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Abstract

Reference governors are add-on predictive safety supervision algo-
rithms that monitor and modify, if it becomes necessary, com-
mands passed to a nominal system to ensure that pointwise-in-time
state and input constraints are satisfied. After briefly surveying the
basics of the reference governor schemes, this paper describes several
recent extensions of the reference governors. These include reduced
order reference governors with flexible error budget, reference gov-
ernors for nonlinear systems that exploit the logarithmic norm for
response bounding, stochastic reference governors, and controller state
and reference governors. Learning reference governors that are capa-
ble of handling constraints in uncertain systems are also discussed.

Keywords: State and control constraints, Reference governors, Predictive
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1 Introduction

Constraints refer to limits imposed on state and control variables which must
be satisfied during system operation. Examples of constraints include, but
are not limited to, actuator range and rate limits, pressure and temperature

∗On behalf of all authors, the corresponding author states that there is no conflict
of interest.

1



Springer Nature 2021 LATEX template

2 Protecting Systems from Violating Constraints Using Reference Governors

safety limits and obstacle avoidance requirements. With the continuing trends
towards growing system autonomy, improved performance and downsizing,
constraint handling and limit protection functions are becoming increasingly
important to enable engineered systems to operate safely at the “limits.”

Figure 1 illustrates the basic arrangement of a closed-loop system consist-
ing of a plant (system being controlled) and a controller that generates the
control signal u(t), where t denotes time, in response to the reference com-
mand (set-point) r(t) and plant state or output measurements. A disturbance
or uncertainty w(t) may also affect the plant response. In traditional control
design, the objective is to design a controller that generates a control signal
u(t) to track the reference command r(t) by suitable chosen performance vari-
ables z(t), so z(t) must be approximately equal to r(t) and this should happen
despite disturbances/uncertainties w(t) acting on the plant. When a system
also has state and control constraints, what this means is that there are addi-
tional requirements that certain variables or outputs y(t) of the closed-loop
system belong to a given set Y for all times, i.e., y(t) ∈ Y for all t.

Fig. 1 Closed-loop system with constraints.

One of the prototypical examples of a constrained system is an aircraft gas
turbine engine [1]. Such an engine has many constraints including low pressure
compressor surge margin, high pressure compressor surge margin, overspeed
and overtemperature limits, combustion lean blowout limit, flight idle limit,
actuator range and rate limits, and so on. The control system of the gas tur-
bine engine consists of two parts, power management and limit protection. It
turns out that the limit protection subsystem, that takes care of constraints,
is in many ways more extensive in terms of algorithmic and software footprint
than the power management subsystem, which adjusts fueling rate to gener-
ate thrust. In other applications, by enforcing constraints through the control
design, rollover for cars, trucks and ships, battery catching fire due to over-
heating, or aircraft disintegration in flight due to excessive structural loads
induced by aggressive maneuvering can be avoided.

This article describes the reference governor, an add-on predictive safety
supervision algorithm that monitors and modifies, if it becomes necessary, com-
mands passed to the nominal system to ensure that constraints are satisfied.
The basic arrangement with the reference governor augmenting the nominal
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closed-loop system is shown in Figure 2. The reference governor takes the refer-
ence command r(t) and modifies it, if it becomes necessary, to a safe reference
command v(t). The reference governor is inactive, so v(t) = r(t), if there is
no danger of constraint violation, and it will minimally modify the command
and make v(t) different from r(t) if it becomes necessary to prevent constraint
violation. As it turns out, such reference governor schemes can be developed
so that they are easy to implement and can operate with very fast online
(onboard) computations. In a nutshell, the reference governor design problem
boils down to defining a function that maps r(t), the state of the closed-loop
system x(t) and possibly past modified commands to v(t).

Fig. 2 Reference governor augmenting the nominal closed-loop system.

The reference governor is particularly helpful in a common situation,
where one already has a controller providing satisfactory tracking perfor-
mance, however, this legacy controller does not handle constraints. Due to
changed performance requirements (e.g., demands for increased agility) or due
to system downsizing the control system designers often find themselves in a
situation that constraints now have to be dealt with. In this case, they could
replace the legacy controller with an entirely different controller that han-
dles constraints such as a Model Predictive Controller [2]. Another approach,
which is appealing to practitioners as they are already familiar with the legacy
controller and reluctant to introduce drastic changes, is to simply augment
the existing controller with some kind of constraint enforcing mechanism. A
reference governor is one such add-on scheme that monitors the reference com-
mands to which the controller responds and modifies them if they create a
danger of constraint violation to preserve safety.

A comprehensive survey of the existing reference governor theory and its
various applications is contained in [3]. The objective of this paper is to review
and comment on the basic reference governor ideas and describe several more
recent extensions of the reference governor schemes that are not introduced
in [3], including reduced order reference governors with flexible error budget,
reference governors for nonlinear systems that exploit the logarithmic norm
for response bounding, stochastic (controller state and) reference governors,
and learning reference governors. For the latter, we will also mention several
open problems. This paper follows a plenary talk by the first author given
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at 2021 International Conference on Informatics in Control, Automation and
Robotics (ICINCO).

