
Chem

Article

Modular nucleic acid scaffolds for synthesizing monodisperse and sequence-encoded antibody oligomers

In nature, many proteins organize into architectures where the exact number and spatial arrangement of each protein can dictate biological function, including catalysis and photosynthesis. To mimic and even surpass such function, the preparation of many different protein architectures is required. However, this is synthetically challenging. Herein, we developed a modular method that uses designed nucleic acid sequences to organize proteins into different monodisperse and sequence-encoded oligomers, including dimers, trimers, and pentamers.

Peter H. Winegar, C. Adrian Figg, Michelle H. Teplensky, Namrata Ramani, Chad A. Mirkin

chadnano@northwestern.edu

Highlights

A modular DNA scaffold was designed to organize proteins into defined oligomers

Oligomers were synthesized with exact numbers and sequences of up to five proteins

This oligomerization strategy is generalizable to nearly any protein

3 GOOD HEALTH AND WELL-BEING

Winegar et al., Chem 8, 3018–3030 November 10, 2022 © 2022 Elsevier Inc. https://doi.org/10.1016/j.chempr.2022.07.003

Article

Modular nucleic acid scaffolds for synthesizing monodisperse and sequence-encoded antibody oligomers

Peter H. Winegar, ^{1,2,4} C. Adrian Figg, ^{1,2,4} Michelle H. Teplensky, ^{1,2} Namrata Ramani, ^{2,3} and Chad A. Mirkin ^{1,2,3,5,*}

SUMMARY

Synthesizing protein oligomers that contain exact numbers of multiple different proteins in defined architectures is challenging. DNA-DNA interactions can be used to program protein assembly into oligomers; however, existing methods require changes to DNA design to achieve different numbers and oligomeric sequences of proteins. Herein, we develop a modular DNA scaffold that uses only six synthetic oligonucleotides to organize proteins into defined oligomers. As a proof of concept, model proteins (antibodies) are oligomerized into dimers and trimers, where antibody function is retained. Illustrating the modularity of this technique, dimer and trimer building blocks are then assembled into pentamers containing three different antibodies in an exact stoichiometry and oligomeric sequence. In sum, this report describes a generalizable method for organizing proteins into monodisperse, sequence-encoded oligomers using DNA. This advance will enable studies into how oligomeric protein sequences affect material properties in areas spanning pharmaceutical development, cascade catalysis, synthetic photosynthesis, and membrane transport.

INTRODUCTION

In nature, many proteins assemble into defined oligomeric architectures that contain exact numbers and oligomeric sequences of multiple different proteins. 1-3 Herein, oligomeric sequence of proteins and oligomeric protein sequence are defined as the order of proteins within an oligomeric architecture. This assembly can dictate the biological (e.g., human IgM antibodies contain five protein subunits), 4 catalytic (e.g., eukaryotic RNA polymerase II contains twelve protein subunits), photophysical (e.g., cyanobacteria photosystem I contains twelve protein subunits), ⁶ and membrane transport (e.g., Streptomyces lividans potassium channel contains four protein subunits)⁷ properties of proteins. To mimic and potentially surpass these properties, the modular synthesis of different protein oligomers is needed. A versatile synthetic protein oligomerization method would: (1) provide access to a large number of proteins per oligomer, (2) provide access to any oligomeric sequence of the same or different proteins, (3) be generalizable with regard to proteins, and (4) not require mutations of the amino acid sequence of proteins and recombinant protein expression. A method that meets all four criteria would enable the study of how the identity, number, stoichiometry, oligomeric sequence, and architecture of proteins affects the emergent properties of oligomers. Although strategies have been developed to prepare synthetic protein oligomers⁸⁻¹¹ and study how oligomerization affects protein properties, 12-15 there is no current method that meets all four listed criteria

THE BIGGER PICTURE

In nature, many proteins combine to form architectures that contain exact numbers and oligomeric sequences of different subunits, and such hierarchical structural control influences their biological, catalytic, photophysical, and membrane transport properties. To mimic such structures and potentially surpass their properties, the synthesis of different sequence-encoded protein oligomers is needed.

Herein, a method to organize proteins in such a way using designed nucleic acid sequences is reported. Generalizable bioconjugation reactions are used to install one DNA strand on each protein, and assembly occurs via base-pair recognition of different DNA sequences. Therefore, nearly any protein can be used without requiring mutations or recombinant expression. Using this method, monomers, dimers, and trimers are synthesized that can be further assembled into larger structures, laying the foundation for the study of sequence-encoded protein materials across many areas.

(Figures 1A and 1B). In this work, we explored the design and synthesis of a single modular nucleic acid scaffold that can be used to organize proteins into a near limitless array of monodisperse and sequence-encoded protein oligomers (Figure 1C).

Protein oligomers are frequently prepared using techniques from molecular biology, including genetic engineering and recombinant expression of mutated proteins (Figure 1A). Generally, fusion proteins are designed via genetic engineering and recombinantly expressed to achieve the desired oligomerization structure. Three common methods for oligomerization using fusion proteins include: direct expression of protein oligomers as a single polypeptide, 16-18 fusion of proteins to a subunit of a multimeric protein (e.g., streptavidin) that assembles into supramolecular constructs (Figure 1Ai), ^{19–22} or fusion of proteins to a subunit that can selectively form covalent bonds with a complementary group (e.g., SpyTag/SpyCatcher, 23 SnoopTag/ Snoopcatcher, ²⁴ SNAPtag, ²⁵ HALOtag, ²⁶ or cutinase, ²⁷ Figure 1Aii). ^{24,28–31} Furthermore, recent advances in the design of protein-protein interfaces enable sophisticated control over synthetic protein architectures (Figure 1Aiii). 32-37 Each of these methods requires mutations of the amino acid sequence of proteins and recombinant protein expression. However, many proteins are challenging to prepare via recombinant expression (e.g., proteins with post-translational modifications, ³⁸ proteins with disulfide bonds, ³⁹ toxic proteins, ⁴⁰ or proteins that aggregate ⁴¹), potentially limiting the scope of proteins that can be oligomerized through these methods.

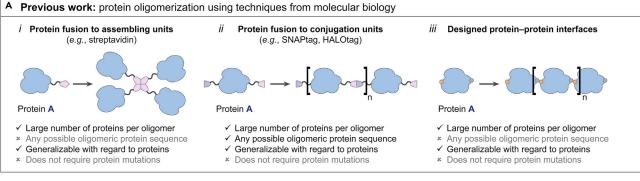
Chemical approaches to assemble proteins are another powerful method to control oligomerization (Figure 1B). The amino acid sequence of proteins can be mutated to incorporate (un)natural amino acids at defined positions for interactions such as electrostatic, 42 supramolecular host-guest binding, 43–46 metal coordination, 47–49 or covalent linking. 50,51 However, without extensive chemical design, modification of protein amino acid sequences and/or recombinant protein expression, it is challenging to access monodisperse and sequence-encoded oligomers that are larger than dimers or trimers. Chemical approaches to directly oligomerize proteins post-expression without modifying the amino acid sequence of proteins or using an assembly template (*vide infra*) were expanded with the introduction of bioorthogonal "click" reactions (Figure 1Bi). 52–54 Although these reactions have been used to oligomerize therapeutically relevant proteins (e.g., antibodies), it is challenging to achieve oligomers larger than dimers or trimers. 55

Proteins can be oligomerized using attachment to chemical scaffolds (e.g., polymers⁵⁶⁻⁶⁰ or DNA, ⁶¹⁻⁶⁵ Figure 1Bii). Templated assembly of proteins using DNA is one of the most promising and versatile approaches to organize proteins into oligomers larger than dimers or trimers. The utility of this approach is a result of the programmability of nucleic acids where specific, defined assemblies can be accessed solely based on DNA sequence design.⁶¹⁻⁶⁵ For example, proteins have been covalently⁶⁶⁻⁶⁸ or noncovalently^{67,69} modified with oligonucleotides, and the resulting constructs have been organized via DNA-DNA interactions into a multitude of protein oligomers with one-, ⁷⁰⁻⁸¹ two-, ⁸²⁻¹⁰⁴ and three-dimensional ¹⁰⁵⁻¹¹⁹ architectures. However, in each of these systems, DNA design must be changed to synthesize defined protein oligomers that contain different numbers or oligomeric sequences of proteins. For example, a protein tetramer can be readily synthesized using a DNA tetrahedron scaffold⁸² or a four-arm Holliday DNA junction scaffold. 83-85 However, to synthesize a protein pentamer, every DNA sequence must be re-designed to account for the one additional protein. Modular multi-protein constructs can be realized on large DNA origami structures, 86,87,105 but most of the composition (e.g., >80%) of these constructs is DNA instead of protein.

