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Abstract

Nitrous oxide (N20) evasion from streams and rivers is a significant, yet highly
uncertain, flux in nitrogen cycle models. Most global estimates of lotic N>O emission assume
that evasion rates are proportional to inorganic nitrogen inputs to a stream or river. However,
many field studies do not detect relationships between lotic NoO evasion and dissolved nitrogen
concentration, highlighting the need for better understanding of process-based controls on this
flux. This study reports four-year time series of pN>O and N>O evasion from eight nested
streams and rivers and detects an abrupt change in N>O dynamics associated with an intense
rainstorm. This rainstorm, and the associated hydrologic flood event, pushed forested reaches
across the watershed from consistent N>O sources to prolonged N>O sinks on an annual basis.
We attribute this shift to disturbance of incomplete denitrification in the stream network and
surrounding watershed, although alternate hypotheses are also discussed. There was continued
availability of NOs™ for in-stream processing, eliminating the possibility that NO3™ availability
limited N>O production, and post-storm N,O-to-nitrate ratios were lower than pre-storm ratios
suggesting that the large storm affected in-situ nitrogen processing rates. The sustained period of
post-storm N>O undersaturation resulted in net negative evasion for 2018 at fives of the eight
study sites, which mitigated emissions over the four-year study. This nonlinear response in N>O
dynamics illustrates the potential importance of storm events to control lotic N,O production and

emissions.
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Significance Statement

Nitrous oxide (N20) is a potent greenhouse gas that contributes to global warming.
Nitrogen undergoes biogeochemical transformations in streams and rivers, which can result in
production and emission of N>O. Most riverine N>O emission models are based on nitrogen
loading and emission factors, or the proportion of nitrogen inputs converted to and released as
N2O. These emission factors are highly uncertain, and field studies challenge their broad
applicability. In this study, we present four-year time series of N>O dynamics in eight streams
and rivers. We find that a large rainstorm caused a decrease in N>O concentration and emission
rates that was sustained for up to a year. The storm pushed forested streams and rivers from N>O
sources to N>O sinks, despite the continued presence of inorganic nitrogen. This non-linear
response is attributed to disturbance of incomplete denitrification in the streambed and the

surrounding watershed and is relevant to aquatic nitrogen cycling and to N>O budgets.
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Introduction

Nitrous oxide (N20) evasion from streams and rivers is a significant, yet highly
uncertain, flux in the global nitrogen budget. The two most recent global emission estimates
from streams and rivers disagree by a factor of four: 291 Gg-N yr™!' (Yao et al. 2020) and 72.8
Gg-N yr'! (Marzadri et al. 2021). Further, global riverine evasion estimates were much higher
~10-20 years ago due to changing modeling methodologies (e.g., 1260 Gg-N yr! in Kroeze et al.
2005 and 680 Gg-N yr! in Beaulieu et al. 2011). Most estimates of N,O emission from streams
and rivers are based on dissolved inorganic nitrogen (DIN) loading and emission factors (EFs),
or ratios that predict N>O emission from nitrate (NO3") or total nitrogen (TN) loading (Seitzinger
and Kroeze 1998; Beaulieu et al. 2011; Hu et al. 2016). In the last two decades, there has been a
decrease in estimates of global lotic N>O evasion (Figure S1), reflecting both lowering EF
estimates and moves towards process-based modeling approaches (Maavara et al. 2019; Yao et
al. 2020; Marzadri et al. 2021). Process-based modeling of aquatic N>O production is especially
warranted because various field studies have shown that N>O evasion rates do not, or only
weakly, correlate with NO3z™ or TN concentration (Cole and Caraco 2001; Rosamond et al. 2012;
Soued et al. 2016). Moreover, only one upscaling estimate to-date is based on direct
measurements of N>O in streams or rivers (Soued et al. 2016), reflecting the lack of direct N,O
measurements and limited understanding of the controls on lotic N>oO dynamics.

Spatiotemporal controls on lotic N>O dynamics are poorly understood, which limits
modeling efforts. Spatially, urban (McMahon and Dennehy 1999; Beaulieu et al. 2010, 2011)
and agriculture (Beaulieu et al. 2011; Audet et al. 2017; Mwanake et al. 2019) landcover types
have been associated with high terrestrial nitrogen loading and subsequent high lotic N>O

emissions. However, a recent study showed that forested rivers have similar NoO concentration
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as agriculture rivers (Audet et al. 2020). Further, within-site NoO concentration and emission
variability are difficult to predict. Controls of N>O dynamics other than, or in addition to,
nitrogen include dissolved oxygen (Rosamond et al. 2012), temperature (Beaulieu et al. 2010;
Venkiteswaran et al. 2014), and pH (Audet et al. 2020). Even seasonal patterns are not
straightforward nor consistent across systems, with some studies showing summer peaks
(Beaulieu et al. 2010; Rosamond et al. 2012; Qin et al. 2019), others showing high winter or fall
concentrations (Beaulieu et al. 2008; Hama-Aziz et al. 2017; Audet et al. 2020), and still others
not detecting consistent seasonal patterns (Cole and Caraco 2001; Stow et al. 2005). This lack of
continuous or linear N>O response to any water quality parameter is reflected in the prevalence
of regression tree analysis in field-scale N>O studies (e.g., Stow et al. 2005; Venkiteswaran et al.
2014; Qin et al. 2019). Taken together, field studies suggest complex interactions between N>.O
predictors, which currently contributes to the field’s limited understanding of the mechanisms
driving N>O emissions.

The few studies that monitor dissolved N>O concentration over multiyear timescales find
significant interannual variability. For example, a four-year study showed that N,O
concentration in a river in China was an order of magnitude larger in one year compared to the
other three years; this interannual variability was much greater than variability attributed to
stream order, seasonality, and discharge conditions (Qin et al. 2019). Other time series have also
detected higher N>O concentration and emission rates in dry years, precipitation- or discharge-
wise, than in wet years (Baulch et al. 2011; Rosamond et al. 2012; Borges et al. 2018). There
are, however, exceptions to this wet-year versus dry-year distinction. For example, NoO
concentration was higher during an average summer than a dry summer in the Hudson River

(Cole and Caraco 2001). Additionally, a stream with relatively high N>O concentration showed
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an increase in N>O concentration during a wet year, while two streams with lower N,O
concentration exhibited a decrease (Baulch et al. 2011). In summary, interannual variability in
dissolved N>O concentration is significant, although the mechanisms behind this variability are
not yet understood.