2 Reference Governor Basics

2.1 Safe sets and scalar reference governors

The key ingredient in constructing the reference governor is the notion of
the safe set defined as follows. Suppose we have a discrete-time model of the
nominal closed-loop system of the form,

x(t+ 1) = f(x(t), v(t), w(t)), (1)

y(t) = h(x(t), v(t)) ∈ Y, (2)

where w(t) ∈ W for all t ∈ Z≥0 = {0, 1, 2, · · · } is an unmeasured disturbance
bounded in a specified set W . Then the safe set is the set of all constant
commands and initial states that do not lead to constraint violation no matter
what the disturbance w is acting on the system:

O∞ = {(vr, x(0)) : v(t) ≡ vr, w(t) ∈ W ∀t ≥ 0 ⇒ y(t) ∈ Y ∀t ≥ 0}. (3)

We refer to O∞ as the safe set somewhat informally; more formally it is called
the maximum output admissible set (MOAS) [4].

And now with the safe set defined, the simplest reference governor that has
been proposed is the scalar reference governor or SRG, in which the modified
reference v(t) is a linear interpolation between the previous value of the modi-
fied reference, v(t−1), and desired reference, r(t), with the interpolating factor
denoted by κ(t) and determined as a solution to the following optimization
problem:

Maximize κ(t)

subject to

v(t) = v(t− 1) + κ(t)(r(t)− v(t− 1)),

0 ≤ κ(t) ≤ 1,[
v(t)
x(t)

]
∈ P ⊆ O∞.

(4)

If κ(t) is set to 1, v(t) is equal to r(t) and reference command is passed through.
If κ(t) is chosen to be less than 1, the reference command is modified. To
ensure that constraints are satisfied and reference modification is kept to a
minimum, κ(t) is chosen as the maximum value from the interval [0, 1] subject
to the condition that the updated reference, v(t), and the system state, x(t),
are safe, that is, they are in the subset called P of MOAS O∞. This subset
P can be quite general. For instance, it does not need to be invariant under
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constant commands, and, in fact, simpler choices of P lead to simpler opti-
mization problems. For non-invariant (under constant commands) sets P , the
SRG optimization problem may become infeasible for some t; for these t then
κ(t) is set to zero. So to implement SRG, we need to be able to compute the
set P offline and then use it to determine κ(t) online.

2.2 Implementation of reference governors based on
linear models

The offline computations of P are simplest in the case of linear models of the
form:

x(t+ 1) = Ax(t) +Bv(t), (5)

y(t) = Cx(t) +Dv(t) ∈ Y, (6)

where A is stable (i.e., a Schur matrix with all eigenvalues strictly inside the
unit disk of the complex plane), and when the constraints are imposed on the
output which is a linear function of the state x and the command v, while the
constraint set Y is polyhedral and given by affine inequalities

Y = {y : Hy ≤ h},

with h > 0, where the inequality is understood as componentwise. One advan-
tage of linear models is that it is very easy to predict future response of y(t)
to an initial state x(0) and constant command, v; this prediction is given by

v(t) = v ∀t ⇒ y(t) = CAtx(0) + C(I −At)(I −A)−1Bv +Dv,

which is what the state transition formula reduces to in the case of constant
input. Then one can construct a set, Õ∞, which is an inner approximation of
O∞ and is defined by linear inequalities:

Õ∞ =

{
(v, x(0)) :
HD HC

HCB +HD HCA
...

...

HC(I −At∗)(I −A)−1B +HD HCAt∗

HC(I −A)−1B +HD 0


[

v
x(0)

]
≤


h
h
...
h

(1− ϵ)h


}
.

In this expression, each row corresponds to the requirement that the pre-
dicted output t steps ahead is safe, i.e., satisfies the constraints [3]. It turns
out that one only needs to build these rows up to some finite time instant
t∗ = t∗(ϵ) (which can be computed or estimated a priori) if the constraints
on the steady-state output, represented by the last row, are slightly tightened
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with 1 ≫ ϵ > 0. Finally, the set P can be generated from Õ∞ by eliminating
redundant and almost redundant inequality constraints and using a tightening
procedure [5]. Thus the offline part of constructing P is quite straightforward.

The online computations of κ are also easy, as κ is a scalar. The conditions
that v(t) and x(t) belong to P , when P = {(v, x) : Hvv + Hxx ≤ h} is
a polytope, reduce to solving a system of linear inequalities where the only
unknown is the scalar variable κ:[

v(t− 1) + κ(r(t)− v(t− 1))
x(t)

]
∈ P ⇔ ai + biκ ≤ ci, i = 1, · · · , nP ,

0 ≤ κ ≤ 1,

where ai = Hv,iv(t − 1) + Hx,ix(t), bi = Hv,i(r(t) − v(t − 1)), ci = hi, i =
1, · · · , nP . Solving such a system can be done explicitly without needing any
iterative solver, that is, one can write down an explicit formula for the solution:

κU = min{ min
i: bi>0

{ci − ai
bi

}, 1},

κL = max{ max
i: bi<0

{ci − ai
bi

}, 0},

κ =

{
κU if κL ≤ κU and ai ≤ ci for all i such that bi = 0,
0 otherwise.

Hence is very easy to compute κ(t) online while software implementing such
computations is quite simple.

Much of the same offline and online procedure extends to the case of linear
systems with set-bounded disturbances, w(t) ∈ W . The extension relies on the
use of Pontryagin (P)-difference [6] between sets

X ∼ W = {x : x+ w ∈ X ∀w ∈ W},

and the superposition principle for linear systems which enables to account for
the effect of the disturbance on the system response with easy-to-mechanize
set operations. The details are given in [5] and elsewhere.