¹Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA

²International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA

³Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA


⁴These authors contributed equally


⁵¹ and contact

^{*}Correspondence: chadnano@northwestern.edu https://doi.org/10.1016/j.chempr.2022.07.003

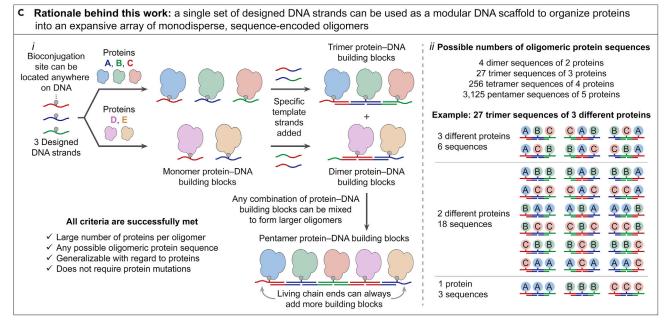


Figure 1. Protein oligomerization techniques and limitations

(A) Protein oligomers can be synthesized using techniques from molecular biology, including (Ai) protein fusion to assembling units, (Aii) protein fusion to conjugation units, and (Aiii) design of protein-protein interfaces.

(B) Oligomerization can also be achieved using techniques from chemistry, such as (Bi) bioconjugation chemistry and (Bii) scaffold-directed oligomerization of proteins.

(C) In this work, (Ci) we design a set of six DNA strands that can be used as a modular DNA scaffold to organize proteins into an expansive array of monodisperse and sequence-encoded oligomers. (Cii) This generalizable method will enable the synthesis of different oligomeric sequences of proteins.

Molecular constructs that minimize the required amount of DNA such that most of the chemical properties are dictated by the identity and organization of proteins are inaccessible using these techniques. Together, these limitations significantly hamper any studies where access to libraries of different protein oligomers with discrete stoichiometries and oligomeric sequences of proteins could provide insight into how protein-protein interactions and cooperativity can be exploited for enhanced properties of oligomers.

We hypothesized that a single set of designed DNA strands could be used as a modular scaffold to organize proteins into oligomers with exact stoichiometries and oligomeric sequences (Figure 1C). This DNA design would enable different proteins to be precisely organized into an expansive array of monodisperse, sequence-encoded oligomers (Figure 1Ci). Herein, we tested our hypothesis by designing a modular six-strand DNA scaffold and using it to oligomerize commercially available and therapeutically relevant proteins (i.e., antibodies). The scaffold consists of three distinct DNA strands that can be conjugated to proteins and three distinct DNA strands that template the assembly of DNA-modified proteins into oligomers via DNA-DNA interactions (Scheme S1). Importantly, each of the six DNA strands contains two distinct binding domains, and the sites for attachment to proteins can be located anywhere on the DNA strands (Scheme S3). Using the designed DNA scaffold, monodisperse, sequence-encoded monomer, dimer, and trimer building blocks are synthesized. Next, these building blocks are used to access a larger oligomer (i.e., pentamer) that contains a defined number and oligomeric sequence of proteins. Importantly, the foundational examples shown herein are a fraction of the possible oligomeric sequences that are accessible using the modular six-strand DNA scaffold (Figure 1Cii; Table S3). For example, if five different proteins are used, there are, in principle, 3,125 different accessible pentameric sequences. Overall, this generalizable synthetic route will enable future investigations into how the identity, stoichiometry, oligomeric sequence, and architecture of proteins in oligomers affect the properties of these constructs.

RESULTS

Three commercially available IgG antibodies commonly used as checkpoint inhibitors (i.e., anti-mouse-PD-1 [A], anti-mouse-TIGIT [B], and anti-mouse-CTLA-4 [C]) were chosen for the sequence-encoded oligomerization of proteins using a modular DNA scaffold. To install a single DNA strand onto either A, B, or C, each antibody was reacted with 2 equiv of an oligo(ethylene glycol) molecule containing an N-hydroxysuccinimide activated ester and an azide (NHS-PEG₁₂-N₃) for 45 min (Figure 2A). This chemistry targets the primary amines (e.g., ε-amines on lysines and α -amines on N termini)¹²⁰ on both the Fc and Fab regions of the antibody and was chosen because it is generalizable with regard to proteins. Although the exact location of conjugation cannot be controlled, we expected that the number of azide modifications per antibody would be controlled by low numbers of equivalents of NHS-PEG₁₂-N₃ added. We hypothesized that the low number of primary amines modified would not inhibit the target-binding characteristics of antibodies. After purification by size-exclusion chromatography (SEC), the azide on the surface of each antibody underwent a strain-promoted azide-alkyne cycloaddition (SPAAC) reaction with 5 equiv of DNA strands containing dibenzocyclooctyne (DBCO) and a fluorophore (i.e., Cyanine 3 [Cy3], Cyanine 5 [Cy5], or fluorescein [FITC]) and two distinct 20 base nucleic acid sequences (Table S1; Schemes S1A and S2, i.e., S2-DBCO-Cy3-S3, S4-DBCO-Cy5-S5, or S6-DBCO-FITC-S1). After

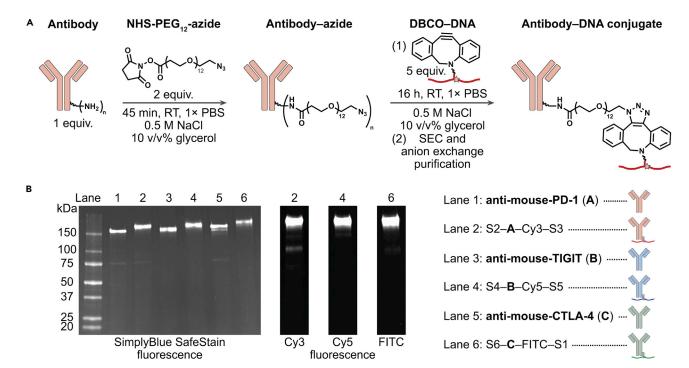


Figure 2. Antibody functionalization with a single DNA strand

(A) Primary amines on the surface of antibodies were functionalized with azides using an NHS-PEG₁₂-N₃ linker. Next, dibenzocyclooctyne (DBCO)-modified DNA was conjugated to azide-modified antibodies via a strain-promoted azide-alkyne cycloaddition (SPAAC).

(B) SDS-PAGE characterization of mouse antibodies (i.e., lane 1: anti-mouse-PD-1 [A], lane 3: anti-mouse-TIGIT [B], and lane 5: anti-mouse-CTLA-4 [C]) and antibody-DNA conjugates (i.e., lane 2: S2-A-Cy3-S3, lane 4: S4-B-Cy5-S5, and lane 6: S6-C-FITC-S1). A single gel was imaged for SimplyBlue SafeStain, Cy3, Cy5, and FITC fluorescence.