In this four-year study, we monitored dissolved N>O concentration and evasion in eight
nested streams and rivers across a temperate forested watershed in the northeast United States.
We sampled these eight reaches both regularly and targeting storm events. The main goal of this
exploratory study was to assess the dominant sources of variation in N>O concentration and
emission rates in a forested watershed. The study design allowed for assessment of interannual
variability, as well as shorter-term variability associated with seasonality and episodic storm
events across spatial scales. Here, we contextualize the results of this exploratory research in
terms of ecological theory and suggest biogeochemical controls that future work should
investigate. Finally, we use these results based on direct NoO measurements to consider if current
modeling approaches have the potential to capture the major sources of variability in NoO
emission rates. These findings have implications for our understanding of lotic N>O emissions

and can inform future modeling efforts.

Methods

Site descriptions
Eight sites in Connecticut, USA were studied for four consecutive years (2016-2019).
The eight study reaches were nested across spatial scales in the Connecticut River Watershed.
One study site was located on the Connecticut River mainstem, ~15 km upstream of the
Farmington River confluence, while the remaining seven sites were located in the Farmington

River subbasin (Figure 1). The Connecticut River starts in Quebec, Canada and has a drainage
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basin that includes parts of four New England states (Figure 1). The watershed is predominately
forested (Figure 1, Table S1). The Farmington River sub-basin is also predominately forested
(Figure 1, Table S1), although the Hartford urban area influences the southeast part of the
watershed (Figure 1). Two sites were located on the Farmington River mainstem ~30 km apart;
the downstream of these sites (Farmington River 2) was impacted by the Hartford urban area,
while the other sites were not. The presence of wastewater treatment plants (WWTPs) reflects
this urbanization pattern, with only three WWTPs upstream of Farmington River 1 and an
additional five WWTPs upstream of Farmington River 2 (Figure 1).
Data collection

Headspace equilibration was used to measure the partial pressure of dissolved N.O
(PN20). Grab samples were collected both regularly (~monthly in 2016 and ~twice monthly in
2017-2019) and during high flow events. This sampling strategy allowed for representative
coverage of the hydrograph and is described in detail in Aho et al., (2021). Briefly, samples
were collected at representative flow exceedance probabilities: a mean of 0.48, a minimum of
<0.01, and a maximum of >0.94. All samples were collected in field duplicate from the
riverbank. For each sample, a 140-ml syringe was filled with 80 ml of water and 20 ml of N, gas
and then equilibrated by shaking underwater for 2 min. A 12-ml pre-evacuated Labco Exetainer
was filled with 15-ml of the equilibrated headspace until laboratory analysis on a Shimadzu
GC2014 or an SRI Model 8610C GC both with electron capture detectors. The gas
chromatographs were calibrated with N> blanks and 0.251 ppm, 0.951 ppm, 2.5 ppm, and 4.983
ppm certified Airgas N>O standards. The method detection limit was 0.07 ppm. Precision,

calculated as reproducibility of duplicate samples, was + 4.4%. Headspace pN>O was converted
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to aqueous pN>O using Henry’s Law and the ideal gas law as was described in Aho and
Raymond (2019).

Total dissolved nitrogen (TDN), nitrate (NO3"), nitrite (NO7"), and ammonia (NH4")
concentration data were downloaded from the National Water Information System (NWIS;
waterdata.usgs.gov/nwis/). The NWIS data were available for four of the eight study sites:
Bunnell Brook, Farmington River 1, Farmington River 2, and the Connecticut River mainstem.
Frequency of sampling varied across these four sites, with quarterly measurements available for
Farmington River 1, monthly measurements available for Bunnell Brook and Farmington River
2, and twice monthly to weekly measurements available for the Connecticut River mainstem (see
Table S1 for data availability summary).

Multiparameter sondes (Eureka Manta 2) were deployed at all sites to measure water
temperature, pH, specific conductivity, and dissolved oxygen (DO) at 15-min to 1-hr intervals.
Sensors were cleaned twice monthly and pH, DO, and specific conductivity calibrations were
checked at least quarterly. During calibration checks, if pH readings were off more than 0.1 pH
units, pH sensors were recalibrated using a three-point calibration. If DO readings were off more
than the lesser of either 0.3 mg I"! or 5%, DO sensors were recalibrated using 100% oxygen
saturated water. If specific conductivity readings were off by 5%, conductivity sensors were
recalibrated using a one-point calibration. Grab sample data was paired with the nearest-in-time
sensor reading.

For seven of the eight sites, 15-min discharge (Q) measurements were collected from
NWIS. At the remaining site (Phelps Brook), the USGS gage was inactive and so water stage
was measured with a pressure transducer (Hobo U20L) at 15-min to hourly intervals and

corrected for barometric pressure. Discharge was calculated with a rating curve based on Q
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measurements from flow meter transects and tracer dilutions (Turnipseed and Sauer 2010).
Hydrographs for Phelps Brook and Nepaug River are incomplete, starting June 10, 2017 and
June 15, 2017, respectively. At each site, the baseflow index (BFI), or the ratio of baseflow to Q,
was calculated with the baseflows() function from the hydrostats R package (Bond 2019) with
mean daily Q and an alpha value of 0.95. This function calculates baseflow using the Lynne-
Hollick filter, which is a digital filtering approach (Ladson et al. 2013). The BFI was used to
identify and rank hydrologic flow events across the study period for each site. Specific Q was
calculated as Q normalized to watershed size. Monthly groundwater table depths from near
Bunnell Brook and continuous groundwater table depths from near Hubbard River were also
collected from NWIS. Daily rainfall for the Farmington Hydrologic Unit (HUC: 01080207) was
collected from the National Oceanic and Atmospheric Administration National Centers for
Environmental Information (NOAA CDO).
Calculations and statistical analysis

