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Highlights

A modular DNA scaffold was

designed to organize proteins

into defined oligomers

Oligomers were synthesized with

exact numbers and sequences of

up to five proteins

This oligomerization strategy is

generalizable to nearly any

protein
In nature, many proteins organize into architectures where the exact number and

spatial arrangement of each protein can dictate biological function, including

catalysis and photosynthesis. To mimic and even surpass such function, the

preparation of many different protein architectures is required. However, this is

synthetically challenging. Herein, we developed a modular method that uses

designed nucleic acid sequences to organize proteins into different monodisperse

and sequence-encoded oligomers, including dimers, trimers, and pentamers.
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THE BIGGER PICTURE

In nature, many proteins combine

to form architectures that contain

exact numbers and oligomeric

sequences of different subunits,

and such hierarchical structural

control influences their biological,

catalytic, photophysical, and

membrane transport properties.

To mimic such structures and

potentially surpass their

properties, the synthesis of

different sequence-encoded

protein oligomers is needed.

Herein, a method to organize

proteins in such a way using

designed nucleic acid sequences

is reported. Generalizable

bioconjugation reactions are used

to install one DNA strand on each

protein, and assembly occurs via

base-pair recognition of different

DNA sequences. Therefore,

nearly any protein can be used

without requiring mutations or

recombinant expression. Using

this method, monomers, dimers,

and trimers are synthesized that

can be further assembled into

larger structures, laying the

foundation for the study of

sequence-encoded protein

materials across many areas.
SUMMARY

Synthesizing protein oligomers that contain exact numbers of multi-
ple different proteins in defined architectures is challenging. DNA-
DNA interactions can be used to program protein assembly into
oligomers; however, existing methods require changes to DNA
design to achieve different numbers and oligomeric sequences of
proteins. Herein, we develop a modular DNA scaffold that uses
only six synthetic oligonucleotides to organize proteins into defined
oligomers. As a proof of concept, model proteins (antibodies) are
oligomerized into dimers and trimers, where antibody function is re-
tained. Illustrating the modularity of this technique, dimer and
trimer building blocks are then assembled into pentamers contain-
ing three different antibodies in an exact stoichiometry and oligo-
meric sequence. In sum, this report describes a generalizable
method for organizing proteins into monodisperse, sequence-en-
coded oligomers using DNA. This advance will enable studies into
how oligomeric protein sequences affect material properties in
areas spanning pharmaceutical development, cascade catalysis,
synthetic photosynthesis, and membrane transport.

INTRODUCTION

In nature, many proteins assemble into defined oligomeric architectures that contain

exact numbers and oligomeric sequences of multiple different proteins.1–3 Herein,

oligomeric sequence of proteins and oligomeric protein sequence are defined as

the order of proteins within an oligomeric architecture. This assembly can dictate

the biological (e.g., human IgM antibodies contain five protein subunits),4 catalytic

(e.g., eukaryotic RNA polymerase II contains twelve protein subunits),5 photophys-

ical (e.g., cyanobacteria photosystem I contains twelve protein subunits),6 andmem-

brane transport (e.g., Streptomyces lividans potassium channel contains four protein

subunits)7 properties of proteins. To mimic and potentially surpass these properties,

the modular synthesis of different protein oligomers is needed. A versatile synthetic

protein oligomerization method would: (1) provide access to a large number of pro-

teins per oligomer, (2) provide access to any oligomeric sequence of the same or

different proteins, (3) be generalizable with regard to proteins, and (4) not require

mutations of the amino acid sequence of proteins and recombinant protein expres-

sion. Amethod that meets all four criteria would enable the study of how the identity,

number, stoichiometry, oligomeric sequence, and architecture of proteins affects

the emergent properties of oligomers. Although strategies have been developed

to prepare synthetic protein oligomers8–11 and study how oligomerization affects

protein properties,12–15 there is no current method that meets all four listed criteria
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(Figures 1A and 1B). In this work, we explored the design and synthesis of a single

modular nucleic acid scaffold that can be used to organize proteins into a near lim-

itless array of monodisperse and sequence-encoded protein oligomers (Figure 1C).

