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This paper is concerned with a general filtering scheme of a continuous-time dynamic system in which
the state is not completely observable. The observation process consists of a function of the state with
additive noise. Typically, such noise is assumed to be non-degenerate. In this case, various filtering
schemes can be developed. For example, in a linear case, the Kalman-Bucy (KB) filter applies and
leads to a recursive filtering equation for the conditional expectation of the state given the observation
up to time t. Nevertheless, in applications, only some state variables are directly observable and the
rest are not. This gives rise to filtering with degenerate observation noise. In this case, traditional
filtering schemes fail. This paper develops a viable scheme to address possible degenerate observation
noise. In this paper, we propose a recursive filtering equation in which the gain matrix is a matrix-
valued parameter to be determined. We adopt the Monte Carlo training procedure used for deep
filtering to determine the best gain matrix. In particular, given the state and observation equations,
we generate their Monte Carlo samples. Given a gain matrix, we generate the corresponding state
estimation samples, which leads to the error function of the state and its estimation. The problem is to
choose the gain matrix to minimize the error function. We develop a stochastic approximation method
for such a minimization task; we term the procedure the SA filter, where SA stands for stochastic
approximation. We focus on computational experiments and demonstrate the performance of the SA
filter and its robustness. We also compare the SA filter with the (extended) Kalman-Bucy filter and
the deep filter in both linear and nonlinear models.
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1. Introduction Early development in nonlinear filtering can be found in
Duncan (1967) focusing on conditional densities for diffusion
processes, Mortensen (1968) for the most probable trajectory
approach, Kushner (1964) for nonlinear filtering equations, and
Zakai (1969) for unnormalized equations.

For recent progress on general filtering, we refer the reader
to Frey, Schmidt, and Xu (2018) and Gao and Tembine (2016).
In Frey et al. (2018), the authors used Galerkin’s approxima-

This paper is devoted to a continuous-time filtering problem
with possible degenerate observation noise. There are many real-
world applications of state estimation and filtering including ma-
neuvered target tracking, speech recognition, telecommunication,
and financial engineering. Filtering is concerned with dynamics
in which the state variables are not completely observable. The
traditional approach is to derive estimators based on observation

using the least squares criteria. Under the setup of Gaussian
distributions, the corresponding filtering problem is to find the
conditional mean of the state given the observation up to time
t. The best known filter is the Kalman-Bucy (KB) filter in linear
models. We refer the reader to Fleming and Rishel (1975) for
details.
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tion to solve a Zakai equation, whereas in Gao and Tembine
(2016), the authors considered distributed mean-field filters for
traffic networks and developed a scheme decomposing the entire
state space into subspaces and performing the distributed filters
independently. Their main effort was still on developing approx-
imation methods of infinite-dimensional filtering equations. We
note that the difficulty of using the conditional distribution based
filtering is the underlying stochastic differential equations are
infinite dimensional. Thus the aforementioned methods still have
to deal with the inherent ‘curse of dimensionality’. This makes
the filtering very difficult and challenging for general nonlinear
systems.
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In this paper, we study the filtering problem and focus on
finite dimensional filters. In particular, we consider the model
in which the state X; is not completely observable. The observa-
tion Y; is given by a function of X, with additive noise. In the
literature, typically or almost always, the observation noise is
assumed to be non-degenerate in the sense that the product of
the noise coefficient matrix and its transpose is invertible. In this
case, various filtering schemes can be developed. For instance,
in a linear model, the Kalman-Bucy filter applies and leads to a
recursive filtering equation for conditional expectation of X; given
the observation up to time t. Nevertheless, in applications, often
some components of X; are directly observable and the rest are
not. To begin, we consider several examples.

