
taining data on 162 extracellular proteases in a murine mela-
noma model (Figure S1A). We calculated average protease
gene expression profiles for healthy (day 1) and disease (day 7)
samples and then generated Gaussian-distributed populations
of 200 simulated samples from healthy and disease conditions
(i.e., 100 simulated samples for each condition) (Figure 2, part
1a). These populations were generated by adding up to two stan-
dard deviations of random noise to the average expression pro-
files, as this noise level is sufficient so that measuring a single
protease would be insufficient to accurately classify healthy
and disease, while measuring all proteases would lead to high
accuracy. After performing principal-component analysis on
the simulated samples, we observed that the first two principal
components represent >80% of variance and provide a clear
separation between the healthy and disease groups, meaning
that the two groups can be easily classified using all protease
measurements simultaneously. Given the challenge of sensing
the activity of all proteases simultaneously, we use libraries of
promiscuous substrates to measure combinations of proteases.
To simulate promiscuous substrate libraries, we randomly
generated k¢, for all pairwise combinations of proteases and
substrates (Figure 2, part 1b). These values were generated by
randomly selecting 10 to 30 proteases to cut a given substrate
and then assigning Gaussian-distributed k.4 values (normalized
between 0 and 1) to each of these proteases. We calculated a
vector of product formation rates, V., for each substrate
across all simulated samples by multiplying matrix P, which con-
tains the gene expression levels of all 162 proteases for every
simulated sample, by the vector k., which contains kg
for each protease with a given substrate (Figure 2, part 2).
We used a random forest model for classifying the simulated
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Figure 1. Conceptual overview of protease substrate design using the SLICE method

(1) Identify which proteases in the system being probed are considered target proteases (blue Pacman) and which are off-target proteases (purple Pacman).
(2) Generate candidate peptide sequences that can be used as substrates for target proteases. Peptide sequences can be acquired from the literature (paper
icon) or computationally generated (computer icon). Computationally generated diversity includes degenerate libraries as well as predicted sequences derived
from computational modeling software.

(3) Screen candidate peptide sequences against all protease targets via chemically synthesized activity-based sensors (e.g., fluorogenic probes, peptide mi-
croarrays, etc.) or genetically encoded libraries (e.g., phage display, bacteria display, etc.).

(4) Heatmap of cleavage kinetics, quantified by the catalytic constant, k.., for all protease-substrate pairs (rows = proteases, columns = substrates).

(5a) An example promiscuous substrate library that has fewer substrates (Nsupstrates = 5) than proteases (Nproteases = 10). The compression score, C, represents the
score assigned to the library by the SLICE method, with 1 being the highest score and 0 the lowest.

(6b) An example specific substrate library that has the same number of substrates as proteases (Nsupstrates = Mproteases = 10).
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Figure 2. Computational pipeline for evaluating classification performance of simulated substrate libraries
(1a) Plot of first two principal components from principal-component analysis on microarray gene expression data of 162 protease genes in day 1 (healthy, blue)
and 7 (disease, red) mouse tissue samples in a B16 melanoma model. To simulate, 100 samples and 100 disease samples are computationally generated as a

Gaussian distribution from a single biological sample.

(1b) Heatmap of simulated catalytic constatnts, k.., for every pairwise combination between 162 proteases and 150 substrates (white = high, black = low).
(2) Visualization of how product formation rates, V., are calculated using protease concentrations, P, and k.. The result of this calculation is a product for-

mation rate per substrate per sample.

(3) Receiver operating characteristic (ROC) curves as a measure of healthy versus disease classification performance using product formation rates as features of
observations used to train a random forest model. Blue trace is an ROC curve when using signals (i.e., product formation rates) from 11 substrates (green trace =5

substrates, red trace = 1 substrate).

samples (i.e., healthy versus disease) and used 5-fold cross-vali-
dation by aggregating predictions of an unseen fold (i.e., test set)
based on the model trained by the other 4-folds (i.e., training set).
To quantify classification performance, we calculated the
AUROC resulting from applying the trained model to the test
set (Figures 2, part 3, and S1B). We observed a clear trend
that increasing the number of substrates in a library resulted in
increased classification power. With this pipeline, we can eval-
uate the classification performance for a substrate library with
known k.4 in a simulated disease detection problem as a proxy
for true classification power.

