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ARTICLE INFO ABSTRACT

Edited by Jing M. Chen Land subsidence is an important cause of relative sea-level rise along the Gulf Coast. There is a lack of effective
monitoring of coastal subsidence with high accuracy and high spatial resolution for improving coastal risk
assessment and mitigation. This study is the first attempt to integrate satellite interferometric synthetic aperture
radar (InSAR) and airborne light detection and ranging (LiDAR) methods to investigate the spatiotemporal

pattern of coastal subsidence. The study area is around Eagle Point, Texas, a region known for its fast rate of
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Kliftl)\:rne LiDAR relative sea-level rise in recent decades. From 2006 to 2011, the line-of-sight velocities were up to —33 mm/year
Land cover based on ascending ALOS-1 PALSAR-1 images. From 2016 to 2021, the vertical velocities were up to —34 mm/

year based on ascending and descending Sentinel-1 images. Additional details of the subsidence pattern were
revealed by incorporating the surface difference derived from 1-m airborne LiDAR results. Comparisons of the
InSAR-derived velocities from image time series and the LiDAR-derived surface changes from time-lapsed ob-
servations were conducted at different spatial levels with linkages to land cover patterns and topography. The
results showed that local subsidence rates could vary significantly below the spatial resolution of InSAR results,
indicating a valuable role of airborne LiDAR results in extending InSAR results to parcel and building levels and
explaining subpixel uncertainties. Also, subsidence appeared to be stronger in vegetated areas than in developed
areas and negatively correlated with surface imperviousness. The magnitude of subsidence was not correlated
with elevation along selected transect lines. Overall, this study demonstrated the benefits of combining InSAR
results with other geospatial datasets to characterize coastal subsidence. In particular, the high vertical accuracy
of InSAR results and the high spatial resolution of airborne LiDAR results could be complementary, highlighting
the necessity of multi-resolution data fusion to support studies on coastal flood vulnerability, infrastructure
reliability, and erosion control.

1. Introduction ecological problems such as coastal flooding (Ezer and Atkinson, 2014),
wetland loss (Schuerch et al., 2018), and coastal erosion (Leatherman
et al., 2000), endangering local ecosystems and communities. RSLR is

the combined effect of sea-level rise and land subsidence. Potential

Over 600 million people, or 10% of the world’s population, live in
low-lying coastal areas below 10 m in elevation (Neumann et al., 2015).

These coastal areas are unique ecosystems that offer habitats for many
species and provide essential services to human society. The market
value of marine and coastal resources was estimated at $3 trillion
annually as the year of 2015, accounting for 5% of global gross domestic
product (Global Ocean Commission, 2014). Over the past decades,
relative sea-level rise (RSLR) has been identified as a significant threat to
many coastal areas. It is exacerbating a variety of environmental and
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causes of sea-level rise include meltwater from glaciers and ice sheets,
thermal expansion of seawater, and transfer of water from storage on
land to sea (Frederikse et al., 2020; Meredith et al., 2019). Land subsi-
dence is associated with natural and human causes at local or regional
scales, such as groundwater withdrawal, oil and gas extraction, soil
compaction, fault growth, tectonic activities, and other natural pro-
cesses (Coplin and Galloway, 1999).
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The contribution of land subsidence to RSLR is particularly signifi-
cant along the Texas Gulf Coast (Coplin and Galloway, 1999). For
example, the contribution of land subsidence was estimated to be
76-85% of RSLR from 1909 to 1992 and decreased to 30% in 2018 at
tide gauge Galveston Pier 21, Texas (Liu et al., 2020), over an area
known for significant subsidence (Miller and Shirzaei, 2019; Qu et al.,
2015). Driven by growing concerns about the effect of land subsidence
on coastal flooding, shoreline erosion, and fault movement (Coplin and
Galloway, 1999; Miller and Shirzaei, 2021), there is an urgent need for
effective characterization of land subsidence to improve risk manage-
ment strategies for Texas coastal areas.

Traditional efforts of subsidence analysis rely on ground-based
techniques. For example, geodetic surveying methods such as leveling
have been used to measure the vertical change of the ground surface at
the local scale. Extensometers have also been used to measure aquifer
compaction and expansion for estimating subsidence around wells
(Huang et al., 2012), but the low spatial coverage of extensometers
hinders the understanding of the spatial variations of regional subsi-
dence. Another method for subsidence monitoring is the global navi-
gation satellite system (GNSS) (Wang et al., 2017). In particular,
continuous GNSS stations, such as NOAA’s continuously operating
reference station (CORS) network, can offer positioning observations
with high accuracy, but the results are only valid for a limited area
around the stations.

Geodetic remote sensing techniques can continuously monitor the
dynamic displacement of the ground surface and provide a new means to
quantify land subsidence. In particular, the interferometric synthetic
aperture radar (InSAR) has been proven to be an effective tool to map
land subsidence with centimeter-to-millimeter accuracy over a large
geospatial extent (Biirgmann et al., 2000). It compares two or more
synthetic aperture radar (SAR) images that are collected at different
times over the same region to quantify the change of ground surface.
Due to the growing availability of high-quality SAR datasets, InSAR has
been increasingly used in coastal subsidence studies (Dixon et al., 2006;
Wang et al., 2012). For example, Qu et al. (2015) mapped the line-of-
sight (LOS) subsidence in the Galveston-Houston region, Texas, using
InSAR based on ERS, Envisat ASAR, and ALOS-1 PALSAR-1 images from
1993 to 2011. Miller and Shirzaei (2021) generated the vertical land
subsidence rates over this area based on ALOS-1 PALSAR-1 and Sentinel-
1 images between 2007 and 2019 and GNSS measurements which pro-
vided the horizontal components of the motion for the same period.
Results of these InSAR-based subsidence studies typically have a hori-
zontal spatial resolution in tens-of-meters. In comparison, airborne light
detection and ranging (LiDAR) could offer insights at a higher spatial
resolution (up to 1 m), although with a lower absolute vertical accuracy
(10-15 cm). Airborne LiDAR is an aerial mapping technology that in-
tegrates LiDAR and aerial platforms (e.g., a drone, plane, or helicopter)
to collect the three-dimensional (3D) point cloud of the earth’s surface
for the generation of a digital terrain model (DTM) or digital elevation
model (DEM). Recent advances in drone technology have particularly
promoted the applications of airborne LiDAR. Integrating InSAR and
airborne LiDAR methods can potentially study coastal subsidence with
high accuracy and high spatial resolution.