Example 1 To provide an illustration of the reference governor operation, we consider
a simple example of single axis reorientation of a spacecraft with a flexible appendage.
The equations of motion in continuous-time are given by

Jθ̈ +
√
2δq̈ = u

q̈ + σ2q +
√
2δθ̈ = 0

where the angle θ specifies spacecraft orientation and q is the modal coordinate
of the first elastic mode that informs the appendage deflection. The values of the
parameters are J = 3026, δ = 35.865, σ = 1.112. The nominal controller is of
Proportional-Derivative (PD) type and generates the control moment, u, according
to

u = −Kp(θ − v)−Kdθ̇,
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Kp = Jω2
n, Kd = 2Jζωn,

where v is the target spacecraft orientation. The controller is purposefully made quite
aggressive to enable agile maneuvering with the desired closed-loop natural frequency
ωn = 0.05 and damping ratio ζ = 0.4. Suppose now the constraints are imposed on
the orientation, θ, elastic deflection, q, and control signal, u:

|θ| ≤ π

2
, |q| ≤ 0.01, |u| ≤ 0.5.

Figure 3 shows that without the reference governor the nominal closed-loop sys-
tem violates the constraints when responding to larger orientation change commands.
On the other hand, the reference governor designed on a discrete-time model obtained
from the continuous-time closed-loop system model assuming an update period of
Ts = 0.1 sec can successfully prevent constraint violations (Figure 4). It does so by
modifying the reference command from steps to ramp-like profiles. Note that in this
example we assumed a continuous-time (analog) PD controller. Of course, a digital
PD controller can also be treated as easily.
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Fig. 3 Time histories of θ (left), q (middle) and u (right) without the reference governor
(v = r) in response to command steps in r shown by dash-dotted blue lines (left). Constraints
are shown by horizontal dashed red lines.
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Fig. 4 Time histories of θ (left), q (middle) and u (right) with the reference governor in
response to command steps in r shown by dash-dotted blue lines (left). The time history of
v ̸= r is shown by magenta dashed line on the left plot. Constraints are shown by horizontal
dashed red lines.

2.3 Implementation of reference governors based on
nonlinear models

It is possible to extend the reference governor construction to nonlinear systems
with set-bounded disturbances and parametric uncertainties [7]. For nonlin-
ear systems, we generally look for a set P as a sub-level set of a continuous
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function Ṽ :

P = {(v, x(0)) : Ṽ (v, x(0)) ≤ 0}.

This subset should be safe and strongly returnable, that is, any state trajectory
corresponding to a constant command and initial state in this set should firstly
satisfy constraints (that is, be safe) and secondly it should eventually enter
the interior of the set P (which means strongly returnable). There are several
methods of constructing such a Ṽ function.

One approach is to construct it from a Lyapunov function of the closed-
loop system if such a Lyapunov function is known. Specifically, Ṽ (v, x) =
V (v, x) − Γ(v) where V is a Lyapunov function parameterized by the ref-
erence. This approach is illustrated and experimentally validated in [8] for
Electromagnetically Actuated Mass Spring Damper (EAMSD) system.

Another approach is data-driven and involves machine-learning applied
to train a classifier from simulation results or experimental data. With this
approach, the system response to different initial conditions and constant com-
mands is determined and a classifier is trained to distinguish between safe and
unsafe state-command combinations. This corresponds to

Ṽ (v, x) = min
j

ϕj(v, x),

where ϕj is one of possibly several trained classifiers such that

ϕj(v, x) ≤ 0 ⇒ (v, x) is safe.

Finally, it is possible to avoid constructing Ṽ explicitly at all, and simply
use the online prediction of the response of (1)-(2) to a given initial condition
and constant command over a sufficiently long prediction horizon [9]. Specifi-
cally, suppose all constraints are of the form, hi(x, v) ≤ 0, i = 1, · · · , nY , and
x(t; v, x(0)) denote the predicted response of the state at time t to a constant
command v and an initial state x(0) at the initial time of 0. Then, Ṽ is the
maximum predicted constraint violation, i.e.,

Ṽ (v, x(0)) = max
t=0,··· ,T

{
max

i=1,··· ,nY

{
hi(x(t; v, x(0)), v)

}}
,

where T is the chosen (sufficiently long) time horizon.
The online computation of κ in the SRG case for nonlinear systems is very

similar to the linear case, except that the constraints on κ are imposed in
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terms of a nonlinear function, Ṽ :

Maximize κ(t)

subject to

v(t) = v(t− 1) + κ(t)(r(t)− v(t− 1)),

0 ≤ κ(t) ≤ 1,

Ṽ (v(t), x(t)) ≤ 0.

If no feasible solution exists, κ(t) is set to 0 and some extra logic is added
to accept small increments v(t) − v(t − 1), only if the value of Ṽ function
is sufficiently decreased, specifically, Ṽ (v(t − 1), x(t)) ≤ −ϵ, where ϵ > 0 is
chosen consistently with the assumptions in [7]. To determine κ, one can use
bisections [9], or in some cases, for instance, if Ṽ is quadratic, the solution can
be given by an explicit formula.

Furthermore, when a Ṽ function as introduced above is known, it is pos-
sible to use an explicit feedback law to dynamically modify the reference v(t)
instead of relying on online optimizations to determine v(t). Reference gover-
nors in that form are called the Explicit Reference Governor [10–12], which is
particularly suitable for applications where computational power is too limited
or system dynamics are too fast to implement optimization-based strategies.

