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A B S T R A C T   

Land subsidence is an important cause of relative sea-level rise along the Gulf Coast. There is a lack of effective 
monitoring of coastal subsidence with high accuracy and high spatial resolution for improving coastal risk 
assessment and mitigation. This study is the first attempt to integrate satellite interferometric synthetic aperture 
radar (InSAR) and airborne light detection and ranging (LiDAR) methods to investigate the spatiotemporal 
pattern of coastal subsidence. The study area is around Eagle Point, Texas, a region known for its fast rate of 
relative sea-level rise in recent decades. From 2006 to 2011, the line-of-sight velocities were up to −33 mm/year 
based on ascending ALOS-1 PALSAR-1 images. From 2016 to 2021, the vertical velocities were up to −34 mm/ 
year based on ascending and descending Sentinel-1 images. Additional details of the subsidence pattern were 
revealed by incorporating the surface difference derived from 1-m airborne LiDAR results. Comparisons of the 
InSAR-derived velocities from image time series and the LiDAR-derived surface changes from time-lapsed ob
servations were conducted at different spatial levels with linkages to land cover patterns and topography. The 
results showed that local subsidence rates could vary significantly below the spatial resolution of InSAR results, 
indicating a valuable role of airborne LiDAR results in extending InSAR results to parcel and building levels and 
explaining subpixel uncertainties. Also, subsidence appeared to be stronger in vegetated areas than in developed 
areas and negatively correlated with surface imperviousness. The magnitude of subsidence was not correlated 
with elevation along selected transect lines. Overall, this study demonstrated the benefits of combining InSAR 
results with other geospatial datasets to characterize coastal subsidence. In particular, the high vertical accuracy 
of InSAR results and the high spatial resolution of airborne LiDAR results could be complementary, highlighting 
the necessity of multi-resolution data fusion to support studies on coastal flood vulnerability, infrastructure 
reliability, and erosion control.   

1. Introduction 

Over 600 million people, or 10% of the world’s population, live in 
low-lying coastal areas below 10 m in elevation (Neumann et al., 2015). 
These coastal areas are unique ecosystems that offer habitats for many 
species and provide essential services to human society. The market 
value of marine and coastal resources was estimated at $3 trillion 
annually as the year of 2015, accounting for 5% of global gross domestic 
product (Global Ocean Commission, 2014). Over the past decades, 
relative sea-level rise (RSLR) has been identified as a significant threat to 
many coastal areas. It is exacerbating a variety of environmental and 

ecological problems such as coastal flooding (Ezer and Atkinson, 2014), 
wetland loss (Schuerch et al., 2018), and coastal erosion (Leatherman 
et al., 2000), endangering local ecosystems and communities. RSLR is 
the combined effect of sea-level rise and land subsidence. Potential 
causes of sea-level rise include meltwater from glaciers and ice sheets, 
thermal expansion of seawater, and transfer of water from storage on 
land to sea (Frederikse et al., 2020; Meredith et al., 2019). Land subsi
dence is associated with natural and human causes at local or regional 
scales, such as groundwater withdrawal, oil and gas extraction, soil 
compaction, fault growth, tectonic activities, and other natural pro
cesses (Coplin and Galloway, 1999). 
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The contribution of land subsidence to RSLR is particularly signifi
cant along the Texas Gulf Coast (Coplin and Galloway, 1999). For 
example, the contribution of land subsidence was estimated to be 
76–85% of RSLR from 1909 to 1992 and decreased to 30% in 2018 at 
tide gauge Galveston Pier 21, Texas (Liu et al., 2020), over an area 
known for significant subsidence (Miller and Shirzaei, 2019; Qu et al., 
2015). Driven by growing concerns about the effect of land subsidence 
on coastal flooding, shoreline erosion, and fault movement (Coplin and 
Galloway, 1999; Miller and Shirzaei, 2021), there is an urgent need for 
effective characterization of land subsidence to improve risk manage
ment strategies for Texas coastal areas. 

Traditional efforts of subsidence analysis rely on ground-based 
techniques. For example, geodetic surveying methods such as leveling 
have been used to measure the vertical change of the ground surface at 
the local scale. Extensometers have also been used to measure aquifer 
compaction and expansion for estimating subsidence around wells 
(Huang et al., 2012), but the low spatial coverage of extensometers 
hinders the understanding of the spatial variations of regional subsi
dence. Another method for subsidence monitoring is the global navi
gation satellite system (GNSS) (Wang et al., 2017). In particular, 
continuous GNSS stations, such as NOAA’s continuously operating 
reference station (CORS) network, can offer positioning observations 
with high accuracy, but the results are only valid for a limited area 
around the stations. 

Geodetic remote sensing techniques can continuously monitor the 
dynamic displacement of the ground surface and provide a new means to 
quantify land subsidence. In particular, the interferometric synthetic 
aperture radar (InSAR) has been proven to be an effective tool to map 
land subsidence with centimeter-to-millimeter accuracy over a large 
geospatial extent (Bürgmann et al., 2000). It compares two or more 
synthetic aperture radar (SAR) images that are collected at different 
times over the same region to quantify the change of ground surface. 
Due to the growing availability of high-quality SAR datasets, InSAR has 
been increasingly used in coastal subsidence studies (Dixon et al., 2006; 
Wang et al., 2012). For example, Qu et al. (2015) mapped the line-of- 
sight (LOS) subsidence in the Galveston-Houston region, Texas, using 
InSAR based on ERS, Envisat ASAR, and ALOS-1 PALSAR-1 images from 
1993 to 2011. Miller and Shirzaei (2021) generated the vertical land 
subsidence rates over this area based on ALOS-1 PALSAR-1 and Sentinel- 
1 images between 2007 and 2019 and GNSS measurements which pro
vided the horizontal components of the motion for the same period. 
Results of these InSAR-based subsidence studies typically have a hori
zontal spatial resolution in tens-of-meters. In comparison, airborne light 
detection and ranging (LiDAR) could offer insights at a higher spatial 
resolution (up to 1 m), although with a lower absolute vertical accuracy 
(10–15 cm). Airborne LiDAR is an aerial mapping technology that in
tegrates LiDAR and aerial platforms (e.g., a drone, plane, or helicopter) 
to collect the three-dimensional (3D) point cloud of the earth’s surface 
for the generation of a digital terrain model (DTM) or digital elevation 
model (DEM). Recent advances in drone technology have particularly 
promoted the applications of airborne LiDAR. Integrating InSAR and 
airborne LiDAR methods can potentially study coastal subsidence with 
high accuracy and high spatial resolution. 