16 h, roughly 25%–30% of antibodies were modified with one DNA strand (Figure S1). Next, unreacted DNA was removed from the reaction mixture using SEC. Anion exchange chromatography was used to isolate antibodies that were functionalized with a single DNA strand from unreacted antibodies and antibodies that were functionalized with multiple DNA strands (Figure 2A). Three different protein-DNA conjugates (i.e., S2–A–Cy3–S3, S4–B–Cy5–S5, and S6–C–FITC–S1) were prepared and confirmed to contain a single DNA functionalization via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE, Figure 2B) and SEC (Figure S2).

Protein oligomers were synthesized by mixing the purified protein-DNA conjugates (Figures 3A and 3E: lanes 1–3) with template DNA strands (Table S1; Scheme S1B, i.e., S1'–S2', S3'–S4', or S5'–S6'). The template strands were designed as complements to two 20 base nucleic acid sequences on different antibody-DNA conjugates (Table S2; Scheme S1C). For example, the S5' DNA sequence on the template strand S5'–S6' is complementary to the S5 DNA sequence on S4–B–Cy5–S5 and the S6' DNA sequence is complementary to the S6 DNA sequence on S6–C–FITC–S1. Equal amounts of the B–DNA conjugate, C–DNA conjugate, S5'–S6' template strand, and S1'–S2' template strand were mixed to synthesize a protein dimer with the oligomeric sequence S4–B–C–S2' (Figure 3B; Scheme S5A) at an assembly yield of 68% (Figures S5A and S5D). Oligomers that contain greater than two antibodies were not observed in the assembly mixture because there are no DNA sequences that are complementary to either the S4 or S2' DNA sequences. Protein dimers were isolated from unreacted monomers and template strands in the assembly

Chem Article

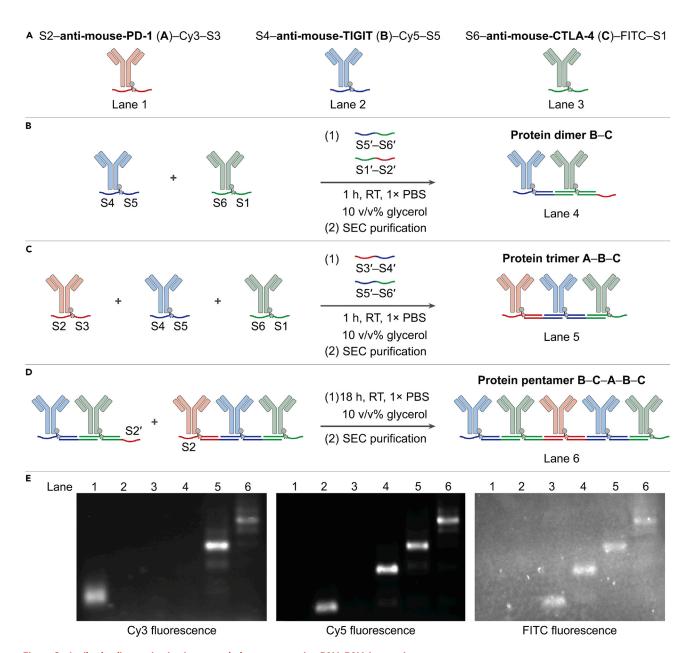


Figure 3. Antibody oligomerization into encoded sequences using DNA-DNA interactions

(A) Antibody-DNA conjugates and template DNA strands were assembled using DNA-DNA interactions into sequence-encoded protein (B) dimers and (C) trimers. Dimers and trimers were subsequently assembled using DNA-DNA interactions into sequence-encoded protein (D) pentamers. (E) Agarose gel characterization of antibody-DNA conjugates (i.e., lane 1: S2-anti-mouse-PD-1 [A]-Cy3-S3, lane 2: S4-anti-mouse-TIGIT [B]-Cy5-S5, and lane 3: S6-anti-mouse-CTLA-4 [C]-FITC-S1) along with sequence-encoded antibody dimers (i.e., lane 4: S4-B-C-S2'), trimers (i.e., lane 5: S2-A-B-C-S1), and pentamers (i.e., lane 6: S4-B-C-A-B-C-S1). A single gel was imaged for Cy3, Cy5, and FITC fluorescence, and these images are merged into one composite image in Figure S9.

mixture using SEC purification and characterized with agarose gel electrophoresis (Figure 3E: lane 4). Importantly, the agarose gel showed a single band for dimers with only the expected Cy5 and FITC fluorescence and lower electrophoretic mobility than either antibody-DNA conjugate alone. Therefore, monodisperse and sequence-encoded protein dimers with the oligomeric sequence S4–B–C–S2′ were successfully synthesized.

Next, the synthesis of a sequence-encoded protein trimer was targeted. Equal amounts of the A-DNA conjugate, B-DNA conjugate, C-DNA conjugate, S3'-S4' template strand, and S5'-S6' template strand were mixed to synthesize a protein trimer with the oligomeric sequence S2-A-B-C-S1 (Figure 3C; Scheme S5B) at an assembly yield of 27% (Figures S5B and S5D). Oligomers that contain greater than three antibodies or trimers containing alternative oligomeric antibody sequences were not observed in the assembly mixture because there are no DNA sequences that are complementary to either the S2 or S1 DNA sequences. Protein trimers were isolated from the assembly mixture using SEC purification and characterized with agarose gel electrophoresis (Figure 3E: lane 5). The agarose gel showed a single band for the trimers with the expected Cy3, Cy5, and FITC dye fluorescence as well as lower electrophoretic mobility on an agarose gel than the dimers. Therefore, these results indicate that monodisperse and sequence-encoded protein trimers with the oligomeric sequence S2-A-B-C-S1 were successfully synthesized. Importantly, no disassembly of S4-B-C-S2' or S2-A-B-C-S1 oligomers were observed over 10 days of storage at 4°C.

To ensure that this synthetic technique is generalizable, different protein oligomers were synthesized, including a protein dimer with the oligomeric sequence A–B (Figure S13) and a protein trimer with the oligomeric sequence, A–B–B (Figure S6). Furthermore, another antibody, anti-human-PD-1 (D), was functionalized with a single DNA strand of S2–DBCO–Cy3–S3, S4–DBCO–Cy5–S5, or S6–DBCO–FITC–S1 (Figures S3 and S4), and the resulting constructs were organized into protein dimers with the oligomeric sequence D–D (Figures S7, S8, and S10) and trimers with the oligomeric sequence D–D–D (Figure S7). Analytical SEC analysis of antibody-DNA conjugates, dimers, and trimers shows a single peak for each sample with decreases in retention time as degree of oligomerization increases (Figures S6C and S7C).

The target-binding characteristics of human antibodies after functionalization with DNA and oligomerization with the modular DNA scaffold were investigated using antigen binding and checkpoint inhibitor activity cellular assays. We studied D, D–DNA conjugates, D–D dimers, and D–D–D trimers using these assays and confirmed that antigen binding and checkpoint inhibitor activity were retained in each sample (Figures S11 and S12, see the supplemental information for additional details). Importantly, an antibody dimer, A–B, exhibited minimal degradation in the cellular media used in these experiments (Figure S13, see the supplemental information for additional details).

Finally, a protein dimer and trimer were used as building blocks to synthesize a monodisperse and sequence-encoded protein pentamer where three different antibodies are organized into a precise oligomeric sequence. The S4–B–C–S2′ protein dimer and S2–A–B–C–S1 protein trimer were mixed together at a 1:1 ratio and the specific binding between the S2′ DNA sequence on the dimer and the S2 DNA sequence on the trimer leads to the synthesis of a sequence-encoded protein pentamer with the oligomeric sequence S4–B–C–A–B–C–S1 (Figure 3D; Scheme S5C) at an assembly yield of 58% (Figures S5C and S5D). Oligomers that contain greater than five antibodies were not observed in the assembly mixture. Protein pentamers were isolated from other unreacted dimers, trimers, and template strands in the assembly mixture using SEC purification and characterized with agarose gel electrophoresis (Figure 3E: lane 6). The pentamers showed a single band with the expected Cy3, Cy5, and FITC dye fluorescence as well as lower electrophoretic mobility on an agarose gel than the trimers. Therefore, monodisperse and sequence-encoded protein pentamers with the oligomeric sequence S4–B–C–A–B–C–S1 were successfully

synthesized. This is the first reported monodisperse antibody pentamer that contains different antibodies in a predefined oligomeric sequence.

