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This work develops new results for stochastic approximation algorithms.
The emphases are on treating algorithms and limits with discontinuities. The
main ingredients include the use of differential inclusions, set-valued analy-
sis, nonsmooth analysis, and stochastic differential inclusions. Under broad
conditions, it is shown that a suitably scaled sequence of the iterates has a
differential inclusion limit. In addition, it is shown for the first time that a
centered and scaled sequence of the iterates converges weakly to a stochastic
differential inclusion limit. The results are then used to treat several appli-
cation examples including Markov decision processes, Lasso algorithms, Pe-
gasos algorithms, support vector machine classification, and learning. Some
numerical demonstrations are also provided.

1. Introduction. This paper examines stochastic approximation from new angles. One
of the main motivations stems from the minimization of a nondifferentiable function or find-
ing the zeros of a set-valued mapping corrupted with random disturbances. In contrast to the
existing literature, this paper focuses on stochastic approximation with discontinuous dynam-
ics and set-valued mappings, and develops new techniques for analyzing algorithms involving
set-valued analysis and stochastic differential inclusions.

Let us begin with a stochastic approximation algorithm of the form

(1.1) Xn+1 = Xn + anbn(Xn, ξn),

and the corresponding projection algorithm

(1.2) Xn+1 = �H

(
Xn + anbn(Xn, ξn)

)
,

where H is a constraint set and �H is the projection onto the set H . Introduced by Robbins–
Monro in [47] in 1951, stochastic approximation algorithms have been studied extensively
with a wide range of applications [3, 7, 36, 37, 39, 40]. In addition to the traditional areas,
recent applications also include cooperative dynamics and games [4] and multilevel Monte
Carlo methods [19, 25]. When the sequence bn(·, ξn) and the associated “average” satisfy
some smoothness conditions, the asymptotic properties of the algorithms are relatively well-
understood [36, 37, 39]. We refer to such cases as “stochastic approximation with continuous
dynamics and continuous limits.” When bn(·, ξn) is not necessarily continuous but its average
is, the analysis can be found in [35, 37, 40]. We refer to such cases as “stochastic approxi-
mation with discontinuous dynamics and continuous limits.” In [37], the case that bn(·, ξn)

is continuous while the limits belong to a set-valued mapping is considered and is referred to
as “stochastic approximation with continuous dynamics but discontinuous limits.” In many
applications, we need to handle discontinuous functions and/or set-valued mappings for both
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bn(·, ξn) and its average. We refer to such cases as “stochastic approximation with discontin-
uous dynamics and discontinuous limits.”

Numerous systems and practical problems require optimizing nonsmooth functions such
as dimension reduction in high-dimensional statistics (the L1-norm regularized term) [20],
support vector machines classification (the hinge loss function), neural networks (the recti-
fied linear unit), collaborative filtering and recommender systems (various types of matrix
regularizers) [30], complementarity problems [11], compressed modes in physics, and partial
consensus problems [23], among others. Because the objective functions are not continuously
differentiable, the gradient-based methods are often replaced by subgradient-based counter-
parts. As can be seen, discontinuous dynamics and set-valued mappings are ubiquitous in op-
timization problems. There are also numerous problems and algorithms in control engineer-
ing, economics, and operations research that require the treatment of discontinuous dynamics
and/or set-valued mappings; see learning algorithms in Markov decision processes [45], al-
gorithms in approachability theory and the study of fictitious play in game theory [5, 6], and
adaptive filtering [7, 18, 37, 56] arising from signal processing. As a concrete example, we
consider the sign-error algorithm [58] frequently used in adaptive filtering. Let ϕn ∈ R

d and
yn ∈ R be measured output and reference signals, respectively, with {(yn,ϕn)} being a sta-
tionary process. We adjust a system parameter θ ∈ R

d adaptively so that the weighted output
θ�ϕn best matches the reference signal yn in the sense that a L1 cost function is minimized.
The algorithm reads

θn+1 = θn + anϕn sign
(
yn − ϕ�

n θn

)
,

where sign(y) = 1{y>0} − 1{y<0} is the sign operator used for reducing the computational
complexity.

Note that randomness can affect samplings, mini-batching computations, partial observa-
tions, noisy measurements, and many other sources. As was mentioned, various functions
involved in applications could possibly be nonsmooth or even not continuous. Thus, it is nec-
essary to study stochastic approximation algorithms (1.1) and (1.2) with both bn(·, ·) and its
averages being discontinuous functions and/or set-valued mappings.

With the aforementioned motivations, this paper formulates the problem by using a general
and unified setting, introduces new techniques, proves convergence under mild conditions,
and establishes rates of convergence of stochastic approximations with possibly discontin-
uous dynamics and discontinuous limits. Both constrained, unconstrained, and biased algo-
rithms are considered. To be more specific, using appropriate piecewise linear and piecewise
constant interpolations, we prove the boundedness and equicontinuity of the sequences in a
functional space. The compactness enables us to extract a convergent subsequence. To char-
acterize the limits, most existing works in the literature use continuity for either the dynamics
or the limit systems or both. If the dynamics are not continuous but the limit systems have
enough regularity, Kushner used an “averaging method” in [35] to handle this problem under
some conditions on the existence of certain Lyapunov functions. In contrast, Métivier and
Priouret in [40] used a probabilistic approach by averaging out the noise with respect to the
invariant measure. To analyze algorithms with both the dynamics and limits being discontin-
uous, we need a new approach. In this paper, we use ordinary differential equations (ODEs)
with discontinuous right-hand sides, differential inclusions, set-valued dynamical systems,
and convex analysis to characterize the asymptotic behavior of the algorithms. To obtain the
stability, we use results of stability for differential inclusions together with novel concepts and
techniques from nonsmooth analysis. Moreover, we examine biased stochastic approximation
using continuation of chain recurrent sets in set-valued dynamic systems. Furthermore, we
ascertain the rates of convergence by using the theory of stochastic differential inclusions and
the newly developed theory of variational analysis.
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Related works and our contributions. To proceed, we highlight our contributions and nov-
elties of the paper in contrast to the existing literature.

• Although the algorithms involving discontinuous dynamics and set-valued mappings were
considered in [36], continuity in an appropriate sense of set-valued mappings was needed.
The continuity, however, may fail in applications. Except [5], there has been no general ap-
proach in the literature for studying convergence of stochastic approximation schemes in-
volving set-valued mappings without continuity. Although the aforementioned works deal
with differential inclusions, the setup and results of the current paper are different than
that of [5]. Using our approach, it is possible to recover the setting in [5]; see Remark 3.
Moreover, the limit processes in [5] were shown to be perturbed solutions of differen-
tial inclusions, whereas in the current paper, the limit processes are solutions (rather than
perturbed solutions) of the limit differential inclusions. Our convergence analysis is done
partially by examining the closure of the set of solutions of a family of differential inclu-
sions for general set-valued mappings, which is a crucial point in the development. Both
constrained and unconstrained algorithms are considered in this paper.

• To prove the convergence to the equilibrium point, the stability of differential inclusions
corresponding to stochastic approximation schemes is carefully investigated using a Lya-
punov functional method that is novel and not considered in the existing literature of
stochastic approximation. To be more specific, we use a U -generalized Lyapunov func-
tional. Our approaches and results appear to be more effective and easily applicable; see
the examples in Section 4. The idea behind this approach is that one can ignore some “less
important” points that do not affect the stability of the dynamics.

• We consider biased stochastic approximation with discontinuous dynamics and set-valued
mappings. Although biased stochastic approximation counterpart with smooth dynamics
was dealt with in [53], to the best of our knowledge, this is the first time biased stochastic
approximation in conjunction with set-valued mappings without continuity is treated.

• In addition, this work provides rates of convergence for the algorithms with discontinuities
and set-valued mappings. Stochastic differential inclusions are used for the first time to
ascertain the rates of convergence of stochastic approximation algorithms.

• With a wide range of applications in mind, we provide a unified framework and new ap-
proaches to analyze convergence, rates of convergence, robustness for stochastic and non-
smooth optimization problems, and algorithms involving discontinuous dynamics and set-
valued mappings. The applications considered in the paper include algorithms in machine
learning and Markov decision processes. For applications to machine learning algorithms,
we provide new insights in analyzing these algorithms by characterizing the limit behavior
and rates of convergence using the dynamic systems generated by differential inclusions
and stochastic differential inclusions. Our work fills in the gap for studying convergence
of algorithms with nonsmooth loss functions. Treating Markov decision processes, we
demonstrate how to apply our results for multistage decision making with partial obser-
vations.

Outline of the paper. The rest of paper is arranged as follows. Section 2 obtains convergence
of stochastic approximation algorithms with the emphasis on discontinuity and set-valued
mappings. Section 3 ascertains rates of convergence leading to the stochastic differential in-
clusion limits. Section 4 examines a number of applications together with the corresponding
numerical results. Section 5 summarizes our findings and provides further remarks. Finally,
mathematical background on ODEs with discontinuous right-hand sides, differential inclu-
sions, nonsmooth analysis, set-valued dynamic systems, and stochastic differential inclusions
are summarized in Appendix 5.
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2. Convergence. Denote by R
d the d-dimensional Euclidean space with the usual Eu-

clidean norm | · |, and let (�,F, {Ft}t≥0,P) be a complete filtered probability space satisfying
the usual conditions. Consider the following general stochastic approximation algorithm:

(2.1) Xn+1 = Xn + anbn(Xn, ξn) + anh(Xn, ζn) + anh0(ζ̃n) + anβn,

and the associated projection algorithm

(2.2)

{
X̃n+1 = Xn + anbn(Xn, ξn) + anh(Xn, ζn) + anh0(ζ̃n) + anβn,

Xn+1 = �H(X̃n+1),

where �H is the projection operator (orthogonal projection into the set H ), and H is a closed
and nonempty subset of Rd . The {an} is a sequence of step sizes (a sequence of positive real
numbers) satisfying an → 0 and

∑∞
n=1 an = ∞. The sequences {ξn}, {ζn}, and {ζ̃n} noise

processes that are correlated in time but independent of each other, and {βn} represents the
bias; see [36, 37]. In the literature, βn is often formulated as a diminishing bias so that it
tends to 0 w.p.1. However, there are cases that one has to face asymptotically nonzero bias in
the sense limn→∞ ‖βn‖ > 0.

Motivated by many applications, the functions bn(·, ·) are allowed to be discontinuous
and/or set-valued mappings, which can be used to represent subgradients of nondifferen-
tiable components in the loss function, whereas h(·, ·) is a continuous function (in x) rep-
resenting the gradient of the smooth parts in the loss function. The discontinuity of bn(·, ·)
and/or set-valued mappings appear frequently in applications. Dealing with such functions
and mappings is one of the main objectives of this paper.

Notation. Similar to [36, 37], define t0 = 0 and for n ≥ 1, tn :=∑n−1
i=0 ai , m(t) := max{n :

tn ≤ t} if t ≥ 0 and m(t) := 0 if t < 0; and define the piecewise constant interpolation X
0
(t)

and the piecewise linear interpolation X0(t) of Xn with interpolation intervals {an} as

X
0
(t) := Xn in [tn, tn+1),

X0(tn) := Xn and X0(t) := tn+1 − t

an

Xn + t − tn

an

Xn+1 in (tn, tn+1),

respectively, and define the shift sequence Xn(·) on (−∞,∞) as

Xn(t) :=
{
X0(t + tn) if t ≥ −tn,

X0 if t ≤ −tn.

For two sets S, S1, and either a set-valued or vector-valued mapping F , and a real number k,
we define S + S1 := {x+ y : x ∈ S,y ∈ S1}, and F(S) :=⋃x∈S F (x), and kS := {kx : x ∈ S}.
Throughout the paper, B denotes the unit open ball B = {x ∈ R

d : |x| < 1} and B is its
closure; “co” is the convex hull and “co” is the convex closure; 2R

d
is the collection of all

subsets of Rd . To analyze the convergence, we present the following standard assumptions
first.

REMARK 1. Reference label convention. Throughout the paper, we use several sets of
assumptions. To facilitate the reading, we shall use the following conventions. Conditions
headed by (A) corresponds to standard assumptions; conditions headed by (K), (G), and (P)
are assumptions involving Krasovskii operator, general set-valued mapping, and projection,
respectively; conditions headed by (KS), (GS), and (PS) are stability assumptions correspond-
ing to that of (K), (G), and (P), respectively; conditions headed by (R) are for the rates of
convergence study.



784 N. NGUYEN AND G. YIN

(A) (i) h(·, ζ ) is continuous in x, uniformly in ζ on bounded sets of x.
(ii) Either h(·, ·) is a bounded measurable function or there are nonnegative measur-

able functions g1(·) of x, and g2(·) and g3(·) of ζ such that g1(·) is bounded on bounded
sets (of x) and

(2.3)
∣∣h(x, ζ )

∣∣≤ g1(x)g2(ζ ) + g3(ζ ),

and for each ε > 0,

(2.4) lim
	→0

lim
n→∞P

{
sup
j≥n

max
t≤	

m(j	+t)−1∑
i=m(j	)

ai

[
g2(ζi) + g3(ζi)

]≥ ε

}
= 0.

(iii) There exists a continuous function h(·) such that for some T > 0, each ε > 0, and
each x,

(2.5) lim
n→∞P

{
sup
j≥n

max
t≤T

∣∣∣∣∣
m(jT +t)−1∑
i=m(jT )

ai

(
h(x, ζi) − h(x)

)∣∣∣∣∣≥ ε

}
= 0.

(iv) The {ξn}, {ζn}, {ζ̃n} are sequences of independent and exogenous noises, and the
function h0(·) is measurable such that for some T > 0 and each ε > 0,

(2.6) lim
n→∞P

{
sup
j≥n

max
t≤T

∣∣∣∣∣
m(jT +t)−1∑
i=m(jT )

aih0(ζ̃i)

∣∣∣∣∣≥ ε

}
= 0.

By exogenous noises, we mean that the distribution of {ξi, i > n} conditioned on {ξi,Xn :
i ≤ n} is the same as that of {ξi, i > n} conditioned on {ξi : i ≤ n} and similar assumptions
for ζn and ζ̃n.

(v) The {βn} is a sequence of bounded random variables satisfying |βn| → 0 w.p.1.

REMARK 2. Assumption (A) together with the boundedness of the iterates {Xn} or a pro-
jection algorithm (e.g., Assumption (P) given later) presents broad conditions, which guar-
antee the boundedness and equicontinuity of {Xn(·)}. Sufficient conditions guaranteeing the
boundedness can be provided; see [36], Section 4.7 and Theorem 4.7.4, (see also [39]) or
using a projection algorithm [36, 37]. To handle nonexogenous noise, the reader can consult
[37], Section 6.6, for the treatment of state-dependent noise. In this paper, for simplicity, we
will not deal with such cases. The noise processes {ξn}, {ζn}, {ζ̃n} take values in some measur-
able spaces. However, because we do not assume any regularity of functions b, h, h0 on these
variables, we often do not specify these spaces. Moreover, one can combine h0(ζ̃n) and βn,
however, due to their motivations in application (one presents the noise and the other presents
the bias), we still keep these two different terms. Assumption (A)(v) (as well as (2.4), (2.5),
(2.6)) can be relaxed, which will be considered later.

Convergence. Now, we state our main convergence results; some preliminary results and
concepts are relegated to Appendix 5. We use Cd(−∞,∞) to denote the space of Rd -valued
continuous functions defined on (−∞,∞), and D(−∞,∞) and D[0,∞) to denote the
spaces of real-valued functions defined on (−∞,∞) and [0,∞), respectively, which are right
continuous and have left limits, endowed with the Skorohod topology. We use Dd(−∞,∞)

(resp., Dd [0,∞)) to denote the corresponding D spaces taking values in R
d . The conver-

gence of sequence of functions in Cd(−∞,∞) or Dd(−∞,∞) (resp., Dd [0,∞)) is in the
sense of weak topology (uniform convergence on bounded intervals).

As was mentioned, the functions bn(·, ·) are possibly discontinuous and belong to some
set-valued mapping so that they can be used to represent subgradients of nondifferentiable
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components of the loss function. To illustrate, we first consider the case that this set-valued
mapping can be expressed as the Krasovskii operator of some vector-valued function. [For
example, subgradient of | · | can be expressed as the Krasovskii operator of the sign(·) func-
tion.] In fact, we allow perturbations of this set-valued mapping, which is presented in the
following Assumption (K).

(K) There are a locally bounded function b(·) and a sequence of (positive real-valued)
continuous (in x, uniformly in ξ ) functions {mn(x, ξ)} such that ∀n, x, ξ ,

bn(x, ξ) ∈K[b](x) + mn(x, ξ)B,

and for some T > 0, each ε > 0, and each x,

lim
n→∞P

{
sup
j≥n

max
t≤T

∣∣∣∣∣
m(jT +t)−1∑
i=m(jT )

aimi(x, ξi)

∣∣∣∣∣≥ ε

}
= 0.