The objectives of this study are to 1) quantify the subsidence rates in 
a Texas coastal area from 2006 to 2021 using the small baseline subset 
(SBAS) InSAR method, and 2) compare the InSAR results to the high- 
resolution land surface differences derived from multitemporal 
airborne LiDAR data, and 3) investigate the relationships between 
subsidence and the patterns of land cover and topography. This study 
aims to explore a complementary relationship between the high accu
racy InSAR results and the high spatial resolution airborne LiDAR results 
in supporting coastal subsidence studies. 

2. Study area 

The study area is a 520 km2 area around Eagle Point in Texas, located 

between 29
◦

20′N and 29
◦

34′N and between 95
◦

5′W and 94
◦

52′W 
(Fig. 1). The land cover is dominated by a mixture of coastal prairie, 
urban areas, and an industrial zone of oil and gas facilities in the 
southeast area. Elevation ranges from −4.43 m to 17.05 m with an 
average slope of 0.18

◦

. Records from the Eagle Point Tide Gauge Station 
show an RSLR rate of 13.7 mm y−1 from 1993 to 2017 (Fig. 1b). A 
possible cause is the withdrawal of groundwater from the Chicot, 
Evangeline, and Jasper aquifers, all components of a broader Gulf Coast 
aquifer system, to meet the increasing industrial and municipal water 
demands from the Galveston area. Oil and gas extraction, and surface 
fault activities could also contribute to the land subsidence here (Coplin 
and Galloway, 1999; Qu et al., 2015). 

3. Methods and materials 

3.1. Overview 

This study combined InSAR, airborne LiDAR, GPS, and land cover 
data to investigate the spatiotemporal pattern of coastal land subsidence 
and its relation to different land cover and topography, consisting of 
several steps (Fig. 2). First, three stacks of SAR images were used to 
obtain the LOS subsidence velocities, i.e., two orbits from Sentinel-1 and 
one from ALOS-1 PALSAR-1. LOS velocities in Sentinel-1 ascending and 
descending geometries were utilized then to generate the projections 
onto the vertical and east-west horizontal directions under the 
assumption of zero north-south motion. Second, this study generated a 
1-m map of land surface differences from two temporal airborne LiDAR 
point cloud data to compare and complement InSAR results. Third, the 
InSAR results were overlapped with land cover data to examine the 
occurrence of subsidence in different land cover categories, and its 
relationship with percent surface imperviousness. Finally, InSAR results 
and LiDAR DEM were combined in a profile analysis to investigate the 
pattern of subsidence along selected typical transections and highways 
across the study area. Highways are often a focus of mitigation and 
response studies for flooding risk management, as land subsidence along 
low-lying highway sections could exacerbate the inundation risk. 

3.2. InSAR-based subsidence analysis 

3.2.1. SAR images 
This study used two sets of SAR data (Table 1). The L-band ALOS-1 

PALSAR-1 data included 26 ascending images taken between 
December 2006 and January 2011. The descending PALSAR-1 data over 
the study area was limited and not adopted in this study. Therefore, we 
analyzed the LOS velocities based on these ascending PALSAR-1 images. 
The PALSAR-1 raw data were provided by Japan Aerospace Exploration 
Agency (JAXA). The C-band Sentinel-1 SAR data included 252 ascending 
and descending images between April 2016 and September 2021. 
Combining ascending and descending Sentinel-1 images allowed for 
calculating vertical and east-west horizontal components of LOS veloc
ities under the assumption of zero north-south components (Eq. (1–5)). 
Most SAR satellites, such as ALOS and Sentinel-1, operate in a sun- 
synchronous orbit with an inclination of around 98◦, resulting in 
range observations almost in the east-west direction and rarely in the 
north-south direction. Consequently, the north-south components 
cannot be extracted adequately from these SAR data-derived LOS ve
locities (Wright et al., 2004). Using Sentinel-1 images till 2021 other 
than till 2018 (the same end year with airborne LiDAR data) would 
provide a more comprehensive understanding of the subsidence pattern 
for our study area. The Sentinel-1 single look complex (SLC) data were 
provided by the Copernicus program of the European Space Agency. Full 
details of the SAR data are presented in Supplementary Information. 

3.2.2. SBAS InSAR analysis 
We used the SBAS method to retrieve historical subsidence from SAR 

images. The SBAS method utilizes interferograms from small temporal 
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and spatial baseline subsets, reducing both spatial and temporal decor
relation and improving phase estimates’ performance (Berardino et al., 
2002). Persistent Scatterer Interferometry (PSI) uses persistent scat
terers to obtain the land surface displacements (Ferretti et al., 2001). 
The persistent scatterers are always substantial in developed urban 
areas, which renders PSI to be applied more in the urban area. In this 
study, the study area covers developed urban areas, grassland areas, and 
wetlands. One of our objectives is investigating the relationship between 

land subsidence and land cover. SBAS method can overcome the rapid 
loss of coherence in long-term interferograms in PSI over nonurban 
areas. So, although PSI can achieve full-resolution (single-look), this 
study finally applied the SBAS method to map the land subsidence. 

For the ALOS-1 PALSAR-1 data, we selected the image collected on 
28 March 2008 as the reference image. All other images were coregis
tered to this reference image. The temporal and perpendicular baseline 
thresholds for PALSAR-1 data were set as 1200 days and 1500 m, 

Fig. 1. Study area: (a) SAR data coverage (black squares) over the elevation map around the study area (red square); (b) a Google Earth image of the study area and 
the monthly mean RSLR observed at the Eagle Point Tide Gauges Station (blue marker) from 1993 to 2017. Red marker shows the location of the TXLM GPS station, 
and magenta dots denote the location of the reference points for Sentinel-1 and ALOS-1 PALSAR-1 images processing. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Research framework.  
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respectively (Fig. 3a). For the Sentinel-1 data, the image collected on 10 
January 2019 was chosen as the reference image. Interferograms were 
generated between each epoch and the adjacent four epochs for 
Sentinel-1 data (Fig. 3b and c). This study used the InSAR Scientific 
Computing Environment (ISCE) (Rosen et al., 2012) to obtain 49 and 
1012 interferograms for PALSAR-1 and Sentinel-1 stacks, respectively. 
The multilooking approach was leveraged to alleviate the phase noise, 
which was 9 × 2 (azimuth by range) and 2 × 10 for the PALSAR-1 and 
Sentinel-1 data, respectively, leading to approximately 30-m pixels. The 
topographic phase was removed from interferograms using a 30-m 
Shuttle Radar Topography Mission DEM. In addition, orbit parameters 
were incorporated to correct orbital errors in Sentinel-1 interferograms 
generation. All interferograms were unwrapped by adopting the SNA
PHU (Statistical-Cost Network-Flow Algorithm for Phase Unwrapping) 
(Chen and Zebker, 2002). 