Evasive N,O flux rates were calculated as the product of the air-water concentration
gradient ([N20]water — [N20 Jatm equilibrium) and the gas transfer velocity (kn20). Henry’s Law was
used to convert pN>O to [N2O] with temperature-dependent solubility constants (Weiss and Price
1980). A constant atmospheric pN>O of 0.33 patm was used for all calculations based on current
atmospheric conditions (CSIRO 2021). The normalized gas transfer velocity (keoo) was
calculated from water velocity and streambed slope according to Model Equation 4 from
Raymond et al. (2012) and then converted to knoo with temperature-dependent Schmidt numbers
(Wanninkhof 1992). Cumulative emissions were calculated as the product of the duration
between measurements and the mean flux of that interval as in Baulch et al. (2011). Finally, the

ratio of N found as N>O and as NO3~ was calculated. This study conservatively considers the
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N20:NOs ratio a proxy for in-stream nitrogen processing (i.e., representing the proportion of
NOs™ converted to N>O in-stream via incomplete denitrification compared to the remaining NO3")
while other studies have considered this ratio the “concentration method” for calculating EFs
(Clough et al. 2011; Outram and Hiscock 2012; Hama-Aziz et al. 2017; Qin et al. 2019).
Because samples for N>O and NO3™ were not collected concurrently, the ratio was calculated
from linear interpolation of the data and statistically compared only on the annual scale.

The relationships between water quality parameters and pN>O were investigated to
understand continuous controls on N>O dynamics. Concentration data was log transformed to
approximately meet normality assumptions when required and significance was considered p <
0.05 for parametric tests. Site-specific concentration data were compared visually with violin
plots and time-series plots and statistically with linear models using the /m() R function (R Core
Team 2020). Synchronicity of pN>O between sites was examined visually using loess smoothing
of time-series data. Seasonality was assessed with boxplots, ANOVA, and post-hoc Tukey
multiple comparisons of means. To detect abrupt changes, or change points, in site-specific
pN20 timeseries, we used the WindowSweep() function from the BCPA package (Gurarie et al.
2009; Gurarie 2014), which has been updated to handle irregular, univariate time series
(https://github.com/EliGurarie/bcpa/blob/master/inst/doc/bepa.R). We used a window size of 30

and threshold of 5.

Mixed-effects models accounting for within-site repeated sampling, with site as a random
effect, were used to assess environmental controls as fixed effects with the /mer() function from
the Ime4 R package (Bates et al. 2020). All parameters investigated were classified as fixed
effects in these models. Intercept was always allowed to vary by site, and slope was also

allowed to vary by site when model performance was improved according to the anova()
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function. First, all physical and chemical correlate variables (i.e., discharge, water temperature,
pH, DO, specific conductivity) were included in an initial model to assess environmental
controls of pN>O and assessed by standard errors and for multicollinearity. Then all candidate
predictor variables and variables associated with temporal trends (i.e., discharge, water
temperature, pH, DO, specific conductivity, date, storm indicator, and one-year post-storm
indicator) were included in a model. The one-year post-storm indictor was chosen by assessing
temporal trends and testing various post-storm timeframes. Then the step() function was used
for model selection. As a check, we compared selected model to other model iterations using
AIC/BIC, with a preference for BIC because of the explanatory aim of this study, and the
anova() function. We checked for potential autocorrelation by running the best model with the
Ime() function from the nlme R package (Pinheiro et al. 2021) with and without corCAR1
correlation structure assigned. The anova() function did not show a difference in performance
between the model with and the model without corCAR1 assigned, so we did not account for
autocorrelation in these models. All calculations and analysis were completed in R 4.0.2 (R Core

Team 2020).

Results

Partial pressures of N2O
Here, we report four-years of pN>O (n = 609) measurements from eight streams and
rivers in Connecticut. Across the dataset, the average pN,O (mean = sd) was 0.40 = 0.20 patm
(Table 1) with 64% of samples oversaturated compared to atmospheric equilibrium. According
to a linear model (log(pN>O) ~ timestamp + site), the urban-influenced Farmington River site
(Farmington River 2) had the highest pN>O (p <0.01). Additionally, Nepaug River and the

Connecticut River mainstem had significantly higher pN>O compared to all sites except
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Farmington River 2 (p < 0.05, for all sites). All sites, except the urban-influenced Farmington
River 2 site, experienced undersaturation, and were therefore sinks of atmospheric N>O at times
(Figure 2). Within site variability was notable, with site-specific coefficients of variation (CVs)
varying from 21% to 54%, compared to a CV of 40% for the complete dataset. Taken together,
within site variability was significant, with seven of the eight sites exhibiting periods of both
N0 oversaturation and N>O undersaturation.

No strong correlates (i.e., continuous physical and chemical variables) of pN>O were
identified. Mixed-effects models were used to explore the following correlates on pN>O: water
temperature, specific Q, pH, specific conductivity, and DO. All five variables were weak
predictors of pN>O with large standard errors relative to their estimates (Table S2). Specific Q
and DO had negative effects (reported as estimate + standard error throughout this section: -0.09
+0.02 and -0.31 £ 0.11, respectively), while water temperature, pH, and specific conductivity
had positive effects (0.009 = 0.003, 0.11 £ 0.06, and 0.26 & 0.10, respectively). Seasonality in
N»O saturation was generally very weak and inconsistent across years (Figure S2). Interannual
variability, however, was apparent, with the lowest N>O saturation values occurring in 2018

(Figure S3). This interannual variability is explored in the time-series results to follow.

