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Biological systems have a variety of time-keeping mechanisms ranging from
molecular clocks within cells to a complex interconnected unit across an
entire organism. The suprachiasmatic nucleus, comprising interconnected
oscillatory neurons, serves as a master-clock in mammals. The ubiquity
of such systems indicates an evolutionary benefit that outweighs the cost of
establishing and maintaining them, but little is known about the process
of evolutionary development. To begin to address this shortfall, we introduce
and analyse a new evolutionary game theoretic framework modelling the
behaviour and evolution of systems of coupled oscillators. Each oscillator is
characterized by a pair of dynamic behavioural dimensions, a phase and a
communication strategy, along which evolution occurs. We measure success
of mutations by comparing the benefit of synchronization balanced against
the cost of connections between the oscillators. Despite the simple set-up,
this model exhibits non-trivial behaviours mimicking several different
classical games—the Prisoner’s Dilemma, snowdrift games, coordination
games—as the landscape of the oscillators changes over time. Across many
situations, we find a surprisingly simple characterization of synchronization
through connectivity and communication: if the benefit of synchronization
is greater than twice the cost, the system will evolve towards complete
communication and phase synchronization.
1. Introduction
Biological rhythms are ubiquitous, providing timing mechanisms that guide
sequential processes [1]. In many cases, these take the form of clocks that are
synchronized with external environmental cues to provide a circadian signal—
one that allows the organism to predict the local daily light/dark cycle. Such
a coherent circadian signal confers many advantages—mammals can anticipate
changes in light that allow them to avoid predators, find food and generally
increase their chances of survival. This basic principle informs natural selection:
the existence of a variety of mechanisms to generate circadian signals—ranging
from simple intracellular mechanisms in single-cell organisms to more complex
multicellular or multi-organ systems in insects, birds, mammals and other
species—demonstrates that the evolutionary benefit of such a system often
outweighs its cost. On the other hand, for some organisms, like the eyeless
Mexican cavefish, possessing a circadian clock would not confer the same
kind of benefit, and thus such a system is not present [2].

We focus on the mammalian circadian system, which is governed by a cen-
tral ‘master clock’ called the suprachiasmatic nucleus (SCN), a small centre in
the brain that sits just above the optic chiasm. It receives light/dark signals
from the optic nerve and uses them to generate and maintain the organism’s
circadian rhythm. Most of the roughly 20 000 neurons in the SCN are oscil-
latory, exhibiting approximately 24 h rhythms (see [3] for a review of the
basic neurobiology). When their connectivity is disrupted, the neurons oscillate
with about the same period but randomly out of phase. However, when con-
nectivity is intact, the oscillations exhibit phase-locked synchronization [4].
The nature and function of the interconnectivity between the neurons is of
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fundamental importance in the study of the SCN, and we
develop tools and generate initial results in assessing the
role that evolution plays in generating and constraining the
structure of the SCN.

Mathematically, we view the mammalian SCN as a net-
work of coupled oscillators (used interchangeably with
oscillatory neurons hereafter). Understanding the synchroni-
zation of systems of coupled oscillators has a rich history in
the study of dynamical systems and applications in numer-
ous fields [5,6]. Decades of work has demonstrated the
interplay between the properties of these systems and their
ability to synchronize (surveys of the field include [7–9]).
One of the simplest and most fruitful modelling approaches
uses a differential equations system model first introduced
by Kuramoto [10]. While an elegant analytic approach
exists in the case of two oscillators, with more oscillators
and more complicated connectivity, analysis of the Kura-
moto system becomes (much) harder. While we can
understand this system (and some variants) analytically
when the coupling topologies are particularly simple [8]
and/or when we look at the mean-field limit as the
number of oscillators tends to infinity [7,8], more complex
(and biologically plausible) connectivity patterns are not
tractable. For these types of cases, we rely on numerical
approximation of solutions which can be both difficult and
costly computationally.

We instead approach the problem using techniques
from the field of evolutionary game theory (EGT), which
applies classical game theory to the study of evolving popu-
lations [11–13]. The competitive advantages of various
traits (or strategies, in the language of EGT) that exist in the
population are based on payoffs accrued from pairwise or
multi-person game interactions between connected individ-
uals. Traits of individuals are allowed to evolve over time,
mimicking the biological process of natural selection, and
so traits that confer a competitive advantage have greater
success at propagating as the population evolves. This frame-
work is designed to answer questions about which
population traits are more evolutionarily successful, and
under what conditions particular traits are advantageous.
When we view the neurons of the SCN as our population
of interest, this EGT set-up lends itself naturally to our
main question: what conditions allow for the synchroniza-
tion behaviour observed in the mammalian SCN to arise?
While the benefit conferred to the organism from this syn-
chronization is shared by each neuron, the communication
between neurons that enables synchronization behaviour is
costly. Thus, each neuron faces a trade-off that the evolution-
ary process can resolve. This kind of trade-off is captured in
classic cooperative dilemmas, such as Prisoner’s Dilemma
game [13,14].

Antonioni & Cardillo [15] incorporate EGT into the Kur-
amoto framework using a modified version of Prisoner’s
Dilemma. In their model, neurons have two possible strat-
egies: cooperation, where neurons influence each other to
move towards synchronization, and defection, where they
do not. They use solutions of Kuramoto coupled oscillator
systems to calculate payoffs of a neuron’s strategy based on
the level of local synchronization. In contrast to the typical
EGT set-up, where an individual’s payoff is dependent on
the current state of the system and the strategy of their
opponent, in this framework, a neuron will receive the
same payoff regardless of the strategy of its particular
opponent as the payoff function depends on the strategies
and phases of all of its neighbours.