The objectives of this study are to 1) quantify the subsidence rates in
a Texas coastal area from 2006 to 2021 using the small baseline subset
(SBAS) InSAR method, and 2) compare the InSAR results to the high-
resolution land surface differences derived from multitemporal
airborne LiDAR data, and 3) investigate the relationships between
subsidence and the patterns of land cover and topography. This study
aims to explore a complementary relationship between the high accu-
racy InSAR results and the high spatial resolution airborne LiDAR results
in supporting coastal subsidence studies.

2. Study area

The study area is a 520 km? area around Eagle Point in Texas, located
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between 29'20'N and 29'34N and between 955W and 94 52'W
(Fig. 1). The land cover is dominated by a mixture of coastal prairie,
urban areas, and an industrial zone of oil and gas facilities in the
southeast area. Elevation ranges from —4.43 m to 17.05 m with an
average slope of 0.18". Records from the Eagle Point Tide Gauge Station
show an RSLR rate of 13.7 mm y’l from 1993 to 2017 (Fig. 1b). A
possible cause is the withdrawal of groundwater from the Chicot,
Evangeline, and Jasper aquifers, all components of a broader Gulf Coast
aquifer system, to meet the increasing industrial and municipal water
demands from the Galveston area. Oil and gas extraction, and surface
fault activities could also contribute to the land subsidence here (Coplin
and Galloway, 1999; Qu et al., 2015).

3. Methods and materials
3.1. Overview

This study combined InSAR, airborne LiDAR, GPS, and land cover
data to investigate the spatiotemporal pattern of coastal land subsidence
and its relation to different land cover and topography, consisting of
several steps (Fig. 2). First, three stacks of SAR images were used to
obtain the LOS subsidence velocities, i.e., two orbits from Sentinel-1 and
one from ALOS-1 PALSAR-1. LOS velocities in Sentinel-1 ascending and
descending geometries were utilized then to generate the projections
onto the vertical and east-west horizontal directions under the
assumption of zero north-south motion. Second, this study generated a
1-m map of land surface differences from two temporal airborne LiDAR
point cloud data to compare and complement InSAR results. Third, the
InSAR results were overlapped with land cover data to examine the
occurrence of subsidence in different land cover categories, and its
relationship with percent surface imperviousness. Finally, InSAR results
and LiDAR DEM were combined in a profile analysis to investigate the
pattern of subsidence along selected typical transections and highways
across the study area. Highways are often a focus of mitigation and
response studies for flooding risk management, as land subsidence along
low-lying highway sections could exacerbate the inundation risk.

3.2. InSAR-based subsidence analysis

3.2.1. SAR images

This study used two sets of SAR data (Table 1). The L-band ALOS-1
PALSAR-1 data included 26 ascending images taken between
December 2006 and January 2011. The descending PALSAR-1 data over
the study area was limited and not adopted in this study. Therefore, we
analyzed the LOS velocities based on these ascending PALSAR-1 images.
The PALSAR-1 raw data were provided by Japan Aerospace Exploration
Agency (JAXA). The C-band Sentinel-1 SAR data included 252 ascending
and descending images between April 2016 and September 2021.
Combining ascending and descending Sentinel-1 images allowed for
calculating vertical and east-west horizontal components of LOS veloc-
ities under the assumption of zero north-south components (Eq. (1-5)).
Most SAR satellites, such as ALOS and Sentinel-1, operate in a sun-
synchronous orbit with an inclination of around 98°, resulting in
range observations almost in the east-west direction and rarely in the
north-south direction. Consequently, the north-south components
cannot be extracted adequately from these SAR data-derived LOS ve-
locities (Wright et al., 2004). Using Sentinel-1 images till 2021 other
than till 2018 (the same end year with airborne LiDAR data) would
provide a more comprehensive understanding of the subsidence pattern
for our study area. The Sentinel-1 single look complex (SLC) data were
provided by the Copernicus program of the European Space Agency. Full
details of the SAR data are presented in Supplementary Information.

3.2.2. SBAS InSAR analysis
We used the SBAS method to retrieve historical subsidence from SAR
images. The SBAS method utilizes interferograms from small temporal
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Fig. 1. Study area: (a) SAR data coverage (black squares) over the elevation map around the study area (red square); (b) a Google Earth image of the study area and
the monthly mean RSLR observed at the Eagle Point Tide Gauges Station (blue marker) from 1993 to 2017. Red marker shows the location of the TXLM GPS station,
and magenta dots denote the location of the reference points for Sentinel-1 and ALOS-1 PALSAR-1 images processing. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Research framework.

and spatial baseline subsets, reducing both spatial and temporal decor-
relation and improving phase estimates’ performance (Berardino et al.,
2002). Persistent Scatterer Interferometry (PSI) uses persistent scat-
terers to obtain the land surface displacements (Ferretti et al., 2001).
The persistent scatterers are always substantial in developed urban
areas, which renders PSI to be applied more in the urban area. In this
study, the study area covers developed urban areas, grassland areas, and
wetlands. One of our objectives is investigating the relationship between

land subsidence and land cover. SBAS method can overcome the rapid
loss of coherence in long-term interferograms in PSI over nonurban
areas. So, although PSI can achieve full-resolution (single-look), this
study finally applied the SBAS method to map the land subsidence.
For the ALOS-1 PALSAR-1 data, we selected the image collected on
28 March 2008 as the reference image. All other images were coregis-
tered to this reference image. The temporal and perpendicular baseline
thresholds for PALSAR-1 data were set as 1200 days and 1500 m,
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Table 1
Characteristics of SAR data.
Characteristics \ Sensor ALOS-1 PALSAR-1 Sentinel-1
Band (Wavelength) L (23.6 cm) C (5.6 cm)
Beam mode FBS, FBD w
Revisit time 46 days 12 days
Orbital geometry Ascending Ascending/Descending
Path 175 136/143
Frame 570, 580 90-93/491-494