Time-series analysis
Despite the lack of continuous controls on pN>O, the time-series data shows
synchronicity in pN>O between all sites except Farmington River 2 (Figure 3a, b). In general, all
sites were oversaturated with N>O from June 2016 until late October 2017, when there was a
sharp decline in pN,O at seven of the sites (Figure 3a). After this decline, all sites except
Farmington River 2 showed suppression of pN>O to below atmospheric equilibrium for an

extended period of at least six months (Figure 3a, b). By 2019, pN>O had generally returned to
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oversaturated levels at all sites (Figure 3a, b). Daily rainfall data show an intense precipitation
event occurred concurrent with this decline (Figure 3¢). In fact, > 14 cm of rain fell on October
30, 2017, making this storm the largest precipitation event of the four-year study (Figure 3c).
Taken together, the forested systems, which ranged from small headwaters (<10-km? drainage
basin) to the large Connecticut River mainstem (25000-km? drainage basin), showed remarkably
similar temporal patterns over the four-year study, including a nearly simultaneous decline from
oversaturation to undersaturation during or immediately after an intense rainstorm in late 2017.
The hydrographs at individual sites can be used to further contextualize pN>O patterns.
River discharge was below average compared to the 20-year record across the watershed during
the period of N>O oversaturation from 2016 until October 2017 (Figure 4, Figure S4). In fact, the
2016 water year had the second lowest flows of the 20-year record at all six sites with active
USGS gages and the 2017 water year had the third lowest flows at those same sites except the
Connecticut River. The sharp decline in pN>O in October 2017 (Figure 3a) coincided with
precipitation-induced (Figure 3c) high flows at all eight study sites (Figure 4, Figure S4). In
terms of absolute flow during the study period, discharges during this storm had very low
exceedance probabilities at all sites (0.11% - 1.57%, Figure S5). In terms of baseflow index
(BFI), this October 2017 rainstorm was associated with the largest hydrologic events of the study
period at all eight sites (Figure 4, Figure S4). Further, it corresponded with elevated
groundwater levels at the two sites with groundwater observations (Figure S6). The year
following the storm was wetter than the other three study years: 2018 was a typical year for river
discharge when compared to the 20-year record across the watershed (Figure 4, Figure S4, Table
S3) and the 2018 water year had the 7"-11% lowest annual flows over the 20-year record at the

six sites with active USGS gages. Further, the water table remained elevated until the 2019
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growing season (Figure S6). In addition, subsequent storms in January 2018, July 2018, and
September 2018 were among the top five largest storms for five, five, and four of the study
reaches, respectively (Figure 4, Figure S4). In summary, the intense precipitation event on
October 30, 2017 (Figure 3¢) broke a multiyear dry period and corresponded with a sharp decline
in pN>O to undersaturated levels that were largely maintained throughout the following wet year
(Figure 3a, b).

Change-point analysis of site-specific pN>O time series independently detects a
discontinuity following the large October 2017 storm in six of the seven forested systems (Figure
Sa, Figure S7). There was a subsequent shift back to oversaturation after 6-12 months at Phelps
Brook, Hubbard River, and the Connecticut River mainstem, while a post-storm recovery shift is
not detected via change-point analysis at the other forested sites. We returned to mixed-effects
models, using date as a fixed effect, to describe the temporal variability in the pN>O time series.
Including the storm as an indicator variable in the mixed-effects models significantly improved
performance compared to including only date. Additionally, an indicator variable for one-year
post-storm also improved model performance (compared to no post-storm indicator and post-
storm timespans of 1 month, 6 months, and 9 months). After considering all candidate predictor
variables and using stepwise model selection (Table S4), the best final model (Table 2) shows
that the storm indicator is a negative predictor of pN>O (estimate + standard error: -0.48 + 0.06),
as is the one-year post-storm indicator variable (-0.12 + 0.03). When the temporal
discontinuities are included, pH has a positive effect on pN>O (0.06 £+ 0.02). Model predictions
show a sustained decrease in pN>O for the year following the storm (Figure 6a), which is more
obvious when the effects of pH are removed (Figure 6b).

Relationships with other nitrogen species
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For the four sites with dissolved TDN, NOj3-, NO;", and NH4" data, NOs" is the dominant
form of inorganic N, accounting for 57 + 12 % of TDN (data given as mean + sd throughout this
section). Farmington River 2 had the highest TDN and NOs™ concentrations, followed by
Bunnell Brook, the Connecticut River mainstem, and Farmington River 1 (Table 1, Figure S8,
p<0.05 for all comparisons). Ammonium concentration was lower, accounting for 9 + 5 % of
TDN. Bunnell Brook and the Connecticut River mainstem had higher NH4" concentration than
the Farmington River sites (Table 1, Figure S8, p<0.05). Time series show that TDN and NOs"
increase after the October 2017 storm in Bunnell Brook (Figure 5b) but not at the other three
sites with data (Figure S9). Annual TDN and NO3™ concentrations in the two years before the
October 2017 storm and in the two years after were compared (i.e., Nov 2015- Oct 2016; Nov
2016 — Oct 2017; Nov 2017 — Oct 2018; Nov 2018 — Oct 2019). In Bunnell Brook, TDN and
NOs™ were significantly higher in the two years after the storm than in the year before the storm
(Figure S8, p < 0.05 for both comparisons). Nitrate concentration was significantly higher in
2019 than 2018 for Farmington River 2 and in 2019 than 2016 for the Connecticut River
mainstem (Figure S8, p < 0.05 for both). Ammonium concentrations were significantly higher in
2018 than in 2017 for the Connecticut River (Figure S8, p < 0.05). There were no other
significant annual differences for the four sites with data (Figure S8).