While Antonioni and Cardillo’s framework captures
the behaviour of the oscillating neurons as they work to syn-
chronize given the tension inherent to such a system, it is not
set up to answer evolutionary questions. The fixed descrip-
tions of the payoff parameters [15,16], which are restricted
to the type of a Prisoner’s Dilemma game, do not allow for
the study of the explicit payoff conditions under which
synchronization is most likely to occur. As the payoff is
determined by numerical solutions to Kuramoto systems, it
is intractable to derive closed-form conditions for natural
selection to favour synchronization across a wide variety
of scenarios.

To address this issue, we allow the payoff parameters
a range of possible values, subject to a few biologically
plausible assumptions (see details in Methods and Models).
This allows us to work backwards and discover what
values of the payoff parameters cause the system to evolve
into a state of synchronization, which in turn allows us to
make inferences about the biology of the mammalian SCN.
Additionally, while the framework of [15] allows for
the synchronization process to occur separately from the
evolutionary dynamics of the neurons’ strategies, the compu-
tational cost of accurately solving Kuramoto systems over
long time frames is high for large populations of oscillators.
In light of this, we consider intrinsic phases of neurons and
their communicative strategies as combined traits that jointly
determine their payoffs and are subject to natural selection.
This novel set-up leads to coevolutionary dynamics of
communicative strategies and multiple discrete phases of
neurons, thereby providing a framework for a new model
of coupled oscillatory systems that allows us to study the
impact of the evolutionary constraint on the population of
oscillators. Consequently, we will be able to determine what
evolutionary constraints allow organisms to develop this
synchronized oscillatory behaviour.

In this paper, we study the simplest case where oscillators
either communicate with all other oscillators or none. We
define a game, also inspired by Prisoner’s Dilemma [17], in
which each oscillator receives a payoff based on their current
level of synchrony with their neighbouring oscillators and
whether or not they choose to communicate to improve the
synchrony of the region. Using techniques from evolutionary
games in finite populations [18–21] coupled with simulation,
we are able to determine when communication is a favour-
able strategy for the population. We find that, under a
variety of assumptions, this choice to communicate—and
thus synchronize—is favoured when the benefit received by
two synchronized, communicating neurons exceeds twice
the neuron’s incurred cost of communication. Our analysis
also sheds light on the possible connectivity structures, as
measured by the communication profiles of the oscillators,
that are consistent with the evolutionary constraints. We find
that complete communication, complete non-communication,
and a mixture of both are viable outcomes under a range of
biologically plausible assumptions.
2. Methods and models
In thinking about the possible structures for the SCN, we use
a common coupled oscillator model due to Kuramoto [10]
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as a starting point. We define n oscillators that are charac-
terized by their intrinsic frequencies, {ν1,…, νn}, and output
oscillatory phases, {ϕ1,…, ϕn}. These oscillators are coupled
together with different strengths, where the impact of
oscillator k on oscillator j is recorded as hjk.

In light of the tendency towards synchronization in a suit-
ably constructed Kuramoto model, we propose a new
approach to understanding synchronization of coupled oscil-
latory systems using EGT. The competitive advantages of
various traits that exist in the population are encoded as a
pairwise game between connected individuals. Traits of indi-
viduals are allowed to evolve over time, mimicking the
biological process of natural selection. Traits that confer an
individual with a competitive advantage have greater success
at propagating as the population evolves.

(a) Oscillator traits
How do we translate the ideas behind the Kuramoto model
into the EGT framework? We have two goals. The first is to
preserve features of the Kuramoto dynamics when building
the evolutionary dynamics. The second is to allow the evol-
utionary mechanism to change the connectivity over time,
reflecting the competitive advantage of synchronous oscil-
lation. The Kuramoto model has two sets of parameters: the
{νi} and the hij. We make two simplifying assumptions: that
the frequencies are identical and that the connection strengths
are either one or zero. We associate two traits with each
oscillator—a phase and a measure of communicability. The
phase trait encodes the analogue of the Kuramoto phase
evolution but within evolutionary dynamics while the com-
municativity gives a mechanism to turn connectivity
between oscillators on and off.

(b) Strategies and payoffs
Trait evolution is achieved through setting up different
benefits and costs for a game that oscillators play with their
neighbours. We rely on two principles

— Oscillators benefit from synchronization with their
neighbours: the closer the phases of the two oscillators,
the greater the benefit;

— For one oscillator to influence another, the influencing
oscillator must be communicative, which incurs a cost.

These two principles are in tension: communicative neurons
can align their phases with their neighbours raising their
benefit but incur a cost of doing so, while non-
communicative oscillators can reap the benefit of aligned
phases without incurring the cost. This type of tension is
present in many of the classical game theoretic analyses—
for example, Prisoner’s Dilemma—and creates the opportu-
nity for different outcomes depending on the parameters of
the model.

To encode these principles, we define a game on n
oscillators. The strategy for oscillator i is Si = (si, ϕi), a
binary communication strategy where si∈ {N, C} and
fi [ fjð2p=dÞgdj¼1 is the associated phase. To describe the
payoffs, we construct a 2d × 2d payoff matrix containing the
payoffs of the different strategic pairings. Oscillator j’s
payoff depends on its communication strategy, the communi-
cation strategy of its partner, k, and the cyclic difference in
their phases, denoted Δϕjk.