Protein oligomers are frequently prepared using techniques frommolecular biology,

including genetic engineering and recombinant expression of mutated proteins

(Figure 1A). Generally, fusion proteins are designed via genetic engineering and re-

combinantly expressed to achieve the desired oligomerization structure. Three com-

mon methods for oligomerization using fusion proteins include: direct expression of

protein oligomers as a single polypeptide,16–18 fusion of proteins to a subunit of a

multimeric protein (e.g., streptavidin) that assembles into supramolecular constructs

(Figure 1Ai),19–22 or fusion of proteins to a subunit that can selectively form covalent

bonds with a complementary group (e.g., SpyTag/SpyCatcher,23 SnoopTag/

Snoopcatcher,24 SNAPtag,25 HALOtag,26 or cutinase,27 Figure 1Aii).24,28–31 Further-

more, recent advances in the design of protein-protein interfaces enable sophisti-

cated control over synthetic protein architectures (Figure 1Aiii).32–37 Each of these

methods requires mutations of the amino acid sequence of proteins and recombi-

nant protein expression. However, many proteins are challenging to prepare via

recombinant expression (e.g., proteins with post-translational modifications,38 pro-

teins with disulfide bonds,39 toxic proteins,40 or proteins that aggregate41), poten-

tially limiting the scope of proteins that can be oligomerized through thesemethods.

Chemical approaches to assemble proteins are another powerful method to control

oligomerization (Figure 1B). The amino acid sequence of proteins can be mutated to

incorporate (un)natural amino acids at defined positions for interactions such as

electrostatic,42 supramolecular host-guest binding,43–46 metal coordination,47–49

or covalent linking.50,51 However, without extensive chemical design, modification

of protein amino acid sequences and/or recombinant protein expression, it is chal-

lenging to access monodisperse and sequence-encoded oligomers that are larger

than dimers or trimers. Chemical approaches to directly oligomerize proteins

post-expression without modifying the amino acid sequence of proteins or using

an assembly template (vide infra) were expanded with the introduction of bio-

orthogonal ‘‘click’’ reactions (Figure 1Bi).52–54 Although these reactions have been

used to oligomerize therapeutically relevant proteins (e.g., antibodies), it is chal-

lenging to achieve oligomers larger than dimers or trimers.55

Proteins can be oligomerized using attachment to chemical scaffolds (e.g., poly-

mers56–60 or DNA,61–65 Figure 1Bii). Templated assembly of proteins using DNA is

one of the most promising and versatile approaches to organize proteins into olig-

omers larger than dimers or trimers. The utility of this approach is a result of the

programmability of nucleic acids where specific, defined assemblies can be ac-

cessed solely based on DNA sequence design.61–65 For example, proteins have

been covalently66–68 or noncovalently67,69 modified with oligonucleotides, and the

resulting constructs have been organized via DNA-DNA interactions into amultitude

of protein oligomers with one-,70–81 two-,82–104 and three-dimensional105–119 archi-

tectures. However, in each of these systems, DNA design must be changed to syn-

thesize defined protein oligomers that contain different numbers or oligomeric

sequences of proteins. For example, a protein tetramer can be readily synthesized

using a DNA tetrahedron scaffold82 or a four-arm Holliday DNA junction scaf-

fold.83–85 However, to synthesize a protein pentamer, every DNA sequence must

be re-designed to account for the one additional protein. Modular multi-protein

constructs can be realized on large DNA origami structures,86,87,105 but most

of the composition (e.g., >80%) of these constructs is DNA instead of protein.
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Figure 1. Protein oligomerization techniques and limitations

(A) Protein oligomers can be synthesized using techniques from molecular biology, including (Ai) protein fusion to assembling units, (Aii) protein fusion

to conjugation units, and (Aiii) design of protein-protein interfaces.

(B) Oligomerization can also be achieved using techniques from chemistry, such as (Bi) bioconjugation chemistry and (Bii) scaffold-directed

oligomerization of proteins.

(C) In this work, (Ci) we design a set of six DNA strands that can be used as a modular DNA scaffold to organize proteins into an expansive array of

monodisperse and sequence-encoded oligomers. (Cii) This generalizable method will enable the synthesis of different oligomeric sequences of

proteins.
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Molecular constructs that minimize the required amount of DNA such that most of

the chemical properties are dictated by the identity and organization of proteins

are inaccessible using these techniques.62 Together, these limitations significantly

hamper any studies where access to libraries of different protein oligomers with

discrete stoichiometries and oligomeric sequences of proteins could provide insight

into how protein-protein interactions and cooperativity can be exploited for

enhanced properties of oligomers.