The ratio of N found as N>O and as NOs™ (i.e., the “concentration method” EF) was
calculated (Figure 5c, Figure S10). By site, Farmington River 1 had a higher N.O:NOs™ ratio
across the four-year study (0.0040 + 0.0012) than the other three sites with NO3~ data (0.0012 +
0.0006, 0.0015 £ 0.0008, and 0.0020 £ 0.0008 for Bunnell Brook, Farmington River 2, and the
Connecticut River mainstem, respectively). Additionally, N>O:NOs ratios were compared one

year before and one year after the large October 2017 storm. At all sites, the pre-storm N2O:NOs-
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ratio was significantly higher than the post-storm ratio (p<<0.01). At Bunnell Brook, the post-
storm N>O: NOs ratio (0.0009 £+ 0.0002) was less than half of the pre-storm ratio (0.0019 =
0.0004). At Farmington River 1, the pre- and post-storm ratios were 0.0044 + 0.0006 and 0.0032
+ 0.0008, respectively and at Farmington River 2, the pre- and post-storm ratios were 0.0021 +
0.0013 and 0.0013 £ 0.0006, respectively. Finally, the pre- and post-storm ratios in the
Connecticut River mainstem were 0.0025 £+ 0.0010 and 0.0017 £ 0.0005, respectively. In
summary, Farmington River 1, the site with the lowest NO3 concentration, had the highest
N20:NOs ratio, and all sites had higher pre-storm than post-storm N>O:NOs" ratios, although this
difference was strongest in Bunnell Brook.
N20 emissions

Across the four-year study, all sites were net sources of N>O to the atmosphere, although
there was considerable interannual variability. Evasive fluxes peaked in 2017 and were their
lowest in 2018 (Figure 5d, Figure S11). Timeseries show a shift from positive to negative
evasive fluxes after the October 2017 storm at all sites except Farmington River 2 (Figure 5d,
Figure S11). Evasive fluxes integrated over time show that net annual emissions were positive
for 2016, 2017, and 2019 for all sites with data (Figure 7). Five sites had negative emissions for
2018, meaning they were net annual sinks of N>O (Figure 7). Evasive fluxes were not calculated
for 2016 nor 2017 in Phelps Brook and Nepaug River because of the lack of discharge data
(Figure 7). In sum, interannual variability in NoO evasion was high, with most of the study

systems switching from N>O sources to N>O sinks following the large October 2017 storm.

Discussion

N20 concentration and evasion
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The N>O concentration and flux data reported in this study are generally within the
ranges of prior lotic N>O studies. To facilitate comparison with other studies, the mean +
standard deviation of N>O saturation in this study is 134 + 66%, which is equivalent to pN>O of
0.40 + 0.20 patm and a N>O concentration of 0.43 + 0.25 pg-N 1'!. Additionally, the mean +
standard deviation of evasive flux rates is 0.81 £ 2.7 mg-N m? d"!. Average N>O concentration
in this study is similar to those of three of four rivers in Belgium (127-197% saturation, Borges
et al., 2018) and the Congo River watershed (142% saturation, Borges et al. 2019); and N>O
diffusive flux rates in this study are similar to agriculture headwater streams in Michigan (0.84
mg-N m2 d'!, Beaulieu et al. 2008). On the other hand, this study reports higher N>O
concentration than a river in New Zealand (114% saturation, Clough et al. 2011) and African
rivers in general (0.26 ug-N I, Borges et al. 2015), and higher N>O fluxes than a coastal
watershed in North Carolina (0.31 mg-N m™ d-!, Stow et al. 2005), rivers on the Tibetan Plateau
(0.18 mg-N m2 d”!, Qu et al. 2017), and boreal rivers (0.05 mg-N m2 d!, Soued et al. 2016).
However, our average N>O concentration is lower than nearby first-order streams in Connecticut
(0.63 patm, Aho and Raymond 2019), forested (1.6 = 2.1 ug-N I'") and agriculture (1.3 = 1.8 pg-
N I'") streams in Sweden (Audet et al. 2020), and agriculture-influenced rivers in Kenya (0.51
ug-N I'', Mwanake et al. 2019), Belgium (1406%, Borges et al. 2018), and the Upper Mississippi
River (250%, Turner et al. 2016). In summary, the forested watershed in this study had moderate
N2O concentration and fluxes compared to global rivers and streams of various land uses and
land covers, with values higher than boreal and alpine watersheds but lower than many
headwater streams and agriculture-influenced systems.

In this study, the urban-influenced site was the exception, exhibiting significantly higher

N2O concentration and emission rates than the other seven study sites. Nitrous oxide
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concentration was about twice as high at the Farmington River 2 site as in the other seven sites.
Additionally, the Farmington River 2 site was the only site to be a constant N>O source to the
atmosphere. The Farmington River 2 site is influenced by different land use and land cover
relative to the other forested sites even though it is located only ~15 km downstream of the
Farmington River 1 site. There are eight WWTPs in the drainage basin of the Farmington River
2 site compared to just three for the Farmington River 1 site. Further, the Farmington River 2
site is influenced by the Hartford urban area and its drainage basin has about twice the developed
area as the upstream Farmington River 1 site (Figure 1, Table S1). Elevated N>O concentration
is likely attributable to increased urbanization and WWTP inputs because WWTP nutrient
removal processes produce significant amounts of nitrogen species, including N,O (Massara et
al. 2017), and WWTP effluent is a source of denitrifying bacteria to streams and rivers (Rahm et
al. 2016). This pattern is in agreement with prior studies as N>O peaks have been reported
downstream of WWTPs (Beaulieu et al. 2010; Rosamond et al. 2012). Further, urban landcover,
in general, is associated with high N>O fluxes (Beaulieu et al. 2011). Our study supports the idea
that urban rivers are sources of N>O to the atmosphere due to anthropogenic N loading.
Abrupt change in pN,O

There was a sudden shift in pN>O and N>O emission rates in the forested reaches
corresponding to a large rainstorm mid-way through our study. From 2016 until October 2017,
when pN>O and N>O emission rates were elevated at all sites, the watershed was drier than
average. The Farmington River watershed experienced periods of extreme drought in 2016 and
2017 (National Drought Mitigation Center 2020) and all sites experienced lower-than-average
flow conditions for most of 2016 and 2017 (Figure 4, Figure S4, Table S3). The nearly two-year

dry period was broken by an intense rainstorm in late October 2017 (Figure 3b), which was
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associated with high discharges at all sites (Figure 4, Figure S4) and a sharp decline from N>,O
oversaturation to undersaturation in seven of the eight study sites (Figure 3a). Results indicate
that this sharp decline in pN>O was followed by a prolonged period of low pN>O at the majority
of sites (Figure 3a, b). To our knowledge, similar abrupt and sustained shifts have not been
previously reported, possibly due to the limited number of multiyear N>O time series. However,
other studies have reported higher N,O concentration during drier years than wetter years
(Baulch et al. 2011; Rosamond et al. 2012; Borges et al. 2018), although the opposite has also
been shown (Cole and Caraco 2001; Baulch et al. 2011). Considering the lack of strong
continuous controls (e.g., specific Q, water temperature, specific conductivity, and DO) on
pN20, the sudden shift in N>O dynamics coincident with the large precipitation event appears to
have been the largest source of N>O variability in the study system over the four-year study
period.