Example 1. Consider a stochastic acceleration problem, which
is well known in dynamic systems and statistical physics; see
Kesten and Papanicolaou (1980/81), Nguyen and Yin (2021), and
references therein. For simplicity, we consider a real-valued pro-
cess representing the stochastic acceleration. Let X; be the posi-
tion of a particle on the real line with t being the time. Then X;
is the velocity and X; is the acceleration. Use a(-) : [0, T] — R to
denote a nonlinear continuous function. Suppose that the particle
is subject to stochastic disturbances, which are unavoidable in
reality. Denote the source of disturbances or the driving noise
by W, a Brownian motion with intensity o(X;). We can then
represent the stochastic acceleration using the following differ-
ential equation X; = a(X;)dt + o(X;)W;, where W, denote the
formal time derivative of a standard Brownian motion W;. Define
X! = X; and X? = X/. Interpreting the above in the usual sense
of stochastic calculus, for the vector X; = (X!, X?) € R? (with 2/
denoting the transpose of z) and W; = (0, W;), we have

X2 0 0 ~
dX[ - [a()£[~l)i| dt + [O O’(Xt] )] dW[

Assume the velocity th is observable. Then, the observation equa-
tion is given by dY; = [X/},XZ]'dt + [1,0]dV;, where V; is a
Brownian motion independent of W;. The covariance matrix of
the observation noise is given by [1, 0]'[1, 0], which is degener-
ate. In this example, the covariance matrix of the state equation
is also degenerate.

Example 2. Denote the position of a particle in a fluid by X; with
X; € RY and its velocity by & = (d/dt)X;. Consider the random
movement of the particle in a fluid due to collisions with the
molecules of the fluid, whose state is given by m% = —A&+W,,
where m is the mass, A is the friction coefficient, and W; is a
standard d-dimensional Brownian motion. However, the velocity
is not directly observable, rather we can only observe the position
of the particle with noise that is described by a chemical Langevin
equation X; = b(X;) + o/(X;)V;, with Xo = Xo € R? and Xo = & €
RY. b(x) + o(x)V; represents a particle in the force field, and V; is
an m-dimensional standard Brownian motion and V; is its formal
derivative. Assume that W; and V; are independent. Although the
state is non-degenerate, the observation, similar to the stochastic
acceleration model, is degenerate. For details of a more general
model, see Nguyen and Yin (2021). Note that in that reference, an
additional small parameter ¢ is included to represent the strong
damping.

Example 3. Building on the research of Ross and Hudson, “com-
partmental” epidemic models were first introduced by Kermack
and McKendrick (1927) in a series of three papers (known as the
“trilogy”). Then the study on mathematical models has flourished.
Much attention has been devoted to analyzing, predicting the
spread, and designing controls of infectious diseases in host pop-
ulations. The so-called SIR models have received much attention;
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they have been used in a wide range of applications and also
had much influence on the COVID-19 modeling. The SIR models
subdivide the population into Susceptible S;, Infected I;, and
Removed R; classes leading to

dSt = (at - ,BtStIt — N,S[)dt + O'l,tS[dW[
dl, = (,Btstlt — (e + por + )/t)lr)df + o2,cldW, (1.1)
dR; = (vl — eRe)dt + o3 (R dW;.

Note that all three components are subject to the same Brownian
motion perturbation reflecting that the noise comes from the
same source. Clearly, this is a degenerate diffusion model. For
the meaning of the various parameters, we refer to Dieu, Du,
Nguyen, and Yin (2016) for further details. In fact, there has
been much effort on studying a more general class of nonlinear
stochastic models known as Kolmogorov systems; see the most
recent results (Nguyen, Nguyen, & Yin, 2021). Assume that each
variable can be observed with the same additive noise. That is, the
observation Y; is given by dY; = [S;, I, R;)'dt +[1, 1, 1]'dV;, with
V; being a standard real-valued Brownian motion independent of
W;. It is readily seen that the observation noise is degenerate.

In the above examples, the observation noise is degenerate.
Thus, the traditional filtering schemes fail. It is the purpose of
this paper to develop a viable filtering scheme to address possible
degenerate observation noise.

Recently, a deep neutral network (DNN) based filtering was
developed in Wang, Yin, and Zhang (2021). The idea was to
generate Monte Carlo samples from the given model and make
use of these samples to train a deep neutral network. The ob-
servation process from the Monte Carlo is used as the inputs to
the DNN and the state is used as the target. A least squares loss
function of the target and calculated output is used for the neutral
network training in order to obtain the corresponding weight
vectors. Then these weight vectors are applied to a separate set
of Monte Carlo samples from of an actual dynamic model. The
corresponding process is called the deep filter (DF). It is shown
in Wang et al. (2021), the deep filter compares favorably with the
traditional Kalman filter in linear cases and the extended Kalman
filter in nonlinear cases. In addition, the deep filter can deal with
models involving random switching processes.