We hypothesized that a single set of designed DNA strands could be used as a

modular scaffold to organize proteins into oligomers with exact stoichiometries

and oligomeric sequences (Figure 1C). This DNA design would enable different

proteins to be precisely organized into an expansive array of monodisperse,

sequence-encoded oligomers (Figure 1Ci). Herein, we tested our hypothesis by

designing a modular six-strand DNA scaffold and using it to oligomerize commer-

cially available and therapeutically relevant proteins (i.e., antibodies). The scaffold

consists of three distinct DNA strands that can be conjugated to proteins and

three distinct DNA strands that template the assembly of DNA-modified proteins

into oligomers via DNA-DNA interactions (Scheme S1). Importantly, each of the

six DNA strands contains two distinct binding domains, and the sites for attach-

ment to proteins can be located anywhere on the DNA strands (Scheme S3). Us-

ing the designed DNA scaffold, monodisperse, sequence-encoded monomer,

dimer, and trimer building blocks are synthesized. Next, these building blocks

are used to access a larger oligomer (i.e., pentamer) that contains a defined num-

ber and oligomeric sequence of proteins. Importantly, the foundational examples

shown herein are a fraction of the possible oligomeric sequences that are acces-

sible using the modular six-strand DNA scaffold (Figure 1Cii; Table S3). For

example, if five different proteins are used, there are, in principle, 3,125 different

accessible pentameric sequences. Overall, this generalizable synthetic route will

enable future investigations into how the identity, stoichiometry, oligomeric

sequence, and architecture of proteins in oligomers affect the properties of these

constructs.
RESULTS

Three commercially available IgG antibodies commonly used as checkpoint inhib-

itors (i.e., anti-mouse-PD-1 [A], anti-mouse-TIGIT [B], and anti-mouse-CTLA-4 [C])

were chosen for the sequence-encoded oligomerization of proteins using a

modular DNA scaffold. To install a single DNA strand onto either A, B, or C,

each antibody was reacted with 2 equiv of an oligo(ethylene glycol) molecule con-

taining an N-hydroxysuccinimide activated ester and an azide (NHS–PEG12–N3) for

45 min (Figure 2A). This chemistry targets the primary amines (e.g., ε-amines on

lysines and a-amines on N termini)120 on both the Fc and Fab regions of the anti-

body and was chosen because it is generalizable with regard to proteins. Although

the exact location of conjugation cannot be controlled, we expected that the num-

ber of azide modifications per antibody would be controlled by low numbers of

equivalents of NHS–PEG12–N3 added. We hypothesized that the low number of

primary amines modified would not inhibit the target-binding characteristics of an-

tibodies. After purification by size-exclusion chromatography (SEC), the azide on

the surface of each antibody underwent a strain-promoted azide-alkyne cycloaddi-

tion (SPAAC) reaction with 5 equiv of DNA strands containing dibenzocyclooctyne

(DBCO) and a fluorophore (i.e., Cyanine 3 [Cy3], Cyanine 5 [Cy5], or fluorescein

[FITC]) and two distinct 20 base nucleic acid sequences (Table S1; Schemes S1A

and S2, i.e., S2–DBCO–Cy3–S3, S4–DBCO–Cy5–S5, or S6–DBCO–FITC–S1). After
Chem 8, 3018–3030, November 10, 2022 3021



Figure 2. Antibody functionalization with a single DNA strand

(A) Primary amines on the surface of antibodies were functionalized with azides using an NHS–PEG12–N3 linker. Next, dibenzocyclooctyne (DBCO)-

modified DNA was conjugated to azide-modified antibodies via a strain-promoted azide-alkyne cycloaddition (SPAAC).