Annual climatology may have acted as an interaction, amplifying the impact of the storm.
In other words, the 2016-2017 dry period may have resulted in elevated pN>O before the storm
and the sustained wet conditions in 2018 may have continued to suppress N>O production
contributing to an extended recovery. Such interactions between stream drying and flooding are
known to amplify the biotic impacts of disturbance (Stanley et al. 2010). The large October
2017 storm not only significantly increased discharge at all sites, but also caused overall
hydrologic conditions to change. The storm was associated with elevated water tables
throughout the watershed, which then remained elevated throughout 2018 (Figure S6), and was
followed by additional large hydrologic flow events throughout 2018 (Figure 4, Figure S4). This
overall shift in hydrologic conditions in the year following the storm may have induced a state

change both hydrologically and for N>O processes on the annual scale. This study cannot
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disentangle the effects of the pre-storm dry period and the post-storm wet year on the N.O
response to the large storm, but it seems possible that the dry period primed the watershed to be
less resistant to disturbance and the post-storm wet year reduced the resilience (Boesch 1974) of
the system, suppressing or slowing recovery of pre-storm N>O conditions. Regardless, results
show that this particular hydrologic event triggered a threshold response that smaller hydrologic
events did not. In sum, we attribute the sudden shift in NoO dynamics to the late October 2017
rainstorm that broke a prolonged dry period, although other aspects of annual climatology likely
exacerbated the effect.

These potential interactions lead to the question: was the sustained period of
undersaturation following the October 2017 storm due to a regime shift or a slow recovery to
N2O oversaturation? Evidence for a new state in the months following the large storm include
the significance of a one-year post-storm indicator variable in the best mixed-effect model
describing the dataset (Table 2, Figure 6) and the change points detected 6-12 months post-storm
in the time-series data from Phelps Brook, Hubbard River, and the Connecticut River mainstem
(Figure S7). These lines of evidence support the idea that the storm caused a new state in NoO
dynamics in the post-storm year. However, classifying this response as a regime shift (Holling
1973; Folke et al. 2004) would require identification of positive feedback mechanisms and
multivariate responses, which is beyond the scope of this descriptive study. The detection of two
abrupt changes in the data (immediately post-storm and 6-12 months post-storm) does allow us
to categorize the storm response in NoO dynamics an “abrupt but temporary” response
(Ratajczak et al. 2018). However, further confounding the abrupt change classification is the

~linear post-storm recovery trends apparent in Bunnell Brook, Nepaug River, Still River, and



451  Farmington River 1 (Figure 5 and S7). In sum, our results indicate that both a sustained shift and
452  recovery trend are possible, and perhaps worked together, to create the pN>O dynamics reported.
453 Regardless of post-disturbance classification, the large hydrologic event seemed to push
454  forested reaches across watershed scales from consistent N>O sources to prolonged N>O sinks on
455  an annual basis. This sustained period of N>O undersaturation had implications for annual

456  emissions, resulting in net negative evasion for 2018 at fives of the eight study sites. This switch
457  from N>O source to N>O sink on annual scales was surprising, especially given the continued
458  availability of NOs" for in-stream processing, eliminating the possibility that NO3™ availability
459  limited N>O production. Emission estimates based on EFs assume that a static percentage of
460  DIN inputs is converted to N>O (e.g., Seitzinger and Kroeze 1998; Hu et al. 2016). The

461  nonlinear N>O response reported here strongly challenges this assumption, given the post-storm
462  N20:NOs™ ratios were 29-59% lower than the pre-storm N>O:NOj ratios at sites with available
463  data. Additionally, process-based models based on water residence time (e.g., Marzadri et al.
464  2017; Maavara et al. 2019) would also miss this type of abrupt shift in emissions, given the

465  nonlinear response to discharge. In this study, sustained N>O undersaturation significantly

466  mitigated emissions during this four-year study, suggesting the importance of extreme

467  hydrologic events and prolonged undersaturation to lotic NoO emission estimates.

468 Potential mechanisms controlling N:0 production and consumption

469 In general, incomplete denitrification in streambed sediments is thought to be the

470  dominant pathway for N>O production in streams and rivers globally (Marzadri et al. 2017;

471  Quick et al. 2019). Denitrification reduces NO3™ to N> gas via a redox sequence that includes
472 N0 as an intermediatory, and the hyporheic zone is a denitrification “hotspot™ because oxic

473  NOgs™-rich surface water converges with a reducing environment (McClain et al. 2003; Gomez-
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Velez et al. 2015). Our study seems to reflect the literature consensus that incomplete
denitrification is largely responsible for N>O production given the relatively high NO3-
concentration compared to NH4" concentration; although, nitrification and nitrifier-
denitrification, which consume NH4*, cannot be ruled out given the low NH4" concentration.
Additionally, the relatively high DO and low turbidity levels in this study (Table 1) would likely
inhibit denitrification on anoxic microsites in the water column (Liu et al., 2013; Reisinger et al.,
2016; Xia et al., 2017), suggesting the benthic and hyporheic zones would be more favorable
locations for N>O production. However, the synchronicity across spatial scales leads us to also
consider the potential for catchment-scale controls on lotic pN>O.
In-stream processes