Example 2 To provide a simple illustration of the ease with which the reference
governor can be designed, we consider the following example of a continuous-time
closed-loop system,

ẋ1 = x21 + u, (7)

u = sat[−20,20]

(
− v2 − kP (x1 − v)− kIx2

)
, (8)

ẋ2 = x1 − v, (9)

which is a first order nonlinear system (7) under Proportional-plus-Integral (PI)
control (8)-(9) with kP = 5.6 and kI = 16 plus feedforward. The state x2 is the inte-
grator state (part of the controller rather than the plant). The kP and kI values are
designed to locally stabilize the system. As there are range limits on the actuator,
the control signal is saturated to the interval [−20, 20]; this saturation is treated as
a nonlinearity (i.e., not handled as a constraint). The system is highly nonlinear and
its trajectories can have a finite escape time due to x21 term in (7); for instance, the
response to x1(0) = −4, x2(0) = 0 and the reference command v = 2.56 exhibits
such instability. The PI controller is able to locally pre-stabilize the equilibria of
the form [v, 0]T for −4 ≤ v ≤ 2.56. Safe combinations of v and x(0) must satisfy
two requirements: stability, which is tested through simulations by checking whether
|x1(30) − v| < 0.01, and overshoot being less than 3.5 which is tested through sim-
ulations by checking x1(t) ≤ 3.5 for all 0 ≤ t ≤ 30. Safe and unsafe combinations
are shown in Figure 5 along with the set P chosen as a union of 4 polyhedral sets,
A(i)z ≤ b(i), z = [v, xT]T each well within the region of safe points and

Ṽ (v, x) = min
i=1,2,3,4

{ max
j=1,··· ,6

{A(i)
j z − b

(i)
j }},
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where j = 1, · · · , 6 indexes the rows of A(i). The thinnest of these sets, shown by red
color, contains the equilibrium manifold for −4 ≤ v ≤ 2.56 in its interior and hence
P is strongly returnable; the other sets are thicker and surround the equilibrium
manifold for −4 ≤ v ≤ 1, −4 ≤ v ≤ 0 and −4 ≤ v ≤ −1, respectively. The
cross section of each of these sets in x1 − v, x2 directions is square and maximized
subject to the constraint that each of these sets is not containing any unsafe points.
The response of x1 and u to the command profile r with the resulting reference
governor generating v is given in Figure 6. Note that the closed-loop response is stable
and tracks the reference command, while the overshoot stays below the imposed
constraint of 3.5. The reference governor was updating the reference each Ts = 0.1
sec. Note that since the set P is defined based on continuous-time simulations, the
same set P can be used to implement the reference governor with any other update
period, Ts, while intersample constraint violations are avoided. Clearly, the reference
governor has been able to extend the safe domain of attraction of the closed-loop
system. Other choices of the set P , e.g., using machine learning based classifiers
trained from the set of safe and unsafe points in Figure 5 can further improve the
speed of the closed-loop response.

A simpler first order filter between r and v, v̇ = − 1
τ (v − r) with a fixed time

constant (e.g., τ = 0.5 sec tuned by trial and error) could also be used to preserve
closed-loop stability in transitions between different commands and avoid overshoot
constraint violation, see Figure 7. Such a filter unnecessarily slows down system
response, which is visible in particular on steps down in command; however, unlike a
typical reference governor such a first order filter is purely a feedforward (open-loop)
solution and does not require any state measurements. The use of such sensorless
control for stabilization is interesting in that feedforward control is normally not
thought of as being able to provide stabilization, with a notable exception of vibration
control [13]. Sensorless feedforward reference governors can also be designed [14].

Fig. 5 Left: The set P defined as the union of four polyhedral sets, unsafe points (blue)
and safe points (green). Right: The trajectory with the reference governor superimposed
over the set P .

2.4 Reference governor theoretical properties

There is much known about reference governor theoretical properties for linear
and nonlinear systems with set-bounded disturbances and parameter uncer-
tainties [3]. In particular, feasibility at the initial time, that is, the ability to
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of u.
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Fig. 7 Time histories of r, v and x1 with the constant time constant pre-filter.

find v(0) for the given initial state x(0) such that (v(0), x(0)) ∈ P (or even just
(v(0), x(0)) ∈ O∞) implies constraint adherence for all future time instants, a
property called recursive feasibility. Furthermore, the modified reference, v(t),
can be guaranteed to converge to strictly steady-state constraint admissible
constant reference commands, r, in finite-time. Similar convergence results
hold for nearly constant and slowly-varying commands r(t) under suitable
assumptions. Finally, the reference governor enlarges the constrained domain
of attraction, i.e., the set of safely recoverable initial states, as compared to
the case when the reference is just passed through. This has been illustrated
for system (7)-(9) as, for instance, the response to x1(0) = −4, x2(0) = 0
and the reference command v = r = 2.56 exhibits instability and violates the
overshoot constraint but not if the reference governor is added.

3 Recent Reference Governor Extensions

Several dozens of extensions to the basic reference governor schemes above
have been developed in the published literature. Many of them are surveyed
in [3]. In the remainder of this paper we comment on a few that have been
developed more recently.
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3.1 Reduced order reference governor with flexible error
budget

The reduced order reference governor applies to closed-loop systems that can
be decomposed into a slow and fast subsystems and that after appropriate
coordinate transformations admit the following form,

xs(t+ 1) = Asxs(t) +Bsv(t), (10)

xf (t+ 1) = Afxf (t) +Bfv(t), (11)

y(t) = Csxs(t) + Cfxf (t) +Dv(t) ∈ Y, (12)

where Y is a compact and convex set with the origin in its interior. The
matrices As for the slow subsystem and Af for the fast subsystem are assumed
to be Schur. The objective is to design a reference governor to protect against
constraint violations in (12) without relying on the information about the fast
states, xf . That is, ideally, one would design the reference governor based on
the reduced order model,

xs(t+ 1) = Asxs(t) +Bsv(t),

ys(t) = Csxs(t) + (CfΓf +D)v(t) ∈ Y,

where Γf = (I−Af )
−1Bf and fast variables in the output equation are replaced

by their steady-state values. Since in transients, fast variables deviate from the
steady-state, this is clearly not enough.