In this paper, to address possible degenerate observation noise,
we consider a recursive equation for the state estimation in which
the gain is a matrix-valued parameter to be estimated. We adopt
the Monte Carlo training procedure in deep filter to determine
the best gain matrix. In particular, given the state and observation
equations, we generate their Monte Carlo samples. Given a gain
matrix, we generate the corresponding state estimation samples.
This leads to the error function of the state and its estimation. The
goal is to choose the gain matrix to minimize the error function.

We use a stochastic approximation method to search for the
optimal gain in connection with state estimations. The algorithms
are of stochastic gradient descent type. A comprehensive study of
asymptotic properties of stochastic approximation methodologies
can be found in Kushner and Yin (2003).

The main contribution of this paper is the development of a
novel approach for general SA filtering of systems with possi-
ble degenerate observation noise. Such an approach provides a
recursive form and is shown to be computationally comparable
with the deep filtering methods. The recursive form is desirable
from an application point of view in construct to the ‘black-box’
type filtering of the deep filtering. In addition, the SA filter is
robust when the actual observation noise is higher than that of
the nominal model.

The rest of the paper is arranged as follows. In the next section,
we present the model under consideration and the corresponding
SA filter. Section 3 presents the asymptotic results. Numerical
experiments are reported in Section 4. Finally, some concluding
remarks are given in Section 5.
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2. The model

Let X; € R% denote the state process satisfying the stochastic
differential equation

dX; = f(X;)dt + odWe, Xo = x, (2.2)

where f(x) is a function of X;, o is a matrix of appropriate
dimensions, and W; is an R%2 Brownian motion. We consider the
case that X; is not fully observable. Assume a function of X; is
observable with additive noise so that the observation process
Y; € R% is given by the equation

dY; = h(X;)dt + o1dVt, (2.3)

where h is a function of X;, o is a matrix of suitable dimensions,
and V; € R% is a Brownian motion. When o107 is invertible,
various filtering schemes can be developed. For example, in a
linear model, Kalman-Bucy filter renders a recursive equation
for the conditional expectation of X; given the observation up
to time t. Nevertheless, in applications, very often, only some
components of X; are observable and the rest are not, which
leads to degenerate observation noise with singular o07. In this
case, the existing filtering schemes fails. A main objective of this
paper is to develop a viable filtering scheme to address possible
degenerate observation noise.

3. Asymptotic results

Let )?t denote an estimate of X;. We consider the filtering
scheme of the form

dX, = f(X,)dt + R(dY, — h(X,)dt), Xo = EXo, (3.4)

where R is a constant gain (d; x d;) matrix to be determined.
Based on Monte Carlo simulations and stochastic approximation
methods, our new approach converts the filtering problem to
a stochastic optimization problem to estimate the best gain R.
Specifically, for each fixed R, we generate Monte Carlo samples
of X;,Y; and X; from (2.2), (2.3), and (3.4). Using these sample
paths, we can define an error function of R

T
JR) =E / X — X[ dt, (35)
0

for a given T. However, when we carry out the simulation, we
are taking samples. Thus in lieu of J(R), we are using a noisy

sampled error J(R, {) where ¢ denotes the noise appeared in
the sample. Then we use a stochastic approximation approach to
search for R that minimizes the error. In particular, let R,, denote
the approximation sequence given by the recursive equation

Rut1 = Ry — &nDJ(Ry, &n), (3.6)

where the finite difference
~ 1 ~
DJ(Re. &) = 5= (T(Rn + 60, &) = TRy = 80.¢,;)
n

approximates the gradient of J(R) with ¢ denotes two different
noise processes, and &, > 0, 8, > O satisfying > &, = o0,
> 8n = oo, and &,/8, — 0 as n — oc. The &, is the stepsize
for the stochastic approximation, whereas §, is the stepsize for
finite difference; see Kushner and Yin (2003) for different choices
of these stepsize.