A compression score for promiscuous substrate library
selection

Since a promiscuous substrate can be cleaved by multiple pro-
teases, the net signal of a substrate represents some weighted
combination of product formation rates from multiple proteases.
Therefore, measuring the signal of a promiscuous substrate
compresses the product formation rates (i.e., activity) from mul-
tiple proteases into one feature. We sought to design a compres-
sion score, C, that selects for the most complementary set of
promiscuous substrates that maximally senses the proteases
of interest. To account for this, C is a weighted sum of two met-
rics—substrate orthogonality, Son., and protease coverage,
Pcov. (Figure 3A; Equation 1).
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C = wSomn. +(1 — ©)Peoy. (Equation 1)

C operates on a 2D matrix of kinetic constants (e.g., kca:, prod-
uct formation rates, etc.) for all pairwise combinations of prote-
ase (rows) and substrate (columns); the score outputs one value
ranging between 0 and 1, with 1 being the optimal score (Fig-
ure 3B). Sorn., Which is the cosine distance metric (Figure S2),
quantifies the orthogonality of the columns, or how unique
each of the substrates are from one another in the protease
space. For example, substrate libraries with high Sy, will have
columns that are different from one another, whereas the col-
umns will be more similar in libraries with low Sonp. (Figure 3B,
y axis). Conversely, Pg,,. quantifies how many rows have at least
one element with a high value, or how many proteases are
collectively sampled by a library. For example, substrate libraries
with high P, will have a high value in all rows, whereas libraries
with low P,y will include rows of only low values (Figure 3B,
x axis). To verify that C is predictive of classification perfor-
mance, we used the computational pipeline described in Figure 2
to evaluate the classification performance of 140 simulated sub-
strate libraries. We found that C demonstrated a strong correla-
tion with classification performance (Pearson’s r = 0.71) with
substrate libraries where C < 0.2 provided little useful information
(i.e., 0.5 < AUROC < 0.6) and libraries where C > 0.9 demon-
strated strong classification performance (i.e., AUROC > 0.85)
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Figure 3. A compression score for promiscuous substrate selection

Compression Score Substrates (no.)

(A) Equation used to calculate the compression score, C. Substrate orthogonality, S, Which is quantified by the cosine distance metric, and protease coverage,
P.ov., Which quantifies the fraction of proteases that are sampled by a substrate library, are combined according to the weight of summation, w. All variables range

fromOto 1.

(B) Schematic showing four example substrate libraries and their relative magnitude in Sy, (y axis) and Pe,,. (x axis) space. Each substrate library is represented

with a heatmap of catalytic constats, k..:, (White = high, black =

low) for all protease (rows) and substrate (columns) combinations.

(C) (Top) Schematic showing pipeline for calculating C and classification performance for 140 simulated substrate libraries. (Bottom) Plot of correlation between C
(x axis) and classification performance (AUROC, y axis). Black line is line of best fit. Each dot represents the performance of one substrate library averaged over 5

repeats.

(D and E) Plots showing classification performance (AUROC, y axis) versus substrate library size (number of substrates, x axis) for changing value of Sy, (D) and

Pcov. (E). Each dot represents the performance of one substrate library.

(Figure 3C). To verify that both Sy, and Pgoy,. contribute to C
independently, we independently fixed each variable and
observed the change in classification performance across vary-
ing substrate library sizes (i.e., 1 < Ngypstrates < 150). We found
that increasing both Sy, (Figure 3D) and Pg,,. (Figure 3E) inde-
pendently increased classification performance from 0.5-0.6 to
>0.9 across all substrate library sizes tested. With C, we can
rank-order and select the optimal set of promiscuous substrates
where the kinetic constants toward the relevant protease targets
are known.

