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Abstract
This work examines the pinning enhancement in BaZrO

3
(BZO)+Y2O3 doubly-doped (DD)

YBa2Cu3O7 (YBCO) nanocompositemultilayer (DD-ML)films. Thefilm consists of two 10 nm thin
Ca0.3Y0.7Ba2Cu3O7-x (CaY-123) spacers stacking alternatively with three BZO+Y2O3/YBCO layers
of 50 nm each in thickness that contain 3 vol%of Y2O3 andBZOdoping in the range of 2–6 vol%.
Enhancedmagnetic vortex pinning and improved pinning isotropywith respect to the orientation of
magneticfield (B)have been achieved in theDD-ML samples at lower BZOdoping as compared to
that in the single-layer counterparts (DD-SL)without the CaY-123 spacers. For example, the pinning
force density (Fp) of∼58GNm−3 in 2 vol.% ofDD-ML film is∼110%higher than in 2 vol%ofDD-SL
at 65K andB//c-axis, which is attributed to the improved pinning efficiency by c-axis aligned BZO
nanorods through diffusion of Calcium (Ca) along the tensile-strained channels at BZOnanorods/
YBCO interface for improvement of the interfacemicrostructure and hence pinning efficiency of BZO
nanorods. An additional benefit is in the considerably improved Jc(θ) and reduced Jc anisotropy in the
former over the entire range of the B orientations.However, at higher BZOdoping, the BZOnanorods
become segmented andmisoriented, whichmay change theCa diffusion pathways and reduce the
benefit of Ca in improving the pinning efficiency of BZOnanorods.

1. Introduction

The c-axis-aligned one-dimensional artificial pinning centers (1D-APCs), such as nanorods of BaZrO3 (BZO),
BaSnO3 (BSO), BaHfO3 (BHO), and YBa2(Nb/Ta)O6, in high temperature superconducting (HTS)
REBaCu3O7-x (RE=Y,Gd, Sm)films provide strong correlated pinning atB//c-axis [1–10]. However, the strain
field originated from the latticemismatch at the 1D-APC/REBCO interface could result in reduced
superconducting transition temperature (Tc) and critical current density (Jc) at temperatures close toTc [11–14].
Doping of APCswithmixedmorphologies of 1D (nanorods), 2D (nanoplates), and 3D (nanoparticles orNPs)
has been explored to reduce themodulated strain field associated to the high-concentration 1D-APC arrays [6,
15–19]. ReducedTc degradation and anisotropy of Jc and pinning force density (Fp) to the orientation of the
appliedmagnetic field are among the benefits of doping of APCswithmixedmorphologies. Among others,
double doping (DD) of 1D-APCs and 3D-APCs of Y2O3NPs, such as BZO+Y2O3, BHO+Y2O3, and BSO+
Y2O3 in YBCOhas been extensively studied [15, 20, 21]. High and Isotropic Jc is demanded for high-temperature
superconducting applications because it ensures that the superconductor has the same critical current density in
all directions includingmotors, generators, transformers,magnetics, etc [22–25]. Jha et al reported reduced Jc
anisotropy from180% to 80%with 3 areal%of Y2O3 and 3 vol.%BSO concentrations in YBCOas compared to
its singly-doped (SD) counterpart (with BSOonly) at 65K and 1T [15]. Similarly, Chen et al observed reduced
anisotropy in BZO+Y2O3DD films of varying BZO concentrations of 2–6 vol.% and 3 vol.% of Y2O3 [4]. Jc
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anisotropy as low as 18%has been observed at 65K and 9T byGautam et al in YBCODDfilms containing 2 vol.
%of BHO+3 vol.% of Y2O3 [21].