Temporal span 12/2006-1/2011 4/2016-9/2021

respectively (Fig. 3a). For the Sentinel-1 data, the image collected on 10
January 2019 was chosen as the reference image. Interferograms were
generated between each epoch and the adjacent four epochs for
Sentinel-1 data (Fig. 3b and c). This study used the InSAR Scientific
Computing Environment (ISCE) (Rosen et al., 2012) to obtain 49 and
1012 interferograms for PALSAR-1 and Sentinel-1 stacks, respectively.
The multilooking approach was leveraged to alleviate the phase noise,
which was 9 x 2 (azimuth by range) and 2 x 10 for the PALSAR-1 and
Sentinel-1 data, respectively, leading to approximately 30-m pixels. The
topographic phase was removed from interferograms using a 30-m
Shuttle Radar Topography Mission DEM. In addition, orbit parameters
were incorporated to correct orbital errors in Sentinel-1 interferograms
generation. All interferograms were unwrapped by adopting the SNA-
PHU (Statistical-Cost Network-Flow Algorithm for Phase Unwrapping)
(Chen and Zebker, 2002).

The Miami InSAR time-series software in Python (MintPy) (Yunjun
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et al., 2019) was applied to perform the SBAS approach. This study
selected the PALSAR-1 interferogram network by utilizing minimum
spanning tree (MST) and spatial coherence threshold, i.e., accomplished
the MST first by using the inverse of average spatial coherence of all
interferograms as weight, then excluded the interferograms that were
not included in MST’s interferograms and had spatial coherence lower
than the threshold. Average spatial coherence thresholds of 0.65 for
PALSAR-1 interferograms were applied in this study (Fig. 3a). For the
Sentinel-1 interferogram network, the temporal baseline threshold of
not exceeding 100 days was applied (Fig. 3b and c¢). Water bodies were
masked out by applying a DEM-based water mask in radar coordinates.
We selected two buildings as reference points for PALSAR-1 and
Sentinel-1 datasets (magenta dots, denoted as Ref. in Fig. 1b). All in-
terferograms were referenced to the reference point so that the relative
LOS velocities can be calculated later. The components of tropospheric
delay were removed by ERA5 reanalysis using PyAPS (Python-based
Atmospheric Phase Screen estimation) module (Jolivet et al., 2011).
This study estimated the LOS velocity as the slope of the best fitting line
to the range change time series and the uncertainty of the velocity as the
goodness of fit, i.e., standard deviation (Fattahi and Amelung, 2015).

The LOS velocity vjos can be decomposed into three velocity com-
ponents in the east-west direction (vg), the north-south direction (vy),
and the vertical direction (vy) (Fialko and Simons, 2001; Wright et al.,
2004):

@

Vies = ( — sinBcosat sinBsina cos0) | vy
Vv

where 6 is the radar incidence angle and « is the satellite heading angle
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Fig. 3. Interferogram networks from ALOS-1 PALSAR-1 and Sentinel-1 acquisitions with perpendicular and temporal baselines: (a) PALSAR-1 ascending images, (b)
Sentinel-1 ascending images, and (c) Sentinel-1 descending images. Red circles represent SAR images. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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(i.e., the direction of the satellite motion). The incidence angle and
heading angle are known. In this study, for Sentinel-1 ascending and
descending geometries, the mean values for the incidence angles were
32.55° and 32.50°, and the heading angles were 349.22° and 190.79°,
respectively. Based on estimated Sentinel-1 ascending LOS velocities vig
and descending LOS velocities loﬁ, Eq. (2) and Eq. (3) can be developed
with three unknown velocity components vg, vy, and vy

S _ _ GpAS. AS i AS i AS AS
v = —sinjScostSve + sinfSsindSvy + coshSvy (2)

DS _ _ DS . DS (DS ;o DS DS
Vigs = — SiNg"~ cos,”vg + sing sing vy + cosy vy 3)

Assuming that the motion in the north-south direction (vy) is negligible,
Eq. (2) and Eq. (3) could be solved to yield the LOS velocity projections
onto the vertical (vy, Eq. (4)) and east-west horizontal direction (vg, Eq.
(5)):

- DS, DS AS _ (iAS. AS.DS
by — sinfScosDS vitS — sinfScosiSviS @
= T AS.iDS,. DS _ «nAS. AS. DS
cosySsingScosDS — sinjScosiScosy
AS. DS DS, AS
costSvPS — cosPSvIS
- 0 Vios 0 Vios 5)

= GinAS._AS,. DS _ . AS: DS_. DS
singScosiScosg® — cosySsing®cosh

During the data processing, by inputting Sentinel-1 ascending and
descending geometries LOS velocities in the decomposition operation of
MintPy, the Sentinel-1 vertical components under the assumption of
zero north-south motion could be generated. For the PALSAR-1
ascending geometry used in this study, only Eq. (2) could be devel-
oped. With three unknown velocity components, the study estimated the
vertical components of PALSAR-1 LOS velocities using Eq. (6). This
equation was derived from Eq. (2) by assuming that the east-west and
north-south motion were negligible. The mean incidence angle for
PALSAR-1 data was 39.7°. This decomposition was executed in the
calculation operation of MintPy.
S
= s ®)

T aogAS
cos},

3.2.3. Validation based on GPS data

A CORS GPS station (TXLM) is located in a highly developed area of
the study site (Fig. 1b). The GPS data for 2006-2021 were provided by
the National Geodetic Survey (NGS) and processed by the Nevada
Geodetic Laboratory with respect to the IGS14 reference frame (Blewitt
et al., 2018). We used the GPS vertical land surface displacement mea-
surements to validate our InSAR-based subsidence results over an
approximately 30 m X 30 m area centered on the GPS station.