Exhaustive scoring of substrate libraries in vitro with
SLICE

To demonstrate the process of constructing a substrate library
with SLICE experimentally, we selected a candidate pool of 11
substrates compiled from commercial products or published
sequences®®**%° with known cleavage activity from matrix
metalloproteases (MMPs), cathepsins, or complement proteases
(Table S1). We focused on these protease classes as they have
been shown to be dysregulated in pathologies like cancer*® and
organ transplant rejection*” and have been targets of activity-
based sensors.®*"'"%° We designed fluorogenic probes for these
substrate sequences by flanking each with a fluorophore and

quencher such that peptide cleavage would resultin a measurable
increase in fluorescence (Figure 4A, part 1). We performed cleav-
age assays for all 11 substrates with 11 proteases (121 unique
protease-substrate pairs), including the target protease classes
and other proteases (e.g., KLK2, thrombin, etc.), which were
included to account for promiscuity of protease substrates. We
then extracted the product formation rates (i.e., initial velocity)
as representative kinetic parameters (Figures 4A, part 2, and
S3). All substrates showed increasing signals with at least one
protease (>2-fold increase in fluorescence after 60 min), indicating
cleavage activity, while some protease-substrate pairs with negli-
gible activity showed slightly decreased signals (<25%) due to
photobleaching of uncleaved substrates. We observed that
although the substrate sequences were known to target MMPs,
cathepsins, and complement proteases, the off-target proteases
used in these experiments also showed a propensity to cleave
these sequences, which can be attributed to substrate promiscu-
ity. To visualize the distribution of scores for these libraries, we
exhaustively enumerated all libraries with sizes ranging from 2 to
10 and computed the Sonn., Pcov., @and C scores for all those li-
braries (Figure 4B, part 1). We found that this candidate pool of
substrates produced libraries high in P, but low in Soun. (Fig-
ure 4B, part 2). We found that the mean C score of 0.66 (n =

Cell Reports Methods 3, 100372, January 23, 2023 5




¢? CellPress

OPEN ACCESS

A @ Measuring product formation rates with a fluorogenic probe

Activity-sensor = Fluorogenic Probe

Fluorophore Quencher
(5-FAM) (Dabcyl)
Fluorophore Substrate
(EDANS) (Peptide)

Substrates Cleaved (RFU x 10°%)

Line of
" Best Fit [
(] +
109 Raw & n
94
8+ Slope = Product
7 Formation Rate
] (RFU/min)
6

15 30 45 60 75
Time (minutes)

0

Cell Reports Methods

@ Measure pairwise product formation rates in vitro

KLK2 @

CTSS @I 2 3
ADAMTST & s
PLASMIN G 9 -8
THROMBIN @ 43
FACTOR Xla @ 6 S3
MMP7 @& ER1
MMP11 & 29
MMP8 @ 33
MMP1 @ g
MMP13 @ 0 °

\t= 5FAM  Yr = EDANS

WEWE TR R gy oo, ransiom

0800000080080
B
@ Combinatorial search varying @ Distribution of substrate orthogonality and @ Generate all libraries of size = 2-10 and calculate
number of activity-sensors protease coverage scores compression score
" Perfect
No S .
I : o Sensing : Orthog. &
300 : : : Coverage
: : Cc :
é‘ 3 : Randomly 7/ : :
& @ 200 : Generated  : :
> > . .
o o :
o & : :
- * 100 : §
i . n-20%
O LI S i
08 o006 $6008 0.0 0.5 1.0 0.0 0.5 1.0
library library library Score Score
size=3 size=2 size=5
Cc
@ Use RNA expression data (11 proteases) @ Generate all libraries of size = 2 and calculate @ Evaluate classification performance
with gene match to proteases used in vitro compression score using simulated substrate signals
25-iNoSensing : __ Randomly : Perfect
© Healthy L Generated : Orthog. &
5 1 ° o Disease 20 : Coverage
S . S 5 W
£ B oM 3 c 154 :
— 1 e g - o
] (T80 S . O 10
§- . .g.;jn —Q}: ] A C
S 5
-54 :
; 7 T 0 T T T T T T T 0.5+ ! T T |
-5 0 5 3 4 5 6 7 8 9 1 02 04 06 08 10

Principal Comp. 1 Compression Score Compression Score

Figure 4. Exhaustive scoring of substrate libraries in vitro with SLICE

(A) (1, left) Schematic of activity sensor or fluorogenic probe. Activity sensor comprises a peptide substrate (blue and red bar) flanked with a fluorophore (yellow
star = 5-FAM, red star = EDANS) and a quencher (black circle = Dabcyl). Upon cleavage, the fluorophore and quencher separate, which results in an increase in
fluorescent signal. (1, right) Cleavage assay of thrombin and substrate-1 showing the increase in number of substrates cleaved (y axis) over time (x axis). Black
dots are raw data. The slope (triangle) of the line of best fit (black line) is calculated as the product formation rate. Relative fluorescence unit (RFU)/min is used as
RFU correlates with the number of substrates cleaved. (2) Heatmap showing all pairwise combinations of product formation rates as measured from independent
cleavage assays. Proteases are in rows, and substrates are in columns. Data are natural log transformed.