We recently reported amultilayer (ML) approach to improve the BZO1D-APCpinning efficiency by
diffusingCalcium (Ca) from thinCa0.3Y0.7Ba2Cu3O7-x (CaY-123) spacers to BZO/YBCO layers stacked
alternatively with the spacers [26, 27]. The observed pinning enhancement is attributed tomodification of the
BZO1D-APC/YBCO interface. Specifically, the diffusion of Ca into YBCOat the interface is argued to be driven
by the tensile strain onYBCO lattice, resulting in formation of short segments of stacking faults in the YBCO
columns near the interface associated to theCa/Cu substitution on theCu-Oplane of YBCOand hence
elongation of the c-axis constant of YBCO for reduced latticemismatch at the BZO1D-APC/YBCO
interface [27].

In this work, we explore the combination of theDD andML approaches by carrying out a comparative study
of BZO+Y2O3DD filmsmade in theML (DD-ML) and single-layer (DD-SL) configurations, seeking further
enhancement of pinning. Specifically, the study aims to explore whether the improved BZOpinning efficiency
byCa diffusion could be implemented inDD-ML samples for both enhanced Jc and reduced anisotropy. Both
DD-ML andDD-SL samples have afixed 3 vol.%of Y2O3 doping (with−4% latticemismatchwith YBCO),
while the BZO (with+7.7% latticemismatchwith YBCO) concentrationwas varied to 2, 4 and 6 vol.%, while
previous studies have only examined theML approach in BZO-doped YBCO filmswithout Y2O3 [27–31].Many
studies have been conducted onDD-SL YBCOfilmswith the goal of enhancing Jc and angular isotropic Jc
through the use ofmixedAPCs [4, 6, 15, 20, 21, 32, 33]. These investigations have focused on improving the
pinning properties of the films, which is crucial formaximizing the performance of high-temperature
superconductors. Our previous research found that theML approach improves pinning by repairing defective
interfaces throughCa/Cu replacement, resulting in a 5-fold increase in pinning force density inML films
compared to SLfilms. In this study, we systematically examine theDD-ML approach for the first time to
determine if theML approach still improves pinning in thesefilms compared toDD-SL films. In the following,
we report the experimental result.

2. Experimental

TwoMLfilm sets containing single doping (SD) and double-doping (DD) of BZO concentrations of 2, 4, and 6
vol.%, respectively were fabricated using pulsed laser deposition (PLD) fromBZOdoped YBCO targets of the
nominal compositions. PLD targets contain 3 vol.% of Y2O3 for the fabrication ofDD samples. In order tomake
DD-ML samples, a CaY-123 PLD target was adopted for deposition of the twoCaY-123 spacer layers of
thickness∼10 nmeach deposited alternatively with three BZO+Y2O3/YBCO layers. Therefore, the YBCODD-
MLfilms have amultilayer structure with three∼50 nm thick BZO+Y2O3/YBCO layers separated by two
alternating 10 nm thinCaY-123 spacers. Thefilmswere deposited on (100) SrTiO3 (STO) single crystal
substrates. AKrF excimer laser (wavelength∼248 nm, pulse energy∼450mJ)was used to ablate the target
material. The distance between the target and the substrate is set to 5.5 cm. The PLD repetition rates of 8Hz and
2Hz is used for the BZO+Y2O3/YBCOandCaY-123 layers. The deposition temperaturewas 825 °Cand the
oxygen partial pressure of 300mTorr has beenmaintained. The samples are referred to as 2%DD-ML, 4%DD-
ML, and 6%DD-ML respectively for ease of reference. A set of reference samples of 2%DD-SL, 4%DD-SL, and
6%DD-SL, were fabricated for comparisonwithDD-ML samples. DD-SL samples were fabricated using PLD
conditions similar to that forDD-ML samples except for themissing CaY-123 spacers. All PLD fabricated
samples were annealed in situ at 500 °C in one atmospheric oxygen pressure for 30 min after the deposition. It
should be noted that the PLD conditions for BZO+Y2O3/YBCO layers was optimized based on the previous
studies [8, 17, 34]. Tencor P-16 profilometer was used tomeasure thefilm thicknesses. TheDD-SL andDD-ML
films typically have thicknesses of 150–170 nmeach. The transmission electronmicroscopy (TEM)were used
for cross-sectional images of the samples by using a Thermo Fisher Scientific Themis-Z TEM systemwhich is an
aberration-corrected electronmicroscopewith a spatial resolution as small as 63 pmat an acceleration voltage of
300 kVwith combined correctors. Crystallinity and lattice parameters were determined by x-ray diffraction
(XRD) utilizing a BrukerD8Discover diffractometer. InDD samples, c-axis aligned BZOone dimensional-
artificial pinning centers (BZO1D-APCs) of diameter∼5–6 nmwere confirmed at lowBZOconcentration of 2
vol.% [28, 35], which are replacedwith segmented BZO1D-APCswith a large splay angle range at high BZO
concentrations.