The Miami InSAR time-series software in Python (MintPy) (Yunjun 

et al., 2019) was applied to perform the SBAS approach. This study 
selected the PALSAR-1 interferogram network by utilizing minimum 
spanning tree (MST) and spatial coherence threshold, i.e., accomplished 
the MST first by using the inverse of average spatial coherence of all 
interferograms as weight, then excluded the interferograms that were 
not included in MST’s interferograms and had spatial coherence lower 
than the threshold. Average spatial coherence thresholds of 0.65 for 
PALSAR-1 interferograms were applied in this study (Fig. 3a). For the 
Sentinel-1 interferogram network, the temporal baseline threshold of 
not exceeding 100 days was applied (Fig. 3b and c). Water bodies were 
masked out by applying a DEM-based water mask in radar coordinates. 
We selected two buildings as reference points for PALSAR-1 and 
Sentinel-1 datasets (magenta dots, denoted as Ref. in Fig. 1b). All in
terferograms were referenced to the reference point so that the relative 
LOS velocities can be calculated later. The components of tropospheric 
delay were removed by ERA5 reanalysis using PyAPS (Python-based 
Atmospheric Phase Screen estimation) module (Jolivet et al., 2011). 
This study estimated the LOS velocity as the slope of the best fitting line 
to the range change time series and the uncertainty of the velocity as the 
goodness of fit, i.e., standard deviation (Fattahi and Amelung, 2015). 

The LOS velocity vlos can be decomposed into three velocity com
ponents in the east-west direction (vE), the north-south direction (vN), 
and the vertical direction (vV) (Fialko and Simons, 2001; Wright et al., 
2004): 

vlos = ( − sinθcosα sinθsinα cosθ)

⎛

⎝
vE
vN
vV

⎞

⎠ (1)  

where θ is the radar incidence angle and α is the satellite heading angle 

Table 1 
Characteristics of SAR data.  

Characteristics \ Sensor ALOS-1 PALSAR-1 Sentinel-1 

Band (Wavelength)   L (23.6 cm)   C (5.6 cm)   

Beam mode FBS, FBD IW 
Revisit time 46 days 12 days 
Orbital geometry Ascending Ascending/Descending 
Path  175  136/143  

Frame 570, 580 90–93/491–494 
Temporal span 12/2006–1/2011 4/2016–9/2021  

Fig. 3. Interferogram networks from ALOS-1 PALSAR-1 and Sentinel-1 acquisitions with perpendicular and temporal baselines: (a) PALSAR-1 ascending images, (b) 
Sentinel-1 ascending images, and (c) Sentinel-1 descending images. Red circles represent SAR images. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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(i.e., the direction of the satellite motion). The incidence angle and 
heading angle are known. In this study, for Sentinel-1 ascending and 
descending geometries, the mean values for the incidence angles were 
32.55◦ and 32.50◦, and the heading angles were 349.22◦ and 190.79◦, 
respectively. Based on estimated Sentinel-1 ascending LOS velocities vlos

AS 

and descending LOS velocities vlos
DS, Eq. (2) and Eq. (3) can be developed 

with three unknown velocity components vE, vN, and vV: 

vAS
los = − sinAS

θ cosAS
α vE + sinAS

θ sinAS
α vN + cosAS

θ vV (2)  

vDS
los = − sinDS

θ cosDS
α vE + sinDS

θ sinDS
α vN + cosDS

θ vV (3)  

Assuming that the motion in the north-south direction (vN) is negligible, 
Eq. (2) and Eq. (3) could be solved to yield the LOS velocity projections 
onto the vertical (vV, Eq. (4)) and east-west horizontal direction (vE, Eq. 
(5)): 

vV =
sinDS

θ cosDS
α vAS

los − sinAS
θ cosAS

α vDS
los

cosAS
θ sinDS

θ cosDS
α − sinAS

θ cosAS
α cosDS

θ
(4)  

vE =
cosAS

θ vDS
los − cosDS

θ vAS
los

sinAS
θ cosAS

α cosDS
θ − cosAS

θ sinDS
θ cosDS

α
(5)  

During the data processing, by inputting Sentinel-1 ascending and 
descending geometries LOS velocities in the decomposition operation of 
MintPy, the Sentinel-1 vertical components under the assumption of 
zero north-south motion could be generated. For the PALSAR-1 
ascending geometry used in this study, only Eq. (2) could be devel
oped. With three unknown velocity components, the study estimated the 
vertical components of PALSAR-1 LOS velocities using Eq. (6). This 
equation was derived from Eq. (2) by assuming that the east-west and 
north-south motion were negligible. The mean incidence angle for 
PALSAR-1 data was 39.7◦. This decomposition was executed in the 
calculation operation of MintPy. 

vV =
vAS

los

cosAS
θ

(6)  

3.2.3. Validation based on GPS data 
A CORS GPS station (TXLM) is located in a highly developed area of 

the study site (Fig. 1b). The GPS data for 2006–2021 were provided by 
the National Geodetic Survey (NGS) and processed by the Nevada 
Geodetic Laboratory with respect to the IGS14 reference frame (Blewitt 
et al., 2018). We used the GPS vertical land surface displacement mea
surements to validate our InSAR-based subsidence results over an 
approximately 30 m ✕ 30 m area centered on the GPS station. 

3.3. Airborne LiDAR-based land surface difference 

We used two airborne LiDAR point cloud datasets of 2006 and 2018, 
provided by the 3D Elevation Program (3DEP) of the United States 
Geological Survey (USGS). These datasets’ vertical and horizontal da
tums were NAVD88 and NAD83, respectively. The point density of the 
2006 data was below 2 points/m2 and was deemed adequate to generate 
a 1-m DEM. 14 categories were classified for the LAS airborne LiDAR 
point cloud data according to the ASPRS classification standard. This 
study leveraged the ground class of the point cloud. A standard filtering 
procedure was applied to extract the bare earth point cloud data (Fig. 2). 
DEM tiles were generated based on those ground points using the LAS
tools and were merged then to produce a seamless 1-m DEM. For the 
2018 DEM, raw 1-m DEM tiles (1.65 km × 1.85 km) were downloaded 
from 3DEP and merged into a DEM using QGIS. The airborne LiDAR data 
in 2018 was offered at level 2 (QL2), which had a minimum nominal 
pulse spacing (NPS) of 0.7 m and a vertical error of 0.1 m, measured as 
root mean square error (RMSE). Finally, the land surface differences in 
the vertical direction between 2006 and 2018 were calculated based on 
two temporal DEMs using subtraction analysis in QGIS (Fig. 2). 