(B) (1) Schematic showing that all uniqgue combinations of substrates, with library sizes ranging from 2 to 10, are scored with SLICE. (2) Histogram showing the
distribution of Sy, (red distribution) and Pg,,. (blue distribution) scores. (3) Histogram showing the distribution of the compression score, C (light blue distri-
bution). Vertical dashed lines depict the score of various controls. “No sensing” depicts the score of a library where kinetic constant = 0 for all protease-substrate
pairs. “Randomly generated” depicts the score of a library where kinetic constants are randomly generated. “Perfect orthog. & coverage’ depicts the score of a
library where all proteases are sampled, and each substrate has no overlapping kinetic constants.

(C) (1) Principal-component analysis of 11 proteases selected from 162 found in original B16 study. Proteases selected as either exact match or as member of
same family as 11 proteases used in our study (A, part 2). Each dot represents one simulated sample (red = disease, blue = healthy). (2) Histogram showing the
distribution of Cs (light blue distribution) for all substrate libraries of size 2 (i.e., 2 substrates). (3) Plot showing correlation between C (x axis) and classification
performance (y axis, AUROC). Black line shows line of best fit.
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Figure 5. Experimental validation of substrate library design with SLICE

(A) Schematic of experimental workflow: (1) Two mixtures (A = blue, B = red) of 11 proteases are randomly generated. Each mixture is represented with a test tube
containing 11 proteases (Pacman shape). Relative size of protease roughly represents the relative concentration. Actual relative concentrations are plotted in bar
graph below (A = blue bars, B = red bars). (2) Schematic of experimental well plate containing samples of protease mixtures (1 circle = 1 well). Both mixtures are
independently pipetted 10 times each (blue well = mix A, red well = mix B) to create a population with variance due to pipetting error. One library is introduced to all
20 samples (10 of mixture A, 10 of mixture B), and the product formation rates of both activity-based sensors in the library are measured. (3) Schematic graph (not

(legend continued on next page)
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2,035 libraries) was higher than the benchmark score of randomly
generated libraries (C = 0.6), meaning that real substrates tended
to be more promiscuous than randomly generated substrates
(Figure 4B, part 3). To validate that C is predictive of substrate li-
brary performance using empirically derived kinetic constants
(i.e., product formation rates), we repeated the pipeline described
in Figure 2 using the product formation rates found in Figure 4A.
We trimmed down the list from 162 to 11 protease genes that
were either from the same family or an exact match to the 11 pro-
teases used in our experiments and simulated 100 healthy and
100 disease samples (Figure 4C, part 1). To fix library size, we
calculated the distribution of Cs of all libraries comprising only
two substrates (Figure 4C, part 2) and found that this distribution
closely matched the score distribution for all library sizes (Fig-
ure 4B, part 3). We evaluated the classification performance for
all 55 libraries of size 2 and found that C correlated with the
AUROC (Figure 4C, part 3; Pearson’s r = 0.55). Here, we demon-
strated that constructing a library with SLICE involves (1) selecting
a candidate pool of substrates that broadly recognize known pro-
tease targets, (2) measuring a kinetic parameter for each prote-
ase-substrate pair, and (3) identifying the optimal library/libraries
by evaluating C.