Electric transport properties weremeasured on two parallelmicrobridges fabricated on each film using
photolithography.Wet etchingwith 0.05%nitrous acidwas adopted to remove the unwanted nanocomosite
films around the twomicrobridges. Thefinishedmicrobridges have lengths of 500μmandwidths of 20 and 40
μm, respectively. The details of the photolithography process can be found in our prior works [17, 35]. Silver
(Ag) contact pads of∼1mm in diameter and∼120 nm in thickness were deposited through a shadowmask on all
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samples usingDCmagnetron sputtering before photolithography to ensure good electric contacts. The
deposition rate for Agwas∼0.07 nm/second under an argon pressure of 30mTorr,. The electric power used for
the Ag sputtering is around 34watts. Platiniumwires of 50μmwere attached to the Ag pads using Indium to
make the electrical connection to themicrobridges. Critical current density (Jc)wasmeasured at different
appliedmagnetic fieldsB in the range of 0–9T at temperatures of 65–77K in aQuantumDesign Ever-Cool II
Physical PropertyMeasurement System (PPMS). The transport properties (Tc and Jc)weremeasured using the
standard four-probe technique. The Jcmeasurement was taken at differentBfield orientations ranging from θ=
0o (B//c-axis) to θ= 90o (B//ab-plane) in the planewithB perpendicular to Jc. The Jc (B) valueswere calculated
using a standard voltage criterion of 1μV/cm. The pinning force density (Fp)was calculated using the equation
Fp= Jc×B. Themaximumpinning force density (Fp,max) and its correspondingmagnetic field (Bmax)were
determined from the Fp (B) curves.

3. Results and discussion

The cross-sectionalmicrostructures of theDD-SL samples at lower (2%–4%) and higher BZOdoping are
schematically illustrated infigures 1(a) and (b) respectively. In the case of lower BZOdoping (up to 4%), an array
of BZO1D-APCs (black rods)with c-axis alignment is formed inside the YBCOfilm through strain-mediated
self-assembly [2, 36]. Based on theTEM image presented infigure 1(c), it appears that presence of the Y2O3NPs
(black circles) does not significantly affect themorphology and orientation of the BZO1D-APCs in this scenario.
The typical diameter of BZO1D-APCs in the sample is 5–6 nmwhich is comparable to that of the BZO1D-APCs
in BZO/YBCOSD (both SL andML)films [26, 27, 35]. As shown infigure 1(c), majority of the BZO1D-APCs
are through thefilm thickness aligned in c-axis (figure 1(c)). This is in contrast to the APCmorphology at higher
BZOdoping of 6% inwhich the BZO1D-APCs are in the formof short segments with randomorientations. The
reason for this could be attributed to the overlap of strain-field at higher BZO concentrations. For the BZO/
YBCOSD-SL samples, the distance between the c-axis aligned BZO1D-APCs,measured from surface of the
BZO1D-APCs, was determined to be 14.8 nm, 9.2 nm, and 6.1 nm respectively at 2%, 4%, and 6%BZOdoping
[7, 28]. According toCantoni et al, the strain field decaysmonotonically from the surface of BZO1D-APC and
becomes nearly zero at a distance of approximately 12 nm [11]. Thismeans amoderate strainfield overlap exists
even at the lowest BZOdoping of 2%. The overlap of the strainfield increasesmonotonically as the BZOdoping