Remark 4. Note that (3.6) is a stochastic approximation algo-
rithm for approximating a matrix-valued parameter R. A proper
way of writing the recursive formula is to_use a vectorization of
R by piling up the columns of R. That is, R = vec(R!,...,R%) e
R(@192)%1 (3 (d;d,) column vector), where R' is the ith column of R.
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Next, clefine]ii = J(rei£dee, g“zi) and the central finite difference
[]i+ —J71/(28¢) and so on, where ei,i\s the standard unit vector.
Then we can write the recursion for R, either componentwise or
in a vector form. However, for notational simplicity, we decided
to use (3.6) instead. We name such a state estimation procedure
stochastic approximation based filter or in short SA filter. In what
follows, we carry out numerical experiments to examine the per-
formance of our stochastic approximation based filtering scheme.
Before proceeding further, we state a convergence theorem.

Theorem 5. Consider (3.6). Suppose that

eg, —> 0,8, > 0,and &,/8, - 0asn — o0, ) & = o0,
Y 80 =00, but 3" (en/8n)* < 00;

e {¢,} is a stationary ¢-mixing sequence such that for each R,
EJ(R, ¢2) = J(R) and that for each R, E[J(R, ¢)|’
o the differential equation

R= —VJ(R), R(0) =Ry

has a unique solution for each initial condition Ro;
e the differential equation (3.7) has a unique stationary point R*,
which is stable in the sense of Lyapunov.

Then the sequence {R,} converges weakly (also with probability
one) to R* as n — oo.

< 00,

(3.7)

Proof. The proof of the above theorem is essentially contained
in the book of Kushner and Yin (2003). We only make some brief
comments. The main idea is the use of the so-called ordinary dif-
ferential equation approach, which relies on the interplay of the
discrete-time iterations and continuous-time ordinary differential

equation (3.7). Define t, = Z;:O] g, m(t) = max{n : t, < t},
and the piecewise constant interpolation R(t) = R, for t €

[ta, tar1) and the shift sequence R*(t) = R°(t + t,). Note that
m(t) is just a “look back” map indicating what is the discrete
iteration number associated with the continuous time t. The
limit ordinary differential equation is obtained first, and then the
convergence to the stationary point R* is derived using stability
of the ordinary differential equation. A crucial step is averaging.
The rational is that R, varies relatively slowly compared to the
noise in {DJ(R, ¢;)}. Choose A, > 0 with A, — 0asn — o©
such that lim, sup{¢; : j > n}/A, — 0. For each n choose an
increasing sequence my 1 < My < --- (with my; = n) such that

Z':”n.Hl—l gj/An =14+ O(]) with o(]) — 0 asn — oo so that

j=mp,|
(t,,l,L,Jr;1 — tm,,)/An — 1 asn — oo uniformly in [ For a fixed R,

the noise is averaged out in that

My 141—1
- > &DJ(R, &) — VJ(R) as n — oo.

J=mp |

(3.8)

Note that in the above, we need the convergence to hold in the
sense of in probability, which follows from the fact that {DJ(R, ¢,)}
is a stationary mixing sequence. In fact the limit also holds in the
sense of with probability one because mixing implies ergodicity.
Then the ordinary differential equation (3.7) can be obtained. The
convergence of {R,} follows from the argument in Kushner and
Yin (2003, Chapter 8) (see also Kushner & Yin, 2003, Chapter 6);

the details are omitted, however.

Remark 6. The conditions we used are not the weakest but it
is good enough for our purposes. The use of stationary mixing
sequence instead of independent and identically distributed ran-
dom variables enables one to use correlated random seeds in
simulation so as to do something like variance reduction. In lieu
of stationary mixing, we can simply require (3.8) holding. The
results above are based on a sequence of decreasing stepsizes
{en}. A constant stepsize algorithm can be used with certain
modifications. In such a case, the pertinent notion of convergence
is in the sense of weak convergence.
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4. Numerical experiments