1 A restricted payoff matrix
describing pairwise interactions between oscillators can take
on one of the three following possible forms:

ðIÞ ðC, fjÞ ðC, fkÞ
ðC, fjÞ Bð0Þ � c BðDf jkÞ � c
ðC, fkÞ BðDf jkÞ � c Bð0Þ � c

,

ðIIÞ ðC, fjÞ ðN, fkÞ
ðC, fjÞ Bð0Þ � c bðDf jkÞ � c
ðN, fkÞ bðDf jkÞ 0

,

and

ðIIIÞ ðN, fjÞ ðN, fkÞ
ðN, fjÞ 0 0

ðN, fkÞ 0 0

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð2:1Þ

Here, c represents the cost of communication and the func-
tions B and β encode the benefit accrued by oscillators. We
assume both functions are monotone decreasing to reflect
the assumption that the benefit is larger when phases are
similar and distinguish between the benefit gained when
two communicative oscillators are interacting (using the func-
tion B) and when only one of them communicates (using β).
While it is often reasonable to assume that B and β are iden-
tical, more generally we assume only that B(Δϕ)≥ β(Δϕ). The
full payoff matrix is composed of four d × d blocks, where
the entries in the top left d × d block are given by the matrix
(I) and those in the top d × d off-diagonal block and those
in the bottom left block from the matrix (II), while the final
block contains the zero matrix (i.e. matrix (III)).

To simplify the description of the matrix, we observe that
angular differences of phases are both symmetric and exhibit
a cyclic symmetry as well. We write B, b : f0, 1, 2, . . .g ! R

where the natural numbers in the domain represent multiples
of the angular distance between two phases: we let B(Δϕqr) =
B(k) (or β(Δϕqr) = β(k)), where k = |q− r| if jq� rj � bðd=2Þc,
otherwise, if jq� rj . bðd=2Þc, k = d− |q− r| . The matrix in
the electronic supplementary material, §2 shows the entire
payoff matrix with these notational conventions.
(c) Evolution of the system
Changes to the strategies are governed by a Moran process
(also known as the birth–death process): at each time step,
we choose one oscillator with probability proportional to
its fitness to reproduce, and select another oscillator (with
replacement that includes the parent) uniformly at random
to be replaced by the newly produced offspring [13].
This evolutionary process allows both the phase and commu-
nicativity to change simultaneously, which we view as a
model of social learning. Allowing the phase to change
via this process provides the system the opportunity to
move towards synchronization (or not) while changes in
the communicativity are changes to the connectivity of
the network.

Here again, we make simplifying assumptions to facilitate
the analysis of the system. First, by construction, these two
traits evolve simultaneously on the same timescale. This is
not entirely biologically plausible as phases change within
short time frames (e.g. hours or days) while the communica-
tivity changes on the typical evolutionary timescale of
generations. While this limits the interpretability of the results
biologically, it allows for a deep and precise description of the
outcomes of the system that provide a baseline for further
investigation.
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Figure 1. We study the coevolution of communicative strategies of oscillators and their phase synchronization through the lens of evolutionary game theory. (a) The
pairwise interactions between any two oscillators that are modulated by their communicative strategies and phases, (si, ϕi). We consider binary communicative strat-
egies, namely, si = C if i is committed to communication at a cost c, and si = N if i is non-communicative and pays no cost. The benefit each received from their
interactions depends on both their communicative strategies and phase difference Δϕij. If both i and j are communicative neurons, the benefit they each will receive
is B(Δϕij) = B(0)[1 + cos (ϕi− ϕj)]/2. If only one of i and j is a communicative neuron, the benefit they each will receive is β(Δϕij) = β(0)[1 + cos (ϕi− ϕj)]/2.
If neither is communicative, they each will get zero benefit. (b) The 2 × 2 payoff matrix from the perspective of the row individual, arising from the scenario
where the two neurons possibly take opposite communicative strategies. Depending on the payoff parameters B(0) and β(Δϕ), the payoff matrix given in (b) can
encompass a wide range of game types, from snowdrift games to the Prisoner’s Dilemma to coordination games to mutualism, as characterized in (c). (Online version
in colour.)
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While the payoff matrices in (2.1) above allow for pair-
wise comparisons of the relative strengths of various
strategies, other quantities allow for more overarching
comparisons. The expected payoff of a strategy E, denoted by
πE, calculates the average payoff received by strategy E
given the current frequency of each strategy among its
neighbours. The fitness of an oscillator with strategy E is
given by fE ¼ edpE, where the parameter δ is the strength of
selection [21]. The fitness of an oscillator’s strategy is used
to weigh the oscillator’s ability to reproduce its strategy in
the evolution of the population, thereby mimicking
the effect of natural selection on advantageous traits in
biological evolution.

We allow the strategy of a new oscillator the chance to
mutate during each reproduction step, meaning that with
small probability μ, the new oscillator will be assigned a
random strategy rather than faithfully inherit the strategy of
its parent. The strength of selection, δ, determines the extent
to which the structure of the game impacts the evolutionary
success of each strategy: large values of δ give more weight
to the role of payoff in fitness, while a selection strength of
δ = 0 gives all individuals the baseline fitness value of
1. The latter process is called neutral drift [13], since the
game plays no role in an individual’s reproductive success.
Thus, any oscillator with a strategy with high average
payoff (and thus higher fitness) will be more likely to repro-
duce at each time step in the evolutionary process. Over time,
we expect strategies with higher fitness values to increase in
number in the population. Eventually, the Moran process will
reach equilibrium in a state where all neurons share the same
strategy [13]. Once reaching such an equilibrium point, the
state of the system will remain unchanged, unless a mutation
event occurs.

As communication should promote synchronization, we
look for those conditions under which ðC, wÞ strategies are
selectively favoured. In this work, we assume the simplest
possible underlying network topology (the so-called well-
mixed population [18]): all oscillators are equally likely to
interact with all other oscillators in the population.
(d) Methods of analysis
Depending on the choice of the model components B, β and c,
the resulting game can take many forms. Figure 1c shows
four regions of the parameter space linked to four classical
games—coordination, mutualism, Prisoner’s Dilemma and
the snowdrift games. The richness of these structures pre-
sents myriad possibilities during the evolution of
synchronization and communication as the analysis of the
evolutionary dynamics of these classical games can have
very different outcomes.