Figure 1. Schematic description ofmicrostructures of the YBCODD-SL films at (a) lower BZOdoping (2%–4%) and (b) higher BZO
doping. Cross-sectional TEM images are exhibited on a (c) 4%DD-SL and (d) 6%DD-SL samples respectively.
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level increases. In the 6%SD-SL sample, themidpoint between BZO1D-APCs is approximately around 3 nm,
where the strain field reaches around 80%of itsmaximumvalue. Incorporating Y2O3 3D-APCs is likely to
induce local alteration in the strain field, and this effect would bemore pronounced at higher BZOdoping levels.
As a result, the self-assembly of APCs in theDD-SL samplesmay be altered. This leads to the formation of short
segments of BZO1D-APCswith a broad range of the splay angles deviating from the c-axis of the YBCOfilm.
This configuration is shown schematically infigure 1(b) and is confirmed by the experimental TEM image in
figure 1(d). This leads to a significantly reduced concentration of the c-axis-aligned BZO1D-APCs (dashed lines
infigure 1(d)).

It is worth noting that in this work, a BaZrO3+Y2O3/YBCO layer of 50 nm in thickness was grown as the
first layer in bothDD-SL andDD-ML samples. Thismeans themicrostructures shown infigure 1 are indicative
of bothDD-SL andDD-ML samples since theCaY-123 spacers are not expected to alter themorphology,
orientation, and concentration of the APCs. This argument has been confirmed in the reported SD-ML
nanocomposite films [26, 27, 30, 37], which suggests that amodulated strainfieldmay bemaintained in theDD-
ML samples with lowBZOdoping but not necessarily at a higher level of BZOdoping.

TheXRD θ−2θ spectra of 2%, 4%, and 6%YBCODD-SL andMLfilms are compared infigures 2(a) and (b)
respectively. The appearance of the (001)YBCOpeaks indicates YBCOnanocomposite filmswith c-axis
orientation on a (100) STO substrate. The Y2O3 peak at∼32o confirms the presence of Y2O3NPs in theDDfilms.
In addition, amajor BZO (001) peak can be seen at~40o in all samples as expected. The low peak intensity of
BZO andY2O3 peaks in figures 2(a) and (b) indicates that the doping concentration in theDD-SL andDD-ML
nanocomposite films is low. Estimation of the YBCOc-lattice constants is based on the YBCO (005) peaks. The
c-lattice constants of theDD-SL films are 11.75Å, 11.72Å, and 11.74Å respectively for 2%, 4%, and 6%YBCO
DD-SLfilms (see table 1). Comparable c-lattice constants of 11.72Å, 11.73Å, and 11.76Å are observed
respectively for 2%, 4%, and 6%YBCODD-ML films. Comparedwith the c-lattice constant of 11.67Å for
undoped YBCO [38], the BZOdoped YBCO samples have considerably larger c-axis lattice constants which are
indicative of tensile strain along the c-axis in dopedYBCO films [12, 13, 39] and the reduced latticemismatch

Figure 2.XRD θ−2θ spectra taken on (a) 2, 4, and 6%YBCODD-SL and (b) 2, 4, and 6%YBCODD-ML films. YBCO (005) rocking
curves taken on (c) 2, 4, and 6%YBCODD-SL films and (d) 2, 4, and 6%YBCODD-MLfilms. The spectrawere generated usingCu-
kα radiation ofwavelength 1.54 Å. The symbols#,+, *, and^ represent the YBCO (001), STO substrate (100), BZO (001), and BZO/
Y2O3 peaks respectively.

4

Mater. Res. Express 10 (2023) 046001 MPanth et al



Table 1.A summary of different parameters (structure and superconducting) of 2%–6%DD-SL andDD-ML films.