We proceed as follows. Define e(t) = xf (t)− Γfv(t− 1), which is the error
between the steady-state of the fast subsystem corresponding to v(t− 1) and
current value of the fast state, xf (t). Suppose that v(t − 1) changes to v(t)
and stays constant afterwards, v(t + k) = v(t), k ≥ 0. Then, by straightfor-
ward algebraic manipulations based on the definition of e(t) and the dynamic
equation of xf (t) above, it follows that

e(t+ 1) = Afe(t)−AfΓf (v(t)− v(t− 1)), (13)

e(t+ k) = Afe(t+ k − 1) = Ak−1
f e(t+ 1), k > 1. (14)

Equations (13)-(14) reveal that the deviation of the fast states from the steady-
state can be managed by changing v slowly so that v(t)− v(t− 1) is small in
magnitude.

The theory of reduced order reference governor is developed in [15, 16]
essentially based on this insight. Here we illustrate the reduced order reference
governor construction in a slightly more general form, with the flexible error
budget, motivated by [17].

Formally, the reduced order reference governor design process is based on
selecting a compact and convex set Ex, with the origin in its interior, and



Springer Nature 2021 LATEX template

Protecting Systems from Violating Constraints Using Reference Governors 13

adjusting v to always maintain the error bounded as

e(t) ∈ c(t)Ex for all t ≥ 0, 0 < c(t) ≤ 1.

The set Ex must be contractive under Af , i.e.,

AfEx ⊆ λEx 0 ≤ λ < 1. (15)

The flexible error budgeting refers to choosing c(t) online differently for dif-
ferent t (of course, subject to certain conditions) rather than using a constant
value. Based on (13)-(14), e(t + 1) ∈ c(t + 1)Ex can be ensured by choosing
v(t) and c(t+ 1) so that the following condition is satisfied

−AfΓf (v(t)− v(t− 1)) ∈ (c(t+ 1)− λc(t))Ex, 1 ≥ c(t+ 1) ≥ λc(t). (16)

To complete the reference governor design, we need to satisfy two main
properties: safety (the application of v(t+ k) = v(t) should result in no future
constraint violations) and invariance (same safety property must hold for the
pair (v(t), xs(t+ 1)).

Firstly, note that based on (13)-(14) and (15), e(t+1) ∈ c(t+1)Ex implies
for k ≥ 1 that e(t+k) ∈ Ak−1

f c(t+1)Ex ⊆ λk−1c(t+1)Ex ⊆ c(t+1)Ex. Hence

y(t+ k) = Csxs(t+ k) + Cf (e(t+ k) + Γfv(t+ k − 1)) +Dv(t+ k)

∈
{
Csxs(t+ k) + (CfΓf +D)v(t)

}⊕
Cfc(t+ 1)Ex, k ≥ 1

y(t) = Csxs(t) + Cf (e(t) + Γfv(t− 1)) +Dv(t)

∈
{
Csxs(t) + (CfΓf +D)v(t− 1) +D(v(t)− v(t− 1))

}⊕
Cfc(t)Ex

Define for 0 < c < 1 the set

Ỹ c =

{
y : y

⊕
CfcEx ⊆ Y

}
= Y ∼ (CfcEx)

and suppose this set is nonempty with the origin in the interior. Then let

Õc
∞ =

{
(v, xs) : CsA

k
sxs + Cs(I −As)

−1(I −Ak
s)Bsv

+(CfΓf +D)v ∈ Ỹ c, k = 0, 1, · · · ,

and Cs(I −As)
−1Bsv + (CfΓf +D)v ∈ (1− ϵ)Ỹ c

}
, (17)

where 1 ≫ ϵ > 0. The last constraint ensures strict steady-state admissible
and that the set Õ∞ is finitely determined. To ensure that the pair (v(t), xs(t))
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is safe based on the above, it is sufficient to ensure that

(v(t), xs(t)) ∈ Õc(t+1)
∞ . (18)

Suppose now that the command-state pair at t− 1 was feasible, i.e., (v(t−
1), xs(t−1)) ∈ Õ

c(t)
∞ . By definition of Õ

c(t)
∞ , this ensures that Csxs(t)+(CfΓf+

D)v(t− 1)+Cfc(t)Ex ⊆ Y but may not be sufficient to guarantee that y(t) =
Csxs(t) + (CfΓf +D)v(t− 1) +D(v(t)− v(t− 1)) + Cfc(t)Ex ⊆ Y if D ̸= 0.
Hence, an extra condition,

Csxs(t) + (CfΓf +D)v(t− 1) +D(v(t)− v(t− 1)) ∈ Ỹ c(t) (19)

needs to be imposed on the selection of v(t). Clearly, v(t) = v(t − 1) and
c(t+ 1) = c(t) is always a feasible choice.

Finally, the reduced order reference governor can be defined as the solution
to the following optimization problem:

Minimize ∥r(t)− v(t)∥2 with respect to v(t), c(t+ 1)

subject to (18), (16), (19) .

Note that this reduced order reference governor is of non-SRG type, and that a
simplified implementation with constant c(t) = c where 0 < c < 1 is possible,
which corresponds to the fixed error budget [15, 16].