We approach the analysis using the two fundamental par-
ameters in the EGT framework—the mutation rate (μ) and the
selection strength (δ)—as guideposts. There are two standard
simplifying assumptions in the EGT literature: weak selection
(when δ≪ 1/n) [18,22] and low mutation (when μ≪ 1/n)
[20,23]. We explore the conditions under which communica-
tive strategies are favoured under various combinations of
these two standard assumptions. Analytically, we have tech-
niques for several different regimes: weak selection and low
mutation (δ≪ 1/n, μ≪ 1/n), strong selection and low
mutation (δ≫ 0, μ≪ 1/n), low mutation but any selection
strength (μ≪ 1/n), and weak selection but any mutation
rate (δ≪ 1/n). Each of these, in turn, is addressed in the
Results section below. Current analytic techniques cannot
effectively approach cases when both the mutation rate and
selection strength are large [20–24], and thus we reserve
such explorations for future work.

When the mutation rate is very small, we can assume that
after a mutation, the system will reach an equilibrium before
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the next mutation occurs and study a pairwise invasion
model in the first two regimes. We construct a population
where all but one oscillator has the same strategy with the
idea that the different strategy arose due to a mutation.
This allows us to explore two relevant questions about
robustness and fragility of the system. For example, is a com-
municative equilibrium robust to perturbation, i.e. if a
mutation introduces non-communication into an otherwise
communicative population, does it persist? Similarly, does
introduction of communication into a non-communicative
equilibrium necessarily lead to a completely communicative
new equilibrium?

The simplification to two strategies and, in particular, the
restriction to only two phases mitigates one of the limitations
of our framework. Since there are only two phases, the role of
payoffs based on the difference in phase is more limited than
if there were many options for phase values. A consequence
is that the phase and communication trait evolve in tandem,
de facto combining these traits into a single feature.

For the second pair of regimes, where we make either
only the low mutation assumption or only the weak selection
assumption, we explore the more general case where oscil-
lators can adopt any of d distinct phases. Results from these
analyses are applicable to a wider array of questions as
they apply to systems with heterogeneous initial strategy dis-
tributions, allowing oscillators to take on more possible
phases, introduces the possibility of more exotic outcomes
like those we see in some Kuramoto systems such as phase-
locking and cluster synchronization. Most obviously, this
set-up moves beyond the limitation of having only two
phases but re-introduces the unified timescale of trait coevo-
lution discussed above. A gain in this generalization is the
ability to understand the impact, if any, of the varied payoffs
between the different strategies, as adding a full complement
of phases allows impact on the trait evolution from the entire
payoff matrix.

In what follows, we present results from several existing
analytical frameworks in the literature as well as from simu-
lation of the system. While there are variations in the results,
a basic and fundamental rule is revealed throughout—if the
benefit of synchronization exceeds twice the cost of communi-
cation, the system will evolve to complete communication
and synchronization.
3. Results
To analyse our model, we use both analytic techniques and
simulation. To derive analytical insights, we consider two
types of scenarios: (1) the general case of evolutionary
dynamics of multiple 2d types of neurons for any selection
and low mutation, as well as for weak selection and any
mutation, and followed by (2) simpler cases concerning pair-
wise invasion dynamics for both weak selection and strong
selection limits. The latter scenario helps provide intuitions
for understanding our general theoretical results involving
multiple 2d strategy types under low mutation limit. In
each scenario, we are able to apply existing evolutionary
game theoretic techniques to explore conditions under
which communicative strategies are favoured. In particular,
in the limit of low mutation (as detailed in §5 of the electronic
supplementary material), we prove that the condition for
natural selection to favour communicative strategies, that is,
for the long-term frequency of all communicative strategies
(C, *) to be greater than one-half, is

Bð0Þ . 2cðn� 1Þ
n� 2

: ð3:1Þ

This surprisingly simple condition is derived using the
embedded Markov chain approach under the low mutation
limit [23,24] and holds for a wide range of model parameters
such as for any selection strength (δ > 0) and for arbitrarily
many types (2d≥ 2).

To provide helpful intuition for this condition with finite
size correction (3.1), we consider the simpler scenario con-
cerning pairwise competition since the low mutation limit
implies that the fate of a new mutant (either reaching fixation
or becoming extinct) is determined before the next mutant
arises in the population. In other words, there are at most
two types present at any time of the evolutionary process
under the low mutation limit.

Accordingly, in the pairwise invasion scenario, we first
assume that selection is weak, δ≪ 1/n, and mutation is
low, μ≪ 1/n, to show how communicative strategies benefit
from selective pressure. To make this precise, we compute
the fixation probability of strategy E = (C, ϕj), denoted ρE,
which is defined as the probability that, in a population
with one strategy-E individual and n− 1 individuals with
strategy F = (N, ϕk), the process is absorbed into the state
where all individuals have strategy E [13]. We similarly
define ρF as the probability that, in a population with one
strategy-F individual and the rest strategy E, the process is
absorbed into the state with uniform strategy F. In §3 of the
electronic supplementary material, we show that ρE > 1/n
when

ðn� 2ÞBð0Þ þ ðn� 2ÞbðDfÞ . 3cðn� 1Þ: ð3:2Þ
Therefore, if n≫ 1, we get the following simpler condition
that specifies exactly when strategy E has greater evolution-
ary success than a strategy under the neutral process

rE .
1
n
()Bð0Þ þ bðDfÞ . 3c: ð3:3Þ

We note that this condition concerning the probabilistic
invasion success of a single mutant E under the weak selec-
tion limit can be envisioned as if the interior unstable
equilibrium of a coordination game is less than 1/3 in the
corresponding deterministic replicator dynamics [18].