The uncertainties of surface differences were unlikely to be spatially 
homogeneous, caused by factors such as uncertainties of original DEMs 
and the error propagation during the change detection. The un
certainties of airborne LiDAR-derived DEM were heterogeneous but al
ways offered as a single value. In this study, the absolute vertical 
accuracy for QL2 airborne LiDAR data was provided in the USGS report 
as 0.1 m, but the relative vertical accuracy would be smaller than 0.06 m 
for smooth surfaces. Quantifying uncertainties in change detection re
sults of airborne LiDAR is not a trivial work and is still very limited 
(Okyay et al., 2019). 

Land surface difference from airborne LiDAR includes the accumu
lation of gradual land subsidence and land displacements induced by 
human activities and other surface processes. The periods of airborne 
LiDAR measurements (2006–2018) had overlaps with that of ALOS-1 
PALSAR-1(2006–2011) and Sentinel-1(2016–2021) results. This study 
compared airborne LiDAR-derived land surface differences to the InSAR- 
derived velocities. The 1-m map of land surface differences was sup
posed to complement the PALSAR-1 and Sentinel-1 results by revealing 
more details of the spatial variations of gradual subsidence below the 
scale of the 30-m InSAR pixels and identifying the significant land sur
face change which InSAR cannot capture. 

3.4. Subsidence analysis over different coastal land cover and topographic 
patterns 

We obtained the 30-m 2019 land cover from the National Land Cover 
Database (NLCD). USGS generated the NLCD products through inte
grating multi-source geospatial datasets and classification using ma
chine learning methods (Jin et al., 2019), and their accuracies were 
validated at the national level (Wickham et al., 2021). 

The land cover analysis was conducted in ArcGIS Pro. First, the NLCD 
data was extracted and clipped to the same extent as the study area. 
Then, the NLCD categories were modified to address the land cover 
pattern of the study area. Deciduous forest, evergreen forest, and mixed 
forest categories were merged into a forest category. Shrub/scrub, 
grassland/herbaceous, pasture/hay, and cultivated crops categories 
were merged into a grassland category. Woody wetlands and emergent 
herbaceous wetlands categories were merged into a wetlands category. 
The resulted land cover raster was converted into multi-feature poly
gons. These polygons were linked to the subsidence estimates using the 
Spatial Join Tool in ArcGIS Pro. Based on attribute tables of the Spatial 
Join-derived feature classes, mean subsidence velocities, standard error, 
and interquartile ranges were calculated for different land cover cate
gories. In addition, linear regression was performed to analyze the 
relationship between subsidence velocities and surface imperviousness 
at the pixel level and between mean subsidence velocities and surface 
imperviousness at the class level. 

We further examined the relationship between subsidence and 
topography using the 2018 airborne LiDAR DEM. The floating-type DEM 
was first converted into an integer-type DEM and then into polygon 
features. Next, we established two transect lines (Figure 14a) to repre
sent the dominant elevation gradients over the study area, e.g., transect 
QI across the northeast-southwest gradient from the shoreline to a river 
mouth and transect ST located along the northwest-southeast shoreline. 
Then, this study applied the Stack Profile Tool in ArcGIS Pro to extract 
elevation and subsidence velocities along these transect lines for profile 
analysis. 

4. Results 

4.1. InSAR-derived subsidence velocity 

4.1.1. Spatiotemporal pattern of land subsidence 
The LOS velocities from ALOS-1 PALSAR-1 and Sentinel-1 images are 

shown in Fig. 4. Positive values indicate ground motions toward the 
satellite (i.e., uplift) and negative values indicate ground motions away 
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Fig. 4. LOS velocities and standard deviations derived from (a and b) PALSAR-1 ascending images (2006–2011), (c and d) Sentinel-1 Path 136 ascending images 
(2016–2021), and (e and f) Sentinel-1 Path 143 descending images (2016–2021). 
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from the satellite (i.e., subsidence). For PALSAR-1 analysis between 
2006 and 2011, the LOS velocities varied from −33 to 20 mm/year 
(Fig. 4a) with the standard deviations of 0 to 12 mm/year (Fig. 4b). 
Results showed that the significant subsidence in 2006–2011 tended to 
continue in the next time window analyzed and with a similar magni
tude. From 2016 to 2021, the LOS velocities ranged from −31 to 19 mm/ 
year based on Sentinel-1 ascending geometry analysis (Fig. 4c) and 
ranged from −31 to 17 mm/year based on descending geometry analysis 
(Fig. 4e). The standard deviations of LOS velocities for Sentinel-1 
ascending and descending geometries were smaller than 2 mm/year 
(Fig. 4d and f). 

The velocities in the vertical direction under the assumption of zero 
north-south motion in 2016–2021 based on both ascending and 
descending Sentinel-1 results are shown in Fig. 5. For velocities in the 
vertical direction, positive and negative values indicate ground uplift 
and subsidence, respectively. This study found that the vertical veloc
ities were up to −34 mm/year, with a spatial pattern similar to that of 
the LOS velocities (Fig. 4c and e). Our findings agreed with the results 
from a previous InSAR study in this region (Miller and Shirzaei, 2021). 

4.1.2. Validation 
Fig. 6 shows the validation of InSAR_derived subsidence in the ver

tical direction against the vertical GPS measurements, all presented in 
the form of accumulative depth. For the ALOS-1 PALSAR-1 results, only 
ascending data were available over the study area. Therefore, the ver
tical results transformed from LOS results using the local incidence angle 
were used for validation, assuming that the vertical component domi
nated the subsidence. For the Sentinel-1 results, the derived vertical 
results under the assumption of zero north-south motion (Wright et al., 
2004) were compared to vertical GPS measurements. The GPS mea
surements agreed well with both PALSAR-1 results from 2006 to 2011 
(RMSE = 7.5 mm) and Sentinel-1 results from 2016 to 2021 (RMSE 
=11.6 mm). 