Experimental demonstration and validation of substrate
library design with SLICE

To validate the efficacy of a promiscuous substrate library de-
signed with SLICE, we created an in vitro classification challenge
for detecting dysregulated protease activity. To represent the two
classification groups (i.e., protease mixture A versus protease
mixture B; Figure 5A, part 1), we randomly generated two distinct
mixtures of the same 11 target proteases from previous experi-
ments (Figures 3 and 4). We incubated the library separately
with 10 hand-pipetted repeats of both mixtures to introduce vari-
ance in the protease concentrations within the same group (Fig-
ure 5A, part 2). To evaluate the classification performance, we
used the product formation rates of each substrate as the obser-
vations used to train a random forest model and calculated the
AUROC for all test set samples in all 5-fold cross-validation iter-
ations (Figure 5A, part 3). As a negative control, we tested a li-
brary with a low C (C < 0.5) to benchmark the performance of
the SLICE library (C > 0.9) (Figure 5A). The kinetic parameter heat-
map for the SLICE library (C = 0.95) showed that there is at least
one substrate that can sense each protease, and the substrates
only overlapped on one protease target (i.e., MMP8). Conversely,
the negative control library (C = 0.49) does not sense 3 proteases

Cell Reports Methods

(i.e., MMP1, MMP7, MMP13), and the substrates overlap on 4
protease targets (i.e., KLK2, CTSS, plasmin, factor Xla) (Fig-
ure 5B). These results validate that the scoring system (i.e., C)
used in the SLICE method accurately represents Pgo,. and Sonh.
(Figure S4). We first assessed whether both cleavage signals of
a two-substrate library could be monitored simultaneously using
5-FAM and EDANS fluorophores. Cleavage of 5-FAM- and
EDANS-labeled substrates resulted in signal only in the expected
fluorescence channel with no detectable crosstalk. Furthermore,
the presence of an EDANS substrate had no significant effect on
the cleavage fluorescence of a 5-FAM substrate, nor did a 5-FAM
substrate affect cleavage signals of an EDANS substrate (Fig-
ure S5). Therefore, we proceeded to incubate each library with
all 20 protease mixtures (i.e., 10 repeats of mixture A, 10 repeats
of mixture B), and we plotted the results from each mixture in sub-
strate space (i.e., x axis = product formation rate of 5-FAM sub-
strate, y axis = EDANS substrate) (Figure S6). We observed that
the SLICE library (C = 0.95) provided strong separation between
mixture A and mixture B when compared with the negative con-
trol (C = 0.49) (Figure 5C). These results were confirmed by
AUROC analysis, where the SLICE library (C = 0.95) classified
all twenty mixtures with perfect accuracy (AUROC = 1) while
compressing the dimensionality from 11 proteases to 2 sub-
strates. By comparison, the negative control library (C = 0.49)
showed worse classification performance (AUROC = 0.58), which
held true across all temporal endpoints tested (Figures 5D and
S7). Further, we found that the same substrate signal (i.e.,
substrate-8) that resulted in a negative feature importance score
in the negative control (C = 0.49) library produced a positive
feature importance score in the SLICE (C = 0.95) library (Fig-
ure S8). This demonstrates that while promiscuous substrates
can be detrimental to certain libraries, pairing them with comple-
mentary substrates can improve the overall classification perfor-
mance of the library. Finally, we tested whether classification per-
formance is retained in a complex biological sample containing
plasma isolated from mice (n = 5; Figure 5E). Plasma contains
endogenous proteases (e.g., coagulation and complement pro-
teases) and protease inhibitors that may contribute background
noise and increase the challenge of classification.*®*° The
SLICE (C = 0.95) and negative control (C = 0.49) libraries were
incubated with 28 protease mixtures consisting of 14 repeats of
either mixture A or B mixed with plasma. Plasma from five biolog-
ical replicates was used as opposed to a single mouse in order to
further introduce variance across the samples. The SLICE library
again classified the two mixtures with higher accuracy than the

real data) showing that the library with a high compression score, C, (C > 0.9) should have high classification performance (blue line), whereas the library with low C
(C < 0.5) should have low classification performance (orange line).

(B) Heatmaps showing the product formation rates for the library with the highest C (C = 0.95 library) and the library with the lowest C (C = 0.49 library) (white = high
product formation rate, black = low product formation rate).

(C) Plot of the resulting product formation rates for each activity sensor after incubation with protease mixtures (1 dot = 1 mixture; blue dot = mixture A, red dot =
mixture B). The product formation rates from activity-based sensors using 5-FAM are plotted on the x axis, and product formation rates from EDANS are plotted
on the y axis. The top plot shows the results when using the C = 0.49 library, and the bottom plot shows the results when using the C = 0.95 library. Rates were
normalized from 0 to 1 for visualization.