DISCUSSION

The designed set of six DNA strands was used as a modular scaffold to organize proteins into oligomers with programmed identity, stoichiometry, and oligomeric sequence. This scaffold provided access to monomer, dimer, and trimer building blocks that could be modularly combined independent from the identity of proteins. Therefore, all of the criteria for a versatile synthetic protein oligomerization method were met: (1) providing access to a large number of proteins per oligomer, (2) providing access to any oligomeric sequence of the same or different proteins, (3) being generalizable with regard to proteins, and (4) not requiring mutations of the amino acid sequence of proteins and recombinant protein expression.

Established chemistry was used to functionalize a primary amine (e.g., ε -amine on a lysine or α -amine on a N terminus) on proteins with a single DNA strand. ¹²⁰ Nearly all proteins contain primary amines; hence, this approach is generalizable with regard to proteins, including proteins that are commercially available, isolated from natural sources, or recombinantly expressed. Many other covalent ^{66,67} and noncovalent ^{67,69} bioconjugation methods could also be used to modify proteins with one of the DNA strands reported here. By taking advantage of these approaches, nearly any protein can be modified with a single DNA strand and organized into monodisperse, sequence-encoded oligomers using the designed DNA scaffold.

Although modular multi-protein constructs can be prepared using large DNA origami scaffolds, proteins comprise less than 20% of the mass of these constructs. ^{86,87,105} This large amount of DNA compared with protein means that most of the solution properties and interactions of these constructs are dictated by the DNA scaffold instead of by the proteins. In cases where protein binding interactions are integral to function (e.g., antibody-antigen binding), this large amount of DNA may affect target recognition and accessibility. In contrast, using the modular DNA scaffold reported in this work, proteins make up most of the mass of oligomeric constructs. For example, proteins comprise 84%, 86%, and 85% of the mass of the sequence-encoded B–C dimer, A–B–C trimer, and B–C–A–B–C pentamer, respectively. Although other protein assembly techniques using nucleic acids also provide access to oligomers mostly comprising proteins (e.g., oligomerization using a DNA tetrahedron scaffold⁸² or a four-arm Holliday DNA junction scaffold^{83–85}), they lack modularity to access different numbers of proteins per construct.

In principle, the modular DNA scaffold described herein provides access to vast numbers of different oligomeric sequences and sizes. For example, 3 different proteins could be oligomerized into trimeric constructs with 27 different oligomeric sequences, including homo-oligomers of one protein and hetero-oligomers of 2 or 3 proteins (Figure 1Cii). Oligonucleotides in the DNA scaffold interact through Watson-Crick-Franklin base pairing to form a right-handed double helix. Therefore, two oligomers with reversed oligomeric sequences of proteins (e.g., A–A–B and B–A–A) form different structures and are considered different sequences. Likewise, 2 different proteins could be oligomerized into dimeric constructs with 4 different oligomeric sequences, 4 different proteins could be oligomerized into tetrameric constructs with 256 different oligomeric sequences, and 5 different proteins could be oligomerized into pentameric constructs with 3,125 different oligomeric sequences (Table S3). Furthermore, each oligomer building block synthesized using

this method inherently contains living chain ends where more units could be added to access larger oligomers (e.g., hexamers, heptamers, and octamers, Scheme S4). Considering the growing number of discovered proteins, the foundational oligomers synthesized in this work illustrate the unlimited number of protein oligomers that could be accessed via a single modular DNA scaffold.

Conclusions

In conclusion, this work shows how monodisperse, sequence-encoded protein oligomers can be synthesized using generalizable bioconjugation chemistry and a judiciously designed DNA scaffold. This versatile protein oligomerization approach is powerful and useful because oligomers with different stoichiometries and oligomeric sequences can be synthesized without the need to redesign the proteins or the DNA scaffold. Importantly, this synthetic advance will enable subsequent studies to understand the fundamental relationships between protein oligomer structures and properties, which have significant implications for many fields (e.g., therapeutics, catalysis, photosynthesis, and membrane transport).

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Chad A. Mirkin (chadnano@northwestern.edu).

Materials availability

All materials generated in this study can be obtained upon reasonable request from the corresponding author with a valid materials transfer agreement and an assumption of costs.

Data and code availability

This study did not generate any datasets.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.chempr. 2022.07.003.

ACKNOWLEDGMENTS

This material is based upon work supported by the following awards: National Science Foundation DMR-2104353, Air Force Office of Scientific Research FA9550-16-1-0150, and National Cancer Institute of the National Institutes of Health U54CA199091. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. M.H.T. gratefully acknowledges support from Northwestern University's Cancer Nanotechnology Training Program Award T32CA186897. This work made use of the IMSERC MS facility at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-2025633), the State of Illinois, and the International Institute for Nanotechnology (IIN).

AUTHOR CONTRIBUTIONS

Conceptualization, P.H.W., C.A.F., and C.A.M.; methodology, P.H.W., C.A.F., M.H.T., N.R., and C.A.M.; investigation, P.H.W., C.A.F., M.H.T., N.R., and C.A.M.; writing—original draft, P.H.W., C.A.F., and C.A.M.; writing—review and editing, P.H.W., C.A.F., M.H.T., N.R., and C.A.M.; funding acquisition, C.A.M.

DECLARATION OF INTERESTS

The authors P.H.W., C.A.F., and CA.M. are inventors on a PCT patent application titled "Synthetic Strategy to Polymerize Protein Into Molecularly Defined Polymers."

Received: February 16, 2022 Revised: June 16, 2022 Accepted: July 5, 2022 Published: August 4, 2022

REFERENCES

- Ahnert, S.E., Marsh, J.A., Hernández, H., Robinson, C.V., and Teichmann, S.A. (2015). Principles of assembly reveal a periodic table of protein complexes. Science 350, aaa2245. https://doi.org/10.1126/science.aaa2245.
- Marsh, J.A., and Teichmann, S.A. (2015). Structure, dynamics, assembly, and evolution of protein complexes. Annu. Rev. Biochem. 84, 551–575. https://doi.org/10.1146/ annurev-biochem-060614-034142.
- 3. Pieters, B.J.G.E., van Eldijk, M.B., Nolte, R.J.M., and Mecinović, J. (2016). Natural supramolecular protein assemblies. Chem. Soc. Rev. 45, 24–39. https://doi.org/10.1039/C5C500157A.
- Perkins, S.J., Nealis, A.S., Sutton, B.J., and Feinstein, A. (1991). Solution structure of human and mouse immunoglobulin M by synchrotron X-ray scattering and molecular graphics modelling: A possible mechanism for complement activation. J. Mol. Biol. 221, 1345–1366. https://doi.org/10.1016/0022-2836(91)90937-2.
- Bushnell, D.A., and Kornberg, R.D. (2003). Complete, 12-subunit RNA polymerase II at 4.1-Å resolution: implications for the initiation of transcription. Proc. Natl. Acad. Sci. USA 100, 6969–6973. https://doi.org/10.1073/ pnas.1130601100.
- Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W., and Krauss, N. (2001). Threedimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917. https://doi.org/10.1038/35082000.
- 7. Doyle, D.A., Morais Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T., and MacKinnon, R. (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77. https://doi.org/10.1126/science.280.530.69
- Zhu, J., Avakyan, N., Kakkis, A., Hoffnagle, A.M., Han, K., Li, Y., Zhang, Z., Choi, T.S., Na, Y., Yu, C.-J., et al. (2021). Protein assembly by design. Chem. Rev. 121, 13701–13796. https://doi.org/10.1021/acs.chemrev. 1c00308.
- Luo, Q., Hou, C., Bai, Y., Wang, R., and Liu, J. (2016). Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem. Rev. 116, 13571– 13632. https://doi.org/10.1021/acs.chemrev. 6b00228.
- 10. King, N.P., and Lai, Y.-T. (2013). Practical approaches to designing novel protein