In the above, K[b] is the Krasovskii operator of b, that is, K[b] :Rd → 2R
d

is defined by

K[b](y) :=⋂
δ>0

cob
(
B(y, δ)

)
,

where B(y, δ) is the open ball in R
d with center y and radius δ. More details on the Krasovskii

operator and related results are provided in Section A.1.

THEOREM 2.1. Consider algorithm (2.1). Assume that (A) and (K) hold and that {Xn}
is bounded w.p.1.

• Then there is a null set �0 such that ∀ω /∈ �0, {Xn(·)} is bounded and equicontinuous on
bounded intervals.

• Let X(·) be the limit of a convergent subsequence of {Xn(·)}. Then X(t) is a Krasovskii
solution of

(2.7) Ẋ(t) = b
(
X(t)
)+ h
(
X(t)
)
,

that is, X(·) is a solution of the differential inclusion (see Section A.1 for detailed defini-
tions)

(2.8) Ẋ(t) ∈ K[b+ h](X(t)
)
.

• The limit set of X(·) is internally chain transitive (with respect to (2.8)) and the limit points
of {Xn} are contained in R, the set of chain-recurrent points of (2.8). (A limit point of
{Xn} is the limit of some convergent subsequence of {Xn}; see Appendix A.4 for other
definitions.)

• Moreover, let � be a locally asymptotically stable set (in the sense of Lyapunov) of all
Krasovskii solutions of (2.7) and DA(�) be its domain of attraction. If {Xn} visits the
compact subset of DA(�) infinitely often with probability 1 (resp., with probability ≥ ρ),
then Xn → � when n → ∞ with probability 1 (resp., with probability ≥ ρ).

PROOF OF THEOREM 2.1. To help the reading, we divide the proof into four parts.
Part 1: Boundedness and equi-continuity. The argument in proving {Xn(·)} being bounded

and equicontinuous is similar to [36], Proof of Theorem 2.4.1 and Theorem 2.4.2, or [37],
Proof of Theorem 6.1.1. Hence, we only outline the main points and highlight the differences.
Let H0 be a countable dense subset of Rd and �0 be the null set that contains all paths, in
which {Xn} is unbounded and the exceptional sets in Assumption (A)(ii)–(v), (K), union over
H0. In the assumptions, the null or exceptional sets are the sets in which the boundedness or
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convergence does not hold. For example, the exceptional set (at x) in (A)(iii) is the set of all
ω, in which

lim sup
n→∞

max
t≤T

∣∣∣∣∣
m(nT +t)−1∑
i=m(nT )

ai

(
h(x, ζi) − h(x)

)∣∣∣∣∣ 
= 0.

We refer to [36], Proof of Lemma 2.2.1, for the proof of the above exceptional sets being null
sets. Since H0 is countable, �0 is still a null set. Now, we work with a fixed ω /∈ �0. We
write Xn(·) as

(2.9)
Xn(t) = Xn +

∫ t

0
bn

(
X

0
(tn + s), ξ

0
(tn + s)

)
ds +
∫ t

0
h
(
X

0
(tn + s), ξ

0
(tn + s)

)
ds

+ �n(t) + �n(t),

if t ≥ −tn, otherwise Xn(t) = X0, where �n(t) and �n(t) are the piecewise linear interpola-
tions of

∑n−1
i=0 aiβi and

∑n−1
i=0 aih0(ξi), respectively. That is,

�0(tn) =
n−1∑
i=0

aiβi;

�0(t) = tn+1 − t

an

�0(tn) + t − tn

an

�0(tn+1) for t ∈ (tn, tn+1);

�n(t) =
{
�0(t + tn) − �0(tn) if t ≥ −tn,

−�0(tn) if t ≤ −tn;

�0(tn) =
n−1∑
i=0

aih0(ξi);

�0(t) = tn+1 − t

an

�0(tn) + t − tn

an

�0(tn+1) for t ∈ (tn, tn+1);

�n(t) =
{
�0(t + tn) − �0(tn) if t ≥ −tn,

−�0(tn) if t ≤ −tn;

and β
0
(·) and ξ

0
(·) are the piecewise constant interpolations of {βn} and {ξn}, that is, β

0
(t) =

βn and ξ
0
(t) = ξn for t ∈ [tn, tn+1). Note that we have three different noise processes, {ξn},

{ζn}, and {ζ̃n}, but we write them as {ξn} (and ξ
0
(t) for the interpolations) to simplify the

notation. For simplicity again, we will always write the algorithm as (2.9), whether t ≥ −tn
or t ≤ −tn with the understanding that Xn(t) =X0 if t ≤ −tn.

First, by (A)(iv) and (A)(v), {�n(·) and �n(·)} are equicontinuous and bounded, and any
convergent subsequence converges uniformly to a zero process on bounded intervals (see,
e.g., [36], Lemma 2.2.1). Second, note that {bn(·, ·)} is (uniformly in the variable ξ ) bounded
due to Assumption (K) and the boundedness of {Xn}. By (A)(ii), if h(·, ·) is uniformly
bounded, combining with boundedness of {bn(·, ·)}, {Xn(·)} is equicontinuous. Otherwise,
by (2.3) and (2.4), we obtain∫ t+s

t

∣∣h(X0
(r), ξ

0
(r)
)∣∣dr ≤ K

∫ t+s

t
g2
(
ξ

0
(r)
)
dr +
∫ t+s

t
g3
(
ξ

0
(r)
)
dr,

where K is some finite constant; such a K always exists due to the boundedness of {Xn} and

local boundedness of g1(·) in (A)(ii). Thus, by (2.4), we get that
∫ t+s
t |h(X

0
(r), ξ

0
(r))|dr is
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uniformly continuous in t , s in [0,∞). Therefore, it is easy to show that X0(·) is uniformly
continuous, so {Xn(·)} is equicontinuous. As a consequence, we obtain boundedness and
equicontinuity of {Xn(·)}.

Part 2: Characterize the limit. Take a convergent subsequence of {Xn(·)} and still denote
it by {Xn(·)} for simplicity of notation and denote its limit by X(·). From the integral form
(2.9), we have that

(2.10)
Xn(t) = Xn +

∫ t

0
bn

(
X

0
(tn + s), ξ

0
(tn + s)

)
ds +
∫ t

0
h
(
X(s)
)
ds

+
∫ t

0

[
h
(
X

0
(tn + s), ξ

0
(tn + s)

)− h
(
X(s)
)]

ds + �n(t) + �n(t).

Hence, we obtain that

(2.11) Qn(t) = Qn(0) +
∫ t

0
bn

(
X

0
(tn + s), ξ

0
(tn + s)

)
ds +
∫ t

0
h
(
X(s)
)
ds,

where

Qn(t) := Xn(t) − �n(t) − �n(t) −
∫ t

0

[
h
(
X

0
(tn + s), ξ

0
(tn + s)

)− h
(
X(s)
)]

ds.

Because of Assumption (K), we get

(2.12)
bn

(
X

0
(tn + t), ξ

0
(tn + t)

) ∈ K[b](X0
(tn + t)

)+ mn(X
0
(tn + t), ξ

0
(tn + t)B

= K[b](X(t) + pn(t)
)+ mn(X

0
(tn + t), ξ

0
(tn + t)B,

where mn(x, ξ) is as in Assumption (K) and pn(t) := X
0
(tn + t) −X(t).

Next, we prove pn(t) converges to 0 and Qn(t) converges to X(t) uniformly on bounded

t-intervals. First, it is easy to see that X
0
(tn + ·) −X(·) converges to 0 uniformly on bounded

intervals, which leads to that {pn(·)} converges to 0 uniformly on bounded intervals. Sec-

ond, by the continuity of h(·, ξ) in Assumptions (A)(i), and the fact that X
0
(tn + ·) − X(·)

converges to 0 uniformly on bounded intervals, we obtain that (see, e.g., [36], Proof of The-
orem 2.4.1)

(2.13)
∫ t

0

(
h
(
X

0
(tn + s), ξ

0
(tn + s)

)− h
(
X(s), ξ

0
(tn + s)

))
ds → 0,

uniformly on bounded intervals. On the other hand, we also have that

(2.14) lim
n→∞

∫ t

0

(
h
(
x, ξ0

(tn + s)
)− h(x)

)
ds = 0,

uniformly in (t,x) on bounded sets. In fact, by (A)(iii) we first only get the convergence
(2.14) being uniform on bounded t-intervals for x being in countable dense set H0. However,
because of the assumptions on regularity of h(·, ·) and h(·), we obtain the uniform conver-
gence on bounded sets. Combining (2.13) and (2.14) implies that∫ t

0

[
h
(
X

0
(tn + s), ξ

0
(tn + s)

)− h
(
X(s)
)]

ds → 0 uniformly on bounded intervals.

The uniform convergences to 0 of �n(·) and �n(·) follow from Assumptions (A)(iv) and
(A)(v). Hence, {Qn(·)} converges to X(·) uniformly on bounded intervals. To proceed,
we have the following proposition, whose proof can be found in [22], Lemma 4.1 and
Lemma 4.2.
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PROPOSITION 2.1. We have the following results.

(a) Let C(t) : R→ 2R
d
be a set-valued mapping, whose values are compact, convex, and

all contained in a common ball, that is, there is a finite ball BC ⊂ R
d such that C(t) ⊂ BC

for all t . Then
∫ 1

0 C(t) dt is compact and convex.

(b) Let S(t) : R → 2R
d
be a set-valued mapping, whose values are all contained in a

common ball. If X(·) : [0,1] → R
d satisfies that

X(t) −X(s) ∈
∫ t

s
S(r) dr, for all s < t ∈ [0,1],

then X(·) is absolutely continuous and satisfies that Ẋ(t) ∈ coS(t) almost everywhere in
[0,1].

Now, let ε, δ > 0 be arbitrary. On bounded intervals, for n large enough, |pn(·)| < ε/2.
Moreover, because of Assumption (K), the average of the “radius of neighbor” mn(x, ξn)

tends to 0, thus on bounded intervals, for n large enough, we have from (2.12) that∫ t

s
bn

(
X

0
(tn + r), ξ

0
(tn + r)

)
dr ∈
∫ t

s
K[b](X(r) + pn(r)

)
dr + δB.

Hence, for all t , s in bounded intervals, for n large enough, one obtains from (2.11) and (2.12)
that

Qn(t) −Qn(s) ∈
∫ t

s
h
(
X(r)
)
dr +
∫ t

s
co
(
b
(
X(r) + εB

))
dr + δB.

By part (a) of Proposition 2.1, letting n → ∞, we obtain that

X(t) −X(s) ∈
∫ t

s
h
(
X(r)
)
dr +
∫ t

s
co
(
b
(
X(r) + εB

))
dr + δB.

Letting δ → 0 combined with part (b) implies that X(t) is absolutely continuous and for
almost t in bounded intervals,

Ẋ(t) ∈ co
(
b
(
X(t) + εB

))+ h
(
X(t)
)
, ∀ε > 0.

Taking ε → 0, we obtain that for almost t in bounded intervals

Ẋ(t) ∈⋂
ε>0

co
(
b
(
X(t) + εB

))+ h
(
X(t)
)= K[b](X(t)

)+ h
(
X(t)
)
.

Hence, combined with Lemma A.1, we obtain that X(t) satisfies the differential inclusion

Ẋ(t) ∈K[b+ h](X(t)
)
.

Part 3: Stability. The proof of the limit set of X(·) being internally-chain transitive can
be found in [5], Theorem 3.6. Hence, the limit points of {Xn} are contained in R, the set of
chain-recurrent points. Since we still use the definition of stability in the sense of Lyapunov,
the argument for obtaining stability is the same as that of [36], Proof of Theorem 2.3.1, or
[37], Proof of Theorem 5.2.1. We will study the stability (in the sense of Lyapunov) for
differential inclusions later. �

Theorem 2.1 can be generalized when we replace the Krasovskii operator by arbitrary
set-valued mappings. We proceed with the conditions needed and the assertions.

(G) There is a set-valued mapping G :Rd → 2R
d

satisfying:

(i) G(·) has nonempty, compact, convex values, and all values are contained in a finite
common ball, that is, there is a finite ball BG ⊂ R

d such that G(x) ⊂ BG for all x;
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(ii) G has a closed graph, that is, Graph(G) := {(x,y) : y ∈ G(x)} is a closed subset of
R

d ×R
d ;

(iii) there is a sequence of (positive real-valued) continuous (in x, uniformly in ξ ) func-
tions {mn(x, ξ)} such that for all n, x, ξ ,

bn(x, ξ) ∈ G(x) + mn(x, ξ)B,

and that for some T > 0, each ε > 0, and each x,

lim
n→∞P

{
sup
j≥n

max
t≤T

∣∣∣∣∣
m(jT +t)−1∑
i=m(jT )

aimi(x, ξi)

∣∣∣∣∣≥ ε

}
= 0.

THEOREM 2.2. If we replace Assumption (K) by (G) in Theorem 2.1, then the conclu-
sions in Theorem 2.1 continue to hold with the limit differential inclusion (2.8) replaced by

(2.15) Ẋ(t) ∈ h
(
X(t)
)+ G

(
X(t)
)
.

PROOF OF THEOREM 2.2. To prove Theorem 2.2, we need to generalize the results on
closure of the set of Krasovskii solutions for the set of solutions of the classes of differential
inclusions that satisfy a “nice” property (property 2.16) like the Krasovskii operator. Then
we will prove this property holds for the set-valued mappings in our setting (having compact,
convex values, contained in a finite common ball and having close graph). The results are
shown in the following two propositions.

PROPOSITION 2.2. Let Xk(·) be satisfied by the following for all t , s in [0,1]:
Xk(t) −Xk(s) ∈

∫ t

s

(
F
(
Xk(r) + pk

(
r,Xk(r)

))+ qk

(
r,Xk(r)

))
dr,

for some sequences of functions {pk(·)} and {qk(·)} satisfying pk → 0 qk → 0 uniformly
(in [0,1]). Assume that F : Rd → 2R

d
is a set-valued mapping, whose values are nonempty,

compact, convex, and in a common ball, and that

(2.16)
⋂
ε>0

coF(x+ εB) = F(x), ∀x.

If Xk(·) converges (uniformly) to X(·), then the limit X(·) is a solution of the following differ-
ential inclusion:

Ẋ(t) ∈ F
(
X(t)
)
.

PROOF. For arbitrary ε, δ > 0, there is a large number N such that ∀n ≥ N ,∣∣pn(·)
∣∣< ε,

∣∣qn(·)
∣∣< δ,

∣∣Xn(·) −X(·)∣∣< ε.

Hence, we have

Xk(t) −Xk(s) ∈
∫ t

s
co
(
F
(
Xk(r) + εB

)+ δB
)
dr ∈
∫ t

s
co
(
F
(
X(r) + 2εB

)+ δB
)
dr.

Letting k → ∞, it follows from Proposition 2.1 that X(t) is absolutely continuous and for
almost all t

Ẋ(t) ∈ co
(
F
(
X(t) + 2εB

)+ δB
)
.

Taking δ → 0, we obtain Ẋ(t) ∈ coF(X(t) + 2εB)∀ε > 0. As a consequence, Ẋ(t) ∈⋂
ε>0 coF(X(t) + 2εB). Using (2.16), we complete the proof. �
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PROPOSITION 2.3. Assume F : Rd → 2R
d
is a set-valued mapping, whose values are

nonempty, convex, compact subsets, and contained in a finite common ball, and whose graph
is closed. Then, one has ⋂

ε>0

coF(x+ εB) = F(x), ∀x.

PROOF. Let x be fixed but otherwise arbitrary. By Lemma A.3, F is upper semicon-
tinuous. Hence, by [1], Proposition 3, Chapter 1, we have coF(x + εB) ⊂ coF(x + εB) =
coF(x + εB). Therefore,

⋂
ε>0 coF(x + εB) ⊂⋂ε>0 coF(x + εB). On the other hand, by

[48], Theorem 5.7, from closed graph property of F , we obtain that

(2.17)
{
u : there exist xn → x and yn ∈ F(xn) such that yn → u

}⊂ F(x).