(D) AUROC plot showing the results of classifying mixture A from mixture B when using the C = 0.95 library (blue trace) or the C = 0.49 library (orange trace).
(E) Schematic of workflow to test classification in citrated plasma.

(F) Plot of product formation rates for each activity sensor after incubation with protease mixture A or B in the presence of citrated plasma (plasma was isolated
from 5 mice, and assay was performed with 2-3 technical replicates each, for total of n = 14).

(G) AUROC plot showing classification results in plasma.
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negative control library (Figures 5F and 5G; AUROC = 0.93 versus
0.47). Here, we demonstrated that the SLICE method can select
for substrate libraries and assign C that accurately predicts
their classification performance when differentiating complex
protease activity.

DISCUSSION

Here, we develop a method, SLICE, for compiling libraries of pro-
miscuous substrates that sense protease activity for classifica-
tion or diagnostic applications. This method involves (1) select-
ing a candidate pool of substrates that sense the target
proteases, (2) measuring a kinetic parameter (e.g., kcat, Vmax
etc.) for each protease-substrate pair, and (3) identifying the
optimal library of a fixed size by evaluating the C. The advan-
tages of this method are that it enables the use of fewer promis-
cuous substrates (i.e., specific substrates not required) than the
number of target proteases. By comparison, the current para-
digm is to search for substrates that are specific to one protease
and use approximately the same number of substrates as prote-
ases. With these methods, all off-target protease activity is
considered background noise, which is traditionally filtered out
via chemical®® or computational methods.?**® As the number
of enzyme targets increases, it becomes increasingly difficult
to maintain specificity across all substrates. Further, since
each substrate requires a unique reporter, the number of simul-
taneous readouts becomes limited by cost (e.g., mass barco-
des®) or physical restrictions (e.g., fluorescence'®).

It is suggested that protease promiscuity bolsters fitness by
(1) providing alternative evolutionary starting points and (2)
increasing biological efficiency (i.e., multiple functions per
enzyme).'® We proposed that embracing protease promiscuity
could leverage the ubiquity of substrates that recognize multiple
targets. Serving as inspiration for the SLICE method, com-
pressed sensing (CS) is a signal processing technique that uti-
lizes measurements of a mixture of multiple target signals to
recover information of individual signals.®’ A well-known appli-
cation of CS is the single-pixel camera, which demonstrated
the ability to efficiently handle high-dimensional datasets (e.g.,
hyperspectral imaging, video, etc.) and inspired the use
of CS in magnetic resonance imaging’® and imaging transcrip-
tomics.*"*? CS utilizes compressed signals, which are a com-
posite of multiple different signals; this mirrors how the total
number of cleaved copies of a promiscuous substrate results
from a weighted combination of different proteases. However,
amajor difference is that our method does not require the decon-
volution of compressed signals (i.e., cleaved substrate signals)
as, unlike conventional CS, our approach aims to achieve high
classification performance and not to reconstruct the original
signal (i.e., individual protease activities). One consequence of
this is while CS requires that the original signal is sparse, our
approach may apply to cases where protease expression is
not sparse. Future iterations of SLICE could incorporate (1) CS
features (e.g., sparsity, incoherence) for substrate selection met-
rics (i.e., C) and (2) deconvolution of the compressed signals.
However, we found that compressed signals are often sufficient
for achieving high classification accuracy and would be
preferable for applications such as point-of-care®” or imaging di-
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agnostics,”? where fewer signals reduces the overall cost and
processing time.

We envision that SLICE will be useful for applications where
obtaining precise activity values per protease is less important
than detecting systems-level changes, such as disease staging,
classification, and diagnosis. Measuring protease activity at a
systems level accounts for activation, deactivation, and inhibi-
tion by other proteases and proteinase inhibitors in native biolog-
ical systems, which can occur in serum and in pathological
settings like cancer and coagulation.*®%9°%>* The ultimate appli-
cation of SLICE would be a universal substrate library that is
constructed by running all candidate substrates through a stan-
dardized test, which measures k.,; against all >600 recombinant
human proteases. From this library, various sublibraries target-
ing different groups of proteases could be extracted on a per-
application basis. For example, a diagnostic activity-sensor
library could be extracted from the universal library by defining
disease-specific target proteases ideally in pathologies that
can be diagnosed using blood or plasma samples, such as coag-
ulation disorders®® or cancer.*®°” While in vitro protease activity
measurements may not fully account for the dynamic states of
proteases in vivo,® future work could improve this by creating
more robust in vitro tests that sample proteases under multiple
states (e.g., redox, fluid dynamics, etc.) or developing in vivo
tests that isolate the activity from individual proteases.