- assemblies. Curr. Opin. Struct. Biol. 23, 632–638. https://doi.org/10.1016/j.sbi.2013.06.002.
- Permana, D., Putra, H.E., and Djaenudin, D. (2022). Designed protein multimerization and polymerization for functionalization of proteins. Biotechnol. Lett. 44, 341–365. https://doi.org/10.1007/s10529-021-03217-8.
- Nuñez-Prado, N., Compte, M., Harwood, S., Álvarez-Méndez, A., Lykkemark, S., Sanz, L., and Álvarez-Vallina, L. (2015). The coming of age of engineered multivalent antibodies. Drug Discov. Today 20, 588–594. https://doi. org/10.1016/j.drudis.2015.02.013.
- Zhang, G., Quin, M.B., and Schmidt-Dannert, C. (2018). Self-assembling protein scaffold system for easy in vitro Coimmobilization of biocatalytic cascade enzymes. ACS Catal. 8, 5611–5620. https://doi.org/10.1021/acscatal. 8b00986
- Li, X., Qiao, S., Zhao, L., Liu, S., Li, F., Yang, F., Luo, Q., Hou, C., Xu, J., and Liu, J. (2019).
 Template-free construction of highly ordered monolayered fluorescent protein nanoshets: a bioinspired artificial light-harvesting system. ACS Nano 13, 1861–1869. https://doi.org/10. 1021/acsnano.8b08021.
- Aydin, S. (2015). A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 72, 4–15. https://doi.org/10. 1016/j.peptides.2015.04.012.
- Paloni, J.M., Miller, E.A., Sikes, H.D., and Olsen, B.D. (2018). Improved ordering in low molecular weight protein–polymer conjugates Through oligomerization of the protein block. Biomacromolecules 19, 3814– 3824. https://doi.org/10.1021/acs.biomac. 8b00928.
- 17. Structural Genomics Consortium, Architecture et Fonction des Macromolécules Biologiques, Berkeley Structural Genomics Center, China Structural Genomics Consortium, Integrated Center for Structure and Function Innovation, Israel Structural Proteomics Center, Joint Center for Structural Genomics, Midwest Center for Structural Genomics, New York Structural GenomiX Research Center for Structural Genomics, Northeast Structural Genomics Consortium, Oxford Protein Production Facility, et al.. (2008). Protein production and purification. Nat. Methods 5, 135–146. https://doi.org/10. 1038/nmeth.f.202.
- Lapenta, F., Aupič, J., Strmšek, Ž., and Jerala,
 R. (2018). Coiled coil protein origami: from

- modular design principles towards biotechnological applications. Chem. Soc. Rev. 47, 3530–3542. https://doi.org/10.1039/ C7CS00822H.
- Halin, C., Gafner, V., Villani, M.E., Borsi, L., Berndt, A., Kosmehl, H., Zardi, L., and Neri, D. (2003). Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor α. Cancer Res 63, 3202–3210.
- Kipriyanov, S.M., Breitling, F., Little, M., and Dübel, S. (1995). Single-chain antibody streptavidin fusions: tetrameric bifunctional scFv-complexes with biotin binding activity and enhanced affinity to antigen. Hum. Antibodies Hybridomas 6, 93–101. https:// doi.org/10.3233/HAB-1995-6303.
- Zhang, J., Tanha, J., Hirama, T., Khieu, N.H., To, R., Tong-Sevinc, H., Stone, E., Brisson, J.R., and MacKenzie, C.R. (2004). Pentamerization of single-domain antibodies from phage libraries: A novel strategy for the rapid generation of high-avidity antibody reagents. J. Mol. Biol. 335, 49–56. https://doi. org/10.1016/j.jmb.2003.09.034.
- Kim, Y.E., Kim, Y.-N., Kim, J.A., Kim, H.M., and Jung, Y. (2015). Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency. Nat. Commun. 6, 7134. https://doi.org/10.1038/ ncomms8134.
- Zakeri, B., Fierer, J.O., Celik, E., Chittock, E.C., Schwarz-Linek, U., Moy, V.T., and Howarth, M. (2012). Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl. Acad. Sci. USA 109, E690–E697. https://doi.org/10.1073/ pnas.1115485109.
- Veggiani, G., Nakamura, T., Brenner, M.D., Gayet, R.V., Yan, J., Robinson, C.V., and Howarth, M. (2016). Programmable polyproteams built using twin peptide superglues. Proc. Natl. Acad. Sci. USA 113, 1202–1207. https://doi.org/10.1073/pnas. 1519214113.
- Keppler, A., Gendreizig, S., Gronemeyer, T., Pick, H., Vogel, H., and Johnsson, K. (2003). A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89. https://doi.org/ 10.1038/nbt765.
- Los, G.V., Encell, L.P., McDougall, M.G., Hartzell, D.D., Karassina, N., Zimprich, C., Wood, M.G., Learish, R., Ohana, R.F., Urh, M., et al. (2008). HaloTag: a novel protein labeling

- technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382. https://doi.org/10.1021/cb800025k.
- Hodneland, C.D., Lee, Y.-S., Min, D.-H., and Mrksich, M. (2002). Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc. Natl. Acad. Sci. USA 99, 5048– 5052. https://doi.org/10.1073/pnas. 072685299.
- Modica, J.A., Iderzorig, T., and Mrksich, M. (2020). Design and synthesis of megamolecule mimics of a therapeutic antibody. J. Am. Chem. Soc. 142, 13657– 13661. https://doi.org/10.1021/jacs.0c05093.
- Modica, J.A., Skarpathiotis, S., and Mrksich, M. (2012). Modular assembly of protein building blocks to create precisely defined megamolecules. Chembiochem 13, 2331– 2334. https://doi.org/10.1002/cbic. 201200501
- Modica, J.A., Lin, Y., and Mrksich, M. (2018). Synthesis of cyclic megamolecules. J. Am. Chem. Soc. 140, 6391–6399. https://doi.org/ 10.1021/jacs.8b02665.
- Kimmel, B.R., Modica, J.A., Parker, K., Dravid, V., and Mrksich, M. (2020). Solid-phase synthesis of megamolecules. J. Am. Chem. Soc. 142, 4534–4538. https://doi.org/10.1021/ jacs.9b12003.
- Lai, Y.-T., Reading, E., Hura, G.L., Tsai, K.-L., Laganowsky, A., Asturias, F.J., Tainer, J.A., Robinson, C.V., and Yeates, T.O. (2014).
 Structure of a designed protein cage that selfassembles into a highly porous cube. Nat. Chem. 6, 1065–1071. https://doi.org/10.1038/ nchem.2107.
- Divine, R., Dang, H.V., Ueda, G., Fallas, J.A., Vulovic, I., Sheffler, W., Saini, S., Zhao, Y.T., Raj, I.X., Morawski, P.A., et al. (2021).
 Designed proteins assemble antibodies into modular nanocages. Science 372, eabd9994. https://doi.org/10.1126/science.abd9994.
- Boyken, S.E., Chen, Z., Groves, B., Langan, R.A., Oberdorfer, G., Ford, A., Gilmore, J.M., Xu, C., DiMaio, F., Pereira, J.H., et al. (2016). De novo design of protein homo-oligomers with modular hydrogen-bond networkmediated specificity. Science 352, 680–687. https://doi.org/10.1126/science.aad8865.
- Bale, J.B., Gonen, S., Liu, Y., Sheffler, W., Ellis, D., Thomas, C., Cascio, D., Yeates, T.O., Gonen, T., King, N.P., et al. (2016). Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353, 389–394. https://doi.org/10.1126/science. aaf8818.
- Chen, Z., Johnson, M.C., Chen, J., Bick, M.J., Boyken, S.E., Lin, B., De Yoreo, J.J., Kollman, J.M., Baker, D., and DilMaio, F. (2019). Selfassembling 2D arrays with de novo protein building blocks. J. Am. Chem. Soc. 141, 8891– 8895. https://doi.org/10.1021/jacs.9b01978.
- Sahtoe, D.D., Praetorius, F., Courbet, A., Hsia, Y., Wicky, B.I.M., Edman, N.I., Miller, L.M., Timmermans, B.J.R., Decarreau, J., Morris, H.M., et al. (2022). Reconfigurable asymmetric protein assemblies through implicit negative design. Science 375, eabj7662. https://doi. org/10.1126/science.abj7662.