3.3. Airborne LiDAR-based land surface difference

We used two airborne LiDAR point cloud datasets of 2006 and 2018,
provided by the 3D Elevation Program (3DEP) of the United States
Geological Survey (USGS). These datasets’ vertical and horizontal da-
tums were NAVD88 and NADS83, respectively. The point density of the
2006 data was below 2 points/m? and was deemed adequate to generate
a 1-m DEM. 14 categories were classified for the LAS airborne LiDAR
point cloud data according to the ASPRS classification standard. This
study leveraged the ground class of the point cloud. A standard filtering
procedure was applied to extract the bare earth point cloud data (Fig. 2).
DEM tiles were generated based on those ground points using the LAS-
tools and were merged then to produce a seamless 1-m DEM. For the
2018 DEM, raw 1-m DEM tiles (1.65 km x 1.85 km) were downloaded
from 3DEP and merged into a DEM using QGIS. The airborne LiDAR data
in 2018 was offered at level 2 (QL2), which had a minimum nominal
pulse spacing (NPS) of 0.7 m and a vertical error of 0.1 m, measured as
root mean square error (RMSE). Finally, the land surface differences in
the vertical direction between 2006 and 2018 were calculated based on
two temporal DEMs using subtraction analysis in QGIS (Fig. 2).
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The uncertainties of surface differences were unlikely to be spatially
homogeneous, caused by factors such as uncertainties of original DEMs
and the error propagation during the change detection. The un-
certainties of airborne LiDAR-derived DEM were heterogeneous but al-
ways offered as a single value. In this study, the absolute vertical
accuracy for QL2 airborne LiDAR data was provided in the USGS report
as 0.1 m, but the relative vertical accuracy would be smaller than 0.06 m
for smooth surfaces. Quantifying uncertainties in change detection re-
sults of airborne LiDAR is not a trivial work and is still very limited
(Okyay et al., 2019).

Land surface difference from airborne LiDAR includes the accumu-
lation of gradual land subsidence and land displacements induced by
human activities and other surface processes. The periods of airborne
LiDAR measurements (2006-2018) had overlaps with that of ALOS-1
PALSAR-1(2006-2011) and Sentinel-1(2016-2021) results. This study
compared airborne LiDAR-derived land surface differences to the InSAR-
derived velocities. The 1-m map of land surface differences was sup-
posed to complement the PALSAR-1 and Sentinel-1 results by revealing
more details of the spatial variations of gradual subsidence below the
scale of the 30-m InSAR pixels and identifying the significant land sur-
face change which InSAR cannot capture.

3.4. Subsidence analysis over different coastal land cover and topographic
patterns

We obtained the 30-m 2019 land cover from the National Land Cover
Database (NLCD). USGS generated the NLCD products through inte-
grating multi-source geospatial datasets and classification using ma-
chine learning methods (Jin et al., 2019), and their accuracies were
validated at the national level (Wickham et al., 2021).

The land cover analysis was conducted in ArcGIS Pro. First, the NLCD
data was extracted and clipped to the same extent as the study area.
Then, the NLCD categories were modified to address the land cover
pattern of the study area. Deciduous forest, evergreen forest, and mixed
forest categories were merged into a forest category. Shrub/scrub,
grassland/herbaceous, pasture/hay, and cultivated crops categories
were merged into a grassland category. Woody wetlands and emergent
herbaceous wetlands categories were merged into a wetlands category.
The resulted land cover raster was converted into multi-feature poly-
gons. These polygons were linked to the subsidence estimates using the
Spatial Join Tool in ArcGIS Pro. Based on attribute tables of the Spatial
Join-derived feature classes, mean subsidence velocities, standard error,
and interquartile ranges were calculated for different land cover cate-
gories. In addition, linear regression was performed to analyze the
relationship between subsidence velocities and surface imperviousness
at the pixel level and between mean subsidence velocities and surface
imperviousness at the class level.

We further examined the relationship between subsidence and
topography using the 2018 airborne LiDAR DEM. The floating-type DEM
was first converted into an integer-type DEM and then into polygon
features. Next, we established two transect lines (Figure 14a) to repre-
sent the dominant elevation gradients over the study area, e.g., transect
QI across the northeast-southwest gradient from the shoreline to a river
mouth and transect ST located along the northwest-southeast shoreline.
Then, this study applied the Stack Profile Tool in ArcGIS Pro to extract
elevation and subsidence velocities along these transect lines for profile
analysis.

4. Results
4.1. InSAR-derived subsidence velocity
4.1.1. Spatiotemporal pattern of land subsidence
The LOS velocities from ALOS-1 PALSAR-1 and Sentinel-1 images are

shown in Fig. 4. Positive values indicate ground motions toward the
satellite (i.e., uplift) and negative values indicate ground motions away
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Fig. 4. LOS velocities and standard deviations derived from (a and b) PALSAR-1 ascending images (2006-2011), (c and d) Sentinel-1 Path 136 ascending images

(2016-2021), and (e and f) Sentinel-1 Path 143 descending images (2016-2021).
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from the satellite (i.e., subsidence). For PALSAR-1 analysis between
2006 and 2011, the LOS velocities varied from —33 to 20 mm/year
(Fig. 4a) with the standard deviations of 0 to 12 mm/year (Fig. 4b).
Results showed that the significant subsidence in 2006-2011 tended to
continue in the next time window analyzed and with a similar magni-
tude. From 2016 to 2021, the LOS velocities ranged from —31 to 19 mm/
year based on Sentinel-1 ascending geometry analysis (Fig. 4c) and
ranged from —31 to 17 mm/year based on descending geometry analysis
(Fig. 4e). The standard deviations of LOS velocities for Sentinel-1
ascending and descending geometries were smaller than 2 mm/year
(Fig. 4d and f).

The velocities in the vertical direction under the assumption of zero
north-south motion in 2016-2021 based on both ascending and
descending Sentinel-1 results are shown in Fig. 5. For velocities in the
vertical direction, positive and negative values indicate ground uplift
and subsidence, respectively. This study found that the vertical veloc-
ities were up to —34 mm/year, with a spatial pattern similar to that of
the LOS velocities (Fig. 4c and e). Our findings agreed with the results
from a previous InSAR study in this region (Miller and Shirzaei, 2021).

4.1.2. Validation

Fig. 6 shows the validation of InSAR _derived subsidence in the ver-
tical direction against the vertical GPS measurements, all presented in
the form of accumulative depth. For the ALOS-1 PALSAR-1 results, only
ascending data were available over the study area. Therefore, the ver-
tical results transformed from LOS results using the local incidence angle
were used for validation, assuming that the vertical component domi-
nated the subsidence. For the Sentinel-1 results, the derived vertical
results under the assumption of zero north-south motion (Wright et al.,
2004) were compared to vertical GPS measurements. The GPS mea-
surements agreed well with both PALSAR-1 results from 2006 to 2011
(RMSE = 7.5 mm) and Sentinel-1 results from 2016 to 2021 (RMSE
=11.6 mm).