In examining when communicative strategies are
favoured over non-communicative ones in pairwise inva-
sion dynamics (i.e. ρE > ρF —see electronic supplementary
material, §3 for more details), we find that the ratio of ρF to
ρE is

rF
rE

¼ ed
�
ðn�1Þc�ððn�2Þ=2ÞBð0Þ

�
: ð3:4Þ

And so ρE > ρF if and only if

ðn� 1Þc , n� 2
2

Bð0Þ: ð3:5Þ

Again, for sufficiently large populations (n≫ 1), we get the
simpler condition

rE . rF () Bð0Þ . 2c: ð3:6Þ

Aside from finite population correction, the condition
(3.6) (also known as the risk dominance condition [18]) can
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Figure 2. Pairwise invasion dynamics provide intuition for understanding evolutionary dynamics of multiple strategies under the low mutation limit. (a) Classical
game regimes for different values of B(0) and β(Δϕ) under the assumption of weak selection and large population limits. Also marked are regions where E = (C, ϕj)
has a selective advantage, either over a neutral strategy (heavy line) or over the strategy F = (N, ϕk) (dotted line). (b) Game regimes for different values of B(0) and
β(Δϕ) in the case of strong selection. Above lines L(1) and L(2), strategy F is favoured when there are more strategy-E individuals, and strategy E is favoured when
there are more strategy-F individuals. Below L(2) and above L(1), strategy E is always favoured, while strategy F is always favoured in the region below L(1) and above
L(2). Finally, below both lines, strategy E is favoured when there are more strategy-E individuals, and strategy F is favoured when there are more strategy-F indi-
viduals in the population. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20220999

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

pr
il 

20
23

 

also similarly be envisioned in deterministic replicator
dynamics where the unstable interior equilibrium is less
than 1/2 (the expected payoff of a communicative neuron is
greater than that of a non-communicative one when both
types are equally abundant in the population) [25].

Turning to the strong selection limit, in electronic sup-
plementary material, §4.1, we consider strong selection
(δ≫ 1) and low mutation (μ≪ 1). When there are few com-
municative strategy individuals in the population,
communication is favoured when

bðDfÞ . cðn� 1Þ
n� 2

: ð3:7Þ

In a sufficiently large population, equation (3.7) implies that
communication is favoured when

bðDfÞ . c, ð3:8Þ

which is depicted in figure 2b as the region above line L(1).
When there are few non-communicative strategy individuals
in the population, communication is favoured when

bðDfÞ , Bð0Þ � cðn� 1Þ
n� 2

: ð3:9Þ

Again, when the population is sufficiently large, this implies
that communication is favoured if and only if

bðDfÞ , Bð0Þ � c, ð3:10Þ

which is represented by the region below line L(2) in figure 2b.
Together, despite having been derived for finite populations
under strong selection, conditions (3.8) and (3.10), which
reflect the large population limit, coincide with the classical
ESS condition for determining invasion success of initially
rare mutants. More interestingly, they also divide the
parameter space into regions where the game dynamics
differ, as seen in figure 2 (cf. figure 1c). Condition (3.8) corre-
sponds to the region above line L(1), while condition (3.10)
corresponds to the region to the right of line L(2). The
strong limit results here can give us helpful intuition
about the conditions for natural selection to favour communi-
cative strategies over non-communicative ones. In the region
F→←E (characterized by snowdrift games), a single mutant,
either E or F, can invade, but cannot fixate in any finite time,
as the dynamics are ‘trapped’ around the interior coexistence
equilibrium of snowdrift games, which is stable in infinite,
well-mixed populations [24]. In the region F← E (where
neither condition (3.8) or condition (3.10) are satisfied, charac-
terized by Prisoner’s Dilemma), communicative strategies E
cannot invade at all and the system is dominated by non-
communicative ones. In the region F→ E (characterized by
mutualism), communicative strategies E always can invade
and take over resident non-communicative population. In
the region F←→E (characterized by coordination games),
neither E nor F can be successfully invaded by initially rare
mutants as the systems tend back towards their initial
states. Taken together, we have fully characterized the poss-
ible game types of pairwise interactions in neuronal
populations and in particular their implications for strategy
selection conditions in the strong selection limit.

In the presence of 2d strategies and under the assumption
of low mutation (μ≪ 1/n), we find that for a sufficiently large
number of oscillators communicative strategies ðC, wÞ are
favoured by the selection process if and only if B(0) > 2c.
More specifically, we show that the frequency of ðC, wÞ strat-
egies is higher than that of the ðN, wÞ strategies at
stationarity if and only if B(0) > 2c. For 2d strategies under
the assumption of weak selection (δ≪ 1/n) and any mutation
rate, we find that

1
2
ðBð0Þ � 2cÞ þ m

n
4
ð�B� 2cÞ . 0, ð3:11Þ

where �B is an average of the function B over all differences of
phases: �B ¼ ð1=dÞðBð0Þ þ Bðd=2Þ þ 2

Pbd=2c�1
q¼1 BðqÞÞ. We note

that in the limit of rare mutations, μ≪ 1/n, the condition
becomes B(0) > 2c. Hence, this condition, derived using the
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Figure 3. Excellent agreement between simulation results and analytical predictions. The plots (a,b) show the long-term frequency of communicative strategies
(solid lines: theoretical predictions; empty circles: simulation results) as a function of the maximum benefit of mutual communication B(0). As given in (a,b), our
predictions show that in the limit of rare mutations (μ≪ 1/n), the long-term frequency of communicative strategies is favoured by natural selection (that is, the
frequency of ðC , wÞ strategies is greater than 1/2—vertical dashed line in (a,b)) if B(0) > 2c(n− 1)/(n− 2). Model parameters: population size n = 20, number
of discrete phases d = 20, selection strength (a) δ = 0.005 and (b) δ = 0.2, cost of communication c = 0.1, maximum benefit of unilateral communication β(0) =
0.95B(0), and mutation rate μ = 0.0001. The simulation results are averaged over 2 × 109 time steps. (Online version in colour.)
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approach of Antal et al. in [22] in the limit of weak selection,
also confirms the previous more general result that B(0) > 2c
holds for any selection strength when mutations are rare.
More details on these last cases can be found in electronic
supplementary material, §3 and 4.