- Conibear, A.C. (2020). Deciphering protein post-translational modifications using chemical biology tools. Nat. Rev. Chem. 4, 674-695. https://doi.org/10.1038/s41570-020-00223-8.
- de Marco, A. (2009). Strategies for successful recombinant expression of disulfide bonddependent proteins in *Escherichia coli*. Microb. Cell Factories 8, 26. https://doi.org/ 10.1186/1475-2859-8-26.
- Rosano, G.L., and Ceccarelli, E.A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172. https://doi.org/10. 3389/fmicb.2014.00172.
- Singh, A., Upadhyay, V., Upadhyay, A.K., Singh, S.M., and Panda, A.K. (2015). Protein recovery from inclusion bodies of *Escherichia* coli using mild solubilization process. Microb. Cell Factories 14, 41. https://doi.org/10.1186/ s12934-015-0222-8.
- Simon, A.J., Zhou, Y., Ramasubramani, V., Glaser, J., Pothukuchy, A., Gollihar, J., Gerberich, J.C., Leggere, J.C., Morrow, B.R., Jung, C., et al. (2019). Supercharging enables organized assembly of synthetic biomolecules. Nat. Chem. 11, 204–212. https://doi.org/10.1038/s41557-018-0196-3.
- Engilberge, S., Rennie, M.L., Dumont, E., and Crowley, P.B. (2019). Tuning protein frameworks via auxiliary supramolecular interactions. ACS Nano 13, 10343–10350. https://doi.org/10.1021/acsnano.9b04115.
- Rennie, M.L., Fox, G.C., Pérez, J., and Crowley, P.B. (2018). Auto-regulated protein assembly on a supramolecular scaffold. Angew. Chem. 130, 13960–13965. https://doi. org/10.1002/anie.201807490.
- McGovern, R.E., McCarthy, A.A., and Crowley, P.B. (2014). Protein assembly mediated by Sulfonatocalix[4]arene. Chem. Commun. (Camb) 50, 10412–10415. https:// doi.org/10.1039/C4CC04897K.
- Bai, Y., Luo, Q., and Liu, J. (2016). Protein selfassembly via supramolecular strategies. Chem. Soc. Rev. 45, 2756–2767. https://doi. org/10.1039/C6CS00004E.
- Churchfield, L.A., and Tezcan, F.A. (2019). Design and construction of functional supramolecular metalloprotein assemblies. Acc. Chem. Res. 52, 345–355. https://doi.org/ 10.1021/acs.accounts.8b00617.
- Golub, E., Subramanian, R.H., Esselborn, J., Alberstein, R.G., Bailey, J.B., Chiong, J.A., Yan, X., Booth, T., Baker, T.S., and Tezcan, F.A. (2020). Constructing protein polyhedra via orthogonal chemical interactions. Nature 578, 172–176. https://doi.org/10.1038/ s41586-019-1928-2.
- Zhang, L., Bailey, J.B., Subramanian, R.H., Groisman, A., and Tezcan, F.A. (2018). Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks. Nature 557, 86–91. https:// doi.org/10.1038/s41586-018-0057-7.
- Mogilevsky, C.S., Lobba, M.J., Brauer, D.D., Marmelstein, A.M., Maza, J.C., Gleason, J.M., Doudna, J.A., and Francis, M.B. (2021).
 Synthesis of multi-protein complexes through charge-directed sequential activation of

- tyrosine residues. J. Am. Chem. Soc. 143, 13538–13547. https://doi.org/10.1021/jacs.1c03079.
- Koniev, O., and Wagner, A. (2015).
 Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 44, 5495–5551. https://doi. org/10.1039/C5CS00048C.
- Sletten, E.M., and Bertozzi, C.R. (2009). Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl. 48, 6974– 6998. https://doi.org/10.1002/anie. 200900942.
- 53. Kolb, H.C., Finn, M.G., and Sharpless, K.B. (2001). Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.3.co;2-x.
- Devaraj, N.K. (2018). The future of bioorthogonal chemistry. ACS Cent. Sci. 4, 952–959. https://doi.org/10.1021/acscentsci. 8b00251.
- Szijj, P., and Chudasama, V. (2021). The renaissance of chemically generated bispecific antibodies. Nat. Rev. Chem. 5, 78–92. https://doi.org/10.1038/s41570-020-00241-6.
- Griffith, B.R., Allen, B.L., Rapraeger, A.C., and Kiessling, L.L. (2004). A polymer scaffold for protein oligomerization. J. Am. Chem. Soc. 126, 1608–1609. https://doi.org/10.1021/ ja037646m.
- Broyer, R.M., Grover, G.N., and Maynard, H.D. (2011). Emerging synthetic approaches for protein–polymer conjugations. Chem. Commun. (Camb) 47, 2212–2226. https://doi.org/10.1039/ COCCOMMAR
- Tao, L., Kaddis, C.S., Loo, R.R.O., Grover, G.N., Loo, J.A., and Maynard, H.D. (2009). Synthesis of maleimide-end-functionalized star polymers and multimeric protein—polymer conjugates. Macromolecules 42, 8028–8033. https://doi. org/10.1021/ma901540p.
- Tao, L., Kaddis, C.S., Ogorzalek Loo, R.R., Grover, G.N., Loo, J.A., and Maynard, H.D. (2009). Synthetic approach to homodimeric protein–polymer conjugates. Chem. Commun. (Camb), 2148–2150. https://doi. org/10.1039/B822799C.
- Heredia, K.L., Grover, G.N., Tao, L., and Maynard, H.D. (2009). Synthesis of heterotelechelic polymers for conjugation of two different proteins. Macromolecules 42, 2360–2367. https://doi.org/10.1021/ ma8022712.
- McMillan, J.R., Hayes, O.G., Winegar, P.H., and Mirkin, C.A. (2019). Protein materials engineering with DNA. Acc. Chem. Res. 52, 1939–1948. https://doi.org/10.1021/acs. accounts.9b00165.
- 62. Stephanopoulos, N. (2019). Peptideoligonucleotide hybrid molecules for bioactive nanomaterials. Bioconjug. Chem.