Further, other classes of enzymes also exhibit promiscuity,*®
which means that the design rules presented in this work can
likely be extended to other promiscuous enzymes such as ki-
nases or phosphatases and their activity-based sensors.®*®’
For example, candidate substrates would be mapped onto sen-
sors that exhibit phosphorylation- or dephosphorylation-depen-
dent changes in signals (e.g., fluorescence).®® These sensors
would be used to measure enzyme-substrate kinetics and
generate an activity matrix, which could be processed using
the SLICE method. In conclusion, we present SLICE as a method
for embracing the use of promiscuous substrates for detecting
changes in protease activity, as an alternative approach to the
use of specific substrates. Given the ubiquity of promiscuous
substrates and the motivation to sense biological activity, we
anticipate that the ideas presented here will have broad applica-
bility to the field of enzyme sensing at large.

Limitations of the study

This study focused on a set of 11 proteases to demonstrate se-
lection of promiscuous substrates using the SLICE method.
Extension to larger panels of proteases, especially those dysre-
gulated in the context of disease, is warranted in future studies.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Chemicals, peptides, and recombinant proteins

Custom peptide library Genscript; this manuscript ~ Table S1

Human recombinant kallikrein 2 Prospec
Human recombinant cathepsin S R&D Systems
Human recombinant ADAMTS1 R&D Systems
Human plasmin Prolytix
Human alpha-thrombin Prolytix
Human factor Xia Prolytix

Human recombinant MMP11 Enzo Life Sciences

Human recombinant MMP8 Enzo Life Sciences
Human recombinant MMP7 Enzo Life Sciences
Human recombinant MMP1 Enzo Life Sciences

Human recombinant MMP13 Enzo Life Sciences

Cat#:ENZ-719
Cat#1183-CY-010
Cat#2197-AD-020
Cat#HCPM-0140
Cat#HCT-0020
Cat#HCXIA-0160
Cat#BML-SE282
Cat#BML-SE255
Cat#BML-SE181
Cat#BML-SE180
Cat#BML-SE246

Experimental models: Organisms/strains

Mouse: C57BL6/J The Jackson Laboratory

RRID:IMSR_JAX:000664

Software and algorithms

MATLAB MathWorks
GraphPad Prism GraphPad Software
Custom code for SLICE and other analysis  This paper

https://www.mathworks.com/products/matlab.html
https://www.graphpad.com/scientific-software/prism/
Open Science Framework: https://doi.org/10.17605/OSF.|I0/D36EV

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be addressed by the lead contact, Gabriel

Kwong (gkwong@gatech.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

® The data supporting the findings of this study are available within the paper and its supplemental information files. Raw data in

this paper is available from the lead contact upon request.

® The code supporting the findings of this study is publicly available at Open Science Framework: https://doi.org/10.17605/OSF.

IO/D36EV.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

For mouse plasma used in in vitro cleavage assays, plasma was isolated from wild-type C57BL/6J mice (Jackson Labs, female,
~8 weeks). These mice display a healthy phenotype and require normal animal maintenance and care. All animal procedures
were approved by the Georgia Tech Institutional Animal Care and Use Committee (protocol no. KWONG-A100193).