To further examine the more complex cases where there
are more than two strategies present, we simulate the
Moran process associated with our set-up in a finite, well-
mixed population of size n to both validate and extend our
analytical results. Our basic set-up begins with n = 20 oscil-
lators and d = 20 discrete phases. We set the cost of
communication at c = 0.1, a low mutation rate of μ = 0.0001,
and the maximum benefit of unilateral communication at
β(0) = 0.95 B(0) as we vary maximum benefit of bilateral com-
munication, B(0), and the selection strength, δ. For a weak
selection strength of δ = 0.005, our theoretical results predict
that we should see communicative strategies favoured if
B(0) > 2c(n− 1)/(n− 2)≈ 0.21. Simulation results averaged
over 2 × 109 time steps, as shown in figure 3a, match closely
with the prediction. As seen in that figure, the prediction is
roughly linear, crossing the 50% threshold marking the
point at which the population has a majority of communicat-
ing oscillators at the stationary distribution of the Moran
process at exactly B(0) > 2c(n− 1)/(n− 2). The circles, denot-
ing the averaged simulation results, track the line closely
and also cross the 50% threshold at just about the same
point. Looking to the strong selection regime, repeating our
simulations after changing the selection strength to δ = 0.2
shows similarly excellent agreement between predicted and
simulated results, as seen in figure 3b. There, the predicted
results form a sigmoid-like curve which crosses the 50%
threshold at the same value of B(0). Circles, again represent-
ing the average over simulations, track the curve closely and
cross the threshold near the same value of B(0). Taken
together, this supports the existence of a transition point at
B(0) = 2c(n− 1)/(n− 2) after which the systems favour com-
municative strategies. For systems where there are many
different strategies, different sub-populations may be playing
different games than one another due to the varied
possibilities shown in figure 1. As strategies evolve, the
system may move through these different games, each of
which has a different impact on favouring communication.
To explore these potentially rich dynamics, we present
two experiments.

In the first experiment, we pick a configuration of par-
ameters (B(0), β(0), c) = (0.15, 0.1425, 0.1) that place game
play either in the snowdrift, Prisoner’s Dilemma, or mutual-
ism regimes. Further, since 0.15 = B(0) < 2c(n− 1)/(n− 2)≈
0.21 we do not necessarily expect the evolution to favour
communication. Figure 4 shows the results of this simulation
experiment. We use the order parameter, r, to measure the
extent of synchronization, which is defined as

r ¼ 1
n

Xn
i¼1

eifi

�����

�����:

The dotted line gives the value of the order parameter across
the time steps. It begins at about 0.4 as the initial strategies
are drawn at random. Over a small number of times steps
(approx. 2000) it quickly moves very close to one, indicating
phase synchronization, and stays there with only small per-
turbations for the rest of the simulation except at just before
70 000 time steps where it drops sharply before returning to
values close to one. The structure of the population and the
types of games its members are playing is not nearly as
stable. The solid curve in the figure shows the most
common type of game that oscillators are playing based on
the categorization in figure 1 by colour of the line—between
the coordination (blue), mutualism (green), Prisoner’s
Dilemma (red), and snowdrift (yellow) games. In figure S1
in the electronic supplementary material, we plot the histo-
gram of the types of aforementioned games that have been
played. We also denote, in two shades of grey, if the popu-
lation is completely non-communicative (dark grey) or
completely communicative (light grey). Moving through the
time steps, the most common game starts in the snowdrift
region but quickly moves to the all non-communicative
state despite the fact that simultaneously the order parameter
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Figure 4. Coevolutionary dynamics of communicative strategies and phases in a finite, well-mixed population of neurons. The plot shows the time evolution of the
order parameter (dashed line) which quantifies the degree of synchronization of neurons and the fraction of communicative neurons (solid line). The colour of the
solid line indicates the most common type of game interactions in the population at each time step. We use the Moran process for the evolutionary update in our
individual-based simulations. Model parameters: population size n = 20, number of discrete phases d = 20, selection strength δ = 0.2, cost of communication c =
0.1, maximum benefits B(0) = 1.5c and β(0) = 0.95B(0), and mutation rate μ = 0.0001. (Online version in colour.)
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jumps to almost one. After approximately 10 000 time steps,
the game changes again to snowdrift briefly until all oscil-
lators are communicative. This regime lasts the longest,
until almost 70 000 time steps, when the game type becomes
coordination briefly until the oscillators are again all non-
communicative. The two big transitions come, at roughly
10 000 and 70 000 time steps, and represent changes similar
to the invasion scenario—the introduction of a communicat-
ing oscillator by mutation into an otherwise completely
non-communicative population at the point of the first tran-
sition, and the opposite situation in the second.