4.2. Airborne LiDAR-derived land surface difference 

Here we compared the results of InSAR and airborne LiDAR over a 
subset of the study area that experienced substantial subsidence (Fig. 7, 
also marked as a blue rectangle in Fig. 1b). InSAR results (Fig. 7c and d) 
included some empty pixels because of the temporal coherence 

thresholds setting used to ensure reliable estimates. In contrast, the 1-m 
ground differences between 2006 and 2018 based on two temporal 
airborne LiDAR data covered the entire area (Fig. 7b). As airborne 
LiDAR measurements were in the vertical direction, LOS PALSAR-1 re
sults-derived vertical components based on Eq. (6) (Fig. 7c) and 
Sentinel-1 vertical results (Fig. 7d) were used here. The PALSAR-1 re
sults indicated a strong subsidence process (up to −22 mm/year) in 
2006–2011 (Fig. 7c). The subsidence appeared to be continuing at 
several locations in 2016–2021 from Sentinel-1 results (Fig. 7d) when 
the subsidence velocities in the vertical direction were up to −25 mm/ 
year. In the upper-right part, the vertical velocities derived from 
PALSAR-1 images under the assumption of no east-west and north-south 
motion (Fig. 7c) were larger than that from Sentinel-1 images under the 
assumption of no north-south motion (Fig. 7d). Groundwater use, 
human activities such as building construction, etc. might lead to 
quicker subsidence in 2006–2011 than in 2016–2021. Airborne LiDAR 
results revealed plenty of areas with a surface change between −0.3 to 
0.1 m (Fig. 7b). Limited and scattered areas were with large surface 
changes (negative or positive), which were likely induced by human 
activities and other surface processes (for example, areas A1 and A2 
highlighted in Fig. 7a). Overall, both InSAR-based analysis and airborne 
LiDAR measurements indicated substantial subsidence in this area. Most 
highly subsided areas based on InSAR analysis also showed relatively 
large surface changes based on airborne LiDAR measurements, between 
−0.1 to −0.3 m during 2006–2018 (Fig. 7). The 1-m airborne LiDAR 
results offered more details of the surface differences and could capture 
some large changes that InSAR cannot monitor. 

We further conducted profile analysis along two transect lines 
(Fig. 7a) to evaluate the agreement and disagreement between InSAR 
and airborne LiDAR estimates. The transect line L1 represented the 
northwest-southeast direction, with the land use dominated by devel
oped and vegetated areas. PALSAR-1 and Sentinel-1 results presented a 
trend similar to that of the accumulative land surface differences from 
the airborne LiDAR results (Fig. 8a and b). The lower subsidence ve
locities tended to be associated with smaller accumulative surface dif
ferences, and higher velocities aligned with greater accumulative 
surface differences. In particular, the airborne LiDAR results of sections 
BC and DE exhibited large land surface differences. The PALSAR-1 and 
Sentinel-1 velocities also showed high values in these sections, espe
cially velocities from Sentinel-1 analysis (up to about −20 mm/year). 
The high velocities could contribute to the large subsidence, which had a 
good agreement with the airborne LiDAR results (Fig. 8b). Based on 
Google historical images, section BC was on a piece of land with some 
grass and almost had no change from 2006 to 2011 (Fig. 9a). This area 
was influenced by a pool and other activities then, confirming the great 
variations of Sentinel-1 subsidence velocities (Fig. 8b). Section AB 
subsided from both PALSAR-1 and Sentinel-1 results, whereas airborne 
LiDAR results presented almost no subsidence and even some uplift. 
Based on this multi-period information, we could infer that this segment 
might have an uplift in 2011–2016. 

The transect line L2 represented the southwest-northeast direction. 
Sentinel-1 velocities trend almost fits well with the trend of land surface 
differences as shown in airborne LiDAR results (Fig. 8d). PALSAR-1 
velocities trend of the sections starting around H fits relatively well 
with the land surface differences trend (Fig. 8c). Sentinel-1 analysis 
showed high velocities in the vertical direction over the area where 
airborne LiDAR obtained large surface differences. In particular, sec
tions GH and IJ underwent larger subsidence in 2016–2021 than in 
2006–2011, leading to some large subsidence in agreement with 
airborne LiDAR results (Fig. 8c and d). The airborne LiDAR results 
showed a heterogeneous pattern of surface change along section HI, 
agreed better with Sentinel-1 results than PALSAR-1 results. As shown in 
Fig. 9b, the area along the HI was mainly dominated by grassland in 
2006–2011 and had a relatively homogeneous subsidence pattern 
accordingly (Fig. 8c). From 2016 to 2019, within the Sentinel-1 results 
period, the area along the HI was disturbed and/or changed by some 

Fig. 5. The vertical components under the assumption of zero north-south 
motion in 2016–2021 based on Sentinel-1 ascending and descending LOS re
sults (Fig. 4c and e). 
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land reclamation and construction activities (Fig. 9b), leading to a het
erogeneous subsidence trend as well as some substantial surface changes 
that could only be captured by airborne LiDAR (Fig. 8d). Sections FG 
subsided much faster in 2006–2011 than in 2016–2021, and the land 
surface change was relatively small. Overall, the land surface differences 

pattern derived from airborne LiDAR data between 2006 and 2018 
generally agreed with InSAR-derived velocities along the selected 
transect lines and provided a more effective means to characterize large 
surface changes in areas with human activities. 

Fig. 6. Comparison of InSAR-derived cumulative subsidence to GPS measurements in the vertical direction. The location of the TXLM GPS station is shown in Fig. 1.  

Fig. 7. Detailed subsidence pattern of a selected area: (a) a Google Earth image, (b) airborne LiDAR-derived vertical surface differences, (c) vertical components 
based on PALSAR-1 results (assuming no east-west and north-south motions), and (d) vertical components based on Sentinel-1 results (assuming no north-south 
motion). Fig. 1b shows the location of this area. 
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Fig. 8. Comparison of InSAR and airborne LiDAR results along transect lines L1 (a and b) and L2 (c and d). Error bars indicate standard deviations. The locations of 
the transect lines are shown in Fig. 7a. 
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Fig. 9. Historical Google Earth images and airborne LiDAR-derived land surface differences over the selected profiles BC (a) and HI (b). The locations of BC and HI 
are shown in Fig. 7a. Checkpoints B, C, H, and I are denoted by yellow placemarks. 
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4.3. Relationships between subsidence and land cover 

Based on the land cover pattern of the study area, the standard NLCD 
land cover categories were re-classified as developed building area, 
barren land, forest area, grassland area, wetland area, and open water 
(Fig. 10). Developed areas included four classes based on percent 
impervious surface coverage: open space area (<20%), low-intensity 
area (20%–49%), medium intensity area (50–79%), and high-intensity 
area (80%–100%). This study analyzed the subsidence (Fig. 4a and 
Fig. 5) distribution for different land cover types (Fig. 10) over the entire 
study area. Results showed relatively high subsidence velocities in 
grassland, forest, wetlands, and barren land (Fig. 11a and b). By 
contrast, the classes of developed areas had relatively low subsidence 
velocities. In particular, the developed high-intensity area was associ
ated with the lowest subsidence velocities among all categories (Fig. 11a 
and b). The velocities based on Sentinel-1 analysis were more dispersed 
than that from PALSAR-1 analysis for each land type (Fig. 11c and d). 