Sample ID APCdoping (vol.%) Tc (K) FWHM (005)YBCO (o) c lattice parameter (Å) Fp, max (77K)GN/m
3 Fp, max (65K)GN/m

3

2%DD-SL 2 vol.%BZO+ 3%Y2O3 85.7 0.486 11.75 0.71 52.48

2%DD-ML 2 vol.%BZO+ 3%Y2O3+CaY-spacer layer 84.0 0.638 11.72 2.14 57.46

4%DD-SL 4 vol.%BZO+ 3%Y2O3 87.6 0.471 11.72 3.33 49.49

4%DD-ML 4 vol.%BZO+ 3%Y2O3+CaY-spacer layer 84.0 0.446 11.73 1.71 34.81

6%DD-SL 6 vol.%BZO+ 3%Y2O3 87.8 0.957 11.74 3.95 67.5

6%DD-ML 6 vol.%BZO+ 3%Y2O3+CaY-spacer layer 85.5 0.483 11.76 2.10 28.47
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betweenBZO andYBCOnear the BZO/YBCO interface byCa substitution occurs locally as observed in BZO/
YBCOSD-ML samples [26, 27, 40].

The crystallinity of theDD-SL andDD-ML filmswas further analyzed in (005)YBCO rocking curves shown
infigure 2(c) (DD-SL films) and 2d (DD-ML films) respectively where black, red, and blue curves represent 2%,
4%, and 6% films. The full-width-at-half-maximum (FWHM) values of the (005) peak are 0.486o, 0.471 o, and
0.957 o for 2%, 4%, and 6%YBCODD-SL films. The values are 0.638 o, 0.446 o, and 0.483 o for 2%, 4%, and 6%
YBCODD-ML films respectively. These FWHMvalues (table 1) do not show any trendwith changing BZO
concentration for both sets of theDD-SL andDD-ML films, which is similar to the previous report for other
DD-SL (BSO+Y2O3)YBCOnanocomposite films by Jha et al [15]. Nevertheless, the relatively small FWHM
values observed suggest the crystallinity is preserved in theDD-SL andDD-ML films.

TheT
c
valueswere determined from theR-T curvesmeasured on theDD-SL andDD-ML films and the

values are summarized in table 1. Specifically, theTc values for 2, 4, 6%DD-SL films are 85.7 K, 87.6K, and 87.8
Kwhich are slightly higher than the 84.0K, 84.0 K, and 85.5 K for theirDD-ML counterparts. The reducedTc

values in theML samplesmay be attributed to the overdoping effect of Ca on the YBCO [26, 27, 41, 42]. In
addition, themonotonic increase of theTc valueswith increasing BZOdoping concentration in the case ofDD-
SL aswell as DD-ML films is consistent with previous reports as the consequence of strain relief through defect
formation [8, 15].

Figures 3(a) and (b) compare the Jc(B) curves of the 2%–6%DD-SL (open) andDD-ML (solid)films atB//c
in the field range of 0–9T at a temperature of 77K and 65K respectively. Opposite trends of Jc(B) have been
observed in the comparison at lower (2%) and higher (4%–6%)BZOdoping. respectively. In the former, the
DD-ML film outperforms its DD-SL counterpart with a higher Jc. value over the entiremagnetic field range at 77
K as seen infigure 3(a). For example, the Jc enhancement factors of 1.9, 3.6, and 4.5 times can be observed on the
2%DD-ML film at 1 T, 3 T, and 5T respectively over that of the 2%DD-SL film. In contrast, the 4% and 6%
DD-ML films have lower Jc(B) values as compared to theirDD-SL counterparts’. Higher Jc values are observed
mostly for the entire field rangewith increasing BZOdoping concentration in the case ofDD-SL films.However,
lower Jc is observed inDD-ML filmswith increasing BZOdoping contrary toDD-SLfilms. At 65K, in
figure 3(b), similar behavior is seen in the comparison of theDD-SL andDD-MLfilms except for a crossover in
the Jc(B) curves at around~5T for the 2%DD-SL andDD-ML films. Figures 3(c) and (d) compare the FP (B)
curvesmeasured onDD-SL andDD-ML samples atB//c-axis and at 77K and 65K respectively. All curves have a
similar inverted bell shapewith themaximumpinning force density Fp,max at the peak position ofBmax (table 1).
The enhanced Jc(B) leads to an enhanced Fp(B) for the 2%DD-ML films at both 77K and 65KovermostBfield