If sediment-zone denitrification is the dominant production pathway, the rate of NoO
production would be determined by two factors: hydrologic residence time and biogeochemical
reaction rates (Quick et al. 2016; Marzadri et al. 2017). Substantial biofilm presence has the
potential to support elevated N>O production by increasing water residence time in the hyporheic
zone (Caruso et al. 2017; Newcomer et al. 2018) and supporting large denitrifying bacteria
populations (Nielsen et al. 1990; Peterson et al. 2011). Without major disturbance events, the
hyporheic zone can become a location of stable biofilm growth and accrual, which supports
strong biogeochemical interfaces that may induce denitrification (Battin et al. 2016; Caruso et al.
2017; Roy Chowdhury et al. 2020) and could have supported N>O production in the first half of
this study. Large hydrologic events, like that stemming from the October 2017 rainstorm, disturb
sediments and biofilm via physical scouring and burial (Fisher et al. 1982; O’Connor et al. 2012;
Robinson et al. 2018), resulting in shorter water residence times and disturbance of denitrifying

microbial communities. These conditions may have been maintained by the occurrence of
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several more significant hydrologic events in the next water year, supporting the sustained low
pN20 in 2018 (Figure 4, Figure S4). Finally, elevated water tables in 2018 could result in a
contraction of the hyporheic zone (Boano et al. 2014), further reducing potential sediment-zone
denitrification. These potential sediment-zone mechanisms, based on current framework of N>O
controls in the literature, are summarized in Figure 8 and future studies should evaluate their
potential to support abrupt changes in N>O dynamics.
Catchment processes

However, our finding of watershed-scale synchronicity in N>oO dynamics suggests that
catchment-scale processes might also be important controls of N>O dynamics. Beyond the
stream channel, watershed-scale hydrologic conditions can rapidly change during storm events.
For instance, altered water tables and activated flow paths can result in the rerouting of water and
solutes to denitrification hotspots and control points (McClain et al. 2003; Bernhardt et al. 2017;
Covino et al. 2018) and the reduction of water residence time (Jencso et al. 2009) in the riparian
zone. These emergent watershed-scale processes and their control on stream N>O conditions are
not yet well documented but have the potential to explain the concurrent changes in watershed-
scale hydrologic conditions and prolonged storm impacts on pN>O undersaturation. Low water
tables, like those that occurred during the 2016-2017 dry period and in 2019, could increase the
total area supporting denitrification through the routing of water through riparian zones before
reaching the channel (Jencso et al. 2009). This catchment-scale control could also explain why
the urban system did not experience the sharp and sustained decline in N>O like the forested
sites. The N>O dynamics of the urban reach were likely controlled by direct inputs of N>O and
denitrifying bacteria from the numerous WWTPs in its drainage basin (Rahm et al. 2016;

Massara et al. 2017), rather than natural flow paths subject to hydrologic rerouting and
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activation. The synchronicity in pN>O across forested reaches strongly suggests the importance
of catchment-scale processes, such as riparian production, in controlling stream and river N>O
dynamics.
N>O consumption processes

Regardless of the dominance of local or distal N>O production during periods of N>O
oversaturation (2016-Oct 2017 and 2019), N>O consumption processes must also be considered
to explain the length period of post-storm N>O undersaturation. Undersaturation implies that
sink processes, such as complete denitrification of N>O to N», outpace the rate of atmospheric
N>2O invasion across the air-water boundary. The occurrence of nitrous oxide undersaturation in
rivers has previously been reported (e.g., Baulch et al. 2011; Soued et al. 2016; Borges et al.
2019), although responsible mechanisms remain largely hypothetical. Environmental conditions
associated with N>O undersaturation include low NOs-, high dissolved organic carbon, and low
DO (Baulch et al. 2011; Soued et al. 2016; Borges et al. 2019) as these factors support complete
denitrification of N>O to N,. In our study, terrestrial DOC inputs were likely higher in 2018 due
to higher discharge and terrestrial flushing (Raymond et al. 2016), especially in streams and
smaller rivers (Hosen et al. 2020). However, the abrupt shift from oversaturation to
undersaturation suggests that N>O undersaturation may be a threshold response to extreme
weather events rather than just supported by specific environmental conditions. In sum, if N>O
conversion to Ny increased in 2018 or if in-stream consumption rates were simply not masked by
riparian N>O inputs remains an open question.
Instantaneous storm processes

Although much of this section has been to dedicated mechanisms that could explain the

sustained shift in pN>O, instantaneous storm responses are also apparent in our data. Two sites
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(Phelps Brook and Nepaug River) exhibited a peak in pN>O during the October 2017 storm that
was not sustained post-storm. These peaks may have been the result of hyporheic-zone flushing;
an idea that is supported by a recent modeling study predicting a pulse of dissolved N> after a
precipitation event reconnects a stream to its hyporheic zone (Newcomer et al. 2018), suggesting
N2O gas could experience the same dynamic. Although grab sampling did not capture similar
peaks at the other sites, all forested sites experience post-storm N>O dilution. Both flood dilution
(Webb et al. 2017) and general source limitation (e.g., Moatar et al. 2017) may explain the
immediate post-storm decline in pN»>O. Further, many studies of other dissolved gases report
decreases with event flows both in the Connecticut River watershed (Aho and Raymond 2019;
Aho et al. 2021) and beyond (e.g., Billett and Harvey 2013; Crawford et al. 2013; Looman et al.
2016). However, given the grab-sampling methodology used, this study provides more insights
into long-term rather than instantaneous storm dynamics.
Conclusion

This four-year study of lotic pN>O and N>O emission rates documents a non-linear
response in N>O dynamics in forested streams and rivers after a large precipitation event. This
study adds to existing literature on the effects of hydrologic disturbance on lotic nitrogen cycling
(e.g., Grimm 1987; Marti et al. 1997), and documents the importance of hydrologic disturbance
on lotic N>O emissions. Of particular interest to future observation and modeling studies is how
to capture and represent lengthy state change in net N>O source-sink processes, such as the 6- to
12-month periods of N>O undersaturation reported here. Although the effects of watershed-scale
hydrology on N>O production have received little attention to date, the results presented here
suggest that watershed-scale drivers of N>O production may warrant attention, in addition to in-

stream mechanisms that currently are the focus of emissions models. This study illustrates that
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lotic N>O evasion experiences nonlinear storm responses, which highlights the need to identify

and model such abrupt changes in lotic N>O production and emissions.
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585  Figure 1. Map of the study area showing a) the Connecticut River watershed and b) the location