4.2. Airborne LiDAR-derived land surface difference

Here we compared the results of InSAR and airborne LiDAR over a
subset of the study area that experienced substantial subsidence (Fig. 7,
also marked as a blue rectangle in Fig. 1b). InSAR results (Fig. 7c and d)
included some empty pixels because of the temporal coherence
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Fig. 5. The vertical components under the assumption of zero north-south
motion in 2016-2021 based on Sentinel-1 ascending and descending LOS re-
sults (Fig. 4c and e).
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thresholds setting used to ensure reliable estimates. In contrast, the 1-m
ground differences between 2006 and 2018 based on two temporal
airborne LiDAR data covered the entire area (Fig. 7b). As airborne
LiDAR measurements were in the vertical direction, LOS PALSAR-1 re-
sults-derived vertical components based on Eq. (6) (Fig. 7c) and
Sentinel-1 vertical results (Fig. 7d) were used here. The PALSAR-1 re-
sults indicated a strong subsidence process (up to —22 mm/year) in
2006-2011 (Fig. 7c). The subsidence appeared to be continuing at
several locations in 2016-2021 from Sentinel-1 results (Fig. 7d) when
the subsidence velocities in the vertical direction were up to —25 mm/
year. In the upper-right part, the vertical velocities derived from
PALSAR-1 images under the assumption of no east-west and north-south
motion (Fig. 7c) were larger than that from Sentinel-1 images under the
assumption of no north-south motion (Fig. 7d). Groundwater use,
human activities such as building construction, etc. might lead to
quicker subsidence in 2006-2011 than in 2016-2021. Airborne LiDAR
results revealed plenty of areas with a surface change between —0.3 to
0.1 m (Fig. 7b). Limited and scattered areas were with large surface
changes (negative or positive), which were likely induced by human
activities and other surface processes (for example, areas Al and A2
highlighted in Fig. 7a). Overall, both InSAR-based analysis and airborne
LiDAR measurements indicated substantial subsidence in this area. Most
highly subsided areas based on InSAR analysis also showed relatively
large surface changes based on airborne LiDAR measurements, between
—0.1 to —0.3 m during 2006-2018 (Fig. 7). The 1-m airborne LiDAR
results offered more details of the surface differences and could capture
some large changes that InSAR cannot monitor.

We further conducted profile analysis along two transect lines
(Fig. 7a) to evaluate the agreement and disagreement between InSAR
and airborne LiDAR estimates. The transect line L1 represented the
northwest-southeast direction, with the land use dominated by devel-
oped and vegetated areas. PALSAR-1 and Sentinel-1 results presented a
trend similar to that of the accumulative land surface differences from
the airborne LiDAR results (Fig. 8a and b). The lower subsidence ve-
locities tended to be associated with smaller accumulative surface dif-
ferences, and higher velocities aligned with greater accumulative
surface differences. In particular, the airborne LiDAR results of sections
BC and DE exhibited large land surface differences. The PALSAR-1 and
Sentinel-1 velocities also showed high values in these sections, espe-
cially velocities from Sentinel-1 analysis (up to about —20 mm/year).
The high velocities could contribute to the large subsidence, which had a
good agreement with the airborne LiDAR results (Fig. 8b). Based on
Google historical images, section BC was on a piece of land with some
grass and almost had no change from 2006 to 2011 (Fig. 9a). This area
was influenced by a pool and other activities then, confirming the great
variations of Sentinel-1 subsidence velocities (Fig. 8b). Section AB
subsided from both PALSAR-1 and Sentinel-1 results, whereas airborne
LiDAR results presented almost no subsidence and even some uplift.
Based on this multi-period information, we could infer that this segment
might have an uplift in 2011-2016.

The transect line L2 represented the southwest-northeast direction.
Sentinel-1 velocities trend almost fits well with the trend of land surface
differences as shown in airborne LiDAR results (Fig. 8d). PALSAR-1
velocities trend of the sections starting around H fits relatively well
with the land surface differences trend (Fig. 8c). Sentinel-1 analysis
showed high velocities in the vertical direction over the area where
airborne LiDAR obtained large surface differences. In particular, sec-
tions GH and 1J underwent larger subsidence in 2016-2021 than in
2006-2011, leading to some large subsidence in agreement with
airborne LiDAR results (Fig. 8c and d). The airborne LiDAR results
showed a heterogeneous pattern of surface change along section HI,
agreed better with Sentinel-1 results than PALSAR-1 results. As shown in
Fig. 9b, the area along the HI was mainly dominated by grassland in
2006-2011 and had a relatively homogeneous subsidence pattern
accordingly (Fig. 8c). From 2016 to 2019, within the Sentinel-1 results
period, the area along the HI was disturbed and/or changed by some
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Fig. 6. Comparison of InSAR-derived cumulative subsidence to GPS measurements in the vertical direction. The location of the TXLM GPS station is shown in Fig. 1.
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Fig. 7. Detailed subsidence pattern of a selected area: (a) a Google Earth image, (b) airborne LiDAR-derived vertical surface differences, (c) vertical components
based on PALSAR-1 results (assuming no east-west and north-south motions), and (d) vertical components based on Sentinel-1 results (assuming no north-south
motion). Fig. 1b shows the location of this area.

land reclamation and construction activities (Fig. 9b), leading to a het- pattern derived from airborne LiDAR data between 2006 and 2018
erogeneous subsidence trend as well as some substantial surface changes generally agreed with InSAR-derived velocities along the selected
that could only be captured by airborne LiDAR (Fig. 8d). Sections FG transect lines and provided a more effective means to characterize large
subsided much faster in 2006-2011 than in 2016-2021, and the land surface changes in areas with human activities.

surface change was relatively small. Overall, the land surface differences
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4.3. Relationships between subsidence and land cover

Based on the land cover pattern of the study area, the standard NLCD
land cover categories were re-classified as developed building area,
barren land, forest area, grassland area, wetland area, and open water
(Fig. 10). Developed areas included four classes based on percent
impervious surface coverage: open space area (<20%), low-intensity
area (20%-49%), medium intensity area (50-79%), and high-intensity
area (80%-100%). This study analyzed the subsidence (Fig. 4a and
Fig. 5) distribution for different land cover types (Fig. 10) over the entire
study area. Results showed relatively high subsidence velocities in
grassland, forest, wetlands, and barren land (Fig. 1la and b). By
contrast, the classes of developed areas had relatively low subsidence
velocities. In particular, the developed high-intensity area was associ-
ated with the lowest subsidence velocities among all categories (Fig. 11a
and b). The velocities based on Sentinel-1 analysis were more dispersed
than that from PALSAR-1 analysis for each land type (Fig. 11c and d).