This study then used linear regression to explore the relationship 
between the percent surface imperviousness (Fig. 10) and subsidence 
velocities (Fig. 4a and Fig. 5) at two different scales (Fig. 12) over the 
entire study area. First, for all individual 30-m pixels, the least squares 
polynomial fit (first degree) was applied to model the relationship be
tween the percent surface imperviousness and subsidence velocities 
(Fig. 12a and c). Results indicated that surface imperviousness was 
negatively correlated with the magnitude of subsidence velocities 
derived from both PALSAR-1 images (R2 = 0.207) and Sentinel-1 images 
(R2 = 0.265). Second, 30-m pixels with the same percent imperviousness 
value were extracted and clustered in 1% intervals from 0% to 100%, 
resulting in 101 clusters in which each cluster with the same impervi
ousness value included many pixels with various subsidence velocities. 
This study calculated the mean subsidence velocities for the resulted 101 
clusters. Then, for the clustering results, the least squares polynomial fit 
(first degree) was used again to model the relationship between the 
percent surface imperviousness and the mean subsidence velocities 
(Fig. 12b and d). Results showed that the clustering procedure led to 
higher correlations between surface imperviousness and subsidence 

velocities for both PALSAR-1 (R2 = 0.895) and Sentinel-1 (R2 = 0.937). 

5. Discussion 

5.1. Improvements in existing coastal subsidence investigation 

Coastal subsidence studies often have high expectations of spatial 
resolution and vertical accuracy to meet the requirements of various 
coastal studies such as flood risk analysis, shoreline erosion control, etc. 
InSAR works well in monitoring the gradual land subsidence with high 
accuracy over the coastal areas (Higgins et al., 2014). On the other hand, 
airborne LiDAR can monitor the land surface difference with a high 
spatial resolution (Jones et al., 2013). In this study, airborne LiDAR 
datasets contributed to a 1-m land surface differences mapping. Land 
surface differences detection includes the accumulation of gradual land 
subsidence and land displacements induced by human activities and 
other surface processes. The results of this study indicate the unique 
benefits of combining InSAR and airborne LiDAR measurements to 
improve the understanding of the spatiotemporal pattern of subsidence. 

From the spatial perspective, InSAR analysis based on PALSAR-1 and 
Sentinel-1 images was constrained by its relatively low spatial resolu
tion. However, the detailed surface changes derived from the 1-m 
airborne LiDAR results can contribute to a better understanding of the 
spatial variability of land deformation within the 30-m InSAR pixel. As 
demonstrated in the first example in Fig. 13, the gradual subsidence over 
a piece of land with some grasses was consistently captured in both 
InSAR and airborne LiDAR results (Fig. 13a). PALSAR-1 and Sentinel-1 
results indicated main moderate subsidence rates of −0.9 to −1.5 cm/ 
year, while airborne LiDAR results also suggested a moderate magnitude 
of the total surface change mianly between −0.1 to −0.3 m over 12 
years. In addition to the consistent characterization of an overall mod
erate subsidence process, the airborne LiDAR results revealed a higher 
degree of spatial heterogeneity. Besides, for areas with significant sur
face displacements over a short time which InSAR cannot capture due to 
decorrelation, the additional surface change information from airborne 
LiDAR could contribute to the analysis at the block or even building 

Fig. 10. Land cover of the study area based on NLCD 2019.  
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scale, playing a critical role in high-resolution hydraulic and hydrologic 
simulations in coastal regions. These relatively large surface displace
ments occur most likely due to human activities changing the structure 
of the upper ground such as modifications related to roads and drainage 
structures construction or building foundations. The second example 
(Fig. 13b) illustrated a large surface deformation caused by the con
struction of a stormwater drainage system for a new RV parking lot. It 
involved some local elevation decreases due to the elevation excavation 
of a stormwater ditch and some local elevation increases caused by the 
placement of a culvert (Fig. 13b). These changes were clearly delineated 
in the airborne LiDAR results and obviously not associated with gradual 
subsidence, and they were not identifiable in the InSAR results. Overall, 
without the complementary high-resolution information from airborne 
LiDAR results, PALSAR-1 and Sentinel-1 analysis excluded important 
surface changes within a coarse InSAR pixel could not address signifi
cant land deformation over the small dimensions of natural and built 
features in a heterogeneous urban environment. 

From the temporal perspective, subsidence velocities derived from 
PALSAR-1 and Sentinel-1 images in non-overlapping periods validated 
and complemented the land surface differences revealed by airborne 
LiDAR results and vice versa. In this study, InSAR analysis provided 
subsidence velocities in 2006–2011 (PALSAR-1, Fig. 7c) and 2016–2021 
(Sentinel-1, Fig. 7d). Airborne LiDAR-derived land surface change esti
mated the total surface change between 2006 and 2018 (Fig. 7b). Our 

analysis showed that InSAR results and airborne LiDAR measurements 
fit relatively well along the selected profiles (Fig. 8). It implies that we 
can deduce a large land surface difference based on high PALSAR-1 and/ 
or Sentinel-1 subsidence velocities as well as deduce high subsidence 
velocities from the large land surface change. The validation between 
high subsidence velocities and large land surface differences could be 
achieved. Besides, two temporal InSAR results complement the airborne 
LiDAR results by offering the velocities variation in the different periods. 
The analysis across the partially overlapping monitoring periods of 
airborne LiDAR, PALSAR-1, and Sentinel-1 allowed for the investigation 
of possible surface changes that took place within 2011–2016, i.e., the 
gap between the ALOS-1 and Sentinel-1 results. For example, the sub
sidence velocities of section AB (Fig. 7a) exceeded −15 mm/year in 
2006–2011 and 2016–2021 (Fig. 8a and b). However, section AB pre
sented limited negative land surface differences from airborne LiDAR 
results, which may imply some uplift between 2011 and 2016. Such 
partially overlapping periods of InSAR and airborne LiDAR measure
ments would be common in many regions, given the global availability 
of ALOS-1 and Sentinel-1 data. As a result, the unique advantage of 
including airborne LiDAR measurements could be applicable to other 
coastal regions. 