Figure 3.A comparison of Jc(B) curves taken on (a) 2, 4, and 6%DD-SL (open) andDD-ML (solid) samples at (a) 77K (b) 65K,
respectively. The Jcmeasurements were carried out atB//c. A comparison of Fp(B) plots for 2, 4, and 6%DD-SL (open) andDD-ML
(solid) samples at (c) 77K (d) 65K respectively.
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range. For example, the Fp,max of 2.14GNm
-3 is almost 4 times higher than that of the 2%DD-SL at 77K. In

contrast, the Fp(B) for 4% and 6%DD-ML samples are lower than their DD-SL counterparts’. Therefore, the
benefit of Ca diffusion is limited to lowBZO concentration of 2% in theDD-ML samples, which is in contrast to
the enhanced pinning for 2%–8%BZO/YBCO.

SD-ML samples as compared to their SD-SL counterparts [40]. This observation supports our argument that
it is thewell-modulated tensile strain at the BZO1D-APC/YBCO interface that provide the diffusion channel
for Ca ions from theCaY-123 spacers and facilitate the Ca/Cu substation on theCu-Oplanes of YBCOnear the
interface since the replacement of smaller Cu by a larger Ca ion (by~30%) is energetically preferred in the tensile
strained interface. InDD-SL andDD-ML samples, themodulated strainfield associated to the c-axis-aligned
BZO1D-APCs is disturbed by the doping of Y2O3 3D-APCs. This disturbance increases with BZOdoping as
evidenced in the decreasing concentration of the through-thickness, c-axis-aligned BZO1D-APCs at higher
BZO concentration. Even at the lowest BZOdoping of 2%, this disturbancemay still reduce theCa diffusion
along the BZO1D-APC/YBCO interface quantitatively and limit the benefit of Ca to lowfields.

Figures 4(a) and (b) compare the Jc (θ) curves of 2%DD-ML and 2%DD-SL at 77K and 65K respectively at a
few selected B fields. The 2%DD-ML shows higher Jc values than the 2%DD-SL in the entire angular range at 77
K and 3T (figure 4(a)). Specifically, an enhancement factor offive is observed. At 65K, a prominent Jc peak at
B//c-axis is observed for bothfilms at 5 T (black) and 9T (red) as shown infigure 4(b), which is attributed to the
correlated pinning arising from the c-axis aligned BZO1D-APCs. The Jc anisotropy, defined as
(Jc,max—Jc, min)/Jc, min, is∼128%and∼88% respectively for theDD-SL andDD-MLfilms at 5 T. At 9 T, reduced
anisotropy of∼97%and∼72% for theDD-SL andDD-ML films are observed. This result indicates the benefit of
Ca includes enhanced Jc(B) and reduced anisotropy in Jc(θ) in the 2%DD-ML samples. In contrast, the Jc(θ)
curves of 4%and 6%DD-ML films show lower Jc(θ) values as compared to theirDD-SL counterparts due to lack
of efficient Ca diffusion channels along the tensile strained BZO1D-APC/YBCO interface. However, it is
unclear whyDD-ML samples with 4 and 6%BZOdoping have reduced the Jc(B) and the Jc(θ).While Ca doping
of YBCOmay lead to considerableTc decrease, the damage onAPCpinning properties is not anticipated and
demands further research.

Figure 5 compares four different types of nanocomposites samples, namely SD-ML, SD-SL, DD-ML, and
DD-SL, of 2%and 6%BZOdoping at 65K. In both 2% and 6%cases, the SD-ML. films (red) have the highest
Jc(B) values as shown infigures 5(a) and (b). This suggests the coherent BZO1D-APC/YBCO interface plays a
critical role in determining the pinning efficiency of BZO1D-APCs as the dominant pinning centers in both SD
andDDcases. Figures 5(c) and (d) compare Fp(B) of the samefilms as infigures 5(a) and (b). Again, the SD-ML
samples at both 2%and 6%doping show the overall highest Fp(B). In these two samples, the Fp,max are 97.3
GNm-3 and 157.7GNm-3 are observed. Interestingly, at lowerfield<5T, the 2%DD samples outperform the 2%