This study then used linear regression to explore the relationship
between the percent surface imperviousness (Fig. 10) and subsidence
velocities (Fig. 4a and Fig. 5) at two different scales (Fig. 12) over the
entire study area. First, for all individual 30-m pixels, the least squares
polynomial fit (first degree) was applied to model the relationship be-
tween the percent surface imperviousness and subsidence velocities
(Fig. 12a and c). Results indicated that surface imperviousness was
negatively correlated with the magnitude of subsidence velocities
derived from both PALSAR-1 images (R2 = 0.207) and Sentinel-1 images
(R? = 0.265). Second, 30-m pixels with the same percent imperviousness
value were extracted and clustered in 1% intervals from 0% to 100%,
resulting in 101 clusters in which each cluster with the same impervi-
ousness value included many pixels with various subsidence velocities.
This study calculated the mean subsidence velocities for the resulted 101
clusters. Then, for the clustering results, the least squares polynomial fit
(first degree) was used again to model the relationship between the
percent surface imperviousness and the mean subsidence velocities
(Fig. 12b and d). Results showed that the clustering procedure led to
higher correlations between surface imperviousness and subsidence
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velocities for both PALSAR-1 (R? = 0.895) and Sentinel-1 (R? = 0.937).
5. Discussion
5.1. Improvements in existing coastal subsidence investigation

Coastal subsidence studies often have high expectations of spatial
resolution and vertical accuracy to meet the requirements of various
coastal studies such as flood risk analysis, shoreline erosion control, etc.
InSAR works well in monitoring the gradual land subsidence with high
accuracy over the coastal areas (Higgins et al., 2014). On the other hand,
airborne LiDAR can monitor the land surface difference with a high
spatial resolution (Jones et al., 2013). In this study, airborne LiDAR
datasets contributed to a 1-m land surface differences mapping. Land
surface differences detection includes the accumulation of gradual land
subsidence and land displacements induced by human activities and
other surface processes. The results of this study indicate the unique
benefits of combining InSAR and airborne LiDAR measurements to
improve the understanding of the spatiotemporal pattern of subsidence.

From the spatial perspective, InSAR analysis based on PALSAR-1 and
Sentinel-1 images was constrained by its relatively low spatial resolu-
tion. However, the detailed surface changes derived from the 1-m
airborne LiDAR results can contribute to a better understanding of the
spatial variability of land deformation within the 30-m InSAR pixel. As
demonstrated in the first example in Fig. 13, the gradual subsidence over
a piece of land with some grasses was consistently captured in both
InSAR and airborne LiDAR results (Fig. 13a). PALSAR-1 and Sentinel-1
results indicated main moderate subsidence rates of —0.9 to —1.5 cm/
year, while airborne LiDAR results also suggested a moderate magnitude
of the total surface change mianly between —0.1 to —0.3 m over 12
years. In addition to the consistent characterization of an overall mod-
erate subsidence process, the airborne LiDAR results revealed a higher
degree of spatial heterogeneity. Besides, for areas with significant sur-
face displacements over a short time which InSAR cannot capture due to
decorrelation, the additional surface change information from airborne
LiDAR could contribute to the analysis at the block or even building

94°54'W 95°W 94°54'W
Land Cover Type Water The percentage of imperviousness
Developed Open Space Barren Land LA ERRRR TR RN AN
Developed, Low Intensity I Forest 0% 50% 100%
Il Developed, Medium Intensity Grassland
Il Developed, High Intensity Wetlands

Fig. 10. Land cover of the study area based on NLCD 2019.
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scale, playing a critical role in high-resolution hydraulic and hydrologic
simulations in coastal regions. These relatively large surface displace-
ments occur most likely due to human activities changing the structure
of the upper ground such as modifications related to roads and drainage
structures construction or building foundations. The second example
(Fig. 13b) illustrated a large surface deformation caused by the con-
struction of a stormwater drainage system for a new RV parking lot. It
involved some local elevation decreases due to the elevation excavation
of a stormwater ditch and some local elevation increases caused by the
placement of a culvert (Fig. 13b). These changes were clearly delineated
in the airborne LiDAR results and obviously not associated with gradual
subsidence, and they were not identifiable in the InSAR results. Overall,
without the complementary high-resolution information from airborne
LiDAR results, PALSAR-1 and Sentinel-1 analysis excluded important
surface changes within a coarse InSAR pixel could not address signifi-
cant land deformation over the small dimensions of natural and built
features in a heterogeneous urban environment.

From the temporal perspective, subsidence velocities derived from
PALSAR-1 and Sentinel-1 images in non-overlapping periods validated
and complemented the land surface differences revealed by airborne
LiDAR results and vice versa. In this study, InSAR analysis provided
subsidence velocities in 2006-2011 (PALSAR-1, Fig. 7c) and 2016-2021
(Sentinel-1, Fig. 7d). Airborne LiDAR-derived land surface change esti-
mated the total surface change between 2006 and 2018 (Fig. 7b). Our
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analysis showed that InSAR results and airborne LiDAR measurements
fit relatively well along the selected profiles (Fig. 8). It implies that we
can deduce a large land surface difference based on high PALSAR-1 and/
or Sentinel-1 subsidence velocities as well as deduce high subsidence
velocities from the large land surface change. The validation between
high subsidence velocities and large land surface differences could be
achieved. Besides, two temporal InSAR results complement the airborne
LiDAR results by offering the velocities variation in the different periods.
The analysis across the partially overlapping monitoring periods of
airborne LiDAR, PALSAR-1, and Sentinel-1 allowed for the investigation
of possible surface changes that took place within 2011-2016, i.e., the
gap between the ALOS-1 and Sentinel-1 results. For example, the sub-
sidence velocities of section AB (Fig. 7a) exceeded —15 mm/year in
2006-2011 and 2016-2021 (Fig. 8a and b). However, section AB pre-
sented limited negative land surface differences from airborne LiDAR
results, which may imply some uplift between 2011 and 2016. Such
partially overlapping periods of InSAR and airborne LiDAR measure-
ments would be common in many regions, given the global availability
of ALOS-1 and Sentinel-1 data. As a result, the unique advantage of
including airborne LiDAR measurements could be applicable to other
coastal regions.