- 30, 1915–1922. https://doi.org/10.1021/acs.bioconjchem.9b00259.
- 63. Saccà, B., and Niemeyer, C.M. (2011). Functionalization of DNA nanostructures with proteins. Chem. Soc. Rev. 40, 5910–5921. https://doi.org/10.1039/C1CS15212B.
- Seeman, N.C., and Sleiman, H.F. (2018). DNA nanotechnology. Nat. Rev. Mater. 3, 17068. https://doi.org/10.1038/natreymats.2017.68.
- Pinheiro, A.V., Han, D., Shih, W.M., and Yan, H. (2011). Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772. https://doi.org/10. 1038/nnano.2011.187.
- Trads, J.B., Tørring, T., and Gothelf, K.V. (2017). Site-selective conjugation of native proteins with DNA. Acc. Chem. Res. 50, 1367– 1374. https://doi.org/10.1021/acs.accounts. 6b00618.
- Sunasee, R., and Narain, R. (2014). Covalent and noncovalent bioconjugation strategies. In Chemistry of Bioconjugates, R. Narain, ed. (John Wiley & Sons, Inc.), pp. 1–75.
- Yang, Y.R., Liu, Y., and Yan, H. (2015). DNA nanostructures as programmable biomolecular scaffolds. Bioconjug. Chem. 26, 1381–1395. https://doi.org/10.1021/acs. bioconjchem.5b00194.
- Hudson, W.H., and Ortlund, E.A. (2014). The structure, function and evolution of proteins that bind DNA and RNA. Nat. Rev. Mol. Cell Biol. 15, 749–760. https://doi.org/10.1038/ nrm3884.
- McMillan, J.R., and Mirkin, C.A. (2018). DNA-functionalized, bivalent proteins. J. Am. Chem. Soc. 140, 6776–6779. https://doi.org/10.1021/jacs.8b03403.
- Kashiwagi, D., Sim, S., Niwa, T., Taguchi, H., and Aida, T. (2018). Protein nanotube selectively cleavable with DNA: supramolecular polymerization of "DNAappended molecular chaperones". J. Am. Chem. Soc. 140, 26–29. https://doi.org/10. 1021/jacs.7b09892.
- McMillan, J.R., Hayes, O.G., Remis, J.P., and Mirkin, C.A. (2018). Programming protein polymerization with DNA. J. Am. Chem. Soc. 140, 15950–15956. https://doi.org/10.1021/ iacs.8b10011
- Figg, C.A., Winegar, P.H., Hayes, O.G., and Mirkin, C.A. (2020). Controlling the DNA hybridization chain reaction. J. Am. Chem. Soc. 142, 8596–8601. https://doi.org/10.1021/ jacs.0c02892.
- Coyle, M.P., Xu, Q., Chiang, S., Francis, M.B., and Groves, J.T. (2013). DNA-mediated assembly of protein heterodimers on membrane surfaces. J. Am. Chem. Soc. 135, 5012–5016. https://doi.org/10.1021/ ja3101215.
- Li, H., Park, S.H., Reif, J.H., LaBean, T.H., and Yan, H. (2004). DNA-templated self-assembly of protein and nanoparticle linear arrays.
 J. Am. Chem. Soc. 126, 418–419. https://doi. org/10.1021/ja0383367.
- Mou, Y., Yu, J.-Y., Wannier, T.M., Guo, C.-L., and Mayo, S.L. (2015). Computational design of co-assembling protein–DNA nanowires.

- Nature 525, 230–233. https://doi.org/10.1038/nature14874.
- Lim, S., Kim, J., Kim, Y., Xu, D., and Clark, D.S. (2020). CRISPR/cas-directed programmable assembly of multi-enzyme complexes. Chem. Commun. 56, 4950–4953. https://doi.org/10. 1039/DOCC01174F.
- Wilner, O.I., Shimron, S., Weizmann, Y., Wang, Z.-G., and Willner, I. (2009). Selfassembly of enzymes on DNA scaffolds: en route to biocatalytic cascades and the synthesis of metallic nanowires. Nano Lett. 9, 2040–2043. https://doi.org/10.1021/ nl9003027
- Cheglakov, Z., Weizmann, Y., Braunschweig, A.B., Wilner, O.I., and Willner, I. (2008). Increasing the complexity of periodic protein nanostructures by the rolling-circle-amplified synthesis of aptamers. Angew. Chem. Int. Ed. Engl. 47, 126–130. https://doi.org/10.1002/ anie.200703688.
- Erkelenz, M., Kuo, C.-H., and Niemeyer, C.M. (2011). DNA-mediated assembly of cytochrome P450 BM3 subdomains. J. Am. Chem. Soc. 133, 16111–16118. https://doi. org/10.1021/ja204993s.
- Marczynke, M., Gröger, K., and Seitz, O. (2017). Selective binders of the tandem Src homology 2 domains in Syk and Zap70 protein kinases by DNA-programmed spatial screening. Bioconjug. Chem. 28, 2384–2392. https://doi.org/10.1021/acs.bioconjchem. 7b00382.
- Setyawati, M.I., Kutty, R.V., and Leong, D.T. (2016). DNA nanostructures carrying stoichiometrically definable antibodies. Small 12, 5601–5611. https://doi.org/10.1002/smll. 201601669.
- Kazane, S.A., Axup, J.Y., Kim, C.H., Ciobanu, M., Wold, E.D., Barluenga, S., Hutchins, B.A., Schultz, P.G., Winssinger, N., and Smider, V.V. (2013). Self-assembled antibody multimers through peptide nucleic acid conjugation. J. Am. Chem. Soc. 135, 340–346. https://doi. org/10.1021/ja309505c.
- Meyer, R., and Niemeyer, C.M. (2011).
 Orthogonal protein decoration of DNA nanostructures. Small 7, 3211–3218. https://doi.org/10.1002/smll.201101365.
- Pan, L., Cao, C., Run, C., Zhou, L., and Chou, J.J. (2020). DNA-mediated assembly of multispecific antibodies for T cell engaging and tumor killing. Adv. Sci. (Weinh) 7, 1900973. https://doi.org/10.1002/advs. 201900973.
- Saccà, B., Meyer, R., Erkelenz, M., Kiko, K., Arndt, A., Schroeder, H., Rabe, K.S., and Niemeyer, C.M. (2010). Orthogonal protein decoration of DNA origami. Angew. Chem. Int. Ed. Engl. 49, 9378–9383. https://doi.org/ 10.1002/anie.201005931.
- Nguyen, T.M., Nakata, E., Saimura, M., Dinh, H., and Morii, T. (2017). Design of modular protein tags for orthogonal covalent bond formation at specific DNA sequences. J. Am. Chem. Soc. 139, 8487–8496. https://doi.org/ 10.1021/jacs.7b01640.
- 88. Liang, S.I., McFarland, J.M., Rabuka, D., and Gartner, Z.J. (2014). A modular approach for assembling aldehyde-tagged proteins on

- DNA scaffolds. J. Am. Chem. Soc. 136, 10850–10853. https://doi.org/10.1021/ja504711n.
- Nielsen, T.B., Thomsen, R.P., Mortensen, M.R., Kjems, J., Nielsen, P.F., Nielsen, T.E., Kodal, A.L.B., Cló, E., and Gothelf, K.V. (2019). Peptide-directed DNA-templated protein labelling for the assembly of a pseudo-lgM. Angew. Chem. Int. Ed. Engl. 58, 9068–9072. https://doi.org/10.1002/anie. 201903134.
- Chhabra, R., Sharma, J., Ke, Y., Liu, Y., Rinker, S., Lindsay, S., and Yan, H. (2007). Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J. Am. Chem. Soc. 129, 10304–10305. https://doi.org/10.1021/ ja072410u.
- 91. Aslan, H., Krissanaprasit, A., Besenbacher, F., Gothelf, K.V., and Dong, M. (2016). Protein patterning by a DNA origami framework. Nanoscale 8, 15233–15240. https://doi.org/10.1039/C6NR03199D.
- Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., and LaBean, T.H. (2003). DNA-templated selfassembly of protein arrays and highly conductive nanowires. Science 301, 1882– 1884. https://doi.org/10.1126/science. 1089389
- 93. Xu, Y., Jiang, S., Simmons, C.R., Narayanan, R.P., Zhang, F., Aziz, A.-M., Yan, H., and Stephanopoulos, N. (2019). Tunable nanoscale cages from self-assembling DNA and protein building blocks. ACS Nano 13, 3545–3554. https://doi.org/10.1021/acsnano.8h09798
- 94. Li, S., Jiang, Q., Liu, S., Zhang, Y., Tian, Y., Song, C., Wang, J., Zou, Y., Anderson, G.J., Han, J.-Y., et al. (2018). A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264. https://doi.org/10.1038/nbt. 4071.
- Yang, Y.R., Fu, J., Wootten, S., Qi, X., Liu, M., Yan, H., and Liu, Y. (2018). 2D enzyme cascade network with efficient substrate channeling by swinging arms. Chembiochem 19, 212–216. https://doi.org/10.1002/cbic.201700613.
- Praetorius, F., and Dietz, H. (2017). Selfassembly of genetically encoded DNAprotein hybrid nanoscale shapes. Science 355, eaam5488. https://doi.org/10.1126/science. aam5488.
- Ke, G., Liu, M., Jiang, S., Qi, X., Yang, Y.R., Wootten, S., Zhang, F., Zhu, Z., Liu, Y., and Yang, C.J. (2016). Directional regulation of enzyme pathways Through the control of substrate channeling on a DNA origami scaffold. Angew. Chem. 128, 7609– 7612. https://doi.org/10.1002/anie. 201603183.
- Wong, N.Y., Xing, H., Tan, L.H., and Lu, Y. (2013). Nano-encrypted Morse code: A versatile approach to programmable and reversible nanoscale assembly and disassembly. J. Am. Chem. Soc. 135, 2931– 2934. https://doi.org/10.1021/ja3122284.
- Liu, M., Fu, J., Qi, X., Wootten, S., Woodbury, N.W., Liu, Y., and Yan, H. (2016). A threeenzyme pathway with an optimised geometric arrangement to facilitate substrate transfer.