Figure 4.A comparison of Jc(θ) curves of 2%DD-SL andDD-ML samples at (a) 77K and 3T, and (b) 65K and 5T and 9T,
respectively. A comparison of Jc(θ) curves of (c) 4%DD-ML andDD-SL films at 9 T and 65K, and (d) 6%DD-ML andDD-SL films at
9T and 65K, respectively.
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SD-SL sample while the 6%DD samples have lower Fp(B) in the entireBfield range. Considering the Fp(B)was
measured atB//c-axis, this is not surprising since the c-axis aligned BZO1D-APCs are reduced inDD samples.

The Jc(θ) curvesmeasured at 65K are compared infigures 6(a) and (b) for 2%and 6% films at amagnetic
field of 5T and 9T respectively. Intriguingly, the SD-ML films (red) at both BZOdoping levels have the highest Jc
values almost for the entire angular range of θ= 0° (B//c-axis) to θ= 90°(B//-ab-plane). Specifically, the Jc
enhancement atB//c-axis is 1.7 times for 2%SD-ML samples as compared to SD-SL counterparts at 5T and 65
K and it is 4.7 times for 6%SD-ML samples as compared to the 6%SD-SL samples at 9 T and 65K. This result
indicates strong pins, such as c-axis aligned BZO1D-APCswith improved pinning efficiency using theML
scheme could provide enhanced pinning even atB orientations away from the c-axis. Furthermore, the two 2%
DDsamples (green and blue) also exhibit higher Jc(θ) than the 2%SD-SL (black) sample’s at 5T (figure 6(a))
while the trend is reversed at 9 T (figure 6(b)), indicating that themixedAPCs in theDD samples are favorable
for high and isotopic pinning atmoderate B fields while the through thickness BZO1D-APCs are stronger pins
at higher Bfields.

Figures 7(a) and (b) compare themicrostructure of the SD-SL and SD-MLBZO/YBCOnanocomposite
films. In the former, a tensile-strain YBCOcolumn (in green color) of a fewnm in thickness forms around the

Figure 5.A comparison of Jc(B) curves taken on the SD-ML, SD-SL,DD-ML, andDD-SL samples with (a) 2%and (b) 6%BZOdoping
in BZO/YBCOnanocomposites. A comparison of the Fp(B) curves of the same SD-ML, SD-SL, DD-ML, andDD-SL sampleswith (c)
2% and (d) 6%BZOdoping respectively.B//c-axis in all cases.

Figure 6. (a)A comparison of Jc(θ) curves taken on SD-ML, SD-SL, DD-ML, andDD-SL nanocomposite filmswith (a) 2%BZO
doping at amagnetic field of 5 T, and (b) 6%BZOdoping at amagnetic field of 9 BZOdoping at T.
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BZO1D-APCdue to the large BZO/YBCO latticemismatch of∼7.7% [11, 12]. This columnprovides aCa
diffusion channel (indicated by red arrows along the column) in the SD-ML sample (figure 7(b)). Ca ion is∼30%
larger thanCu ion [43] and theCa/Cu substitution on theCu-Oplane of YBCOhas been found energetically
favorable in tensile-strained YBCOcolumn, resulting in YBCO c-axis elongation and reduced BZO/YBCO
latticemismatch to∼1.4% [26, 27, 31]. Consequently, the tensile strain in the YBCOcolumn ismuch reduced
(shown inwhite) and the BZO/YBCO interface is almost defect-free or coherent. The overall highest Jc(B) and
Jc(θ) in SD-ML samples as compared to others studied in this work suggest the importance of the BZO/YBCO
interface on pinning efficiency.When theML scheme is applied to theDD samples, the tensile-strain directedCa
diffusion along the BZO/YBCO interfacemay bemaintained at lowBZOdoping (figure 7(c)), which explains
the improved pinning in 2%DD-ML sample and no pinning enhancement inDD-ML filmswith higher BZO
doping since themodulated strainfield is altered by the Y2O3NPs and theCa diffusion channel is no longer
present (figure 7(d)). Thismeans the benefit of Ca diffusion relies on the presence of a Ca diffusion channel along
the tensile-strained YBCO column at the BZO/YBCO interface. It should be noted that Ca diffusion into BZO/
YBCO layersmay occur via other channels, while no positive effect on pinning has been observed.