From the computational standpoint, the constraint (16) appears to be more
problematic, as it involves a potentially high dimensional set Ex and matrices
Af and Γf . However, note that v(t) and c(t+1) are low-dimensional and hence
many constraints in (16) are redundant and can be eliminated offline, greatly
simplifying (16).

Extensions of the reduced order reference governor to more flexible schemes
such as Extended Command Governors [18] and the use of state observers is
done in [15]. Extensions of the reduced order reference governor to the use of
subsets P c ⊂ Õc

∞ and to nonlinear models remain open problems.

3.2 Reference governors based on overbounding the
nonlinearity using logarithmic norms

The mechanism for determining the safety of a state and constant command
pair ultimately relies on the prediction and bounding of the response of the
system. The prediction of the response based on linear/linearized models is par-
ticularly easy but in the case of nonlinear systems additional bounding of the
response deviation from that of the linear system is required. In the approach
presented in [19], this bounding is performed using logarithmic norms. A loga-
rithmic norm for an n×n matrix F induced by the conventional matrix norm
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∥ · ∥ is defined as

µ(F ) = lim
h→0+

∥In + hF∥ − 1

h
, F ∈ Rn×n.

For instance, if ∥ · ∥ = ∥ · ∥2 is the 2-norm, it can be shown that µ(F ) =
λmax

(
1
2 (F + FT)

)
[20].

In [19], a class of nonlinear continuous-time constrained systems with
bounded disturbances w(t) is considered of the form,

ẋ(t) = f(x(t), v(t)) + w(t), ∥w(t)∥ ≤ wmax, (20)

with pointwise-in-time state constraints

x(t) ∈ X, (21)

where X is a compact set. For this system, the linearized model at a given
state-command pair (xv(v̄), v̄) has the form,

δẋ(t) = fx(xv(v̄), v̄)δx(t) + fv(xv(v̄), v̄)δv(t) + w(t), (22)

where fx and fv denote the Jacobian matrices, and it is assumed that

µ(fx(x, v̄)) ≤ µe < 0 for all x ∈ X. (23)

The assumption (23) implies that the nominal closed-loop system possesses
desirable contractivity characteristics between trajectories. Then the error,
defined as,

e(t) = x(t)−
(
xv(v̄) + δx(t)

)
, (24)

between the response of (20) and (22) to a constant δv(t), can be shown to
satisfy

D+
t ∥e(t)∥

∆
= lim

h→0+

∥e(t+ h)∥ − ∥e(t)∥
h

≤ µe∥e(t)∥+ ηx∥δx(t)∥+ ηv∥δv∥,

and be bounded [19] as

∥e(t)∥ ≤ Γv(v̄)∥δv∥+ Γw(v̄)wmax, for all t ≥ 0, (25)

where [19]:

Γv(v̄) =
ηx∥fv(xv(v̄), v̄)∥ − ηvµ(fx(xv(v̄), v̄))

µeµ(fx(xv(v̄), v̄))
, Γw(v̄) =

ηx
µeµ(fx(xv(v̄), v̄))

,

and ∥fx(x, v̄)−fx(xv(v̄), v̄)∥ ≤ ηx, ∥fv(x, v)−fv(xv(v̄), v̄)∥ ≤ ηv for all x ∈ X.
Exploiting the above bound, and under suitable assumptions, the reference
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governor operation reduces to solving a quadratic programming (QP) problem
online. Furthermore, guarantees of recursive feasibility, constraint enforce-
ment (without intersample constraint violation) and finite-time convergence
to constant strictly steady-state constraint admissible references are available.

In a recent paper [21] the logarithmic norm bounding is employed for a
class of continuous-time systems with unknown but bounded delays and with
set-bounded disturbances. An explicit reference governor in the form of a
discrete-time update law, that corresponds to one iteration of an optimiza-
tion algorithm per discrete-time step, is considered. The results guarantee
finite-time convergence to constant strictly steady-state constraint admissible
references.

The technique of overbounding the nonlinear system response is quite gen-
eral. In particular, opportunities to base the reference governor design on more
general functional series expansions [22] remain to be exploited. In cases with-
out disturbances such expansions reduce to a Taylor series in δv; the first term
in this series can be computed by solving the standard sensitivity differential
equations.

3.3 Controller State and Reference Governor

Another recent extension of the reference governor to a more flexible scheme is
called the Controller State and Reference Governor or CSRG. This extension
first appeared in [23].

CSRG is used for systems controlled by dynamic controllers, for example,
controllers that incorporate integrators and have an integral action. In the
case when a controller is dynamic, its state, denoted by xc, is something one
can modify or reset in order to help satisfy constraints. An example of such a
system is (7)-(9) where xc = x2.

CSRG resets the controller state xc along with the reference modification.
For linear systems/models, CSRG operates by minimizing a quadratic func-
tion in a way that preserves desirable response properties and enlarges the
constrained domain of attraction. More specifically, if

x =

[
xp

xc

]
is the closed-loop system state where xp is the state of the plant and xc is
the state of the dynamic controller, CSRG operates by solving the following
optimization problem online:

(v(t), xc(t)) =

arg min
v(t),xc(t)

{
(v(t)− r(t))TS(v(t)− r(t)) + (x(t)− x̄v(t))

TF (x(t)− x̄v(t))

}
,

subject to
(
v(t), x(t)

)
∈ Õ∞,
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where x̄v denotes the steady-state corresponding to v, S = ST ≻ 0 and the
matrix F = FT ≻ 0 satisfies the closed-loop Lyapunov equation.