Now, let u ∈ ⋂ε>0 coF(x + εB). Then u ∈ ⋂ε>0 coF(x + εB). As a consequence, u ∈
coF(x+ 1

n
B) for all n ∈N. By Carathéodory’s theorem for convex hulls of sets in a Euclidean

space [48], Theorem 2.29, for each n, there are d + 1 points y0
n, . . . ,y

d
n and d + 1 points

x0
n, . . . ,x

d
n , |x− xi

n| ≤ 1
n

, ∀i = 0, . . . , d and real numbers a0
n, . . . , a

d
n ∈ [0,1],∑i a

i
n = 1 such

that u =∑d
i=0 ai

ny
i
n, yi

n ∈ F(xi
n). Since 2d + 2 sequences {ai

n}∞n=0, {yi
n}∞n=0 for i = 0, . . . , d

are bounded, we can extract subsequences (still index the sequences by n for simplicity) such
that all of them are convergent. As a result, u =∑d

i=0 ai limn yi
n, yi

n ∈ F(xi
n), where ai =

limn ai
n, and ai ∈ [0,1], ∑d

i=0 ai = 1. Since xi
n → x, by (2.17), limn yi

n ∈ F(x). Combined
with the convexity of F(x), we obtain u ∈ F(x). So,

⋂
ε>0 coF(x + εB) ⊂ F(x). The proof

is complete. �

It is noted that we need only take care of the “characterization of the limit” part since the
other parts are the same as that of Theorem 2.1. With the help of Propositions 2.2 and 2.3,
the arguments of “characterization of the limit” part are similar to that of Theorem 2.1; the
details are thus omitted. �

REMARK 3. The difficulty in our setting is that we impose neither continuity to the
dynamics of the discrete iterations nor the limit systems. As a result, although we obtain the
boundedness and equicontinuity of {Xn(·)} and can extract a convergent subsequence with
the limit X(·), it is impossible to characterize the limit using continuity and compactness.
To illustrate, we mention some related works and methods in the literature. In [36, 37], the
continuous dynamics with the limits being a set-valued mapping were treated. In this case,
it is still possible to pass to the limit after extracting convergent subsequence to characterize
the limit. In [35, 37, 40], possibly discontinuous bn(·, ·) were considered, but the limits have
some regularities. Under the regularities of the limits and some assumptions on existence of a
Lyapunov function, certain average takes place; see [35] for more details. Along another line,
Métivier and Priouret in [40] express the limit function in term of integration of bn(·, ξ) over
invariant measure of the noise process and use a Poisson equation approach; and thus, under
some suitable conditions, the corresponding limit (continuous) differential equation may be
obtained. In [36], the case of that bn(·, ·) allowing to be discontinuous and the limit being
a set-valued mapping G(·) is considered. But the continuity of G(·) in the Hausdorff metric
defined as

d(S1, S2) := sup
y∈S2

inf
x∈S1

|y− x| + sup
x∈S1

inf
y∈S2

|y− x|, ∀Si ⊂R
d, i = 1,2,

is needed. However, these assumptions may not be satisfied when we do not have the desired
continuity in applications. For instant, in the example of Lasso algorithm, to be illustrated
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later, we need to consider set-valued mapping representing the subgradient of the function
|x|. For example, in a one-dimensional example, one may need to consider

G(x) =

⎧⎪⎪⎨⎪⎪⎩
{−1} if x > 0,

[−1,1] if x = 0,

{1} if x < 0.

This set-valued mapping is not continuous at 0 in the Hausdorff metric. Except [5], there has
been no general approach in the literature for studying convergence of stochastic approxi-
mation schemes involving set-valued mappings without continuity. However, the setup and
results of the current paper are different than that of [5]. If we let bn(x, ξ) be independent
of ξ , h(x, ξ) = 0, βn = 0, and mn(x, ξ) = 0,∀n,x, ξ , where mn(x, ξ) is as in Assumption
(K) or (G), we recover the setting and results in [5]. In this paper, mn(x, ξ) is not required
tending to 0, which makes the setting more general and applicable in real applications. In
addition, in [5], the limit processes are perturbed solutions of the corresponding differential
inclusions, whereas we characterize the limit processes by differential inclusions rather than
perturbed differential inclusions. That is done by examining the closure of the set of solutions
of a family of differential inclusions for general set-valued mappings.

Convergence to equilibrium point. The following results are concerned with globally
asymptotic stability of the limit differential inclusions. It also establishes the convergence
to the equilibria of stochastic approximation algorithm (2.1). We introduce the following sta-
bility condition for Krasovskii solutions of ODEs with discontinuous right-hand sides, which
is similar to the Lyapunov condition in classical stability theory.

(KS) There is a unique equilibrium x∗ of b(·) + h(·), that is, b(x∗) + h(x∗) = 0 (where,
h(·) is as in Assumption (A)(iii) and b(·) is as in Assumption (K)); and there exists a C∞-
smooth pair of functions (V ,W) satisfying that V (x) > 0 and W(x) > 0, ∀x 
= 0, V (0) = 0,
and the sublevel sets {x ∈ R

d : V (x) ≤ l} are bounded for every l ≥ 0, and

lim sup
y→x

〈∇V (x),b
(
y+ x∗)+ h

(
y+ x∗)〉≤ −W(x), ∀x 
= 0.

THEOREM 2.3. Consider algorithm (2.1). Under Assumptions (A), (K), (KS), and
boundedness of {Xn}, there exists a null set �0 such that if ω /∈ �0, then Xn converges to
the unique equilibrium x∗.

For the general case, where the Krasovskii operator is replaced by set-valued mappings,
we introduce a stability condition (GS) as follows. Our approach is based on a novel method,
namely, U -generalized Lyapunov functional method for differential inclusions.

(GS) There is a unique x∗ such that 0 ∈ h(x∗) + G(x∗) (where, h(·) is as in Assump-
tion (A)(iii) and G(·) is as in Assumption (G)); and there exists a U -generalized Lyapunov
function V : Rd → R+ such that the sublevel sets {x ∈ R

n : V (x) ≤ l} are compact for ev-

ery l > 0 and the U -generalized derivative V̇
G∗
U (x) satisfies V̇

G∗
U (x) ≤ −V̂0(x), ∀x 
= 0, for

some positive definite function V̂0, where G∗(x) := h(x+ x∗) + G(x+ x∗); see Section A.2
(Definition A.5, Definition A.4(iv)) for these concepts.

THEOREM 2.4. If we replace Assumptions (K) and (KS) by (G) and (GS), then the con-
clusion of Theorem 2.3 continue to hold.
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PROOF OF THEOREMS 2.3 AND 2.4. The stability of differential inclusions is carefully
studied in Section A.3. The proof of Theorem 2.3 follows from Theorem 2.1 and Theo-
rem A.1 in Section A.3. First, under Assumption (KS), the Krasovskii solutions of (2.7) are
strongly asymptotically stable (in Clarke’s sense) at x = x∗. Therefore, every Krasovskii so-
lutions of (2.7) is globally asymptotically stable at x = x∗ in the Lyapunov sense. As the
last part of Theorem 2.1, {Xn} must converge to the equilibrium point x∗ w.p.1. Similarly,
Theorem 2.4 is obtained by combining Theorem 2.2 and Theorem A.2. �

Projection algorithms. As was mentioned before, the assumption on boundedness of {Xn}
is not restrictive. Since the boundedness is not our main focus, we often assume it in our main
results so as to make the argument simpler. Further conditions and/or various projection algo-
rithms may be used; see Remark 2. We proceed to state the results for constrained algorithm
(2.2).

(P) The projection space H is a hyper-rectangle, that is, H = {x ∈ R
d : bi ≤ xi ≤ ci} for

simplifying arguments. In general, H can be compact and convex; and H = {x ∈ R
d : qi(x) ≤

0, i = 1, . . . ,N}, the constrained functions qi(·), i = 1, . . . ,N are continuously differentiable
and at x ∈ ∂H , the gradients qi,x(·) are linearly independent.

(PS) There is a unique x∗ ∈ H such that 0 ∈ co�H [h(x∗) + G(x∗)]; and there exists a U -
generalized Lyapunov function V : Rd → R+ such that the sublevel sets {x ∈ R

d : V (x) ≤ l}
are compact for every l > 0 and V̇

G∗
H

U (x) ≤ −V̂0(x), ∀0 
= x ∈ H , for some positive definite
function V̂0, where G∗

H(x) := co�H [h(x+ x∗) + G(x+ x∗)].
THEOREM 2.5. Consider algorithm (2.2). Assume (G), (P), and (A) with (A)(ii) replaced

by h(x, ξ) being (uniformly in ξ) locally bounded in x (i.e., |h(x, ξ)| ≤ K(x) for some locally
bounded function K). Then, there is a null set �0 such that ∀ω /∈ �0, {Xn(·)} is bounded and
equicontinuous. Let X(·) be the limit of a convergent subsequence of {Xn(·)}. Then X(t) is a
solution of the differential inclusion

(2.18) Ẋ(t) ∈ co�H

(
h
(
X(t)
)+ G

(
X(t)
))

.

The limit set of {X(·)} is internally chain transitive and as a consequence, the limit points of
{Xn} are contained in R, the set of chain recurrent points of (2.18) (see Section A.4 for the
definitions). In addition, if we assume further (PS), then {Xn} converges to x∗ w.p.1.

PROOF OF THEOREM 2.5. First, to use Assumption (A)(iv) in the projection algorithm,
let Yn be a sequence of positive real numbers such that Yn → 0 and |anh0(ζ̃n)| ≤ Yn/2
excepting a finite number of n w.p.1 (such a sequence Yn exists owing to Assumption
(A)(iv), Borel–Cantelli lemma [36], Section 5), and let In be the indicator of the set where
|anh0(ζ̃n)| ≤ Yn/2. To proceed, we write algorithm (2.2) as

(2.19) Xn+1 = Xn + an

[
bn(Xn, ξn) + h(Xn, ζn) + h0(ζ̃n) + βn

]+ τn + ψn,

where

τn = �H

(
MY

n

)−MY
n , ψn = (MY

n −Mn

)+ [�H(Mn) −Xn

]
(1 − In),

Mn =Xn + an

[
bn(Xn, ξn) + h(Xn, ζn) + h0(ζ̃n) + βn

]
,

and

MY
n = Xn + an

[
bn(Xn, ξn) + h(Xn, ζn) + h0(ζ̃n) + βn

]
In.

The purpose of partitioning (2.19) is to enable us to apply directly our assumptions (which is
assumed without any constraints).
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Part 1: Boundedness and equicontinuity. Similar to (2.9), we have that

(2.20)
Xn(t) = Xn +

∫ t

0
bn

(
X

0
(tn + s), ξ

0
(tn + s)

)
ds +
∫ t

0
h
(
X

0
(tn + s), ξ

0
(tn + s)

)
ds

+ �n(t) + �n(t) + τn(t) + ψn(t).

In the above, τn(t) := τ 0(tn + t) − τ 0(tn), ψn(t) := ψ0(tn + t) − ψ0(tn), where, τ 0(·) and
ψ0(·) are the piecewise linear interpolations of {∑n−1

i=0 aiτ i} and {∑n−1
i=0 aiψ i}, respectively;

and the �n(·), �n(·) are as in the proof of Theorem 2.1.
Let �0 be the union of sets in which |anh0(ζ̃n)| ≥ Yn/2 infinitely often and the exceptional

sets in (A)(iii)–(v), (G) (the union being taken over countable dense set H0). [As we men-
tioned before, for each x ∈ H0, there are (null) exceptional sets (in which, the convergence
assumptions do not hold) corresponding to (A)(iii)–(v), and (G); �0 is taken to contain all
these sets. Since H0 is countable, �0 still has measure zero.] Therefore, we work with a fixed
ω /∈ �0.

As in the proof of Theorem 2.1, we proved that �n(·) and �n(·) converge uniformly to
0 on finite t-intervals. Moreover, because In is 0 only for a finite number of n, only a finite
number of the terms of {(1 − In)} are nonzero. Since

ψn ≤ an

∣∣h(Xn, ξn) + bn(Xn, ζn) + h0(ζ̃n) + βn

∣∣(1 − In) + ∣∣�H(Mn) −Xn

∣∣(1 − In),

it is readily seen that ψn(·) converges to 0 uniformly on finite intervals as n → ∞. The
boundedness of {Xn(·)} is clear because of the use of the projection algorithm.

Next, we prove the equicontinuity of {Xn(·),τn(·)}. It suffices to prove the equiconti-
nuity for τn(·); see the proof of Theorem 2.1. By the definition of τn, we have follow-
ing observations (see, e.g., [36], Proof of Theorem 5.3.1): τn is orthogonal to H at the
point �H(MY

n ); |τn| ≤ an(K1 + Yn) for some constant K1; there is a constant K2 such that
τn = 0 if distance(∂H,Xn) ≥ K2(Yn + an). Because of these observations and the fact that
X0(·) − τ 0(·) is uniformly continuous (due to this difference is in fact the process in nonpro-
jected case and is proved before), τ 0(·) must be uniformly continuous on [0,∞). Otherwise,
there would be sk → ∞, δk → 0 and ε > 0 such that∣∣X0(sk + δk) −X0(sk)

∣∣≥ ε, for all k,

with distance(X0(sk), ∂H) → 0 as k → ∞ and distance(X0(sk + δk), ∂H) ≥ ε/2. However,
this contradicts the observations of τn and the uniform continuity of X0(·) − τ 0(·). The uni-
form continuity of τ 0(·) implies the equicontinuity of {τn(·)}.

Part 2: Characterization of the limit. Now, we extract a convergent subsequence of
{(Xn(·),τn(·))}, and index it again by n with the limit (X(·),τ (·)). Using the fact that �n(·),
�n(·), ψn(·) converge to 0 uniformly and letting n → ∞ in (2.20), by a similar argument as
in the unconstrained case, one has that on bounded intervals

(2.21) X(t + s) −X(t) ∈
∫ t+s

t
G
(
X(r)
)
dr +
∫ t+s

t
h
(
X(r)
)
dr + τ (t + s) − τ (s).

As in [36], Proof of Theorem 5.3.1, or [37], Proof of Theorem 6.8.1, we have

(2.22) τ (t + s) − τ (s) =
∫ t+s

t
z
(
X(r)
)
dr,

where z(X(t)) is the minimal force needed to keep X(t) in H . A consequence of (2.21) and
(2.22) is that

(2.23) X(t + s) −X(s) ∈
∫ t+s

t
co�H

[
h
(
X(r)
)+ G

(
X(r)
)]

dr.
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Combining (2.23) and Proposition 2.1, one has that X(t) is absolutely continuous and for
almost all t ,

Ẋ(t) ∈ co�H

[
h
(
X(t)
)+ G

(
X(t)
)]

.

Part 3: Asymptotic stability. This part is the same as that of the unconstrained case and is
thus omitted. �

REMARK 4. Recall that we often wish to find roots of some functions and/or set-valued
mappings. [For the roots of set-valued mappings, we mean that at these points (roots), the
value of these mappings (being a set) contains 0]. These points are often called “stationary
points” of the corresponding differential equations or inclusions. In the set-valued and differ-
ential inclusion cases, the roots may not be (strongly) stationary, where “strongly” means the
statement is true for all solutions. If the function is vector-valued and is sufficiently smooth
(namely, d-time continuously differentiable, where d is the dimension), then the set of sta-
tionary points is equal to R, the set of chain recurrent points (of the corresponding differential
equation). Otherwise, by a sophisticated process, Hurley in [27] shows that if the function is
smooth but not smooth enough, the set of chain-recurrent points maybe strictly larger than
the set of stationary points. Hence, {Xn} may not converge to the desired stationary points.
In our setting, if there is no condition to guarantee the stability of stationary points (termed
roots for simplicity), the algorithm may not converge to a set of roots, even if the algorithm
starts at one of the roots. It is easy to give an example; see Example 4.4 in Section 4.7.

REMARK 5. The stability of the systems of interest can be characterized by means of
the stability in set-valued dynamical systems [5], Section 3 and 4, and references therein.
However, the conditions in the aforementioned reference is relatively abstract and difficult to
verify in applications. We use criteria on U -generalized Lyapunov functions instead. More-
over, we give an example in Section 4.4 to show that convergence can be proved by applying
our results, but cannot be done otherwise.

REMARK 6. It is worth noting that the Clarke subdifferential of Lipschitz continuous
function has the important property (2.16). In addition, the stability assumptions (KS), (GS),
and (PS) are not restrictive. They are similar to Lyapunov conditions in classical stability
analysis excepting that we need to compute a new type of derivative (namely, U -generalized
derivative) for U -generalized Lyapunov functional. The examples of computing these new
functions are given in Section 4 and Appendix A.2. Moreover, Theorems 2.1 and 2.3 are less
general than Theorems 2.2 and 2.4. However, if we can express a set-valued mapping as the
Karasovskii operator of some vector-valued function, condition (KS) is more convenient to
verify than that of (GS). In the projection algorithm, since H is convex, �H(x) is uniquely
defined and �H(·) is continuous. However, the convex closure in (2.18) cannot be relaxed
since a continuous projection operator may not preserve the convexity.

Biased stochastic approximation. Next, we study biased stochastic approximation. With
the term βn representing a bias, by “biased stochastic approximation,” we mean the bias is
not “asymptotically negligible.” To proceed, let η = lim supn→∞ ‖βn‖ be a random variable
that is bounded w.p.1. We study stochastic approximation schemes (2.1) and (2.2) with the
dependence on η. For a set S ⊂ R

d , an ε-neighborhood of S denoted by Nε(S) is defined as

Nε(S) = {x ∈ R
d : distance(x, S) ≤ ε

}
, distance(x, S) := inf

y∈S
|x− y|.
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THEOREM 2.6. Consider algorithm (2.1), assume that (A)(i)–(iv) and (G) hold, and that
{Xn} is bounded w.p.1 (resp., consider algorithm (2.2) and assume that (A)(i)–(iv), (G), and
(P) hold).