The enhancement of themagnetic vortex pinning in theML-SD andML-DD (at lowBZOdoping of 2%)
samples led to overall improvement in the properties of the samples. The increase in pinning force density and Jc
allowed for the superconductor to carrymore current without resistance, which is essential formany
applications such asmotors, generators, and transformers. The reduction of anisotropy in Jc also improved the
uniformity of currentflow and reduced the risk of hot spots, which can cause damage to the device. Our study
showed that theML approach can be used to in SD andDDdoping cases to enhance pinning and improve the
overall properties of the samples, resulting in improved Jc and reduced anisotropy [26–28, 30, 40] .While in the
SD case, a similarmodulated strain field is present as the BZOdoping is varied from2% to 8% [30], it is
disturbed in theDD case. Furthermodification of theML approach is necessary tomaintain themodulated
strain to facilitate theCa diffusion along the BZO1D-APC/YBCO interface for enhanced pinning efficiency of
the 1D-APCs. This willmake an interesting research topic in future research for improvement of pinning in
superconductors for various applications.

Figure 7.Hypothetical schematics ofmicrostructures of (a) SD-SL, (b) SD-MLBZO/YBCOnanocomposite films. The green column
around the c-axis aligned BZO1D-APChighlights the tensile strainedYBCO column around the BZO1D-APCdue to the large BZO/
YBCO latticemismatch of∼7.7%. The red arrows in (b) depict theCa-diffusion from theCaY-123 spacers along the tensile strained
BZO/YBCO interface. The consequent elongation of the YBCPO c-axis leads to a reduced BZO/YBCO latticemismatch to∼1.4%
and reduces the tensile strain in the YBCOcolumn (white). The similar strain-drivenCa diffusionmay be preserved inDD-ML
samples at lowBZOdoping (∼2%) (c) butmay be inefficient at higher BZOdoping (d).
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4. Conclusions

In summary, this study evaluates the combined effects of double-doping andmultilayer approaches on the
pinning of theDD-MLnanocomposite filmswith fixed 3 vol.%Y2O3 concentration and variable BZO
concentrations of 2, 4, and 6 vol.%, respectively. Several important observations have beenmade in this study.
First, it has been found that the benefits of the two approaches can be combined to yield higher and less
anisotropic Jc if the Ca diffusion fromCaY-123 spacers to the BZO/YBCOnanocomposite layer could be
controlled through the tensile-strained YBCOcolumns formed around the BZO1D-APCs to prevent the
formation of a defective BZO/YBCO interface, which enhance the pinning efficiency of the BZO1D-APCs. This
explains the observed enhancement of pinning in 2%DD-ML sample as compared to that of its counterpart
DD-SL sample. Quantitatively, the Fpmax of∼58GNm-3 at 65K andB//c-axis observed in the former ismore
than twice of that in the latter. Furthermore, the enhanced pinning efficiency of the BZO1D-APCs also lead to
enhanced Jc(θ) over the entire θ range orBfield orientation, indicative of an extended benefit of the Ca-induced
improved pinning strength in BZO1D-APCs. This leads to reduced Jc anisotropywith respect to theBfield
orientations in the 2%DD-ML sample. Finally, when themodulated tensile strained YBCO column is disturbed
inDD sampleswith higher BZOdoping, the benefit of Ca diffusion becomes negligible or even negative,
suggesting the pinning enhancement via other pathways of Ca diffusion into APC/YBCOnanocomposite films
is unlikely. Importantly, the comparison of the SD-SL, SD-ML,DD-SL, andDD-ML samples has revealed that
the BZO1D-APCswith a coherent interface with YBCOplay a dominant role in pinning of these nanocomposite
films as illustrated in the overall highest Jc(B) and Jc(θ) in the SD-ML samples.
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