In this section, we study several representative examples and
examine the performance of the SA filter given in (3.4)-(3.6). We
compare the SA filter with the Kalman-Bucy filter given in Flem-
ing and Rishel (1975) and the deep filter developed in Wang et al.
(2021). By and large, the KB filter is a mean-variance optimal
filter. However, when the observation noise is degenerate, the KB
filter cannot be applied. The SA filter is in a recursive form with
gain parameter matrix to be estimated. The main advantage of
the SA filter is its recursive structure and its capability of treating
systems with possible degenerate observation noise. The deep fil-
ter is a deep neural network based filter and is less structured and
uses ‘black box’ type approach thanks to the hidden layers of the
underlying neural network. In particular, we consider the filtering
over the interval [0, T] and set T = 1. We take discretization step
size h = 0.002 which corresponds to the partition of [0, T] into
N_= 500 subintervals and let §, = § = 0.5 when computing
DJ(R, ¢ ). We also take the window size ng = 50 for deep filter and
take the initial value Ry as the matrix of ones with appropriate
dimension. In the figures and tables, we use the SA, KB, and DF
to denote SA filter, KB filter, and deep filter, respectively.

4.1. A linear model (1-D)

First we consider a one-dimensional linear model with

{dXt = 0.5X.dt + dW,, (4.9)
dYt =Xtdt—|—o’1th, ’
where W; and V; are independent standard Brownian motions.
For training purposes, we generate M = 1000 Monte Carlo
samples. For the SA filter, we take ¢, = & = 0.1 and the
number of maximum iteration M = 5000 times. To compare
with the deep filter, we consider a fully connected deep neural
network with seven layers including input and output layers. The
number of neurons for each layer are ng, 64, 32, 16, 8, 8 and
1, respectively. In addition, we take the learning rate Ir= 0.01,
batch size 64, and epoch 50. The sigmoid activation function is
used when performing optimization procedure with stochastic
gradient descent (SGD). Finally, the performance of each filter is
measured with a separate set of M = 1000 Monte Carlo samples.
For any two processes £ and &2 (e.g., €1 = {Xun} and &2 = {Xun}),
we measure their difference by

e Yoy e [ @) — EXwn)]
Ie" =&l = M(N —no + 1)&
iy e @) + 182 (@)

B M(N —ng + 1) '

In Table 1, it shows the relative errors of the corresponding state
and the SA filter, KB filter, and the deep filter, respectively. The
optimal value of R* for the SA filter is also provided. As can be
seen from Table 1, as the observation noise o; # 0, all filters
perform well. The SA filter performs better than the deep filter,
and the KB filter outperforms both the SA filter and deep filter.
Nevertheless, when o = 0, the KB filter fails while both the SA
filter and deep filter perform well. In addition, the optimal R*
appears to decrease w.r.t. oq. This suggests that larger filtering
gain is needed when the observation noise gets smaller.

In Figs. 1, 2, and 3, a sample path of state and the correspond-
ing SA, KB, and deep filters are plotted immediately below with
01 =0,0.1,05,1, 1.5, and 2.

Next, we examine the robustness of the SA filter. We consider
two models: the nominal model (NM) used to train the system

, with

6]
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T T T T T T
0.6 B
04 B
02 J
0.0 J
—02r True State 7]

—— SA Filter

—04r Deep Filter ]

1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

T T T T T T
1.0 F B
0.5 4
00r — True State ]

——— SA Filter
_osL — Kalman Bucy Filter ]
’ —— Deep Filter

1 1 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1. A sample path of state and the corresponding SA, KB, and deep filters
with o7 = 0.0 and o7 = 0.1, resp.

T T T T T T
L5t —— True State 7
——— SA Filter
1.0F Kalman Bucy Filter ]
Deep Filter
0.5 ]
0.0 ]
—05F ]
1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
T T T T T T
2.0 f —— True State ]
——— SA Filter
1.5 F — Kalman Bucy Filter i
Deep Filter
1.0 | ]
0.5 ]
0.0 ]
—0.5 Il L 1 L 1 Il
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. A sample path of state and the corresponding SA, KB, and deep filters
with o7 = 0.5 and o7 = 1.0, resp.
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Table 1
Relative errors of the state and the SA, KB, and deep filters (1-D: linear
model).