(B) SDS-PAGE characterization of mouse antibodies (i.e., lane 1: anti-mouse-PD-1 [A], lane 3: anti-mouse-TIGIT [B], and lane 5: anti-mouse-CTLA-4 [C])

and antibody-DNA conjugates (i.e., lane 2: S2–A–Cy3–S3, lane 4: S4–B–Cy5–S5, and lane 6: S6–C–FITC–S1). A single gel was imaged for SimplyBlue

SafeStain, Cy3, Cy5, and FITC fluorescence.
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16 h, roughly 25%–30% of antibodies were modified with one DNA strand (Fig-

ure S1). Next, unreacted DNA was removed from the reaction mixture using

SEC. Anion exchange chromatography was used to isolate antibodies that were

functionalized with a single DNA strand from unreacted antibodies and antibodies

that were functionalized with multiple DNA strands (Figure 2A). Three different

protein-DNA conjugates (i.e., S2–A–Cy3–S3, S4–B–Cy5–S5, and S6–C–FITC–S1)

were prepared and confirmed to contain a single DNA functionalization via sodium

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE, Figure 2B) and

SEC (Figure S2).

Protein oligomers were synthesized by mixing the purified protein-DNA conjugates

(Figures 3A and 3E: lanes 1–3) with template DNA strands (Table S1; Scheme S1B,

i.e., S10–S20, S30–S40, or S50–S60). The template strands were designed as comple-

ments to two 20 base nucleic acid sequences on different antibody-DNA conjugates

(Table S2; Scheme S1C). For example, the S50 DNA sequence on the template strand

S50–S60 is complementary to the S5 DNA sequence on S4–B–Cy5–S5 and the S60

DNA sequence is complementary to the S6 DNA sequence on S6–C–FITC–S1. Equal

amounts of the B–DNA conjugate, C–DNA conjugate, S50–S60 template strand, and

S10–S20 template strand were mixed to synthesize a protein dimer with the oligo-

meric sequence S4–B–C–S20 (Figure 3B; Scheme S5A) at an assembly yield of 68%

(Figures S5A and S5D). Oligomers that contain greater than two antibodies were

not observed in the assembly mixture because there are no DNA sequences

that are complementary to either the S4 or S20 DNA sequences. Protein dimers

were isolated from unreacted monomers and template strands in the assembly
3022 Chem 8, 3018–3030, November 10, 2022



Figure 3. Antibody oligomerization into encoded sequences using DNA-DNA interactions

(A) Antibody-DNA conjugates and template DNA strands were assembled using DNA-DNA interactions into sequence-encoded protein (B) dimers and

(C) trimers. Dimers and trimers were subsequently assembled using DNA-DNA interactions into sequence-encoded protein (D) pentamers. (E) Agarose

gel characterization of antibody-DNA conjugates (i.e., lane 1: S2–anti-mouse-PD-1 [A]–Cy3–S3, lane 2: S4–anti-mouse-TIGIT [B]–Cy5–S5, and lane 3:

S6–anti-mouse-CTLA-4 [C]–FITC–S1) along with sequence-encoded antibody dimers (i.e., lane 4: S4–B–C–S20), trimers (i.e., lane 5: S2–A–B–C–S1), and

pentamers (i.e., lane 6: S4–B–C–A–B–C–S1). A single gel was imaged for Cy3, Cy5, and FITC fluorescence, and these images are merged into one

composite image in Figure S9.
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mixture using SEC purification and characterized with agarose gel electrophoresis

(Figure 3E: lane 4). Importantly, the agarose gel showed a single band for dimers

with only the expected Cy5 and FITC fluorescence and lower electrophoretic

mobility than either antibody-DNA conjugate alone. Therefore, monodisperse and

sequence-encoded protein dimers with the oligomeric sequence S4–B–C–S20

were successfully synthesized.
Chem 8, 3018–3030, November 10, 2022 3023
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Next, the synthesis of a sequence-encoded protein trimer was targeted. Equal

amounts of the A–DNA conjugate, B–DNA conjugate, C–DNA conjugate, S30–S40

template strand, and S50–S60 template strand were mixed to synthesize a protein

trimer with the oligomeric sequence S2–A–B–C–S1 (Figure 3C; Scheme S5B) at an

assembly yield of 27% (Figures S5B and S5D). Oligomers that contain greater than

three antibodies or trimers containing alternative oligomeric antibody sequences

were not observed in the assembly mixture because there are no DNA sequences

that are complementary to either the S2 or S1 DNA sequences. Protein trimers

were isolated from the assembly mixture using SEC purification and characterized

with agarose gel electrophoresis (Figure 3E: lane 5). The agarose gel showed a sin-