• Then, there is a null set �0 such that ∀ω /∈ �0, {Xn(·)} is bounded and equicontinuous.
• Let X(·) be the limit of a convergent subsequence of {Xn(·)}. Then X(·) is a solution of the

differential inclusion

(2.24) Ẋ(t) ∈ N2η

(
h
(
X(t)
)+ G

(
X(t)
)) (

resp., Ẋ(t) ∈ N2η

(
co�H

(
h
(
X(t)
)+ G

(
X(t)
))))

.

• There exists a (deterministic) positive function φ(·) : [0,∞) → [0,∞) depending on
lim supn |Xn| (resp., the projection space H) such that limt→0 φ(t) = φ(0) = 0 and

(2.25) lim sup
n→∞

distance(Xn,R) ≤ φ(η),

where R is the set of chain recurrent points of differential inclusion

Ẋ(t) ∈ h
(
X(t)
)+ G

(
X(t)
) (

resp., Ẋ(t) ∈ co�H

(
h
(
X(t)
)+ G

(
X(t)
)))

.

• Assume further that there is a unique x∗ such that 0 ∈ h(x∗) + G(x∗); and that there exists
a U -generalized Lyapunov function V : Rd → R+ such that the sublevel sets {x ∈ R

n :
V (x) ≤ l} are compact for every l > 0 and the U -generalized derivative V̇

G∗
η

U (x) satisfies
the “decay condition” in the sense of Assumption (GS) (resp., (PS)) with G∗(x) being
replaced by G∗

η(x) := N2η(h(x+ x∗) + G(x+ x∗)). Then, {Xn} converges to x∗ w.p.1.

REMARK 7. If the dynamics and the limits of stochastic approximations are smooth
enough (namely, real analytic or k-times continuously differentiable with k > d and d being
the dimension of the space), a more precise characterization of the asymptotic bias (φ(η)

in (2.25)) is obtained by Tadić and Doucet in [53] using the Yomdin theorem (a qualitative
version of the Morse–Sard theorem) and the Lojasiewicz inequality. This paper deals with
systems with discontinuity.

PROOF OF THEOREM 2.6. We prove the assertion for unconstrained case only; the con-
strained case can be handled similarly.

Part 1: Boundedness and equicontinuity. This part is the same as that of the unbiased
case. In fact, we can treat βn as a (uniformly) bounded term and hence, boundedness and
equicontinuity of sequence of the piecewise linear interpolated processes still hold.

Part 2: Characterization of the limit. The process of obtaining the limit system is almost
the same as that of the unbiased case, excepting for that the limit differential inclusion should
be relaxed. To be more specific, in Proposition 2.2, if we relax the condition that qk(·) → 0
uniformly to be that |qk(·)| < η uniformly for k large enough, we will obtain similar results
as in the unbiased case with G(·) being replaced by its 2η-neighborhood due to the bias term
βn.

Part 3: Proof of (2.25) and stability assertion. Let Q be a compact set such that {Xn}∞n=1 ⊂
Q and MQ be the largest invariant set contained in Q; and let R2η(Q) be the set of chain
recurrence points of following differential inclusion restricted in Q:

(2.26) Ẋ(t) ∈ N2η

(
h
(
X(t)
)+ G

(
X(t)
))

,

that is, R2η(Q) contains all θ satisfying that for any ε > 0, T > 0, there are an integer n, real
numbers t1, . . . , tn > T , and solutions x1(·), . . . ,xn(·) of (2.26) such that ∀k = 1, . . . , n,

xk(0) ∈MQ,
∣∣x1(0) − θ

∣∣< ε,
∣∣xk(tk) − xk+1(0)

∣∣≤ ε,
∣∣xn(tn) − θ

∣∣≤ ε.

To proceed, we need the following lemma, whose proof can be found in [53], Lemma 5.1,
which used the continuation of chain-recurrent set developed in [6], Theorem 3.1.
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LEMMA 2.1 (Continuation of chain recurrent set). There exists a function φ(·) :
[0,∞) → [0,∞) (depending on Q and R) such that φ(·) is nondecreasing with
limt→0 φ(t) = φ(0) = 0 and R2η(Q) ⊂ Nφ(η)(R), where Nφ(η)(R) is a φ(η)-neighborhood
of R.

It is similar to the arguments in the unbiased case, we obtain that the limit points of {Xn}
are contained in R2η(Q). On the other hand, applying Lemma 2.1, we obtain that R2η(Q) ⊂
Nφ(η)(R). Therefore, we conclude our results. Finally, the stability assertion is similar to that
of the unbiased case, which turns out to be the study of the stability of the limit differential
inclusion. �

3. Rates of convergence. This section is concerned with the rates of convergence of the
stochastic approximation algorithms. One of the new features of our work is that stochastic
differential inclusions are used in the rate of convergence study for the first time.

For simplicity, we consider the following algorithm:

(3.1) Xn+1 = Xn + anh(Xn, ξn) + anbn(Xn), bn(Xn) ∈ G(Xn).

We assume that the limit dynamical system has a global stable limit point x∗. The rate of con-
vergence is focused on the asymptotic behavior of Un := Xn−x∗√

an
. Let U0(·) be the piecewise

constant interpolation of {Un}, and Un(·) be its shifted process, that is,

U0(t) := Un if t ∈ [tn, tn+1); and Un(t) := U0(tn + t), t ≥ 0.

We state only the results for the unconstrained case with assumption on boundedness of
{Xn}. The projection case is similar with a slight modification. We assume the following
assumption.

(R) (i) The sequence of step sizes {an}n≥0 satisfies 0 < an → 0 as n → ∞ and
(an/an+1)

1/2 = 1 + εn where (a) εn = 1
2n

+ o(εn) if an = 1/n, or (b) εn = o(an).
(ii) There is a limit point x∗ satisfying the following conditions: (a) Xn → x∗ w.p.1

and h(x∗) + G(x∗) = {0}; (b) {(Xn − x∗)/√an} is tight.
(iii) The functions h(·, ·) and hx(·, ·) (gradient with respect to x) are continuous in

(x, ξ) and bounded on bounded x-sets. The second partial derivative (with respect to x)
hxx(·, ξ) exists and is bounded uniformly in ξ , and hxx(·, ξ) is continuous in a neighbor-
hood of x∗. The {ξn} is a sequence of uniformly bounded and stationary uniform mixing
process satisfying that: Eh(x, ξn) = h(x) and Ehx(x, ξn) = hx(x). Let

ψn = h
(
x∗, ξn

)− h
(
x∗),

ψ̃n = hx
(
x∗, ξn

)− hx
(
x∗),

Gn = σ {ψj; j ≤ n}, Gn = σ {ψj; j ≥ n},
Hn = σ {ψj; j ≤ n}, Hn = σ {ψj; j ≥ n},

φ(m) = sup
A∈Gn+m

∣∣P(A|Gn) − P(A)
∣∣∞,

φ̃(m) = sup
A∈Hn+m

∣∣P(A|Hn) − P(A)
∣∣∞,

for some 	 > 0,
∑

j φ
	

1+	 (j) < ∞,
∑

j φ̃
	

1+	 (j) < ∞.
(iv) The set-valued mapping G(·) has nonempty, convex, and compact values, which

are contained in a finite common ball such that bn(x) ∈ G(x)∀n. Moreover, there is
a continuous and positively homogeneous set-valued mapping T , whose values are
nonempty, convex, compact, and contained in a finite common ball such that G is outer
T -differentiable at x∗ (see Section A.5 for these concepts).
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REMARK 8. Condition (R)(i) covers commonly used step sizes {an}. Because our main
interest here is on the rate of convergence, we simply assume the convergence of Xn to x∗.
For simplicity of presentation and as a division of labor, we assume the tightness of {Xn−x∗√

an
}

in (R)(ii). Sufficient conditions ensuring the tightness are given at the end of this section and
presented as Proposition 3.1. Regarding (R)(iii), we use the notation as in [17], Chapter 7,
pp. 345–346. That is, | · |p denotes the p-norm for Lp(�,F,P) with 1 ≤ p ≤ ∞. It can be
shown (see [57]) that:

(a)
∑m(tn+·)−1

i=n

√
ai[h(x∗, ξi)−h(x∗)] converges weakly to a Brownian motion W(·) with

covariance �1t as n → ∞, and
(b)
∑m(tn+t)−1

i=n aihx(x∗, ξi) converges in probability to hx(x∗) := A as n → ∞.

THEOREM 3.1. Consider algorithm (3.1) and assume Assumption (R) holds. Then
{Un(·)} converges weakly to the solutions of the following stochastic differential inclusion
(see Section A.6 for the definitions)

(3.2) dU(t) ∈ [AU(t) + T
(
U(t)
)]

dt + �
1/2
1 dW(t),

if (R)(i)(a) holds, and

(3.3) dU(t) ∈ [(A + I/2)U(t) + T
(
U(t)
)]

dt + �
1/2
1 dW(t),

if (R)(i)(b) holds, where W(t) is a d-dimensional standard Brownian motion.

REMARK 9. The main difficulties in deriving the result come from the lack of continuity
of bn(·) and the handling of the set-valued mappings, provided the normalized noise terms
converge (in distribution) to a Wiener process. Although we only state and prove the rate of
convergence results for a simple algorithm, similar results for general algorithms can also be
obtained with modifications.

PROOF OF THEOREM 3.1. Define Wn(·) on (−∞,∞) by

Wn(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m(tn+t)−1∑
i=n

√
ai

[
h
(
x∗, ξi

)− h
(
x∗)] if t ≥ 0,

−
n−1∑

i=m(tn+t)

√
ai

[
h
(
x∗, ξi

)− h
(
x∗)] if t ≤ 0.

It is similar to [37] (see also [57], Theorem 10.2.1) that {(Un(·),Wn(·))} is tight in
Dd [0,∞) × Dd(−∞,∞). Hence, we can extract a convergent subsequence (still denoted
by {(Un(·),Wn(·))}) such that {(Un(·),Wn(·))} converges weakly to a limit, denoted by
(U(·),W(·)). First, Remark 8 yields that W(t) is a Wiener process with covariance matrix
�1t . For simplicity of notation, we also assume that the sequence {Un} is bounded and sup-
press the truncation step (see, e.g., [37], Theorem 10.2.1). Note that the difficulty in proving
Theorem 3.1 comes from the discontinuity of bn(·) and the appearance of set-valued mapping
G(·). However, this term is assumed to be bounded. Thus, we only need to use the truncated
process to handle the smooth term h(·), which is the reason that the similar truncation step
in [37], Theorem 10.2.1, is valid here. To proceed, we work with the case (R)(i)(b); the case
(R)(i)(a) can be handled similarly and is thus omitted.
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To proceed, we have that

(3.4)

Un+1 =
(

an

an+1

)1/2{
Un + √

an

(
h
(
x∗)+ bn(Xn)

+ hx
(
x∗, ξn

)(
Xn − x∗)+ anO

(|Un|2))
+ √

an

[
h
(
x∗, ξn

)− h
(
x∗)]}

=Un +
((

an

an+1

)1/2
− 1
)
Un +

(
an

an+1

)1/2{
anhx
(
x∗, ξn

)
Un + anvn(Un)

+ a3/2
n O
(|Un|2)+ √

an

[
h
(
x∗, ξn

)− h
(
x∗)]},

where

vn(Un) := h(x∗) + bn(Xn)√
an

.

Let δ ∈ (0,1) be fixed and otherwise arbitrary. Since G(·) is outer T -differentiable at x∗,
there is a neighborhood V of x∗ such that (A.7) holds, that is,

G(x) ⊂ G
(
x∗)+ T

(
x− x∗)+ δ

∣∣x− x∗∣∣B for all x ∈ V.

Since Xn tends to x∗ w.p.1 (Assumption (R)(ii)(a)), for n large enough, we have that

(3.5)

h
(
x∗)+ bn(Xn) ∈ h

(
x∗)+ G(Xn)

⊂ h
(
x∗)+ G

(
x∗)+ T

(
Xn − x∗)+ δ

∣∣Xn − x∗∣∣B
⊂ T
(
Xn − x∗)+ δ

∣∣Xn − x∗∣∣B.

As a consequence,

vn(Un) ∈ 1√
an

T
(
Xn − x∗)+ δ

|Xn − x∗|√
an

B = T (Un) + δ|Un|B,

where we have used the fact that T is positively homogeneous (in Assumption (R)(iv)). Let

Mδ(x) := T (x) + δ|x|B.

Then one has

(3.6) vn(Un) ∈ Mδ(Un).

Hence, from (3.4), (3.6), (an/an+1)
1/2 = 1 + o(an), and

∑m(tn+t)−1
i=n aihx(x∗, ξi) converges

in probability to hx(x∗) := A in Remark 8, by the same argument as in the proofs of previous
theorems, we obtain that for n large enough

(3.7) Un(t) −Un(s) ∈
∫ t

s

(
AUn(r) + Mδ

(
Un(r)

))
dr + yn(t) − yn(s) +Wn(t) −Wn(s),

where yn(·) is some process converging to zero and Wn(·) converges to W(·) weakly. Using
the Skorohod representation theorem [17], Chapter 3, Theorem 1.8, but without changing
notation, we can assume yn(·) + Wn(·) converges to W(·) w.p.1. Let δ1 ∈ (0, δ) (depending
on δ) be such that

(3.8) T (x+ δ1B) ⊂ T (x) + δB.

Such δ1 always exists since T is continuous. Because of the convergence of yn(·) +Wn(·) to
W(·), we have that on bounded intervals, for n large, |yn(·) + Wn(·) − W(·)| ≤ δ1/2. As a
consequence, if we let

U
n
(·) := Un(·) − yn(·) −Wn(·) +W(·),
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then on bounded intervals, for n large, |Un
(·) − Un(·)| ≤ δ1/2, which together with (3.7)

implies that for s, t in bounded intervals, for n large,

(3.9)
U

n
(t) −U

n
(s) ∈
∫ t

s

(
AUn(r) + Mδ

(
Un(r)

))
dr +W(t) −W(s)

⊂
∫ t

s

(
AU

n
(r) + Mδ

(
U

n
(r)
))

dr +W(t) −W(s),

where

(3.10) Mδ(x) := T (x) + δ
(
2 + ‖A‖ + |x|)B,

and in (3.9), we have used the following facts:

|Ax− Ay| ≤ ‖A‖|x− y|, ‖A‖ is the sup-norm of A,

and if |x−y| < δ1 then T (y) ⊂ T (x)+δB , due to (3.8). It indicates that on bounded intervals,
U

n
(·) (for n large) is a solution of

(3.11) dU
n
(t) ∈ [AU

n
(t) + Mδ

(
U

n
(t)
)]

dt + �
1/2
1 dW(t),

where W(t) is a d-dimensional standard Wiener process.
To proceed, we state in Lemma 3.1 sufficient conditions for the weak compactness of the

set of solutions of stochastic differential inclusions by Kisielewicz in [31](see also [32, 33]).
Then in Lemma 3.2, we verify these conditions.

LEMMA 3.1 (See [31], Theorem 12). Consider the stochastic differential inclusion

(3.12) dX(t) ∈ F1
(
X(t)
)
dt + F2

(
X(t)
)
dW(t).

Assume that set-valued mappings F1 : Rd → 2R
d
, F2 : Rd → 2R

d×d
are measurable and

bounded, and have convex values, where F2 has convex values in the sense that {gg� : g ∈
F2(x)} is convex for each x ∈ R

d ; and that F1, F2 are continuous (see Section A.5 for the defi-
nition). Then, for any initial distribution, the set of solutions to (3.12) is sequentially (weakly)
closed with respect to the convergence in distribution.

LEMMA 3.2. For each δ > 0, Mδ(·) is continuous, where Mδ(·) was defined in (3.10).

PROOF. We prove this lemma by using Lemma A.6. Let p ∈R
d be arbitrary and consider

the map σ(p,Mδ(·)), defined by σ(p,Mδ(x)) := supa∈Mδ(x) p
�a. We have

σ
(
p,Mδ(x)

)= sup
a1∈T (x),δ2∈[0,δ],e is the unit vector in Rd

p�(a1 + δ2
(
2 + ‖A‖ + |x|)e)

= sup
a1∈T (x)

p�a1 + δ
(
2 + ‖A‖ + |x|)|p|

= σ
(
p, T (x)

)+ δ
(
2 + ‖A‖ + |x|)|p|.