METHOD DETAILS

Cleavage assays

All protease cleavage assays were performed with a BioTek Cytation 5 Imaging Plate Reader, taking fluorescent measurements at
485/528 nm (excitation/emission) for read-outs measuring peptide substrates terminated with fluorophore 5FAM (5-
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Carboxyfluorescein) with quencher Dabcyl. Substrate sequences were identified from previous literature (e.g., substrate-2** and
substrate-4*°) or commercial products (e.g., substrate-7 (AnaSpec) and substrate-9 (Enzo Life Sciences)), or were generated
from consensus sequences compiled by the MEROPS peptidase database.?® In all conditions, substrate (20 1M) was added to pro-
tease (250 nM) in PBS for each well of a 384-well microplate immediately before reading began. For the in vitro classification chal-
lenge, two substrates (20 M) were mixed and added to a mixture of 11 proteases in PBS. For the classification challenge in plasma,
citrated plasma was isolated from C57BL/6J mice and added to the mixture of substrates and proteases to 25% of the reaction vol-
ume. Plasma was used to generate a more complex biological condition as plasma contains serum proteases and protease inhibitors
that could contribute to noise in the classification. Kinetic measurements were taken every minute over the course of 60-120 min at
37 C. Activity RFU measurements were normalized to time 0 measurement, and as such later time points (after time-0) represent fold
change in signal. Initial velocity, VO, or product formation rate (RFU/min) is calculated through the line of best fit on the changes in RFU
in the first 7 min after the time adjustment. For the classification challenges, product formation rates were normalized between 0 and 1
for each probe solely for data visualization, and unnormalized rates were used for classification. All fluorogenic peptide substrates
were purchased from Genscript.

Simulation pipeline for evaluating classification performance of simulated libraries

The simulated disease detection challenge is generated based on a melanoma gene microarray dataset [Matsushita, H. et al.]. This
mouse microarray gene expression dataset contains two conditions, healthy(day1) and disease(day7), providing a few samples per
condition. Among all known proteases and their corresponding genes, there were 162 proteases genes present in this dataset, which
is why the simulated disease detection challenge focused on 162 proteases. For each of the two conditions, an average protease
gene expression profile across the samples was calculated, which served as a proxy for the protease activity profile for each con-
dition in this simulated classification challenge.

The average protease gene expression profiles of the two conditions (healthy and disease) were used to generate simulated
healthy and disease data points. More specifically, 100 samples are randomly generated where each sample is simulated by adding
random Gaussian noise (centered around 0 with a SD of 2) to the average protease expression data. We generated 100 healthy sam-
ple based on the protease gene expression profile of day 1, and another 100 disease samples based on the protease gene expression
profile of Day 7. So, a total of 200 samples are simulated, half healthy and half diseased.

The noise level (SD2 mentioned above) was chosen such that the multi-variate machine learning classifier Random Forest per-
formed well (i.e., correctly classify healthy vs disease), while uni-variate classifier based on individual protease profiles does not
perform well. This choice of noise level represents a situation where we can classify well if we can accurately measure all protease,
but cannot classify well if we can only measure one protease. Such noise level would allow us to test whether measuring a few sub-
strates could achieve good classification close to the scenario where we measure all proteases.

For each simulated substrate, the number of proteases that can cleave the substrate is randomly generated between 10-30, and
the set of proteases that can cleave the substrate is randomly chosen among the 162 proteases. We create a vector with a length of
162, where each element(protease) is assigned either 0 if not chosen, or 1 if chosen. A set of random values are then assigned to the
chosen proteases, which represent the cleavage activity of the chose proteases with respect to the substrate. These random values
are generated from Gaussian distributions, and then normalized so that they sum up to 1. These values serve as simulated Kcat
values.

Panel number 2 of Figure 2 shows a matrix multiplication of two matrices. The first (leftmost) matrix contains the simulated expres-
sion levels for all 162 proteases in the dataset (columns) for the 200 simulated healthy or diseased samples (rows). The expression of
any given protease appears similar across healthy and diseased samples due to the Gaussian noise, so that a library of substrates
measuring many proteases would likely be necessary for accurate classification. The second (middle) matrix is a simulated substrate
vector of Kcat values that describes which proteases can cleave this substrate with what efficiency. This matrix multiplication pro-
duces 200 values, which represent the simulated measurements of the 200 simulated samples, if we apply one simulated substrate to
sense/measure the 200 samples. When we compare these 200 values against the ground truth label of healthy vs disease, we can
draw ROC and compute AUROC, which quantifies the classification power for an individual substrate, as shown in panel number 3 of
Figure 2.

QUANTIFICATION AND STATISTICAL ANALYSIS
Statistical analysis was performed using custom MATLAB code (Open Science Framework: https://doi.org/10.17605/0OSF.I0/

D36EV) and/or using GraphPad Prism. Statistical tests and sample sizes are stated in the figure caption. Unless otherwise stated
in the caption, center is defined as mean and error bars depict mean + SEM, and significance is defined based on p-value <0.05.
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