gle band for the trimers with the expected Cy3, Cy5, and FITC dye fluorescence as

well as lower electrophoretic mobility on an agarose gel than the dimers. Therefore,

these results indicate that monodisperse and sequence-encoded protein trimers

with the oligomeric sequence S2–A–B–C–S1 were successfully synthesized. Impor-

tantly, no disassembly of S4–B–C–S20 or S2–A–B–C–S1 oligomers were observed

over 10 days of storage at 4�C.

To ensure that this synthetic technique is generalizable, different protein oligomers

were synthesized, including a protein dimer with the oligomeric sequence A–B (Fig-

ure S13) and a protein trimer with the oligomeric sequence, A–B–B (Figure S6).

Furthermore, another antibody, anti-human-PD-1 (D), was functionalized with a sin-

gle DNA strand of S2–DBCO–Cy3–S3, S4–DBCO–Cy5–S5, or S6–DBCO–FITC–S1

(Figures S3 and S4), and the resulting constructs were organized into protein dimers

with the oligomeric sequence D–D (Figures S7, S8, and S10) and trimers with the

oligomeric sequence D–D–D (Figure S7). Analytical SEC analysis of antibody-DNA

conjugates, dimers, and trimers shows a single peak for each sample with decreases

in retention time as degree of oligomerization increases (Figures S6C and S7C).

The target-binding characteristics of human antibodies after functionalization with

DNA and oligomerization with the modular DNA scaffold were investigated using

antigen binding and checkpoint inhibitor activity cellular assays. We studied D,

D–DNA conjugates, D–D dimers, and D–D–D trimers using these assays and

confirmed that antigen binding and checkpoint inhibitor activity were retained in

each sample (Figures S11 and S12, see the supplemental information for additional

details). Importantly, an antibody dimer, A–B, exhibited minimal degradation in the

cellular media used in these experiments (Figure S13, see the supplemental informa-

tion for additional details).

Finally, a protein dimer and trimer were used as building blocks to synthesize a

monodisperse and sequence-encoded protein pentamer where three different anti-

bodies are organized into a precise oligomeric sequence. The S4–B–C–S20 protein
dimer and S2–A–B–C–S1 protein trimer were mixed together at a 1:1 ratio and the

specific binding between the S20 DNA sequence on the dimer and the S2 DNA

sequence on the trimer leads to the synthesis of a sequence-encoded protein pen-

tamer with the oligomeric sequence S4–B–C–A–B–C–S1 (Figure 3D; Scheme S5C) at

an assembly yield of 58% (Figures S5C and S5D). Oligomers that contain greater

than five antibodies were not observed in the assembly mixture. Protein pentamers

were isolated from other unreacted dimers, trimers, and template strands in the as-

sembly mixture using SEC purification and characterized with agarose gel electro-

phoresis (Figure 3E: lane 6). The pentamers showed a single band with the expected

Cy3, Cy5, and FITC dye fluorescence as well as lower electrophoretic mobility on an

agarose gel than the trimers. Therefore, monodisperse and sequence-encoded pro-

tein pentamers with the oligomeric sequence S4–B–C–A–B–C–S1 were successfully
3024 Chem 8, 3018–3030, November 10, 2022
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synthesized. This is the first reported monodisperse antibody pentamer that con-

tains different antibodies in a predefined oligomeric sequence.
DISCUSSION

The designed set of six DNA strands was used as a modular scaffold to organize pro-

teins into oligomers with programmed identity, stoichiometry, and oligomeric

sequence. This scaffold provided access to monomer, dimer, and trimer building

blocks that could bemodularly combined independent from the identity of proteins.

Therefore, all of the criteria for a versatile synthetic protein oligomerization method

were met: (1) providing access to a large number of proteins per oligomer, (2)

providing access to any oligomeric sequence of the same or different proteins, (3)

being generalizable with regard to proteins, and (4) not requiring mutations of the

amino acid sequence of proteins and recombinant protein expression.