Since T (·) is continuous, σ(p, T (·)) is continuous. As a result, σ(p,Mδ(·)) is continuous and
then, Mδ(·) is continuous. �

Since U(·) is the limit of Un(·), it is also the limit of U
n
(·). Hence, by Lemmas 3.1 and

3.2, on bounded intervals, U(·) is such that

(3.13) dU(t) ∈ [AU(t) + Mδ

(
U(t)
)]

dt + �
1/2
1 dW(t), for all δ > 0.
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Because U(·) is a solution to (3.13), by [31], Lemma 1, we deduce from (3.13) that
for any bounded interval [0, T0] and for all k ∈ N, there exists f k(·) such that f k(x) ∈
M1/k(x) ∀x and for all s < t ∈ [0, T0], U(t) − U(s) + W(t) − W(s) = ∫ ts AU(r) dr +∫ t
s f k(U(r)) dr, w.p.1. This yields that

(3.14) U(t) −U(s) +W(t) −W(s) =
∫ t

s
AU(r) dr +

∫ t

s
f k(U(r)

)
dr, ∀k ∈ N,w.p.1.

A consequence of (3.14) is that

(3.15) U(t) −U(s) +W(t) −W(s) −
∫ t

s
AU(r) dr ∈

∫ t

s
M1/k

(
U(r)
)
dr, ∀k ∈ N,w.p.1.

The T (x) is nonempty, compact, and convex, so is M1/k(x). It is readily seen that⋂
k∈N M1/k(x) = T (x),∀x. Combining this fact together with (3.15) and Proposition 2.1,

we have that for all s, t ∈ [0, T0]

U(t) −U(s) +W(t) −W(s) −
∫ t

s
AU(r) dr ∈

∫ t

s
T
(
U(r)
)
dr, w.p.1.

Therefore, we have

U(t) −U(s) ∈
∫ t

s

[
AU(r) + T

(
U(r)
)]

dr +
∫ t

s
�

1/2
1 dW(r), w.p.1.

Equivalently, U(·) is a solution to

dU(t) ∈ [AU(t) + T
(
U(t)
)]

dt + �
1
2
1 dW(t).

The proof is complete. �

Tightness of normalized sequence. In Assumption (R)(ii), we assumed the tightness of the
normalized sequence as a division of labor. To end this section, we provide sufficient con-
ditions for the tightness of sequence {Xn−x∗√

an
} for large n. These conditions are essentially

concerned with the stability of the limit point x∗. We will obtain the tightness by adapting
and modifying the perturbed Lyapunov functional method for differential inclusions. Such a
method was first used in the treatment of partial differential equations and stochastic analysis,
and later on used for many different stochastic systems in [37]. Here, we modify this idea to
treat our cases. [The assumptions given below are not restrictive. In fact, in many applications,
V (x) = |x|2 can be used as a simple but promising candidate, which is shown in Section 4. In
addition, locally quadratic Lyapunov functions (see [37]) can also be considered.] We state a
proposition below. A sketch of the proof is relegated to the Appendix A.7.

PROPOSITION 3.1. Consider algorithm (3.1) with bn(x) ∈ G(x),∀n, G(x) is a set-
valued mapping; and suppose Xn is bounded and converges to x∗ w.p.1 and Assumption
(R)(iii) holds. Assume that there is a function V :Rd →R such that:

• V (x∗) = 0, V (x) > 0 for each x ∈ R
d , x 
= x∗, V (·) together with its partial derivatives

up to the second order in x is continuous; |Vx(x)|2 ≤ K(1 + V (x)), Vxx(·) is uniformly
bounded; and V (x) ≥ c0|x− x∗|2 + o(|x− x∗|2) as x → x∗ for some positive constant c0;
and

• there is a λ > 0 such that max V̇
G+h

(x) ≤ −λV (x) for x 
= x∗ (where V̇
G+h

is the set-
valued derivative of V with respect to the set G + h, see definition A.4(iii)); and

• for each n, each x ∈R
d , and each ξ , |bn(x)|2 + |h(x, ξ)|2 ≤ K(1 + V (x)).
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Moreover, assume the sequence of step sizes {an} satisfies either an = 1
n
and λ > 1, or an →

0, and for each T > 0

lim inf
n

min
n≥i≥m(tn−T )

an

ai

= 1,

where tn, m(t) are defined at the beginning. Then, there is an N such that {Xn−x∗√
an

;n ≥ N} is
tight in R

d .

4. Applications. In this section, we apply our results developed in previous sections to
a number of application examples.

4.1. Stochastic subgradient descent. We begin with the description under a determin-
istic setup. Suppose that we aim to find the minimizers of a loss function L(w), that is,
argminw∈Rd L(w). If L(w) is continuously differentiable with respect to w, the minimizer
w∗ is a solution of the equation ∇wL(w) = 0. In this case, we can find the optimum by
gradient descent algorithms as usual. However, if L(w) is only strictly convex and not dif-
ferentiable, we cannot define the gradient ∇wL(w). Rather, we define its subgradient ∂L(w)

as ∂L(w) := {m ∈ R
d : L(y) ≥ L(w) +m�(y−w),∀y ∈ R

d}. Hence, the minimizer w∗ sat-
isfies 0 ∈ ∂L(w∗). The algorithm for the minimization is of the form wn+1 = wn − angn,
for some gn ∈ ∂L(wn). Assume that L(·) can be decomposed into two components, one
satisfies certain smooth conditions and the other verifies convexity. Then we can assume
∂L(w) = h(w) + G(w), where h is a continuous function and G(w) is a set-valued mapping.
Our objective is to find the minimizer w∗ satisfying 0 ∈ ∂L(w∗).

When noisy observations or measurements are involved, ∂L(wn) is often not available.
As a result, we use g̃n, which is an unbiased or biased estimator of ∂L(wn). With noisy
observations or measurements, we can write the estimator of g̃n as

(4.1) g̃n = bn(wn, ξn) + h(wn, ζn) + h0(ζ̃n) + βn,

where h(·, ·) is a smooth (w.r.t. w) function that will be averaged out to h (or a neighborhood
of h if it involves some bias term that is not asymptotically negligible), bn(·, ·) is bounded
with values belonging to a set-valued function G(·), ξn, ζn, ζ̃n are the noises, and h0(ζ̃n)

and βn can be either averaged out or asymptotically bounded by η when the bias cannot be
ignored.

Using (4.1), we construct the algorithm

(4.2) wn+1 = wn − an

[
bn(wn, ξn) + h(wn, ζn) + h0(ζ̃n) + βn

]
,

or its projected version

(4.3)

{
w̃n+1 = wn − an

[
bn(wn, ξn) + h(wn, ζn) + h0(ζ̃n) + βn

]
,

wn+1 = �H(w̃n+1).

Then, under our conditions, in algorithms (4.2) or (4.3), wn converges w.p.1 to the minimizer
w∗. We can also obtain robustness and rates of convergence of these algorithms by applying
Theorems 2.6 and 3.1. Our proposed conditions are mild and can be verified. The assump-
tions in the noises are mild and can be verified by many common noise sequences such as
i.i.d. sequences, martingale difference sequences, mixing noise, etc. Note also that the bound-
edness of nonsmooth term b and local boundedness of smooth term h are often clear if we use
projection algorithms and/or the noise does not make the iterates blow-up. Only conditions
for stability (such as (KS), (GS), (PS)) need to be verified carefully. However, it is shown
later that many algorithms in the literature satisfy these conditions. Some specific examples
(e.g., Lasso algorithm for high-dimensional statistics, and Pegasos algorithm in support vec-
tor machine (SVM) classification) will be studied next and some numerical results will be
given in Section 4.7.



802 N. NGUYEN AND G. YIN

REMARK 10. Note that stochastic subgradient descent algorithms are used often in ma-
chine learning to minimize a loss function for online learning in which the loss function can
often be nonsmooth. When the number of data in the training set is large, because compu-
tational cost using exact subgradient is expensive, sampling or mini-batching computations
are needed. In the literature of machine learning, some existing studies are based purely on
establishing a kind of “contraction estimate” (in the sense of in expectation); see for example,
[21, 46, 51, 52] and references therein. For example, convergence in expectation was proved
in [21, 46] and references therein, or the convergence in probability and almost surely of
the sequence {min1≤k≤n ‖wk‖}∞n=1 were obtained in [41]. Recently, convergence of stochas-
tic subgradient descent algorithms using differential inclusions was also obtained in [8, 9,
16]. In this paper, our effort is to provide a new approach for analyzing the convergence,
rates of convergence, robustness of stochastic subgradient algorithms, and other algorithms
in nonsmooth optimization by characterizing their behaviors using dynamical systems gener-
ated from differential inclusions and stochastic differential inclusions. As a direct application
of our results, if the corresponding differential inclusion has the minimizer as a globally
asymptotically stable point, then we can obtain the almost sure convergence of the algorithm
to the minimizer. Our convergence analysis recovers and generalizes convergence results in
stochastic subgradient descent algorithms in the literature. Moreover, we also use a novel
Lyapunov functional method to verify the globally asymptotic stability, which was presented
in Section 2. The approach appears to be effective. In addition, the rates of convergence and
robustness can also be deduced from our results.

REMARK 11. Recently, some other variants of stochastic subgradient or gradient descent
algorithms for nonsmooth and/or nonconvex optimization are studied widely, including incre-
mental subgradient descent [24, 34], proximal algorithms and stochastic proximal algorithms
[42], perturbed proximal primal dual algorithm [23], smoothing methods [11], gradient sam-
pling methods [10], among others. Nevertheless, the central issue is the handling of set-valued
mappings and nonsmooth loss functions. Although we plan not to dwell on each of such al-
gorithms, using our results we can treat such algorithms and obtain respective convergence
results.

REMARK 12. In the next two sections, we present how our results can be applied to
study algorithms in L1-norm penalized (regularized) minimization and support vector ma-
chine (SVM) classification. We will only focus on verifying the stability conditions since
assumptions in the noises are mild and can be verified by many common noise sequences
such as i.i.d. sequences, martingale difference sequences, mixing noise, etc. It is worth not-
ing that although we will not state explicitly the results for algorithms in L1-norm regularized
minimization in Section 4.2 and SVM classification problem in Section 4.3, our results on
convergence (Theorems 2.3, 2.4, and 2.5), robustness (Theorem 2.6), and rates of conver-
gence (Theorem 3.1) hold for these algorithms. These results recover, improve, and further
the state-of-art development for Lasso and SVM algorithms.

4.2. L1-norm penalized (regularized) minimization: Lasso algorithms, least absolute de-
viation (LDA) estimators. We consider stochastic algorithms for minimizing loss functions
containing L1-norm, by providing explicit computations for Lasso algorithm since other
cases are similar. Let us start with the following optimization problem. Given a sequence
of i.i.d. random variables {xn, yn}, with xn ∈ R

d , y ∈ R, we wish to find the weight vector
w so that x�

n w best matches yn in the sense E‖x�
n w− yn‖2 is minimized with the constraint∑d

i=1 |wi | = 0, which can be recast into the following problem:

(4.4) argmin
w∈Rd

L(w), L(w) = 1

2
E
∥∥x�

n w− yn

∥∥2 + λ

d∑
i=1

|wi |.
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Alternatively, we are trying to find w∗ such that 0 ∈ h(w∗) + G(w∗), where

h(w) = −1

2
∇wE
∥∥x�

n w− yn

∥∥2,
G(w) = K(w1) × · · · ×K(wd), with w = (w1, . . . ,wd)�,

(4.5)

and

K(wi) =

⎧⎪⎪⎨⎪⎪⎩
{−λ} if wi > 0,

[−λ,λ] if wi = 0,

{λ} if wi < 0.

A stochastic algorithm can be constructed as

(4.6) wn+1 = wn + an

(
yn −w�xn

)
xn + angn(wn),

where gn(wn) ∈ G(wn) with G(·) defined in (4.5); and the projection algorithm can be written
as

(4.7)

{
w̃n+1 = wn + an

(
yn −w�xn

)
xn + angn(wn),

wn+1 = �H(w̃n+1),

with H being a compact and convex set. While the other assumptions are easily verified, the
stability assumption needs to be checked carefully. We verify condition (GS) for algorithm
(4.6) later in Proposition 4.1, whose proof is postponed to Section 4.6.

Note that loss functions defined as the sum of the errors of prediction and the L1-norm reg-
ularization are often used in dimension reduction problem in high-dimensional statistics [20],
in which, the L1-norm is used to penalize the dimension of subspace that we are trying to
project onto. Roughly,

∑d
i=1 |wi | cannot be large causing wi to be small for all i ∈ {1, . . . , d}.

If we use the squared norm, all wi would bare the same weight. If we use the absolute devi-
ation, some “less-informative” coordinates will be highlighted and leads to wi = 0 for such
coordinates. More intuitively, in a two-dimensional case, from a geometric point of view, the
unit ball in L1-norm is of diamond shape with four vertices instead of a circle in L2-norm so
that the optimal value will often be obtained on some axis. For more intuition on the Lasso
algorithm as well as L1-norm penalization, we refer to the work by Tibshirani in [54].

REMARK 13. In practice, the above algorithms may need to be modified such as stochas-
tic coordinate descent (SCD), truncated gradient (TruncGrad), etc., to be more effective in
real data and/or in the problem of inducing sparsity [38]. The convergence of these modified
algorithms can be obtained by applying our results with modifications. Here, we only discuss
a simple version of the algorithm. There are other algorithms, which minimize loss func-
tions containing absolute norm such as robust regression and least absolute deviation (LAD)
with/without Lasso [26, 55]. Algorithms (4.6) and (4.7) and their variants are widely applied
by the machine learning community in applications with a large-scale data set [26, 38, 55].
Our main effort in this section is to verify the stability condition that is the most important
one for the analysis. It is noted that in many practical algorithms minimizing L1-norm loss
functions, different types of stepsizes may be used. The approach and results in this paper
can be adapted for these settings by using suitably scaled interpolated sequences.

PROPOSITION 4.1. Assume that E[xnx�
n ] is a positive definite matrix. Let G∗(w) =

h(w+w∗)+G(w+w∗), where h(·), G(·) are as in (4.5) and V (w) = |w|2, U(w) =∑d
i=1 wi .

Then V̇
G∗
{U}(w) ≤ −c1|w|2, where c1 > 0 is the smallest eigenvalue of E[xnx�

n ].
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4.3. Support vector machine (SVM) classification. We first consider a stochastic opti-
mization problem and then treat the problem of support vector machine (SVM) classification
problem. The Pegasos algorithm will be introduced next. Consider the following problem:
minimize L(w) := λ

2‖w‖2 + max{0,1 − E[ynw�xn]}, where (xn, yn) is a sequence of i.i.d.
random variables. The stochastic version of subgradient descent algorithm for this problem
is as follows

(4.8) wn+1 = wn − anλwn + angn(wn,xn, yn),

where gn(wn,xn, yn) ∈ ∂(- max{0,1 − ynw�
n xn}), that is,

gn(wn,xn, yn) ∈

⎧⎪⎪⎨⎪⎪⎩
{0} if ynw�

n xn > 1,

co{0, ynxn} if ynw�
n xn = 1,

{ynxn} if ynw�
n xn < 1;

or as the following projection algorithm with the set H being a compact and convex set,

(4.9)

{
w̃n+1 = wn − anλwn + angn(wn,xn, yn),

wn+1 = �H(w̃n+1).

Applying our results, the convergence to the optimal point, robustness, rates of convergence
of algorithm (4.8) (as well as algorithm (4.9)) can be obtained under conditions in our setup.
We will verify the stability condition (GS) for algorithm (4.8) later in Proposition 4.2, whose
proof is postponed to Section 4.6. The corresponding numerical example is given in Exam-
ple 4.2 in Section 4.7.

Algorithms (4.8) and (4.9) can be recast into a form known as Pegasos algorithms and
widely applied to support vector machine (SVM) classification problem; SVM is an effective
and a popular classification learning tool [15]. More intuition, motivation, and details of the
hinge loss function as well as the above loss function in SVM classification can be found
in [15, 49, 50] and references therein. Algorithms (4.8) and (4.9) as well as their modified
versions were studied in [49, 50] and references therein. However, the convergence was only
given in high probability, not w.p.1. By applying our results, the convergence w.p.1 is ob-
tained. The applications of algorithms (4.8) and (4.9) to classification problem in large-scale
data can be found in [49, 50] and references therein.

PROPOSITION 4.2. Let h(w) = −λw, and

G1(w) =

⎧⎪⎪⎨⎪⎪⎩
{0} if E

[
ynw�xn

]
> 1,

co
{
0,E[ynxn]} if E

[
ynw�xn

]= 1,{
E[ynxn]} if E

[
ynw�xn

]
< 1,

and G∗(w) = h(w + w∗) + G1(w + w∗), and V (w) = |w|2, U(w) = ∑d
i=1 wi . Then

V̇
G∗
{U }(w) ≤ −λ|w|2.