586  of the Farmington River watershed in the region. Stream network is from National Hydrography



587  Dataset Plus High Resolution (NHDPlus HR), landcover data is from National Land Cover
588  Database (NLCD 2011), and the locations of wastewater treatment plants (WWTPs) are from the
589  Environmental Protection Agency Facility Registry (EPA FRS).
590 Table 1. Mean + standard deviation of measured water chemistry variables, where DO is
591  dissolved oxygen, SpCond is specific conductivity, Turb is turbidity, TDN is total dissolved
592  nitrogen, NOj" is nitrate, NO, is nitrite, and NH4" is ammonium.
Site PN;O q DO SpCond Turb TDN NOy- NOy NH4*
(natm) P (mg 1) (1S cm) (NTU) (mg-NT") | (mg-NI") (mg-N1") (mg-N1")
Phelps 033+0.10 | 64+£03 | 95+2.1 | 97+21 83+9.7 n.d. n.d. n.d. n.d.
Brook
B];r’(‘)r(‘ff(“ 0.35+0.09 | 70£02 | 103+1.7 | 172433 | 74+138 | 058+0.10 | 0.35+0.13 | 0.003+0.002 | 0.06 +0.04
Hgi’fe‘j‘rrd 0.30+0.08 | 6.7+03 | 11.0+22 | 51+15 12421 n.d. n.d. n.d. nd.
Nﬁf’vae‘;g 040+0.09 | 6902 | 10419 | 11626 | 12.9+19.4 n.d. n.d. n.d. n.d.
Still River | 0.34£0.09 | 7.6+03 | 10.7=1.8 | 20964 | 9.1+10.9 n.d. nd. nd. nd.
Faginvlé‘ﬁo“ 037+0.10 | 7405 | 109+1.7 | 124440 | 44+51 | 028+005 | 0.11+0.03 | 0.002=0.001 | 0.02+0.01
Faglvlgfg’“ 0724039 | 6.8+02 | 103+2.0 | 21046 | 8.0+11.1 | 0.77+0.18 | 0.53+0.17 | 0.007=0.006 | 0.03 +0.01
C‘”I‘?iev"etrlc‘“ 046+0.14 | 68+1.1 | 11.0+25 | 150+34 | 11.4+135 | 0.50+0.10 | 0.27+0.07 | 0.004+0.002 | 0.05+0.02
59%
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Figure 2. Violin plots of N>O saturation by site with embedded boxplots, where boxes represent
the median and interquartile range (IQR), whiskers mark the lesser of 1.5 x IQR or
minimum/maximum, and points denote outliers more extreme than 1.5 x IQR. A saturation of
100% implies atmospheric equilibrium. Sites are arranged from left to right in order of drainage

area. The y-axis is log transformed.
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609  Figure 3. Variability in pN>O and rainfall through time over the four-year study. Part a) shows
610 timeseries of pN>O for all eight study sites. The grey dashed line represents atmospheric

611  equilibrium. Part b) shows loess smoothing of the pN>O time series for all eight sites. Part ¢)
612  shows a hyetograph showing daily rainfall in the Farmington Hydrologic Unit (HUC: 01080207)
613  from the National Oceanic and Atmospheric Administration National Centers for Environmental
614  Information (NOAA CDO). On all subplots, the yellow vertical line marks the largest storm
615  event during the study in terms of baseflow index, which corresponds with the highest rainfall

616 intensity of the study period.
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Figure 4. A hydrograph of mean daily discharge (Q) at Bunnell Brook. Note the log-transformed
y-axis. The hydrograph (in grey) is colored orange when Q is below the 50" flow percentile for
that day over a 20-year period (2000-2019) and red when Q is below the 20 flow percentile.
The bold black line is the smoothed hydrograph, which uses mean monthly Q, while the bold red
line is mean monthly Q for the 20-year period. The five largest hydrologic events, in terms of
baseflow index values, are labeled with rank, date, and baseflow index. In addition, the large

October 2017 storm is highlighted in yellow. See Figure S4 for the remaining sites.
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Figure 5. Timeseries of (a) pN2O, (b) TDN and NOs" concentration, (c¢) the ratio of linearly
interpolated N found as N>O and as NOs" (i.e., the “concentration method” EF), and (d) N.O
evasive fluxes from Bunnell Brook, a representative forested system. The other seven timeseries
of pN>O and N>O emissions are in the SI. The other three timeseries for TDN, NOs3", and N>O:
NOs are also located in the SI. For the pN>O timeseries (a), discontinuities detected by change-

point analysis are plotted as black dashed lines and atmospheric pN>O is indicated by the grey
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dashed line. The largest hydrologic event of this study (in terms of baseflow index), which was

associated with the intense precipitation event on October 30, 2017, is highlighted in yellow.

Table 2. Table summarizing the best mixed-effect model of pN>O (patm). Fixed effects are given

as an estimate, standard error (SE), and 95% confidence interval (95% CI).

Model: log(pN20) ~ date + storm indicator + 1-year post-storm indicator
+pH + (1 | site)
Estimate SE 95% CI
Intercept -1.33 0.18 (-1.68 --0.99)
Date 0.0003 0.00006 | (0.0002 -0.0005)
Storm indicator -0.48 0.06 (-0.58 --0.37)
1-yr post-storm indicator -0.12 0.03 (-0.18 - -0.06)
pH 0.06 0.02 (0.02 -0.11)
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Figure 6. Part a) shows predictions from the mixed-effect model as lines and measured pN,O as

points for all eight study sites. Part b) shows predictions from the mixed-effect model, when pH

is excluded, as lines to highlight the temporal dynamics and measured pN>O as points for all
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