The results in the case of strong selection and low
mutation inform our second experiment. Conditions (3.8)
and (3.10) demonstrate both that β(Δϕ) must exceed the cost
of communication, but also that B(0) must sufficiently
exceed β(Δϕ). The second condition creates a new type of out-
come in the portion of figure 1 corresponding to the snowdrift
game. Rather than fixating on one of the two strategies, in this
region the system comes into something close to a stable state
in which it oscillates slightly around some mixture of commu-
nicative and non-communicative strategies unless β(Δϕ) dips
below c or rises too close to B(0). In their analysis of the evol-
ution of a population playing a snowdrift game [19], Antal
& Scheuring demonstrate that while the system will even-
tually reach a steady state, the time it takes to do so is
exponential due to the existence of a (unique) mixed evolutio-
narily stable strategy. In our setting, this poses the existence of
systems that exhibit mixtures of communicative and non-com-
municative strategies that persist over many generations. To
explore this, we use a choice of parameters, (B(0), β(0),
c) = (0.25, 0.2375, 0.1), that place the game within the snow-
drift regime of figure 1 but also in the region where we
expect communication to be favoured in the long run.

Figure 5 shows the results of this simulation experiment.
The structure of this figure is similar to figure 4, where the
dotted line gives the order parameter and the solid line ident-
ifies the most common strategy by its colour and the fraction
of communicative strategies by its height. The parameters of
the simulation are identical to the previous experiment except
the selection strength is very high, δ = 5, and B(0) = 2.5c.
Like the previous simulation, the order parameter quickly
moves to values close to one and remains there throughout
the simulation with only small perturbations. In contrast to
this stability, the fraction of communicative strategies bounces
around between about 0.45 and 0.7 and the most common
game played is the snowdrift game (see figure S2 in the
electronic supplementary material).
4. Discussion
Our results describe various conditions under which syn-
chronization in our model of the SCN is favoured. Of
course, not all organisms exhibit behaviour that follows a cir-
cadian rhythm. For example, some organisms that live in
extreme environments (the absence of light, for example),
are going through extreme life stages (e.g. migration, repro-
duction), or are highly social fail to exhibit circadian
behaviour [2,26]. It is also the case that not all organisms
with circadian rhythms have a circadian system controlled
by a ‘master clock’ like the mammalian SCN. For example,
many fish are believed to have a more complex circadian
clock arrangement involving a network of interconnected
circadian units [2]. Our results, then, characterize when the
SCN is able to function as the ‘master clock’ to maintain an
organism’s circadian system.

So how do we interpret these results in terms of the
biology? Given the framing of the model in §2, the pairwise
invasion results when we have low mutation and weak selec-
tion tell us two things. First, so long as our basic condition,
B(0) > 2c, holds, the system evolves towards synchronization
and complete communication. Second, so long as B(0) > 2c
and B(0) + β(Δϕ) > 3c, such systems are robust in the sense
that invasion by a communicative oscillator is more likely
to result in total communication than invasion by a non-
communicator is to result in complete non-communication.
Our results imply that organisms that see this level of benefits
should develop a highly connected and interactive system of
oscillators that facilitate synchronization. The second con-
dition points to an avenue of fragility in the system—if
β(Δϕ) < c, which could happen if β decays quickly and Δϕ is
relatively large, then invasion by non-communication has a
higher probability of becoming the stable state than a similar
invasion by a communicator. Even under the assumption that
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Figure 5. Snowdrift interactions provide a plausible mechanisms for the long-term coexistence of communicative strategies and their synchronization. The plot is
similar to figure 4 except for strong selection (δ = 5). Once the population system wanders into the region of snowdrift games, it will be trapped in this state of
coexistence for an exceedingly long time since the fixation time of snowdrift games is exponential [19]. In this scenario, synchronization is favoured despite the
mixture of communicative and non-communicative neurons. Model parameters: population size n = 20, number of discrete phases d = 20, selection strength δ = 5,
cost of communication c = 0.1, maximum benefits B(0) = 2.5c and β(0) = 0.95B(0), and mutation rate μ = 0.0001. (Online version in colour.)
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the functions B and β are identical, this presents a stronger
possibility of losing complete communication if a non-com-
municative oscillator is introduced via mutation with a
phase sufficiently distant from the synchronous phase of
the communicative portion of the system. This seems biologi-
cally implausible, as we would not expect a mutation that
introduced non-communication to a stable synchronous
system to lead to dismantling that system so long as the
benefit is sufficiently high. Consequently, we interpret this
as a constraint on the function β, providing a lower bound
of c for its values. This condition appears explicitly when
we consider strong selection and weak mutation. There
(see (3.8) and (3.10)), we see that if B(0)− c > β(Δϕ) > c, then
communication is favoured in either invasion set-up.

The intensity of the selection parameter δ in our model is
an important, biologically plausible parameter that deter-
mines the stochasticity of the system. For weak selection,
the system is close to neutral evolution and has a strong
random drift effect, whereas for strong selection, the system
is driven by a selection gradient (survival of the fittest),
becoming essentially deterministic. Additionally, the
mutation rate μ determines how the system travels across
the simplex of the state space: for low mutation rate, the
system stays on the edge of the simplex most of the time; in
contrast, for high mutations, the system is close to the
centre of the simplex where each strategy is equally present.
While the specific δ and μ values may vary for real organisms
[27], our theoretical prediction that communicative strategies
are more abundant than non-communicative ones in the long
run equilibrium if B(0) > 2c holds for any selection strength
and low mutation limit. Moreover, we expect that increasing
the mutation rate is likely to make communicative strategies
harder to evolve [28].