4.4. Root finding for set-valued mappings. In this section, we demonstrate the effec-
tiveness of our results in proving convergence of a stochastic approximation algorithm for
set-valued mappings. Assume that we need to find zero points of a set-valued mapping
G(·), that is, find w∗ such that 0 ∈ G(w∗), where G : R2 → R

2 is as follow G(w) =
(−w1 + w2 + h(w2),−w1 − w2 + h(w1)) with w = (w1,w2)

�, and h(·) : R → 2R is de-
fined as

h(w) =
{

0 if w 
= 1,

[−1,1] if w = 1.
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When only noisy observations or measurements are available, a stochastic approximation
algorithm for root finding takes the form

(4.10) wn+1 = wn + an

(
f (wn, ξn) + βn

)
, f (wn, ξn) ∈ G(wn),

where {an} is a sequence of step sizes and {βn} is a sequence of two-dimensional i.i.d. random
variables that are normally distributed with mean 0 and identity covariance matrix.

We compare our results with the results in [5] as well as other approaches in studying sta-
bility of differential inclusions for applications to stochastic approximations. Under bound-
edness assumption of {wn} (or using projection algorithm to convex and compact set), we
obtain the limit points of {wn} are contained in the set of chain-recurrent points of the limit
system ẇ(t) ∈ G(w(t)). Using results in [5], Section 3 and 4, to prove {wn} converges to 0,
we need to construct a Lyapunov function V such that ∇V (w)g(w) < 0, ∀g(w) ∈ G(w) for
all w 
= 0. Consider a candidate Lyapunov function V (w) = |w|2. Then

∇V (w)g(w) = −|w|2 + w1g1(w2) + w2g2(w1),

where g1(w2) ∈ h(w2), g2(w1) ∈ h(w1).

At w= (1,1)�, one possibility is that ∇V ((1,1))g((1,1)) = (−‖w‖2 +w1 +w2)|w=(1,1)� =
0. So, we cannot guarantee the set {0} to be a globally stable and attracting set. That is,
we cannot prove that {wn} converges to 0 using this Lyapunov function. However, using
our results, we can prove that {wn} tends to 0 w.p.1 by using the U -generalized Lyapunov
function corresponding to such a candidate function. Condition (GS) needs to be verified,
and it is stated in the following proposition, whose proof is in Section 4.6. Roughly speaking,
compared with the existing results in the literature, our approach allows one to ignore some
“less important” points (e.g., the point (1,1) above), that may make a (promising) candidate
Lyapunov function not satisfy the conditions for the stability in the literature though they
generally do not affect the stability of the systems. Moreover, in fact, our setting even allows
f (wn, ξn) to be in a neighbor of G(wn) with (random) radius averaged out to 0. A numerical
example is given in Example 4.3 in Section 4.7.

PROPOSITION 4.3. Let V (w) = ‖w‖2 and

U(w) = max{w1 − 1,0} − min{w1 + 1,0} + max{w2 − 1,0} − min{w2 + 1,0}.
Then, one has V̇

G

{U }(w) ≤ −‖w‖2,∀w.

4.5. Multistage decision making with partial observations. Let E and B be measurable
spaces denoting the action space and the state space, respectively. Suppose that O ⊂ R

d

is a convex and compact set denoting the outcome space. At discrete times n = 1,2, . . . ,
a decision maker chooses an action en from E and observes an outcome M(en, bn), where
M : E × B → O is a (measurable) function. However, it is worth noting that the outcome is
not always observable in application but is only partially observed with noise. So, the exact
outcome M(en, bn) is not available for the decision maker, but only noise corrupted outcome
M̃(en, bn, ξn) is available, where ξn represents the noise.

Thus, we consider the following multistage decision making model with partial obser-
vations: (1) the sequence {(en, bn)}n≥0 and {ξn}n≥0 are random processes defined on some
probability space (�,F,P) and adapted to the filtration {Fn} and the noise sequence {ξn}
satisfies that for some T > 0, each ε > 0, and each (e, b) ∈ E ×B,

(4.11) lim
n→∞P

{
sup
j≥n

max
t≤T

∣∣∣∣∣
m(jT +t)−1∑

i=m(t)

1

i + 1

(
M(e, b) − M̃(e, b; ξi)

)∣∣∣∣∣≥ ε

}
= 0,
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where m(t) := max{n ∈ N :∑n
i=1

1
i

≤ t}; (2) the action of the decision maker is indepen-
dent of the environment if provided the past information {(e1, b1), . . . , (en, bn)}, that is,
P((en+1, bn+1) ∈ de × db|Fn) = P(en+1 ∈ de|Fn)P(bn+1 ∈ db|Fn); (3) the decision maker
records only the cumulative average of the past (partially observed) outcomes,

(4.12) Xn = 1

n

n∑
i=1

M̃(ei, bi; ξi);

(4) her/his decisions are based on this average, that is, P(en+1 ∈ de|Fn) = QXn
(de), where

for each x ∈ O, Qx(·) is a probability measure (in E), and for each measurable set A ⊂ E ,
the map: x ∈ O → Qx(A) ∈ [0,1] is measurable. The family Q = {Qx : x ∈ O} is termed a
strategy for the decision maker.

DEFINITION 4.1 (Blackwell’s approachability). A set E ⊂ O is said to be approachable
if there exists a strategy Q such that Xn → E w.p.1.

Directed calculations show that

(4.13) Xn+1 = Xn + 1

n + 1

(−Xn + M̃(en+1, bn+1; ξn+1)
)
.

For each x ∈ O, let G1(x) = {∫E×B M(e, b)Qx(de)ν(db) : ν ∈ P(B)}, where P(B) is the
set of probability measures over B. Define G(x) = −x+ coG1(�O(x)), where �O(·) is the
(orthogonal) projection (onto O) operator. Applying our results (Theorems 2.2, 2.6, and 3.1),
we obtain following results.

THEOREM 4.1. Under the above settings, the following claims hold.

(1) The limit of any convergent subsequence of the shifted sequence of linear continuous
time interpolated processes of (4.12) is a solution of the following differential inclusion w.p.1

(4.14) Ẋ(t) ∈ G
(
X(t)
)
.

(2) If there is a strategy Q such that E is a globally asymptotically stable set of differen-
tial inclusion (4.14), then E is approachable.

(3) If there exists a strategy Q such that E = {x∗} is a unique approachable set, then un-
der further technical conditions (as in Theorem 3.1), the limit processes of convergent subse-
quences of shifted interpolated processes generated by normalized sequence Xn−x∗√

n
converges

weakly to solutions of a stochastic differential inclusion.
(4) If the “convergence to 0” condition (4.11) is relaxed as |M(e, b) − M̃(e, b, ξ)| <

η,∀e, b, ξ , w.p.1, then the conclusions (1) and (2) still hold with G in (4.14) being re-
placed by its neighbor with radius η. Moreover, if Eη is a globally asymptotically stable
set of the corresponding (limit) differential inclusions (and thus, is a approachable set), then
there is a (deterministic) nondecreasing function φ(·) satisfying limt→0 φ(t) = 0 such that
distance(Eη,E) ≤ φ(η).

REMARK 14. The studies on the stability of differential inclusions can be found in Ap-
pendix A.3 (see also [5] and references therein). [As was noted, in some cases (e.g., as in
Section 4.4), the U -generalized Lyapunov condition presented in this work is more effec-
tive than the stability conditions counterpart in existing results.] Multistage decision making
models (without partial observations) was considered in [5]. In this application, we allow the
outcome to be partially observed under noise by the decision maker. In addition, we charac-
terize the limit processes as solutions rather than perturbed solutions of the limit differential
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inclusion, and we also obtain results of rates of convergence and robustness. This example
can be further generalized to treat other criteria such as overtaking, bias, and other so-called
advanced criteria of optimality, as well as other systems such as switching dynamical sys-
tems. We refer the reader to [28] and references therein. Some other applications to Markov
decision process using stochastic approximation can be found in [45] and references therein.

4.6. Proof of theorems in Section 4.

PROOF OF PROPOSITION 4.1. The Clarke gradient of U(w) is given by ∂U(w) =
(1, . . . ,1)�. As a consequence,

G̃∗{U}(w) = G∗(w).

Moreover, V is continuously differentiable, ∂V (w) = (2w1, . . . ,2w2)
�. Therefore, the {U}-

generalized derivative of V in the direction G is given by

(4.15) V̇
G∗
{U}(w) = max

q∈G̃∗{U}(w)

(
∂V (w)

)�q = max
q∈G̃∗{U}(w)

2w�q.

Noting that for any q ∈ G̃∗{U}(w),

q= h
(
w+w∗)+ q, for q ∈ G

(
w+w∗),

and hence,

(4.16) w�q = −w�
E
[
xnx�

n

]
w+w�[

Exn

(
x�
n w

∗ − y
)+ q
]
.

Since w∗ is the minimizer, one has

0 ∈ h
(
w∗)+ G

(
w∗).

In particular,

0 ∈ −Exn

(
x�
n w

∗ − y
)+ G

(
w∗).

Hence, it is equivalent to

(4.17) Exn

(
x�
n w

∗ − y
) ∈ −G

(
w∗).

LEMMA 4.1. For any wi , k ∈ −K(w∗
i ), qi ∈K(wi + w∗

i ),

(4.18) wi(k + qi) ≤ 0.

As a consequence, for all w ∈ R
d , one has

(4.19) w�(−G
(
w∗)+ G

(
w+w∗))≤ 0,

where, (4.19) is understood as

w�(k+ q) ≤ 0 for all k ∈ −G
(
w∗),q ∈ G

(
w+w∗).

PROOF. Three cases are considered.
Case 1: w∗

i = 0. (4.18) is equivalent to

wi(k + qi) ≤ 0, for all k ∈ [−λ,λ], qi ∈ K(wi).

If wi = 0, it is obvious. If wi > 0 then qi = −λ and k + qi ≤ 0 for all k ∈ [−λ,λ]. If wi < 0
then qi = λ and k + qi ≥ 0 for all k ∈ [−λ,λ].
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Case 2: w∗
i > 0. (4.18) is equivalent to

(4.20) wi(λ + qi) ≤ 0, for all qi ∈K
(
wi + w∗

i

)
.

Since λ+ qi ≥ 0 for all qi ∈ K(wi +w∗
i ), if wi ≤ 0, (4.20) is clear. If wi > 0 then λ+ qi = 0

(due to K(wi + w∗
i ) = {−λ}) and (4.20) holds.

Case 3: w∗
i < 0. This case is similar to case 2. The proof of the lemma is complete. �

Combining (4.15), (4.16), (4.17), and Lemma 4.1, we obtain that

V̇
G∗
{U}(w) ≤ −w�

E
[
xnx�

n

]
w.

Since E[xnx�
n ] is positive definite and by Rayleigh’s inequality (see, e.g., [12], Chapter 3),

one has

w�
E
[
xnx�

n

]
w ≥ c1‖w‖2,

where c1 > 0 is the smallest eigenvalue of E[xnx�
n ]. Therefore, the proposition is proved. �

REMARK 15. In practice, to guarantee the boundedness of wn, we can use a projection
algorithm with a hyper-rectangle H := {w ∈ R

d : −h ≤ wi ≤ h,∀i} with h > λ being suf-
ficiently large. In this case, the proof of Proposition 4.1 for the projection case is similar.
Moreover, the above proof can be simplified by applying Theorem 2.3 (in which, we only
need to verify condition (KS) instead of (GS)) and using G(w) = K[−λ sign](w), where
K is the Krasovskii operator and −λ sign(w) = (−λ sign(w1), . . . ,−λ sign(wd)). However,
in general, given a set-valued mapping G(·), we may not know explicitly f (·) (if it exists)
satisfying G(·) = K[f ](·). That is the reason in the proof, we only treat G(·) as a general
set-valued mapping, not the Krasovskii operator of some vector-valued function.

PROOF OF PROPOSITION 4.2. Similar to the proof of Proposition 4.1, the Clarke gra-
dient of U(w) is given by ∂U(w) = (1, . . . ,1)� and then G̃∗{U }(w) = G∗(w). Moreover, V

is continuously differentiable, ∂V (w) = (2w1, . . . ,2w2)
� = 2w. Hence, the {U}-generalized

derivative of V in direction F is given by

(4.21) V̇
G∗
{U}(w) = max

q∈G̃∗{U}(w)

(
∂V (w)

)�q.

Let q ∈ G∗(w) be arbitrary, then

(4.22) q= −λw− λw∗ + q, q ∈ G1
(
w+w∗).

Since 0 ∈ −λw∗ + g1(w∗), −λw∗ ∈ −g1(w∗). Therefore, we obtain from (4.22) that

(4.23) q = −λw+m+ q, q ∈ G1
(
w+w∗), (for some) m ∈ −G1

(
w∗).

If we can prove

(4.24) w�[m+ q] ≤ 0 for all m ∈ −G1
(
w∗),q ∈ G1

(
w+w∗),

then combing (4.21), (4.23), and (4.24), one has V̇
G∗
{U}(w) < −λ|w|2. Now we prove (4.24).

Three cases are considered next.
Case 1: E[yn(w∗)�xn] = 1. So, m ∈ −G1(w∗) = −co{E[ynxn],0} and then m =

−mE[ynxn] for some m ∈ [0,1]. If E[ynw�xn] = 0 then G1(w + w∗) = co{E[ynxn],0}.
As a consequence, q = qE[ynxn], for some q ∈ [0,1]. Therefore, w�[mk + qk] = (−m +
q)E[ynw�xn] = 0 and (4.24) is clear. If E[ynw�xn] > 0, then G1(w + w∗) = {0} and thus,
w�[mk + qk] = −mE[ynw�xn] ≤ 0 and (4.24) holds. On the other hand, if E[ynw�xn] < 0,
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G1(w + w∗) = {E[ynxn]} and thus, w�[mk + qk] = (−m + 1)E[ynw�xn] ≤ 0 and (4.23) is
satisfied.

Case 2: E[yn(w∗)�xn] > 1. Then m= 0 and so, for all q ∈ G1(w+w∗), m+q = qE[yx],
for some q ∈ [0,1]. As a result, (4.23) holds if E[ynw�xn] ≤ 0. Otherwise, if E[ynw�xn] > 0,
then G1(w+w∗) = {0}, so m+ q= 0 and (4.23) still holds.

Case 3: E[yn(w∗)�xn] < 1. This case is similar to case 2. �

PROOF OF PROPOSITION 4.3. Since U is convex, it is regular. The Clarke gradient ∂U

of U is given by

∂U(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{(
s(w1), s(w2)

)}
if |w1| 
= 1 and |w2| 
= 1,

co
{
0, sign(w1)

}× {s(w2)
}

if |w1| = 1 and |w2| 
= 1,{
s(w1)

}× co
{
0, sign(w2)

}
if |w1| 
= 1 and |w2| = 1,

co
{
0, sign(w1)

}× co
{
0, sign(w2)

}
if |w1| = 1 and |w2| = 1,

where

s(w) :=
{

0 if − 1 < w < 1,

sign(w) otherwise.

It is noted that

G(w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
(−w1 + w2,−w1 − w2)

}
if w1 
= 1 and w2 
= 1,{

(−w1 + w2,−w1 − w2)
}+ [−1,1] × {0} if w1 = 1 and w2 
= 1,{

(−w1 + w2,−w1 − w2)
}+ {0} × [−1,1] if w1 
= 1 and w2 = 1,{

(−w1 + w2,−w1 − w2)
}+ [−1,1] × [−1,1] if w1 = 1 and w2 = 1.

Therefore, direct calculation yields that

MG{U}(w) =
{
G(w) if |w1| 
= 1 and |w2| 
= 1,

∅ otherwise.

Equivalently, one has

MG{U}(w) =
{{

(−w1 + w2,−w1 − w2)
}

if |w1| 
= 1 and |w2| 
= 1,

∅ otherwise.

We have G̃{U}(w) = MG{U}(w); and ∂V (w) = 2(w1,w2)
�. Hence, the {U}-generalized

derivative of V in direction G is given by

V̇
G

{U}(w) = max
q∈G̃{U}(x)

∂V (w)�q

=
{−2‖w‖2 if |w1| 
= 1 and |w2| 
= 1,

−∞ otherwise.

As a result, the proposition is proved. �

4.7. Numerical examples. In this section, we provide some numerical examples to illus-
trate our findings.

EXAMPLE 4.1. This example demonstrates the results in Section 4.2 as well as Theo-
rem 2.6. We are concerned with the following optimization problem:

Find w∗ to minimize E
(
h(w, ξn) + βn

)+ λ‖w‖.
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TABLE 1
Numerical results of algorithm 4.25

Examples ex1 ex2 ex3 ex4 ex5 ex6

Num. of iterations n̂ 103 103 103 103 103 103

Num. of repeat 103 103 103 103 103 103

Initial value w0 5 50 5 5 5 5
Variance cn of the bias cn 1/n 1/n n−0.5 1 10 10
Step sizes an 1/

√
n 1/

√
n 1/

√
n 1/

√
n 1/

√
n 1/n

Error |ŵ − w∗| 10−3 10−3 10−3 0.01 0.37 0.12

For simplicity, we consider a real-valued function with h(w, ξn) = 1
2(w + ξn − 1)2, λ =

0.7, {ξn} is a sequence of random variables with mean 0 and finite variance, and {βn} is a
sequence of random variables (assumed to be independent for simplicity) satisfying variance
of βn ≤ cn. We vary cn to see the effect of the bias on the convergence of the algorithm. The
problem becomes: find minimizer w∗ of E(h(w, ξn) + βn) + λ|w| = 1

2(w − 1)2 + 0.7|w|.
Direct calculation shows that the true value is w∗ = 0.3.