Finally, high accuracy and resolution topography information is
essential for flood risk analysis, shoreline erosion control, etc. This is
particularly true for coastal plains with gentle slopes. A slight variation
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in the subsidence rates may significantly impact the calculations of flow
directions and paths in hydrological and hydraulic simulations that are
based on the subsidence-corrected DEMs. For such simulations in urban
watersheds along the Texas Gulf Coast, to our knowledge, DEMs with
spatial resolutions from 1-m to 10-m and vertical accuracies below 10
cm would be desired in most cases. Some present studies try to apply
high-resolution airborne LiDAR topography to the hydrological model
for improving urban flooding analysis and apply UAV-collected high-
resolution images for shoreline detection (Trepekli et al., 2022). This
study offers 1-m land surface change results and cm-level velocities,
which will contribute to a much more robust analysis.

5.2. Limitation and potential of airborne LiDAR for coastal surface
change mapping

Point positioning accuracy of airborne LiDAR is influenced by system
calibration, time synchronization between system components, errors in
the navigation solution (position and attitude errors), range measure-
ment errors, etc. (May and Toth, 2007), leading to a relatively low
vertical accuracy (i.e., 10-15 cm) of airborne LiDAR measurements. The
limitation of low vertical accuracy results in the fact that airborne LiDAR
is a less popular option for land subsidence monitoring under the con-
ventional assumption that the total subsidence will be equal to or even
smaller than the errors, as well as when the decision-makers are seeking
very high accuracy. However, InSAR results have indicated substantial
subsidence rates in our study area, up to —22 mm/year in 2006-2011
(Fig. 7c) and up to —25 mm/year in 2016-2021 (Fig. 7d), as well as the
broader Houston region, up to —30 mm/year in 2004-2011 (Qu et al.,
2015). Given such large subsidence rates, the vertical accuracy of
airborne LiDAR would no longer be a constraint to decision-makers
interested in identifying significant surface deformation. Our results
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found that most highly subsided areas from InSAR also showed rela-
tively large surface changes from airborne LiDAR, between —0.1 m to
—0.3 m during 2006-2018 (Fig. 7). The further comparison between
InSAR results and airborne LiDAR results along the selected profiles
revealed a very similar trend in most areas (Fig. 8). This proved the
reliability of airborne LiDAR-derived results to some extent. Further-
more, our results demonstrated that airborne LiDAR monitored the land
surface change from gradual land subsidence and land displacements in
coastal regions. In particular, land displacements caused by human ac-
tivities and other surface processes tended to have relatively large
deformation over a short time which conventional InSAR methods
cannot capture.

While airborne LiDAR measurements are still limited by the low
vertical accuracy, few SAR images could match the spatial resolution of
airborne LiDAR measurements. New satellite images (e.g., TerraSAR-X
images) have improved spatial resolutions, but their coverage and
availability are far from that of Sentinel-1, resulting in relatively coarse
spatial resolution of InSAR analysis for lots of coastal studies. Therefore,
it would be valuable to explore airborne LiDAR data when these data can
be readily obtained in areas that do not have high-resolution SAR images
yet. The spatial variability information of surface change derived from
multi-temporal airborne LiDAR data, even if the actual measurements
are not as precise as InSAR, provides invaluable higher resolution
complementary information, especially for the cases with large veloc-
ities that are the most important. It will benefit a variety of coastal
studies, particularly on the resilience of our coastal infrastructure sys-
tems, e.g., the design of sea walls. This is also adaptive to flooding
studies that typically require high-resolution elevation information. As
shown in Fig. 13b, the drainage ditch identified from the airborne LiDAR
results will contribute to the flooding analysis.

High-quality airborne LiDAR data spanning a long time over the
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indicate the ditch and the culvert. This area is also marked in Fig. 7b.

coastal area is not widely distributed. Fortunately, more and more in-
stitutes, such as USGS, are opening their data nowadays. Airborne
LiDAR data will be a good source of terrain information for surface
change analysis over coastal areas with relatively large subsidence rates.
Acting as complementary information, airborne LiDAR will be a po-
tential opportunity for coastal studies.
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5.3. Forest influence over the InSAR analysis

The wavelength of radar waves plays an important role in applica-
tions of InSAR over densely forested areas (Xu et al., 2021). The pene-
tration capability of short-wavelength (3.1 cm for X-band, 5.6 cm for C-
band) radar pulses is limited, which leads to the detection of the forest
canopies rather than the bare land surface. As a result, decorrelation
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would occur in InSAR analysis, leading to no subsidence results over the
densely forested area, as shown in the forest area (Fig. 10), where few
pixels (Fig. 11b) obtained subsidence results based on C-band Sentinel-1
images. Penetration capacity can be influenced by forest density as well
as forest canopy height (Ni et al., 2014). Therefore, subsidence velocities
over the forest area (Fig. 11b) in this study were likely measured from
the ground surface over the low-density forest area. Long-wavelength
(24.2 cm for L-band, 69.72 cm for P-band) radar pulses have better
penetration capacity and can sense further into forest canopies. The
calculated subsidence velocities in the forest area (Fig. 11a) based on L-
band PALSAR-1 images had relatively large uncertainties (Fig. 4b),
likely caused by low coherence (Shirzaei et al., 2020). Besides, a system
bias, referred to as the fading signal, has been reported and discussed
when multiple multi-looked short temporal baseline interferograms are
used to overcome the rapid loss of coherence in long-term interfero-
grams over the forest and densely vegetated areas (Ansari et al., 2021;
De Luca et al., 2022; Pepe et al., 2015). This phase bias might be a
further possible source of uncertainty in short-time SBAS InSAR analysis.