The resulting mixture of communicative and non-
communicative strategies that arise in the snowdrift region
under strong selection presents an additional topological
type of communication patterns for these systems. While
fixation to ðN, wÞ represents a topology with no com-
munications and fixation to ðC, wÞ yields all-to-all
communications, this new case presents a mixture of connec-
tivity of their communications—we would expect about two-
thirds of the oscillators to communicate to all others while the
remaining one-third has no outgoing communications to any
other oscillators. Despite the simplified assumptions in our
model, we feel this case most faithfully reflects what is
known about the connectivity in the mammalian SCN.
There, neurons often have connections to nearby neurons
and, much less often, connections to distant ones. Moreover,
different areas of the SCN have different connectivity pat-
terns with more connections in some areas and less in
others. While our model is too crude at this stage to mimic
these subtleties, the existence of a mixed topological type of
communication pattern lends support to the idea that gener-
alizations of the model can produce similar heterogeneity to
the biological network.

Turning to the more general cases with more than two
phases, the results of evolutionary dynamics of multiple strat-
egies for the low mutation limit and any selection strength as
well as for weak selection and any mutation rate add further
texture and support to the pairwise invasion results. For low
mutation regimes, our analysis for any selection strength
demonstrates that the basic cost–benefit condition, B(0) > 2c,
persists even in a much more heterogeneous environment
of strategies. These mixed environments are more biologically
plausible, given the diversity of possible phases, and the
reiteration of this condition reinforces its ubiquity. Our analy-
sis of the weak selection limit for the case of multiple
strategies, on the other hand, provides a window into the
otherwise unexamined case of higher mutations. For low
selection strength, the conditions encapsulated in equation
(3.11) show that in conditions with high mutation rates, the
more stringent requirement of �B . 2c is required for a strat-
egy to be successful. This supports our expectation that
higher mutation rates make communicative strategies
harder to evolve.

In addition to the original Moran (birth–death) process
considered in this work, its dual death–birth process, among
others, is also often used to model evolutionary dynamics
[29]. We confirm that these two update rules yield almost iden-
tical results for modelling neuronal interactions in well-mixed
populations, which are equivalent to complete graphs [30].
However, they can lead to drastically different results for evol-
utionary dynamics in structured populations [29]. Prior work
has pointed out that cooperation can never be favoured
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under the birth–death rule for evolutionary Prisoner’s
Dilemma games on networks [29]. As neuronal interactions
in the present model go beyond Prisoner’s Dilemma, it is of
interest for future work to systematically compare how evol-
utionary outcomes are impacted by the specific update rules
along with different network topologies [31].
lishing.org/journal/rspb
Proc.R.Soc.B

289:20220999
5. Conclusion
We see two main contributions of our EGT framework for
coupled oscillatory systems. First, we provide an alternative
set-up for Kuramoto-type systems where it is easy to intro-
duce evolutionary constraints on the connectivity of the
system. This allows the study of the impact of these con-
straints and enables us to draw conclusions or conjectures
about the structure of biological oscillatory systems. Topolo-
gical properties of networks of coupled oscillators play a
critical role in determining whether and how such a system
will synchronize. Differences in topology can promote
strong synchronization or weaker partial synchronization in
a dizzying array of patterns—waves [32], chimeric states
[33], pinwheels [33], cluster synchronization [34–38] and com-
binations of these. On the other hand, researchers in EGT
have explored the impact of topology on the emergence of
cooperation among agents in a structured population.
Across these examples, we see a variety of outcomes—sys-
tems that converge to complete cooperation, complete
defection, or mixed populations of defectors and coopera-
tors—and a large body of work delineates topological
structures that facilitate cooperation [29,39–42]. A recent
sequence of papers describe topological statistics and signa-
tures that push a system towards cooperation in pairwise
interactions [43–45] and high-order interactions [46]. Our
work provides a first step in exploring how these topologies
arise in the context of evolutionary processes, providing a
connection between these two lines of research in the special
case of oscillatory systems. While this initial work applies
only to a simple case allowing only binary connectivity—an
oscillator is connected to all the oscillators or none of
them—the framework easily adapts to more flexible modes
of connectivity. Despite this simplification, our analysis
reveals some of the complexity witnessed in the literature
in identifying cost–benefit trade-offs that lead to fully con-
nected, completely disconnected or partially connected
networks.

Second, our set of initial results about this system reveal
both baseline necessary conditions for synchronization as
well as some more nuanced results in either high mutation
or strong selection environments. Our analysis both quan-
tifies and extends the intuitive conclusion that the benefits
of synchronization must outweigh the costs substantially
for an oscillatory system to develop connectivity in its sup-
port. In the more extreme evolutionary environments of
high mutation or strong selection, the higher requirements
for the benefit point to an additional evolutionary mechan-
ism at play. As both selection strength and mutation rate
can be different among different organisms as well as
change over time in a single organism, periods of either con-
dition place higher selection pressure on strategies with better
fitness with respect to the benefit of synchronization while
simultaneously producing barriers to achieving complete
communicability and synchronization resulting in hetero-
geneous states that can persist for long periods of time.
Moving into these heterogeneous states provides the system
a chance to explore more areas of the parameter space
and consequently provide the opportunity for new, and
potentially more fruitful, configurations.

In sum, our work derives analytical evolutionary con-
ditions for communication and synchronization behaviour
of neurons to be favoured by natural selection in a variety
of scenarios, supported and extended by simulation results.
Sharing in common of these characterized evolutionary con-
straints is a surprisingly simple condition that the benefit of
mutual communication and synchronization needs to be
greater than twice the cost of doing so. Our theoretical and
simulation results may help shed new insights into the wide-
spread synchronization behaviour in populations of
oscillators. While our work is motivated primarily by the
mechanisms associated with circadian rhythms, we expect
that this framework will be valuable in extending our under-
standing of other systems of coupled oscillators and the
processes they model, such as synchronization in the flashing
of fireflies or the chirping of crickets [47,48].
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Endnote
1Δϕjk = |ϕj− ϕk| if |ϕj− ϕk|≤ π; otherwise Δϕjk = 2π− |ϕj− ϕk| (as
shown in figure 1a).
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