Suppose that only the noisy observations or measurements h(wn, ξn) + βn) are available,
we can construct a recursive algorithm

(4.25) wn+1 = wn + an

[
(1 + ξn − wn) + βn + g(wn)

]
.

In each iteration, we choose

g(w) ∈

⎧⎪⎪⎨⎪⎪⎩
{−1} if w > 0,

[−1,1] if w = 0,

{1} if w < 0.

The numerical results are given in Table 1.
In Table 1, columns “ex1” and “ex2” show the minimizer is globally attractive. Columns

“ex1,” “ex3,” and “ex4” show the dependence of the convergence rate on how fast the bias
going to 0. If cn is large, the algorithm may not converge fast enough to the true minimizer,
but just in its neighborhood, which is shown in columns “ex5,” and “ex6.”

The relation between cn and the mean of the error (of approximated value) after repeating
algorithm 4.25 (with n̂ = 1000 iterations for each) is shown in Figure 1 (the left one). This
shows the numerical results for the theoretical one in Theorem 2.6, that is, the difference
between the approximated value and the true value tends to 0 when η := lim supn ‖βn‖ → 0.
It is worth noting that the graph depends on βn through η in two ways. First, η and the upper
bound of errors inherit the behavior of normal distributions βn. Second, they also depend on
the magnitude of βn. As a result, the graph describes the relationship between errors and bias
η varies like normal distributions (at each fixed η) with nonzero means (but tending to 0 as
η → 0). The graph on the right in Figure 1 shows the convergence rate to 0 of cn affects the
convergence of the algorithm.

EXAMPLE 4.2. This example is concerned with using results in Section 4.3. Consider
the following problem (for better visualization, we consider w ∈R

2):

Find minimizer w∗ of λ‖w‖2 + max
{
0,1 −Ew�h(ξn)

}
.

Assume that {h(ξn)} is a sequence of independent two-dimensional Gaussian vectors with
mean (1,2)� and covariance matrix I2×2 (two-dimensional identity matrix), and λ = 1.
A closed-form solution is w∗ = (0.2,0.4)�. We will design an algorithm to locate the
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FIG. 1. Numerical results for Example 4.1. Left: relation between bias η and |ŵ − w∗|. Right: relation between
number of iterations to obtain |ŵ − w∗| ≤ 10−5 and the exponent α of cn = n−α (describing the convergence
rate to 0 of unbiased term βn).

optimum with noise corrupted measurements or observations h(ξn) and bias βn. Denote
xn = h(ξn). Consider the algorithm with step sizes an = 1/

√
n,

(4.26) wn+1 =wn + an

[−2wn + g(wn,xn)
]
,

where

g(w,x) ∈

⎧⎪⎪⎨⎪⎪⎩
{0} if w�x> 1,

co{0,x} if w�x= 1,

{x} if w�x< 1.

Let w0 = (3,5)�, with 1000 replications (i.e., run algorithm 4.26 1000 times), the numerical
results are given in Figure 2. Moreover, the mean of ŵ is (0.2 + 10−3,0.4 + 10−3)�.

EXAMPLE 4.3. This example is concerned with the results in Section 4.4. We wish to
find w∗ such that 0 ∈ G(w∗), where G(w) := (−w1 +w2 +h(w2),−w1 −w2 +h(w1)) with
w= (w1,w2)

� and

h(w) =
{

0 if w 
= 1,

[−1,1] if w = 1.

FIG. 2. Numerical results for Example 4.2: Left: 2D histogram of ŵ. Right: a trajectory of wn (the blue and red
points are the starting and ending points).
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FIG. 3. Numerical results in Example 4.3. Left: 2D histogram of ŵ. Right: a trajectory of wn (the blue and red
points are the starting and ending points).

The true value is w∗ = (0,0)�. Consider the stochastic algorithm for the above problem when
the observations are corrupted by random disturbances with step sizes an = 1/

√
n and

(4.27) wn+1 =wn + an

[
g(wn) + βn

]
, g(wn) ∈ G(wn),

and βn = (β1
n,β2

n)� so that {βn} is a sequence of i.i.d. normal random variables with mean
(0,0)� and covariance being the identity matrix. We consider two initial points w0 = (1,1)�,
(near the minimizer) and w0 = (10,−20)�, (far away from the minimizer). Running algo-
rithm 4.27 1000 times, we obtain the mean of ŵ to be (10−3,10−2)� for both cases. A his-
togram and a trajectory of {wn} (in the case of w0 = (1,1)�) are shown in Figure 3.

EXAMPLE 4.4. This example considers the comments in Remark 4. We will give an
example to show that if conditions on stability of the zero points are violated, the sequence
obtained by stochastic approximation may not converge to the right points even if the algo-
rithm starts from one of the optima. Assume that

h(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0,1] × [−2,1] if w = (2,2)�,

{0} × [−2,−1] if 1 ≤ w1 ≤ 2,−1 < w2 ≤ 2,w 
= (2,2)�,

[−2,−1] × {0} if − 1 < w1 ≤ 2,−2 < w2 ≤ −1,

{0} × [1,2] if − 2 < w1 ≤ −1,−2 ≤ w2 < −1,

[1,2] × {0} if − 2 ≤ w1 < 1,1 ≤ w2 ≤ 2,{
(−0.005w1,−0.005w2)

�} otherwise,

and consider the problem: find w∗ such that 0 ∈ E(h(w∗) + βn), where {βn} is a sequence
of i.i.d. normal random variables with mean (0,0)� and covariance being the identity ma-
trix. The optimum is given by w∗ ∈ {(0,0)�, (2,2)�}. Consider a stochastic approximation
algorithm for this problem as follow

(4.28) wn+1 = wn + 1√
n

[
g(wn) + βn

]
, g(wn) ∈ h(wn).

We run the algorithm with w0 = (2,2)� for 10 millions iterations and note the points at
1 million, 2 million, . . . , 10 million iterations. The algorithm does not converge even if the
number of iterations is large. In fact, {wn} tends to be close to some subset of chain-recurrent
points, which are strictly larger than the set of the roots. The numerical results are shown in
Figure 4.
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FIG. 4. Numerical results for Example 4.4. Left: a trajectory of {wn}, starting from (2,2) (the blue point). Right:
The points at 1 million, 2 million, . . . , 10 million iterations.

5. Concluding remarks. Motivated by a wide variety of applications, we considered
stochastic approximation with discontinuous dynamics and set-valued mappings. Uncon-
strained, constrained, and biased algorithms are considered. The traditional approach in the
existing literature cannot be used due to the discontinuity. Another main challenge is that we
have to deal with set-valued mappings.

Under broad conditions, we use the theory of ODEs with discontinuous right-hand side,
differential inclusions, and set-valued analysis, to overcome the difficulties of lack of con-
tinuity. Concepts in nonsmooth analysis, set-valued dynamic systems, and novel results in
stability of differential inclusions enable us to obtain the convergence to the desired optimal
points. The continuation of chain recurrent set of the limit differential inclusions enables us
to obtain desired bounds in biased stochastic approximation. The rates of convergence are
obtained by using the newly developed concepts in set-valued analysis (T -differentiability)
and stochastic differential inclusions (weak compactness of the set of solutions).

Then we make use of our results in applications including Markov decision processes,
stochastic subgradient descent algorithms, minimizing L1 regularized loss functions (on-
line Lasso algorithms, among others), and Pegasos algorithms (in SVMs classification). It
is shown that convergence w.p.1 of these stochastic algorithms can be obtained using our
results. It is also demonstrated that our results can be used to prove convergence in certain
cases, which cannot be done otherwise in the existing literature. New insights for analyzing
convergence, rates of convergence, and robustness of these algorithms are also obtained.

APPENDIX: MATHEMATICS PREPARATION

A.1. ODEs with discontinuous right-hand sides and differential inclusions. This
section is devoted to ODEs with discontinuous right-hand sides and differential inclusions.
Consider the differential equation

(A.1) Ẋ(t) = f
(
X(t)
)
.

Given a function f : Rd → R
d , define the set-valued function K[f ] : Rd → 2R

d
, known as

the Krasovskii operator, as follows

K[f ](y) =⋂
δ>0

cof
(
B(y, δ)

)
.

LEMMA A.1. If f is continuous, then K[f ](x) = {f (x)}. If f , g are locally bounded
and either f or g is continuous then K[f + g](x) = K[f ](x) +K[g](x).
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PROOF. The first assertion is obvious. By [43], Theorem 1, we have that K[g](x) =
co{limg(xi )|xi → x}. Using this fact, the lemma can be proved; some details are omitted.

�

DEFINITION A.1 (See [22]). A function ϕ : J → R
d (J is an interval in R) is said to be

a Krasovskii solution to (A.1) if it is absolutely continuous on each compact subinterval of J

and is a solution of the differential inclusion

(A.2) Ẋ(t) ∈ K[f ](X(t)
)
,

that is, ϕ satisfies (A.2) almost every t ∈ J . Moreover, ϕ is said to be a Carathéodory solution
if it satisfies the (A.1) for almost every t ∈ J , or equivalently, it satisfies the corresponding
integral equation.

DEFINITION A.2. A set-valued mapping F is upper semicontinuous at a given x, if for
every open set U , F(x) ⊂ U , there is an open set V such that x ∈ V and F(x) ⊂ V for every
x ∈ V .

Note that if f is a locally bounded function, then K[f ](·) is upper semicontinuous,
nonempty, compact, and convex. The following theorem of the existence of the Krasovskii
solution can be found in [22].

LEMMA A.2. If f : Rd → R
d is a locally bounded function, there exists at least a

Krasovskii solution of (A.2) starting from any initial condition.

REMARK 16. Some remarks are in order; for more details, we refer to [22].

(i) For the uniqueness of the Krasovskii solution, we need further conditions for f (·),
which can be found in [22]. The Carathéodory solutions are always Krasovskii solutions (if
both of them exist), but the converse is not true. If f is continuous, they are the same.

(ii) Consider an example with f (·) = − sign(·) :R →R, that is,

f (y) =

⎧⎪⎪⎨⎪⎪⎩
−1 if y > 0,

0 if y = 0,

1 if y < 0.

In this case,

K[f ](y) =

⎧⎪⎪⎨⎪⎪⎩
{−1} if y > 0,

[−1,1] if y = 0,

{1} if y < 0.

Next, ODEs with discontinuous right-hand sides are generalized to differential inclusions.

DEFINITION A.3. Let F : Rd → 2R
d

be a set-valued mapping. A solution to the differ-
ential inclusion

(A.3) Ẋ(t) ∈ F
(
X(t)
)

with initial point x ∈ R
d is an absolutely continuous function X(·) :R→R

d such that X(0) =
x and satisfies (A.3) for almost every t ∈ R.

The following lemma shows that under Assumption (G) in our paper, the solutions of
differential inclusion exists.
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LEMMA A.3 (See [1], Chapter 1 and Chapter 2). Let F :Rd → 2R
d
be a set-valued map

with values contained in a finite common ball and whose graph is closed. Then F is upper
semicontinuous, and (A.3) admits at least one solution with any initial point.

A.2. Nonsmooth analysis: Set-valued derivative and U -generalized derivative. In
this section, we provide some definitions of generalized derivatives in nonsmooth analysis,
which will be key in studying stability of solutions of differential inclusions.

DEFINITION A.4. We introduce the following definitions.

(i) ([2] or [13], p. 39) A function V (·) : Rd → R is said to be regular at x ∈ R
d if for all

v ∈ R
d , there exists the usual right directional derivative V ′+(x,v) and V ′+(x,v) = V ◦(x,v);

where

V ′+(x,v) := lim
t↓0

V (x+ tv) − V (x)
t

,

and V ◦(x,v) is the generalized directional derivative defined as

V ◦(x,v) := lim sup
y→x,t↓0

V (y+ tv) − V (y)
t

.

V is said to be regular if it is regular at every x ∈ R
d . Note that a convex function is not only

Lipschitz continuous (in suitable domain), but also regular.
(ii) (see [13]) The Clarke gradient ∂V of V is defined as ∂V (x) := co{lim∇V (xi )|xi →

x,x /∈ �V }, where �V is the set of measure zero with ∇V being not defined.
(iii) (see [2]) The set-valued derivative of a regular function V with respect to F is defined

as

V̇
F
(x) = {a ∈ R| there is q ∈ F(x) such that p�q = a,∀p ∈ ∂V (x)

}
.

(iv) A function V :Rd →R is said to be positive definite if it is continuous, V (0) = 0 and
there are continuous increasing functions α1 and α2 : R+ → R with α1(0) = α2(0) = 0 such
that α1(|x|) ≤ V (x) ≤ α2(|x|), ∀x ∈ R

d .

The following lemma provides a view of the relationship between the above definitions
and the dynamics of solutions of differential inclusions.

LEMMA A.4 (See [2], Lemma 1). Let X(·) be a solution of Ẋ(t) ∈ F(X(t)), and
V : Rd → R be a locally Lipschitz continuous and regular function. Then, d

dt
V (X(t)) ex-

ists almost everywhere and d
dt

V (X(t)) ∈ V̇
F
(X(t)) almost everywhere.

Finally, we recall the following definitions introduced in [29], which are used in this paper.

DEFINITION A.5.

(i) Let U := {Ui}∞i=1 be a collection of real-valued Lipschitz regular functions. We define
F̃U := ⋂∞

i=1 MF
Ui

(x), where MF
Ui

:= {q ∈ F(x)| there exists a ∈ R such that p�q = a,∀p ∈
∂Ui(x)}. If U is empty, we define F̃U = F(x). F̃U is called the U -reduced differential inclu-
sion.
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(ii) The U -generalized derivative of locally Lipschitz function V : Rd →R with direction
F , denoted by V̇ U is defined as

V̇
F

U (x) :=

⎧⎪⎪⎨⎪⎪⎩
min

p∈∂V (x)
max

q∈F̃U (x)
p�q if V is regular,

max
p∈∂V (x)

max
q∈F̃U (x)

p�q if V is not regular.

The U -generalized derivative is understood to be −∞ if F̃U is empty. Such a Lyapunov

function V with V̇
F

U (x) ≤ 0,∀x is called a U -generalized Lyapunov function.

EXAMPLE A.1. To illustrate, let F(x) = K[f ](x) :R→ 2R, f (x) = − sign(x), that is,

F(x) =

⎧⎪⎪⎨⎪⎪⎩
−1 if x > 0,

[−1,1] if x = 0,

1 if x < 0,

U : R → R, U(x) = max{x,0}, U = {U} and V (x) = x2. Since U is convex, it is regular.
The Clarke gradient of U is given by

∂U(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if x > 0,

[0,1] if x = 0,

0 if x < 0.

The reduced inclusion MF
U is given by

MF
U (x) =

⎧⎪⎪⎨⎪⎪⎩
−1 if x > 0,

0 if x = 0,

1 if x < 0.

Moreover, V is continuously differentiable, ∂V (x) = 2x. Hence, the U -generalized derivative
of V in direction F is given by

V̇
F

U (x) = max
q∈F̃{U}(x)

∂V (x)q = max
q∈F̃{U}(x)

2xq =

⎧⎪⎪⎨⎪⎪⎩
−2x if x > 0,

0 if x = 0,

2x if x < 0.

A.3. Stability of differential inclusions. In this section, we consider the asymptotic
stability of solutions of the ODEs with discontinuous right-hand sides and differential inclu-
sions, which contains two parts. The first is stability of Krasovskii solutions and the second
is for general differential inclusions.

Let F : Rd → 2R
d

be a set-valued mapping such that F is upper semicontinuous whose
values are nonempty, compact, and convex. Consider the differential inclusion

(A.4) Ẋ(t) ∈ F
(
X(t)
)
.

DEFINITION A.6 (See [14], Definition 2.1). The differential inclusion (A.4) is strongly
asymptotically stable (in Clarke’s sense) if there is no solution exhibiting finite time blow-up
and the following properties hold.

(a) Uniform attraction: for any r > 0, R > 0, there is T = T (R, r) such that for any
solution X(·) of (A.4) with |X(0)| < R then |X(t)| ≤ r for all t ≥ T .
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(b) Uniform boundedness: there is a continuous nonincreasing function m : (0,∞) →
(0,∞) such that for any solution X(·) of (A.4) with |X(0)| ≤ R then |X(t)| ≤ m(R) for all
t ≥ 0.