An application of CSRG to aircraft gas turbine engines with constraints on
compressor surge margins and fuel rate is considered in [23]. The fuel flow in
such an engine is adjusted using a PI controller which tracks the fan speed set-
point which is informed by the pilot PLA setting. CSRG is used to adjust the
fan speed set-point and reset the state of the integrator of the PI Controller.
It turns out that in this example CSRG very significantly extends the set of
safely recoverable states, that is, initial states for which subsequent operation
is possible without constraint violations. See Figure 8.

Fig. 8 The sets of recoverable deviations in fan speed and core speed in the gas turbine
engines by CSRG versus alternatives based on linear model.

Extensions of CSRG to the use of subsets P ⊂ Õ∞ and to nonlinear models
remain open problems.

3.4 Chance Constrained Reference Governor and
Controller State and Reference Governor

Another recently developed scheme is called the Chance Constrained Reference
Governor [24]. This reference governor scheme can handle stochastic distur-
bance inputs, w(t). This scheme was motivated by applications to the flying
wind turbine where there are disturbances due to wind and turbulence and
constraints on angle of attack and tether tension. The chance constrained
reference governor applies to system models with normally distributed i.i.d
disturbance inputs w(t) ∼ N (0,Σw):

x(t+ 1) = Ax(t) +Bv(t) +Bww(t),

y(t) = Cx(t) +Dv(t) +Dww(t) ∈ Y.

The chance constrained reference governor enforces chance constraints on the
system output imposed over the prediction horizon as

β ≤ Prob [y(t+ τ) ∈ Y ] , τ = 0, 1, 2, · · · ,
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where y(t+ τ) denotes the predicted output at the time instant t+ τ over the
prediction horizon. Given that the model is linear, the predicted output is nor-
mally distributed at each time instant t+ τ and its mean and variance can be
easily predicted allowing to reformulate the chance constraint as a determin-
istic constraint. The predicted mean and variance can be used to construct a
β-level confidence ellipsoid, which describes an ellipsoidal region within which
the output y(t + τ) has a probability of β to realize. Then, the chance con-
straint can be enforced by enforcing this β-level confidence ellipsoid to be
contained entirely in the safe set Y . The above confidence ellipsoid approach
is the approach adopted in [24]. However, in [25] it has been shown that in
most cases “(equal) risk allocation + inverse cumulative distribution function”
is a better (same form while less conservative) approach than this confidence
ellipsoid approach (see Fig. 2 of [25]). For the latter approach, one first applies
Boole’s inequality to separate the joint chance constraint into multiple indi-
vidual chance constraints (for the case where Y = {y : Hy ≤ h} has multiple
linear inequalities). Then, one uses the predicted mean and variance of y(t+τ)
and the inverse of the cumulative distribution function of the standard normal
distribution to re-express each individual chance constraint as a deterministic
constraint.

Unfortunately, since disturbances do not have compact support, recursive
feasibility even of the chance constraint cannot be guaranteed. The chance
constrained reference governor uses a very simple mechanism for infeasibility
handling by setting κ(t) = 0 that maintains the applied reference command
constant and equal to the previous value. It is proven in [24] that under initial
and strict steady-state feasibility assumptions, the chance constraint guarantee
is maintained in closed loop with the infeasibility handling mechanism, i.e.,

β ≤ Prob [y(t) ∈ Y ] for all t ≥ 0.

Furthermore, the modified reference command is shown to converge to the
desired constant strictly steady-state admissible reference command with
probability one:

Prob [ lim
tf→∞

(v(t) = rs ∀t ≥ tf )] = 1.

It is also possible [25] to develop a Chance Constrained Controller State and
Reference Governor (CSRG) which is able to not only modify the reference
command but also reset the states of the dynamic controller, xc. For instance,
it can reset the integrator states if the controller uses integral action to help
deal with the constraints. As in the chance constrained reference governor
case, one complication caused by the possibility of the stochastic disturbance
input taking arbitrary large values is that recursive feasibility cannot be guar-
anteed and so occasional infeasibility of CSRG optimization problem cannot
be avoided. A simple infeasibility handling mechanism is added, which main-
tains the last reference command and propagates controller dynamics without
reset in the event of infeasibility. For the closed-loop system with this infea-
sibility handling mechanism it is shown in [25] that the original (that is, the
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design-intent) chance constraints are satisfied. In addition, almost sure finite-
time convergence of the modified reference to strictly steady-state constraint
admissible constant references

Prob [∃tf ∈ Z≥ts such that v(t) = rs ∀t ∈ Z≥tf ] = 1

and mean square exponential boundedness for the closed-loop system state
have been demonstrated as well. For a number of examples, for instance, of
aircraft longitudinal and lateral dynamics with gusts we showed that the set of
recoverable states from which CSRG is able to enforce the chance constraints
is expanded by CSRG versus the conventional chance constrained reference
governor.

3.5 Learning Reference Governor

Another approach for applying reference governors to uncertain systems
involves the so called Learning Reference Governor or LRG. See Figure 9. For
instance, a system may have changed due to damage, loading, or in-field modi-
fications, e.g., a truck could be loaded by some bulky unknown load, and even if
one had a model for the system originally, it becomes no longer accurate. What
LRG does in this situation is that it experiments with the system applying
different piecewise constant command profiles, sees how the system responds,
and tries to learn the safe set based on the distance to constraint violation
boundary. Three variants of LRG have been proposed: machine learning-based
LRG which is analogous to our approach in Example 2, non-safety critical
version of LRG that learns from constraint violations during experimentation
and tightens an estimate of the safe set [12, 26], and a safety critical version
[27, 28] which ensures safe learning, that is, no constraint violations occur
during learning and after learning is completed.