Finally, high accuracy and resolution topography information is 
essential for flood risk analysis, shoreline erosion control, etc. This is 
particularly true for coastal plains with gentle slopes. A slight variation 

Fig. 11. PALSAR-1 mean LOS velocities (a) and Sentinel-1 mean vertical velocities (b) for different land cover types. The 95% confidence intervals are computed as 
1.96 standard errors for each land type. The red line represents the number of pixels. Subplots c and d show the interquartile ranges of PALSAR-1 LOS velocities and 
Sentinel-1 vertical velocities for different land cover types, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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in the subsidence rates may significantly impact the calculations of flow 
directions and paths in hydrological and hydraulic simulations that are 
based on the subsidence-corrected DEMs. For such simulations in urban 
watersheds along the Texas Gulf Coast, to our knowledge, DEMs with 
spatial resolutions from 1-m to 10-m and vertical accuracies below 10 
cm would be desired in most cases. Some present studies try to apply 
high-resolution airborne LiDAR topography to the hydrological model 
for improving urban flooding analysis and apply UAV-collected high- 
resolution images for shoreline detection (Trepekli et al., 2022). This 
study offers 1-m land surface change results and cm-level velocities, 
which will contribute to a much more robust analysis. 

5.2. Limitation and potential of airborne LiDAR for coastal surface 
change mapping 

Point positioning accuracy of airborne LiDAR is influenced by system 
calibration, time synchronization between system components, errors in 
the navigation solution (position and attitude errors), range measure
ment errors, etc. (May and Toth, 2007), leading to a relatively low 
vertical accuracy (i.e., 10–15 cm) of airborne LiDAR measurements. The 
limitation of low vertical accuracy results in the fact that airborne LiDAR 
is a less popular option for land subsidence monitoring under the con
ventional assumption that the total subsidence will be equal to or even 
smaller than the errors, as well as when the decision-makers are seeking 
very high accuracy. However, InSAR results have indicated substantial 
subsidence rates in our study area, up to −22 mm/year in 2006–2011 
(Fig. 7c) and up to −25 mm/year in 2016–2021 (Fig. 7d), as well as the 
broader Houston region, up to −30 mm/year in 2004–2011 (Qu et al., 
2015). Given such large subsidence rates, the vertical accuracy of 
airborne LiDAR would no longer be a constraint to decision-makers 
interested in identifying significant surface deformation. Our results 

found that most highly subsided areas from InSAR also showed rela
tively large surface changes from airborne LiDAR, between −0.1 m to 
−0.3 m during 2006–2018 (Fig. 7). The further comparison between 
InSAR results and airborne LiDAR results along the selected profiles 
revealed a very similar trend in most areas (Fig. 8). This proved the 
reliability of airborne LiDAR-derived results to some extent. Further
more, our results demonstrated that airborne LiDAR monitored the land 
surface change from gradual land subsidence and land displacements in 
coastal regions. In particular, land displacements caused by human ac
tivities and other surface processes tended to have relatively large 
deformation over a short time which conventional InSAR methods 
cannot capture. 

While airborne LiDAR measurements are still limited by the low 
vertical accuracy, few SAR images could match the spatial resolution of 
airborne LiDAR measurements. New satellite images (e.g., TerraSAR-X 
images) have improved spatial resolutions, but their coverage and 
availability are far from that of Sentinel-1, resulting in relatively coarse 
spatial resolution of InSAR analysis for lots of coastal studies. Therefore, 
it would be valuable to explore airborne LiDAR data when these data can 
be readily obtained in areas that do not have high-resolution SAR images 
yet. The spatial variability information of surface change derived from 
multi-temporal airborne LiDAR data, even if the actual measurements 
are not as precise as InSAR, provides invaluable higher resolution 
complementary information, especially for the cases with large veloc
ities that are the most important. It will benefit a variety of coastal 
studies, particularly on the resilience of our coastal infrastructure sys
tems, e.g., the design of sea walls. This is also adaptive to flooding 
studies that typically require high-resolution elevation information. As 
shown in Fig. 13b, the drainage ditch identified from the airborne LiDAR 
results will contribute to the flooding analysis. 

High-quality airborne LiDAR data spanning a long time over the 

Fig. 12. Relationships between percent impervious coverage and subsidence velocities: PALSAR-1 LOS velocities at (a) the pixel level and (b) the cluster level; 
Sentinel-1 vertical velocities at (c) the pixel level and (d) the cluster level. Black lines (a and c) and red lines (b and d) indicate linear fit. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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coastal area is not widely distributed. Fortunately, more and more in
stitutes, such as USGS, are opening their data nowadays. Airborne 
LiDAR data will be a good source of terrain information for surface 
change analysis over coastal areas with relatively large subsidence rates. 
Acting as complementary information, airborne LiDAR will be a po
tential opportunity for coastal studies. 

5.3. Forest influence over the InSAR analysis 

The wavelength of radar waves plays an important role in applica
tions of InSAR over densely forested areas (Xu et al., 2021). The pene
tration capability of short-wavelength (3.1 cm for X-band, 5.6 cm for C- 
band) radar pulses is limited, which leads to the detection of the forest 
canopies rather than the bare land surface. As a result, decorrelation 

Fig. 13. Examples of the multiscale measurements in the vertical direction: (a) a grassland area (dashed box) with details presented in the second row; and (b) a 
developed area (solid box) with details presented in the third row. In example (a), the 0.3-m HxGN aerial image shows the landscape. In example (b), black arrows 
indicate the ditch and the culvert. This area is also marked in Fig. 7b. 
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would occur in InSAR analysis, leading to no subsidence results over the 
densely forested area, as shown in the forest area (Fig. 10), where few 
pixels (Fig. 11b) obtained subsidence results based on C-band Sentinel-1 
images. Penetration capacity can be influenced by forest density as well 
as forest canopy height (Ni et al., 2014). Therefore, subsidence velocities 
over the forest area (Fig. 11b) in this study were likely measured from 
the ground surface over the low-density forest area. Long-wavelength 
(24.2 cm for L-band, 69.72 cm for P-band) radar pulses have better 
penetration capacity and can sense further into forest canopies. The 
calculated subsidence velocities in the forest area (Fig. 11a) based on L- 
band PALSAR-1 images had relatively large uncertainties (Fig. 4b), 
likely caused by low coherence (Shirzaei et al., 2020). Besides, a system 
bias, referred to as the fading signal, has been reported and discussed 
when multiple multi-looked short temporal baseline interferograms are 
used to overcome the rapid loss of coherence in long-term interfero
grams over the forest and densely vegetated areas (Ansari et al., 2021; 
De Luca et al., 2022; Pepe et al., 2015). This phase bias might be a 
further possible source of uncertainty in short-time SBAS InSAR analysis. 