Established chemistry was used to functionalize a primary amine (e.g., ε-amine on a

lysine or a-amine on a N terminus) on proteins with a single DNA strand.120 Nearly all

proteins contain primary amines; hence, this approach is generalizable with regard

to proteins, including proteins that are commercially available, isolated from natural

sources, or recombinantly expressed. Many other covalent66,67 and noncovalent67,69

bioconjugation methods could also be used to modify proteins with one of the DNA

strands reported here. By taking advantage of these approaches, nearly any protein

can be modified with a single DNA strand and organized into monodisperse,

sequence-encoded oligomers using the designed DNA scaffold.

Although modular multi-protein constructs can be prepared using large DNA

origami scaffolds, proteins comprise less than 20% of the mass of these con-

structs.86,87,105 This large amount of DNA compared with protein means that most

of the solution properties and interactions of these constructs are dictated by the

DNA scaffold instead of by the proteins. In cases where protein binding interactions

are integral to function (e.g., antibody-antigen binding), this large amount of DNA

may affect target recognition and accessibility. In contrast, using the modular

DNA scaffold reported in this work, proteins make upmost of the mass of oligomeric

constructs. For example, proteins comprise 84%, 86%, and 85% of the mass of the

sequence-encoded B–C dimer, A–B–C trimer, and B–C–A–B–C pentamer, respec-

tively. Although other protein assembly techniques using nucleic acids also provide

access to oligomers mostly comprising proteins (e.g., oligomerization using a DNA

tetrahedron scaffold82 or a four-arm Holliday DNA junction scaffold83–85), they lack

modularity to access different numbers of proteins per construct.

In principle, the modular DNA scaffold described herein provides access to vast

numbers of different oligomeric sequences and sizes. For example, 3 different pro-

teins could be oligomerized into trimeric constructs with 27 different oligomeric se-

quences, including homo-oligomers of one protein and hetero-oligomers of 2 or 3

proteins (Figure 1Cii). Oligonucleotides in the DNA scaffold interact through

Watson-Crick-Franklin base pairing to form a right-handed double helix. Therefore,

two oligomers with reversed oligomeric sequences of proteins (e.g., A–A–B and

B–A–A) form different structures and are considered different sequences. Likewise,

2 different proteins could be oligomerized into dimeric constructs with 4 different

oligomeric sequences, 4 different proteins could be oligomerized into tetrameric

constructs with 256 different oligomeric sequences, and 5 different proteins could

be oligomerized into pentameric constructs with 3,125 different oligomeric se-

quences (Table S3). Furthermore, each oligomer building block synthesized using
Chem 8, 3018–3030, November 10, 2022 3025
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this method inherently contains living chain ends where more units could be added

to access larger oligomers (e.g., hexamers, heptamers, and octamers, Scheme S4).

Considering the growing number of discovered proteins, the foundational oligo-

mers synthesized in this work illustrate the unlimited number of protein oligomers

that could be accessed via a single modular DNA scaffold.

Conclusions

In conclusion, this work shows how monodisperse, sequence-encoded protein olig-

omers can be synthesized using generalizable bioconjugation chemistry and a judi-

ciously designed DNA scaffold. This versatile protein oligomerization approach is

powerful and useful because oligomers with different stoichiometries and oligo-

meric sequences can be synthesized without the need to redesign the proteins or

the DNA scaffold. Importantly, this synthetic advance will enable subsequent studies

to understand the fundamental relationships between protein oligomer structures

and properties, which have significant implications for many fields (e.g., therapeu-

tics, catalysis, photosynthesis, and membrane transport).
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Crowley, P.B. (2018). Auto-regulated protein
assembly on a supramolecular scaffold.
Angew. Chem. 130, 13960–13965. https://doi.
org/10.1002/anie.201807490.

45. McGovern, R.E., McCarthy, A.A., and
Crowley, P.B. (2014). Protein assembly
mediated by Sulfonatocalix[4]arene. Chem.
Commun. (Camb) 50, 10412–10415. https://
doi.org/10.1039/C4CC04897K.

46. Bai, Y., Luo, Q., and Liu, J. (2016). Protein self-
assembly via supramolecular strategies.
Chem. Soc. Rev. 45, 2756–2767. https://doi.
org/10.1039/C6CS00004E.