(c) Lyapunov stability: limR↓0 m(R) = 0.

DEFINITION A.7 (Classical Lyapunov stability; see [29], Definition 7.1). The differen-
tial inclusion Ẋ(t) ∈ F(X(t)) is said to be (strongly) asymptotically stable at x = 0 if every
solution is stable at x = 0, [that is, for any ε > 0, there is δ > 0 such that if |X(0)| ≤ δ

then |X(t)| < ε, ∀t ≥ 0] and there is c > 0 such that if |X(0)| ≤ c then limt→∞ |X(t)| = 0.
Moreover, it is said to be globally asymptotically stable if the constant c can be ∞.

PROPOSITION A.1 (See [14]). The strongly asymptotic stability (in Clarke’s sense) im-
plies the classical asymptotic stability in the Lyapunov sense.

The following theorem ([14], Theorem 1.3) provides necessary and sufficient conditions
for strongly asymptotic stability of the Karasovskii solutions of the ODEs with discontinuous
right-hand sides (see Section A.1 for definition)

(A.5) Ẋ(t) = f
(
X(t)
)
.

THEOREM A.1. Let f be a locally bounded function. Then, Krasovskii solutions of (A.5)
are strongly asymptotically stable if and only if there exists a C∞-smooth pair of functions
(V , V̂0) satisfying:

(1) V (x) > 0 and V̂0(x) > 0 for all x 
= 0, V (0) = 0;
(2) the sublevel sets {x ∈R

d : V (x) ≤ l} are bounded for every l ≥ 0;
(3) lim supy→x〈∇V (x), f (y)〉 ≤ −V̂0(x), ∀x 
= 0.

REMARK 17. Note that in differential inclusions, the uniqueness of solution is not al-
ways guaranteed. Hence, the term “strongly” in definitions of stability means that these defi-
nitions hold for all solutions. In contrast, “weak” stability means that there is a solution that
is stable. The condition of “weak asymptotic stability” of Krasovskii solutions can be found
in [14].

In contrast to Theorem A.1, sufficient conditions for asymptotic stability of general differ-
ential inclusions can be found in [2] and references therein. Recently, these sufficient condi-
tions for differential inclusion Ẋ(t) ∈ F(X(t)) are much improved in [29]. We state this result
in the following theorem.

THEOREM A.2 ([29], Theorem 7.2). If there exists a U -generalized Lyapunov function

V : Rd → R such that V̇
F

U (x) ≤ −V̂0(x), for some positive definite function V̂0 (see Defini-
tions A.4 and A.5), then (A.4) is (strongly) asymptotically stable (in the sense of Lyapunov)
at x= 0. Furthermore, if {x ∈ R

d : V (x) ≤ l} are compact for all l > 0 then (A.4) is (strongly)
globally asymptotically stable (in the sense of Lyapunov) at x= 0.

REMARK 18. Another result on stability of differential inclusions using Lyapunov func-
tional method can be found in [2]. The technique is based on the “set-valued derivative
of a regular function V” with respect to F . However, using the U -generalized derivative
is shown to be much stronger and more effective; see [29]. Moreover, if U(·) satisfies
∂U(·) = (1, . . . ,1)�, then the {U}-generalized derivative is the set-valued derivative.
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A.4. Set-valued dynamical systems: Invariant set, limit set, and chain recurrence.
Consider the differential inclusion

(A.6) Ẋ(t) ∈ F
(
X(t)
)
.

We recall some concepts, which are used in this paper; more details can be found in [3, 5, 53]
and references therein.

DEFINITION A.8 (See [5], Section 3). Let X(·) be a solution of (A.6). The limit set of
X(·), denoted by L(X), is defined as L(X) =⋂t≥0 {X(s) : s ≥ t}.

DEFINITION A.9 (See [5], Definition V). A set A ⊂ R
d is said to be invariant if for all

x ∈ A, there exists a solution X(·) of (A.6) with X(0) = x such that X(R) ⊂ A.

DEFINITION A.10 (See [5], Definition VI). Let A be a subset of Rd .

• x,y ∈ A is said to be chain connected in A if for every ε > 0 and T > 0, there exist an
integer n ∈ N, and solutions X1(·), . . . ,Xn(·) to (A.6), and real numbers t1, . . . , tn > T

such that:

(a) Xi (s) ∈ A for all 0 ≤ s ≤ ti , i = 1, . . . , n;
(b) |Xi (ti) −Xi+1(0)| ≤ ε for all i = 1, . . . , n − 1;
(c) |X1(0) − x| ≤ ε and |Xn(tn) − y| ≤ ε.

• A is said to be “internally chain transitive” of (A.6) if A is compact and x, y are chain-
connected in A for all x,y ∈ A.

DEFINITION A.11 (See [5, 37, 53]). θ is said to be a “chain-recurrent point” of (A.6) if
for any ε > 0 and T > 0, there exist an integer n ∈ N, and solutions X1(·), . . . ,Xn(·) to (A.6)
and real numbers t1, . . . , tn > T such that∣∣X1(0) − θ

∣∣≤ ε,
∣∣Xi(ti) −Xi+1(0)

∣∣≤ ε ∀i = 1, . . . , n − 1,
∣∣Xn(tn) − θ

∣∣≤ ε.

Moreover, we say that θ is a “chain-recurrent point” in A of (A.6), if we assume further that
Xi (s) ∈ A for all 0 ≤ s ≤ ti , i = 1, . . . , n.

The following lemma (see [5], Lemma 3.5) shows the relationship between invariant set
and internally chain transitive set.

LEMMA A.5. An internally chain transitive set is invariant.

A.5. Set-valued analysis: Continuity and T -differentiability. This section reviews
definitions and results of set-valued analysis in [1, 33, 44, 48] and references therein. Re-
call that B = {x ∈ R

d : |x| < 1} and B is its closure.

DEFINITION A.12 (See [1], Chapter 1, Section 1, or [48]).

• A set-valued mapping F is said to be lower semicontinuous at x if for every open set U

with F(x) ∩ U 
= ∅, there is an open set V such that x ∈ V and F(x) ∩ U 
= ∅ for every
x ∈ V .

• F is said to be continuous if it is both lower semicontinuous and upper semicontinuous
(see Definition A.2).
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LEMMA A.6 (Criteria on continuity, see [33], Chapter 2.2). If a set-valued mapping
F : Rd → 2R

d
has convex and compact values, then F is continuous if and only if for each

p ∈ R
d , σ(p,F (x)) is continuous (in x), where σ(p,A) := sup{p�a : a ∈ A}.

DEFINITION A.13 (See [44], Definition 2.1). A set-valued mapping T : Rd → 2R
d

is
positively homogeneous if T (0) is a cone, and T (kx) = kT (x) for all k > 0, x ∈ R

d .

DEFINITION A.14 (See [44], Definition 4.1). Let T : Rd → 2R
d

be a positively homo-
geneous set-valued mapping. We say F : Rd → 2R

d
is outer T -differentiable at x∗ if for any

δ > 0, there exists a neighborhood V of x∗ such that

(A.7) F(x) ⊂ F
(
x∗)+ T

(
x− x∗)+ δ

∣∣x− x∗∣∣B for all x ∈ V.

The relationship between T -differentiability and others differentiability, and the analysis
as well as computation examples of T -differentiability can be found in [44].

A.6. Stochastic differential inclusions. Given a set-valued mapping F : Rd → 2R
d

tak-
ing nonempty values, there exists an f : Rd → R

d such that f (x) ∈ F(x), ∀x ∈ R
d , such

a function f is called a selector of F . For an L2-continuous (continuous in mean) Ft -
nonanticipative stochastic process (X(t))0≤t≤T and set-valued mapping F1 : [0, T ] × R

d →
2R

d
, F2 : [0, T ] × R

d → 2R
d×m

taking closed (subset) values, we denote (F1 ◦ X)(t)(ω) :=
F1(t,X(t)(ω)), (F2 ◦X)(t)(ω) = F2(t,X(t)(ω)) and denote by S(F1 ◦X), S(F2 ◦X) the fam-
ily of all Ft -nonanticipative selectors of F1 ◦X and F2 ◦X, respectively. Let (W(t))0≤t≤T be
an m-dimensional Ft -Brownian motion and define the following sets∫ t

s
(F1 ◦X)(r) dr :=

{∫ T

0
1[s,t](r)f (r) dr : f ∈ S(F1 ◦X)

}
,

∫ t

s
(F2 ◦X)(r) dr :=

{∫ T

0
1[s,t](r)g(r) dW(r) : g ∈ S(F2 ◦X)

}
.

Consider the stochastic differential inclusion

(A.8) dX(t) ∈ F1
(
t,X(t)

)
dt + F2

(
t,X(t)

)
dW(t).

DEFINITION A.15 (See [31, 33]). We define the (stochastic) weak solution to (A.8) as
a system consisting of a complete filtered probability space {�,F, {Ft},P}, a continuous
Ft -adapted process (X(t))0≤t≤T , and an Ft -Brownian motion W(t) satisfying

X(t) −X(s) ∈
∫ t

s
F1
(
r,X(r)

)
dr +
∫ t

s
F2
(
r,X(r)

)
dW(r), ∀0 ≤ s < t ≤ T ,w.p.1.

Denote by Xμ(F1,F2) a set of all weak solutions to (A.8) with an initial distribution μ. It is
called a (stochastically) strong solution (solution for short) if the complete filtered probability
space and the Brownian motion have been given.

LEMMA A.7 (See [31]). Assume that F1, F2 are measurable and bounded and have
convex values, where F2 has convex value in the sense of that {g · g� : g ∈ F2(t,x)} is convex
for each (t,x) ∈ [0, T ] × R

d and F1(t, ·), F2(t, ·) are continuous for fixed t ∈ [0, T ]. Then,
for any initial distribution μ, the set Xμ(F1,F2) is nonempty.

When convexity is absent, the above results were studied in [32]. For more details on
stochastic differential inclusions, the reader is referred to [31–33] and references therein.
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A.7. Proof of Proposition 3.1.

PROOF. Without loss of generality and for notational simplicity, we assume that x∗ = 0
and verify the tightness for sequence of Xn√

an
. To prove this tightness, it suffices to show that

for each small κ > 0, there are finite constants Mκ and Cκ such that

(A.9) P

(
Xn√
an

≥ Cκ

)
≤ κ, for n ≥ Mκ.

Let ε > 0 be small. Because Xn → x∗ = 0 w.p.1, for any given small ν > 0, there exists an
Nν,ε such that |Xn| ≤ ε for n ≥ Nν,ε with probability ≥ 1−ν. By modifying the processes on
a set of probability at most ν, one can assume that |Xn| ≤ ε for n ≥ Nν,ε and that all the as-

sumptions continue to hold. Denote the modified sequence by {Xν
n} and if we can show { Xν

n√
an

}
is tight for each ε > 0, ν > 0, then the original sequence is tight. Hence, for the purposes of
the tightness proof and by shifting the time origin if needed, it can be supposed without loss
of generality that |Xn| ≤ ε for all n for the original process, where ε > 0 is arbitrarily small.

Next, denote by En the conditional expectation on the past information up to time n (i.e.,
the σ -algebra generated by {ξj : j < n}. We have that

(A.10)

En

(
V (Xn+1) − V (Xn)

)
= anEn

(
Vx(Xn)

(
h(Xn) + bn(Xn)

))+ anEn

(
Vx(Xn)

(
h(Xn, ξn) − h(Xn)

))
+ O
(
a2
n

)
En

∣∣bn(Xn) + h(Xn, ξn)
∣∣2

≤ anEn max V̇
G+h

(Xn) + anVx(Xn)En

(
h(Xn, ξn) − h(Xn)

)
+ O
(
a2
n

)(
1 + V (Xn)

)
≤ −λanEnV (Xn) + anVx(Xn)En

(
h(Xn, ξn) − h(Xn)

)+ O
(
a2
n

)(
1 + V (Xn)

)
.

Let V1(x;n) := anVx(x)En(h(x, ξn) − h(x)), and define the perturbed Lyapunov function
Ṽ (x;n) := V (x) + V1(x;n). In fact, the idea of perturbed Lyapunov functional method is
that the perturbations added are small in terms of order of magnitude, and they lead to desired
cancellation of the un-wanted terms in (A.10). Thus, by using the usual computation in the
perturbed Lyapunov functional method (see, e.g., [37], Theorem 10.4.2, page 345–346), we
can obtain from (A.10) that

EnV (Xn+1) − V (Xn) ≤ −λ1anV (Xn) + O
(
a2
n

)
,

where 0 < λ1 < λ. By taking ε small enough, it can be supposed that λ1 is arbitrarily close
to λ. Thus, there is a real number K1 such that for all n ≥ 0

(A.11) EV (Xn+1) ≤
n∏

i=1

(1 − λ1ai)EV (X0) + K1

n∑
i=0

n∏
j=i+1

(1 − λ1aj )a
2
i .

Therefore, it is readily seen that to obtain (A.9), it suffices to prove that the right side of
(A.11) is of the order of an. However, this fact can be easily proved by approximating this
quantity by an exponential approximation. The detail of this argument can be found in [37],
Section 10, page 342–343, and is thus omitted here. �
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[46] RAM, S. S., NEDIĆ, A. and VEERAVALLI, V. V. (2009). Incremental stochastic subgradient algorithms for
convex optimization. SIAM J. Optim. 20 691–717. MR2515792 https://doi.org/10.1137/080726380

[47] ROBBINS, H. and MONRO, S. (1951). A stochastic approximation method. Ann. Math. Stat. 22 400–407.
MR0042668 https://doi.org/10.1214/aoms/1177729586

[48] ROCKAFELLAR, R. T. and WETS, R. JB. (1997). Variational Analysis. Springer, Berlin.
[49] SHALEV-SHWARTZ, S., SINGER, Y., SREBRO, N. and COTTER, A. (2011). Pegasos: Primal esti-

mated sub-gradient solver for SVM. Math. Program. 127 3–30. MR2776708 https://doi.org/10.1007/
s10107-010-0420-4

[50] SHALEV-SHWARTZ, S. and SREBRO, N. (2018). SVM optimization: Inverse dependence on training set
size. In Proceedings of the 25th International Conference on Machine Learning 928–935.

http://www.ams.org/mathscinet-getitem?mr=3283875
https://doi.org/10.1137/120883803
http://www.ams.org/mathscinet-getitem?mr=1348735
https://doi.org/10.1007/BF02219371
http://www.ams.org/mathscinet-getitem?mr=4071314
https://doi.org/10.1051/cocv/2019074
http://www.ams.org/mathscinet-getitem?mr=4030168
http://www.ams.org/mathscinet-getitem?mr=2158883
https://doi.org/10.1080/SAP-200044414
http://www.ams.org/mathscinet-getitem?mr=3097668
https://doi.org/10.1007/978-1-4614-6756-4
http://www.ams.org/mathscinet-getitem?mr=2085944
https://doi.org/10.1137/S1052623400376366
http://www.ams.org/mathscinet-getitem?mr=0499560
http://www.ams.org/mathscinet-getitem?mr=1993642
http://www.ams.org/mathscinet-getitem?mr=0465458
https://doi.org/10.1109/tac.1977.1101561
http://www.ams.org/mathscinet-getitem?mr=0873887
https://doi.org/10.1007/BF00699098
http://www.ams.org/mathscinet-getitem?mr=3150179
https://doi.org/10.1137/120894464
http://www.ams.org/mathscinet-getitem?mr=0871547
https://doi.org/10.1109/TCS.1987.1086038
http://www.ams.org/mathscinet-getitem?mr=2832397
https://doi.org/10.1287/moor.1110.0497
http://www.ams.org/mathscinet-getitem?mr=3354772
https://doi.org/10.1214/11-SSY056
http://www.ams.org/mathscinet-getitem?mr=2515792
https://doi.org/10.1137/080726380
http://www.ams.org/mathscinet-getitem?mr=0042668
https://doi.org/10.1214/aoms/1177729586
http://www.ams.org/mathscinet-getitem?mr=2776708
https://doi.org/10.1007/s10107-010-0420-4
https://doi.org/10.1137/120883803
https://doi.org/10.1051/cocv/2019074
https://doi.org/10.1080/SAP-200044414
https://doi.org/10.1287/moor.1110.0497
https://doi.org/10.1007/s10107-010-0420-4


STOCHASTIC APPROXIMATION WITH DISCONTINUITY 823

[51] SHALEV-SHWARTZ, S. and TEWARI, A. (2011). Stochastic methods for �1-regularized loss minimization.
J. Mach. Learn. Res. 12 1865–1892. MR2819020

[52] SHAMIR, O. and ZHANG, T. (2013). Stochastic gradient descent for non-smooth optimization: Convergence
results and optimal averaging schemes. Proc. Mach. Learn. Res. 28 71–79.
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