5.4. Subsidence and topography patterns 

Topography is essential for flooding risk assessment and manage
ment over coastal regions (Miller and Shirzaei, 2021). Low-lying coastal 
areas are more prone to inundation. Subsidence over the low elevation 
coastal area potentially exacerbates the situation. In this study, subsi
dence velocities and elevation along the two profiles (Fig. 15a, QI, ST) 
over the study area were extracted (Fig. 14). Sentinel-1-derived veloc
ities in the vertical direction were higher than PALSAR-1-derived LOS 
velocities in the 0–12 km section of the profile QI (Fig. 14a). The 
elevation was lower than 5 m in the QI section 0–12 km. Velocities for 
both sensors increased in QI section 15–20 km, where elevation declined 
nearly 3 m in a similar trend (Fig. 14a). Along with the profile QI, the 
low elevation area exhibited relatively high velocities, especially during 
the Sentinel-1 monitoring period. The elevation along the profile ST was 
relatively lower than QI (Fig. 14b). High velocities appeared in ~5 km, 
where the elevation was almost lower than 2 m. PALSAR-1 derived LOS 
velocities along the ST showed a similar trend to the vertical velocities 
from Sentinel-1 analysis. By analyzing the subsidence performance over 
the topographic surface, this study found that some low areas subsided 
at a relatively high velocity, especially in recent years, which could 
contribute to flood vulnerability and risk. 

5.5. Subsidence along highways 

Many low-lying sections of highways are susceptible to flood inun
dation. Land subsidence could increase their flood vulnerability. This 

study examined the spatial pattern of subsidence along three highways 
across the study area (Fig. 15). The highways were digitalized in the 
Google Earth image and overlaid on the airborne LiDAR-derived DEM 
(Fig. 15a). Changes in elevation along the highway tracks from the 
northwest to the southeast were illustrated in black (Fig. 15b, c, and d). 
Our results demonstrated that variations of PALSAR-1 LOS velocities 
and Sentinel-1 vertical velocities along the highway appeared to not 
correlate with elevation information. In particular, State Highway 6 (SH 
6) underwent a high subsidence velocity (>10 mm/year) over the 0-to-5 
km section and lower velocities around −5 mm/year for the rest of the 
track in both PALSAR-1 and Sentinel-1 results (Fig. 15b). Along Gulf 
Fwy, the estimated subsidence velocities appeared to be stable for the 
first few kilometers then double from about −5 mm/year to −10 mm/ 
year around the 5 km mark, and then slowly increased for the rest of the 
track (Fig. 15c). State Highway 146 (SH 146) experienced high subsi
dence velocities (~15 mm/year) in the 10-to-15 km section based on 
Sentinel-1 and PALSAR-1 results (Fig. 15d). However, some low-lying 
sections of the highways underwent relatively large subsidence veloc
ities, such as around 17 km of the SH 6 subsided up to 10 mm/year with 
the elevation below 2 m, around 20 km mark of Gulf Fwy subsided 
approximately 5–10 mm/year with elevation about 3 m, around 12 km 
of the SH 146 subsided approximately 15 mm/year with elevation about 
3 m. Besides, Similar patterns (increasing-to-decreasing velocities along 
the northwest-southeast direction) were identified in the PALSAR-1 and 
Sentinel-1 results for all selected highways. 

6. Conclusions 

The study integrated SBAS InSAR, airborne LiDAR, and land cover 
data to investigate coastal subsidence around Eagle Point in Texas, 
where a high RSLR was recorded at a tide gauge station. Our results 
revealed that the subsidence velocities were up to −33 mm/year in the 
LOS direction in 2006–2011 from ALOS-1 PALSAR-1 images and up to 
−34 mm/year in the vertical direction in 2016–2021 from Sentinel-1 
images. The low vertical accuracy of airborne LiDAR measurements 
has limited its application for land subsidence mapping. However, this 
study found that airborne LiDAR could be a complementary means to 
provide information on high-resolution spatial variability of coastal 
subsidence over fast-subsiding areas. Our study is unique in terms of 
using both the InSAR-derived velocities from images time series and 
airborne LiDAR-derived surface changes from time-lapsed observations. 
Comparing the InSAR results to 1-m airborne LiDAR measurements 
showed good agreements along the selected profiles, i.e., areas with 
higher subsidence velocities based on InSAR tended to have larger sur
face changes based on airborne LiDAR and vice versa. More importantly, 
the comparison revealed that airborne LiDAR results could be 

Fig. 14. PALSAR-1 LOS velocities from 2006 through 2011 (red line) with standard deviations (pink bar), Sentinel-1 vertical velocities (blue line) with standard 
deviations (light blue bar), and elevation (black line with vertical accuracy shown as gray bar) along the transects QI and ST. The locations of the transects are shown 
in Fig. 15a. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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complementary to InSAR results by shedding light on the subpixel var
iations of InSAR results and identifying significant surface changes that 
InSAR cannot capture. Airborne LiDAR data are not globally available 
like SAR images yet, but the availability of airborne LiDAR data is 
improving rapidly at local or regional levels in many countries. 
Furthermore, by incorporating land cover data, this study found that the 
subsidence velocities tended to be higher in forest, grassland, and wet
lands than in developed urban areas. In addition, the subsidence ve
locities appeared to be negatively correlated with the percent 
impervious coverage. 

Overall, the results of this study indicate that the high vertical ac
curacy InSAR results and the high spatial resolution airborne LiDAR 
results could be complementary in subsidence monitoring. An improved 
characterization of subsidence using both InSAR and airborne LiDAR 
results could provide valuable information to support a variety of coastal 
studies on flood vulnerability, infrastructure reliability, and erosion 
control. Our findings suggest the need and feasibility of multi-resolution 
InSAR-LiDAR fusion for mapping coastal subsidence mapping with both 
high accuracy and high resolution. 
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