47. Churchfield, L.A., and Tezcan, F.A. (2019).
Design and construction of functional
supramolecular metalloprotein assemblies.
Acc. Chem. Res. 52, 345–355. https://doi.org/
10.1021/acs.accounts.8b00617.

48. Golub, E., Subramanian, R.H., Esselborn, J.,
Alberstein, R.G., Bailey, J.B., Chiong, J.A.,
Yan, X., Booth, T., Baker, T.S., and Tezcan,
F.A. (2020). Constructing protein polyhedra
via orthogonal chemical interactions. Nature
578, 172–176. https://doi.org/10.1038/
s41586-019-1928-2.

49. Zhang, L., Bailey, J.B., Subramanian, R.H.,
Groisman, A., and Tezcan, F.A. (2018).
Hyperexpandable, self-healing
macromolecular crystals with integrated
polymer networks. Nature 557, 86–91. https://
doi.org/10.1038/s41586-018-0057-7.

50. Mogilevsky, C.S., Lobba, M.J., Brauer, D.D.,
Marmelstein, A.M., Maza, J.C., Gleason, J.M.,
Doudna, J.A., and Francis, M.B. (2021).
Synthesis of multi-protein complexes through
charge-directed sequential activation of
tyrosine residues. J. Am. Chem. Soc. 143,
13538–13547. https://doi.org/10.1021/jacs.
1c03079.

51. Koniev, O., and Wagner, A. (2015).
Developments and recent advancements in
the field of endogenous amino acid selective
bond forming reactions for bioconjugation.
Chem. Soc. Rev. 44, 5495–5551. https://doi.
org/10.1039/C5CS00048C.

52. Sletten, E.M., and Bertozzi, C.R. (2009).
Bioorthogonal chemistry: fishing
for selectivity in a sea of functionality.
Angew. Chem. Int. Ed. Engl. 48, 6974–
6998. https://doi.org/10.1002/anie.
200900942.

53. Kolb, H.C., Finn, M.G., and Sharpless, K.B.
(2001). Click chemistry: diverse
chemical function from a few good reactions.
Angew. Chem. Int. Ed. Engl. 40, 2004–2021.
https://doi.org/10.1002/1521-
3773(20010601)40:11<2004::aid-anie2004>3.
3.co;2-x.

54. Devaraj, N.K. (2018). The future of
bioorthogonal chemistry. ACS Cent. Sci. 4,
952–959. https://doi.org/10.1021/acscentsci.
8b00251.

55. Szijj, P., and Chudasama, V. (2021). The
renaissance of chemically generated
bispecific antibodies. Nat. Rev. Chem. 5,
78–92. https://doi.org/10.1038/s41570-020-
00241-6.

56. Griffith, B.R., Allen, B.L., Rapraeger, A.C., and
Kiessling, L.L. (2004). A polymer scaffold for
protein oligomerization. J. Am. Chem. Soc.
126, 1608–1609. https://doi.org/10.1021/
ja037646m.

57. Broyer, R.M., Grover, G.N., and Maynard,
H.D. (2011). Emerging synthetic
approaches for protein–polymer
conjugations. Chem. Commun. (Camb) 47,
2212–2226. https://doi.org/10.1039/
C0CC04062B.

58. Tao, L., Kaddis, C.S., Loo, R.R.O., Grover,
G.N., Loo, J.A., and Maynard, H.D. (2009).
Synthesis of maleimide-end-functionalized
star polymers and multimeric
protein�polymer conjugates.
Macromolecules 42, 8028–8033. https://doi.
org/10.1021/ma901540p.

59. Tao, L., Kaddis, C.S., Ogorzalek Loo, R.R.,
Grover, G.N., Loo, J.A., and Maynard, H.D.
(2009). Synthetic approach to homodimeric
protein–polymer conjugates. Chem.
Commun. (Camb), 2148–2150. https://doi.
org/10.1039/B822799C.

60. Heredia, K.L., Grover, G.N., Tao, L., and
Maynard, H.D. (2009). Synthesis of
heterotelechelic polymers for conjugation of
two different proteins. Macromolecules 42,
2360–2367. https://doi.org/10.1021/
ma8022712.