Fig. 9 Learning Reference Governor.

The safety-critical LRG is arguably the most interesting of these variants.
To implement it, it suffices to measure two characteristics of system response
to step inputs. The first one is the steady state distance to constraint boundary,
denoted by d(v). The second one is the maximum transient response deviation
from steady-state, which is a function D(v,∆v,∆x) of the nominal value of
the reference command v, change in the reference command ∆v, and the state
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deviation from steady-state at the beginning of the step, ∆x. The dependence
on ∆x accounts for the initial state deviation from steady-state if the time for
system to settle down between steps is insufficient. The definitions of these
functions are illustrated in Figure 10.

Fig. 10 Definitions of functions D and d.

Now, if the Lipschitz constant of the function D is known a priori, this
knowledge can be combined with collected step response experimental mea-
surement data to compute an upper bound D̄(v,∆v,∆x) on D(v,∆v,∆x).
Then the condition,

D̄(v,∆v,∆x) ≤ d(v),

defines a safe set which can be used for implementation of the reference
governor. Specifically, the upper bound can be defined as

D̄(v,∆v,∆x) = min

min
i∈D

Di + L

∥∥∥∥∥∥
 v
∆v
∆x

−

 vi
∆vi
∆xi

∥∥∥∥∥∥
 , L

∥∥∥∥ [∆v
∆x

] ∥∥∥∥


Fig. 11 Forming an estimate of the safe set.

Then the reference governor finds v(t) = v(t − 1) + κ(t)
(
r(t) − v(t − 1)

)
,

where κ(t) ∈ [0, 1] is maximized based on the condition:

D̄
(
v(t− 1), v(t)− v(t− 1), x(t)− xss(v(t− 1)

)
≤ d(v(t− 1)).

In [27, 28], monotonic performance improvement and convergence proper-
ties of learning reference governor are established. It is shown that learning can
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be stopped at any time and the system can be deployed on the mission and is
guaranteed to be safe. Furthermore, finite-time convergence of modified refer-
ence v(t) to constant strictly steady-state admissible commands, r, is ensured.
Of course, more prolonged learning phases can ensure that the operation of
the reference governor is less conservative.

We have applied LRG to a variety of case studies, one of which is the
rollover avoidance for a truck [28]. In this case, the command for the truck is the
steering wheel angle and the constraints are imposed on the load transfer ratio
to avoid vehicle rollover. Note that learning can be performed in physical world
on an actual vehicle or in virtual world on high fidelity models if such models
are available and quickly reconfigurable. Such a learning reference governor can
be integrated into an autonomous motion planning and control algorithm as in
Figure 12. In [29], the learning reference governor is applied to the spacecraft
autonomous rendezvous, proximity operation and docking maneuvers.

Fig. 12 Reference Governor as a part of autonomous vehicle control system.

The above results are based on model simulations, but we have also tested
such schemes experimentally [30]. The non-safety critical version of learning
reference governor proposed in [12] has been tested experimentally on a run-
ning internal combustion engine. This non-safety critical learning reference
governor can violate constraints during learning and it learns from such con-
straint violations. After a sufficiently informative learning phase the learning
reference governor is able to avoid engine misfiring during engine decelerations
that could be caused by high exhaust gas recirculation. The learning reference
governor learns to slow down throttle closure in such a way as to leave enough
air in intake manifold for combustion and avoid engine misfire.

4 Concluding Remarks

The reference governor is an add-on supervisor to a nominal closed-loop system
which modifies the reference command in order to enforce the constraints. In
this paper we reviewed and commented on the basic reference governor ideas
and on several more recent extensions of the reference governor schemes. We
have also mentioned several open problems.
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[17] Di Cairano, S., Kalabić, U.V., Kolmanovsky, I.V.: Reference governor for
network control systems subject to variable time-delay. Automatica 62,
77–86 (2015)

[18] Gilbert, E.G., Ong, C.-J.: Constrained linear systems with hard con-
straints and disturbances: An extended command governor with large
domain of attraction. Automatica 47(2), 334–340 (2011)



Springer Nature 2021 LATEX template

24 Protecting Systems from Violating Constraints Using Reference Governors

[19] Li, N., Kolmanovsky, I.V., Girard, A.: A reference governor for nonlin-
ear systems with disturbance inputs based on logarithmic norms and
quadratic programming. IEEE Transactions on Automatic Control 65(7),
3207–3214 (2019)

[20] Afanasiev, V.N., Kolmanovskii, V., Nosov, V.R.: Mathematical Theory of
Control Systems Design vol. 341. Springer, Dordrecht (2013)

[21] Li, N., Geng, S., Kolmanovsky, I.V., Girard, A.: An explicit reference
governor for linear sampled-data systems with disturbance inputs and
uncertain time delays. IEEE Transactions on Automatic Control (2022)

[22] Gilbert, E.: Functional expansions for the response of nonlinear differen-
tial systems. IEEE Transactions on Automatic Control 22(6), 909–921
(1977)

[23] McDonough, K., Kolmanovsky, I.: Controller state and reference gov-
ernors for discrete-time linear systems with pointwise-in-time state and
control constraints. In: 2015 American Control Conference (ACC), pp.
3607–3612 (2015). IEEE
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