5.4. Subsidence and topography patterns

Topography is essential for flooding risk assessment and manage-
ment over coastal regions (Miller and Shirzaei, 2021). Low-lying coastal
areas are more prone to inundation. Subsidence over the low elevation
coastal area potentially exacerbates the situation. In this study, subsi-
dence velocities and elevation along the two profiles (Fig. 15a, QI, ST)
over the study area were extracted (Fig. 14). Sentinel-1-derived veloc-
ities in the vertical direction were higher than PALSAR-1-derived LOS
velocities in the 0-12 km section of the profile QI (Fig. 14a). The
elevation was lower than 5 m in the QI section 0-12 km. Velocities for
both sensors increased in QI section 15-20 km, where elevation declined
nearly 3 m in a similar trend (Fig. 14a). Along with the profile QI, the
low elevation area exhibited relatively high velocities, especially during
the Sentinel-1 monitoring period. The elevation along the profile ST was
relatively lower than QI (Fig. 14b). High velocities appeared in ~5 km,
where the elevation was almost lower than 2 m. PALSAR-1 derived LOS
velocities along the ST showed a similar trend to the vertical velocities
from Sentinel-1 analysis. By analyzing the subsidence performance over
the topographic surface, this study found that some low areas subsided
at a relatively high velocity, especially in recent years, which could
contribute to flood vulnerability and risk.

5.5. Subsidence along highways

Many low-lying sections of highways are susceptible to flood inun-
dation. Land subsidence could increase their flood vulnerability. This
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study examined the spatial pattern of subsidence along three highways
across the study area (Fig. 15). The highways were digitalized in the
Google Earth image and overlaid on the airborne LiDAR-derived DEM
(Fig. 15a). Changes in elevation along the highway tracks from the
northwest to the southeast were illustrated in black (Fig. 15b, ¢, and d).
Our results demonstrated that variations of PALSAR-1 LOS velocities
and Sentinel-1 vertical velocities along the highway appeared to not
correlate with elevation information. In particular, State Highway 6 (SH
6) underwent a high subsidence velocity (>10 mm/year) over the 0-to-5
km section and lower velocities around —5 mm/year for the rest of the
track in both PALSAR-1 and Sentinel-1 results (Fig. 15b). Along Gulf
Fwy, the estimated subsidence velocities appeared to be stable for the
first few kilometers then double from about —5 mm/year to —10 mm/
year around the 5 km mark, and then slowly increased for the rest of the
track (Fig. 15c). State Highway 146 (SH 146) experienced high subsi-
dence velocities (~15 mm/year) in the 10-to-15 km section based on
Sentinel-1 and PALSAR-1 results (Fig. 15d). However, some low-lying
sections of the highways underwent relatively large subsidence veloc-
ities, such as around 17 km of the SH 6 subsided up to 10 mm/year with
the elevation below 2 m, around 20 km mark of Gulf Fwy subsided
approximately 5-10 mm/year with elevation about 3 m, around 12 km
of the SH 146 subsided approximately 15 mm/year with elevation about
3 m. Besides, Similar patterns (increasing-to-decreasing velocities along
the northwest-southeast direction) were identified in the PALSAR-1 and
Sentinel-1 results for all selected highways.

6. Conclusions

The study integrated SBAS InSAR, airborne LiDAR, and land cover
data to investigate coastal subsidence around Eagle Point in Texas,
where a high RSLR was recorded at a tide gauge station. Our results
revealed that the subsidence velocities were up to —33 mm/year in the
LOS direction in 2006-2011 from ALOS-1 PALSAR-1 images and up to
—34 mm/year in the vertical direction in 2016-2021 from Sentinel-1
images. The low vertical accuracy of airborne LiDAR measurements
has limited its application for land subsidence mapping. However, this
study found that airborne LiDAR could be a complementary means to
provide information on high-resolution spatial variability of coastal
subsidence over fast-subsiding areas. Our study is unique in terms of
using both the InSAR-derived velocities from images time series and
airborne LiDAR-derived surface changes from time-lapsed observations.
Comparing the InSAR results to 1-m airborne LiDAR measurements
showed good agreements along the selected profiles, i.e., areas with
higher subsidence velocities based on InSAR tended to have larger sur-
face changes based on airborne LiDAR and vice versa. More importantly,
the comparison revealed that airborne LiDAR results could be
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Fig. 14. PALSAR-1 LOS velocities from 2006 through 2011 (red line) with standard deviations (pink bar), Sentinel-1 vertical velocities (blue line) with standard
deviations (light blue bar), and elevation (black line with vertical accuracy shown as gray bar) along the transects QI and ST. The locations of the transects are shown
in Fig. 15a. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. (a) Digitalized highways and selected profiles over the airborne LiDAR-derived DEM. PALSAR-1 LOS velocities (red line) with standard deviations (pink
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over the (b) State Highway 6 (SH6)-KL, (c) Gulf Fwy-MN, and (d) State Highway 146 (SH 146)-OP. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

complementary to InSAR results by shedding light on the subpixel var-
iations of InSAR results and identifying significant surface changes that
InSAR cannot capture. Airborne LiDAR data are not globally available
like SAR images yet, but the availability of airborne LiDAR data is
improving rapidly at local or regional levels in many countries.
Furthermore, by incorporating land cover data, this study found that the
subsidence velocities tended to be higher in forest, grassland, and wet-
lands than in developed urban areas. In addition, the subsidence ve-
locities appeared to be negatively correlated with the percent
impervious coverage.

Overall, the results of this study indicate that the high vertical ac-
curacy InSAR results and the high spatial resolution airborne LiDAR
results could be complementary in subsidence monitoring. An improved
characterization of subsidence using both InSAR and airborne LiDAR
results could provide valuable information to support a variety of coastal
studies on flood vulnerability, infrastructure reliability, and erosion
control. Our findings suggest the need and feasibility of multi-resolution
InSAR-LiDAR fusion for mapping coastal subsidence mapping with both
high accuracy and high resolution.
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