61. McMillan, J.R., Hayes, O.G., Winegar, P.H.,
and Mirkin, C.A. (2019). Protein materials
engineering with DNA. Acc. Chem. Res. 52,
1939–1948. https://doi.org/10.1021/acs.
accounts.9b00165.

62. Stephanopoulos, N. (2019). Peptide–
oligonucleotide hybrid molecules for
bioactive nanomaterials. Bioconjug. Chem.

https://doi.org/10.1021/cb800025k
https://doi.org/10.1021/cb800025k
https://doi.org/10.1073/pnas.072685299
https://doi.org/10.1073/pnas.072685299
https://doi.org/10.1021/jacs.0c05093
https://doi.org/10.1002/cbic.201200501
https://doi.org/10.1002/cbic.201200501
https://doi.org/10.1021/jacs.8b02665
https://doi.org/10.1021/jacs.8b02665
https://doi.org/10.1021/jacs.9b12003
https://doi.org/10.1021/jacs.9b12003
https://doi.org/10.1038/nchem.2107
https://doi.org/10.1038/nchem.2107
https://doi.org/10.1126/science.abd9994
https://doi.org/10.1126/science.aad8865
https://doi.org/10.1126/science.aaf8818
https://doi.org/10.1126/science.aaf8818
https://doi.org/10.1021/jacs.9b01978
https://doi.org/10.1126/science.abj7662
https://doi.org/10.1126/science.abj7662
https://doi.org/10.1038/s41570-020-00223-8
https://doi.org/10.1038/s41570-020-00223-8
https://doi.org/10.1186/1475-2859-8-26
https://doi.org/10.1186/1475-2859-8-26
https://doi.org/10.3389/fmicb.2014.00172
https://doi.org/10.3389/fmicb.2014.00172
https://doi.org/10.1186/s12934-015-0222-8
https://doi.org/10.1186/s12934-015-0222-8
https://doi.org/10.1038/s41557-018-0196-3
https://doi.org/10.1021/acsnano.9b04115
https://doi.org/10.1002/anie.201807490
https://doi.org/10.1002/anie.201807490
https://doi.org/10.1039/C4CC04897K
https://doi.org/10.1039/C4CC04897K
https://doi.org/10.1039/C6CS00004E
https://doi.org/10.1039/C6CS00004E
https://doi.org/10.1021/acs.accounts.8b00617
https://doi.org/10.1021/acs.accounts.8b00617
https://doi.org/10.1038/s41586-019-1928-2
https://doi.org/10.1038/s41586-019-1928-2
https://doi.org/10.1038/s41586-018-0057-7
https://doi.org/10.1038/s41586-018-0057-7
https://doi.org/10.1021/jacs.1c03079
https://doi.org/10.1021/jacs.1c03079
https://doi.org/10.1039/C5CS00048C
https://doi.org/10.1039/C5CS00048C
https://doi.org/10.1002/anie.200900942
https://doi.org/10.1002/anie.200900942
https://doi.org/10.1002/1521-3773(20010601)40:11&lt;2004::aid-anie2004&gt;3.3.co;2-x
https://doi.org/10.1002/1521-3773(20010601)40:11&lt;2004::aid-anie2004&gt;3.3.co;2-x
https://doi.org/10.1002/1521-3773(20010601)40:11&lt;2004::aid-anie2004&gt;3.3.co;2-x
https://doi.org/10.1021/acscentsci.8b00251
https://doi.org/10.1021/acscentsci.8b00251
https://doi.org/10.1038/s41570-020-00241-6
https://doi.org/10.1038/s41570-020-00241-6
https://doi.org/10.1021/ja037646m
https://doi.org/10.1021/ja037646m
https://doi.org/10.1039/C0CC04062B
https://doi.org/10.1039/C0CC04062B
https://doi.org/10.1021/ma901540p
https://doi.org/10.1021/ma901540p
https://doi.org/10.1039/B822799C
https://doi.org/10.1039/B822799C
https://doi.org/10.1021/ma8022712
https://doi.org/10.1021/ma8022712
https://doi.org/10.1021/acs.accounts.9b00165
https://doi.org/10.1021/acs.accounts.9b00165


ll
Article
30, 1915–1922. https://doi.org/10.1021/acs.
bioconjchem.9b00259.
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