- Chembiochem 17, 1097-1101. https://doi. org/10.1002/cbic.201600103
- 100. Williams, B.A.R., Lund, K., Liu, Y., Yan, H., and Chaput, J.C. (2007). Self-assembled peptide nanoarrays: an approach to studying proteinprotein interactions. Angew. Chem. Int. Ed. Engl. 46, 3051–3054. https://doi.org/10.1002/ anie.200603919.
- 101. Fu, J., Yang, Y.R., Dhakal, S., Zhao, Z., Liu, M., Zhang, T., Walter, N.G., and Yan, H. (2016). Assembly of multienzyme complexes on DNA nanostructures. Nat. Protoc. 11, 2243-2273. https://doi.org/10.1038/nprot.2016.139.
- 102. Niemeyer, C.M., Koehler, J., and Wuerdemann, C. (2002). DNA-directed assembly of Bienzymic complexes from in vivo biotinylated NAD(P)H:FMN oxidoreductase and luciferase. Chembiochem 3, 242-245. https://doi.org/10.1002/1439-7633(20020301) 3:2/3<242::AID-CBIC242>3.0.CO;2-F.
- 103. Wilner, O.I., Weizmann, Y., Gill, R., Lioubashevski, O., Freeman, R., and Willner, I. (2009). Enzyme cascades activated on topologically programmed DNA scaffolds. Nat. Nanotechnol. 4, 249-254. https://doi. org/10.1038/nnano.2009.50.
- 104. Wacker, R., and Niemeyer, C.M. (2004). DDIμFIA—A readily configurable microarray fluorescence immunoassay based on DNAdirected immobilization of proteins. ChemBioChem. Chembiochem 5, 453-459. https://doi.org/10.1002/cbic.200300788
- 105. Douglas, S.M., Bachelet, I., and Church, G.M. (2012). A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831-834. https://doi.org/10.1126/science.
- 106. Lacroix, A., Edwardson, T.G.W., Hancock, M.A., Dore, M.D., and Sleiman, H.F. (2017). Development of DNA nanostructures for high-affinity binding to human serum albumin. J. Am. Chem. Soc. 139, 7355-7362. https://doi.org/10.1021/jacs.7b02917.

- 107. Hayes, O.G., Partridge, B.E., and Mirkin, C.A. (2021). Encoding hierarchical assembly pathways of proteins with DNA. Proc. Natl. Acad. Sci. USA 118. e2106808118. https://doi. org/10.1073/pnas.2106808118.
- 108. Brodin, J.D., Auyeung, E., and Mirkin, C.A. (2015). DNA-mediated engineering of multicomponent enzyme crystals. Proc. Natl. Acad. Sci. USA 112, 4564–4569. https://doi. org/10.1073/pnas.1503533112.
- 109. McMillan, J.R., Brodin, J.D., Millan, J.A., Lee, B., Olvera de la Cruz, M., and Mirkin, C.A. (2017). Modulating nanoparticle superlattice structure using proteins with tunable bond distributions. J. Am. Chem. Soc. 139, 1754–1757. https://doi.org/10.1021/jacs.6b11893.
- 110. Wang, S.-T., Minevich, B., Liu, J., Zhang, H., Nykypanchuk, D., Byrnes, J., Liu, W., Bershadsky, L., Liu, Q., Wang, T., et al. (2021). Designed and biologically active protein lattices. Nat. Commun. 12, 3702. https://doi. ora/10.1038/s41467-021-23966-4
- 111. Hayes, O.G., McMillan, J.R., Lee, B., and Mirkin, C.A. (2018). DNA-encoded protein Janus nanoparticles. J. Am. Chem. Soc. 140, 9269-9274. https://doi.org/10.1021/jacs. 8b05640.
- 112. Winegar, P.H., Hayes, O.G., McMillan, J.R., Figg, C.A., Focia, P.J., and Mirkin, C.A. (2020). DNA-directed protein packing within single crystals. Chem 6, 1007–1017. https://doi.org/ 10.1016/i.chempr.2020.03.002
- 113. Partridge, B.E., Winegar, P.H., Han, Z., and Mirkin, C.A. (2021). Redefining protein interfaces within protein single crystals with DNA. J. Am. Chem. Soc. 143, 8925-8934. https://doi.org/10.1021/jacs.1c04191.
- 114. Subramanian, R.H., Smith, S.J., Alberstein, R.G., Bailey, J.B., Zhang, L., Cardone, G., Suominen, L., Chami, M., Stahlberg, H., Baker, T.S., et al. (2018). Self-assembly of a designed nucleoprotein architecture through multimodal interactions. ACS Cent. Sci. 4,

- 1578-1586. https://doi.org/10.1021/ acscentsci.8b00745.
- 115. Kashiwagi, D., Shen, H.K., Sim, S., Sano, K., Ishida, Y., Kimura, A., Niwa, T., Taguchi, H., and Aida, T. (2020). Molecularly engineered "Janus GroEL": application to supramolecular copolymerization with a higher level of sequence control. J. Am. Chem. Soc. 142, 13310-13315. https://doi.org/10.1021/jacs
- 116. Strable, E., Johnson, J.E., and Finn, M.G. (2004). Natural nanochemical building blocks: icosahedral virus particles organized by attached oligonucleotides. Nano Lett. 4, 1385-1389. https://doi.org/10.1021/ nl0493850.
- 117. Wang, M.X., Brodin, J.D., Millan, J.A., Seo, S.E., Girard, M., Olvera de la Cruz, M., Lee, B., and Mirkin, C.A. (2017). Altering DNAprogrammable colloidal crystallization paths by modulating particle repulsion. Nano Lett. 17, 5126–5132. https://doi.org/10.1021/acs. nanolett.7b02502.
- 118. Zhang, C., Tian, C., Guo, F., Liu, Z., Jiang, W., and Mao, C. (2012). DNA-directed three-dimensional protein organization. Angew. Chem. Int. Ed. Engl. 51, 3382-3385. https://doi.org/10.1002/anie 201108710.
- 119. Engelen, W., Sigl, C., Kadletz, K., Willner, E.M., and Dietz, H. (2021). Antigen-triggered logic-gating of DNA nanodevices. J. Am. Chem. Soc. 143, 21630–21636. https://doi. org/10.1021/jacs.1c09967
- 120. Hamann, P.R., Hinman, L.M., Hollander, I., Beyer, C.F., Lindh, D., Holcomb, R., Hallett, W., Tsou, H.-R., Upeslacis, J., Shochat, D., et al. (2002). Gemtuzumab ozogamicin, A potent and selective anti-CD33 . antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. 13, 47-58. https://doi.org/ 10.1021/bc010021y.