o1 0.0 0.1 0.5 1.0 1.5 2.0
SA 0.1565 02112 0.4793 0.6658 0.7156 0.7233
KB 0.2014 0.4418 0.5614 0.6249 0.6272
DF 0.0678 0.2192 0.4954 0.6872 0.7622 0.8069
R* 8.9688 7.6544 1.4832 0.4691 0.2831 0.1813
Table 2
Relative error dependence on oM.
oM 0.0 0.1 0.5 1.0 15 2.0
SA 0.4653 0.4067 0.5041 0.5717 0.6178 0.6756
KB 0.3222 0.3248 0.4655 0.6042 0.6753 0.7387
DF 0.5287 0.5218 0.5309 0.5804 0.6120 0.6551
T T T T T T
Loy True State ]
0.75 £ — SAFilter b
—— Kalman Bucy Filter
0.50 | —— Deep Filter 7]

025 F

0.00 |

—-0.25

—0.50

—0.75 1 1 1 1 1 1

—— True State
—— SA Filter

—— Kalman Bucy Filter
—— Deep Filter

05

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3. A sample path of state and the corresponding SA, KB, and deep filters
with o7 = 1.5 and o7 = 2.0, resp.

and the actual model (AM) used for testing. Here we consider the

NM and AM with different observation noise:
. dXt = OSX[dt + dW[,

(NM) ’ {dYt = X[dt + O']NMth,

(4.10)
’ dY[ = X[dt + UfMdV[.
We fix oM™ = 0.5 and vary the value of oM. When testing

robustness, the coefficients of the NM in (4.10) are used to feed
the KB filter, while the actual states and the corresponding obser-
vation driving the KB filter are generated by the AM. The same
data usage applies to both the SA filter and deep filter. That is,
the NM is used to train the neural network, while the AM yields
the actual ‘physical’ process. The corresponding errors for the SA
filter, the Kalman-Bucy filter, and the deep filter are given in
Table 2. It is clear from Table 2 when o4 < oM = 0.5, the
KB filter performs better. However, when o™ > oM = 0.5,
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Table 3
Relative errors of the state and the SA, KB, and deep filters (1-D: nonlinear).
o1 0.0 0.1 0.5 1.0 15 2.0
SA 0.1659 0.2185 0.4879 0.6171 0.6105 0.6649
EKB 0.2080 0.5295 0.6078 0.5976 0.6248
DF 0.0752 0.2298 0.5485 0.7377 0.7706 0.8304
R* 8.7331 7.4385 1.6909 0.4558 0.3134 0.2056
T T T T T T
0.50 —— True State
0.25 ——— SA Filter
’ —— Deep Filter
0.00 | 1
—-0.25 1
—0.50 1
—0.75 1
—1.00 | 1
1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
T T T T T T
—— True State
05 - ——— SA Filter
0.0 i
—0.5 F B
—-1.0 F B
1 1 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4. A sample path of state and the corresponding SA, KB, and deep filters
with o7 = 0.0 and oy = 0.1, resp.

both the SA filter and the deep filter provide better results. This
suggests that both the SA filter and the deep filter are more robust
when the actual observation noise is large.

4.2. A nonlinear model (1-D)

Next, we consider the following one-dimensional non-linear
model

{dXt = sin(5X; )dt + dW,,

dYt :Xtdt“raldvt, (4.11)

where W; and V; are independent standard Brownian motions.
For deep filter, we use the learning rate Ir= 0.01, the batch size
64, and epoch 50. Furthermore, we take ¢, = ¢ = 0.1 in the SA
filter. In this case, the KB filter needs to be replaced by extended
KB filter. Table 3 displays the errors of different algorithms and
the corresponding optimal R* of the SA filter. A sample path of the
state and that of the corresponding EKB filter, the SA filter and the
deep filter are given in Figs. 4, 5, and 6, respectively, for different
o1. As in the linear model, the EKB filter fails when o7 = 0. When
o1 # 0, all three filters perform similarly. The deep filter falls
behind when o; gets larger.
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T T T T T T
—— True State

1.0 F =™ SAFilter
—— EKBF
Deep Filter

05

0.0

—0.5F

0.0

—1.0 F —— True State i
——— SA Filter
—— EKBF

—1.5 | — Deep Filter i
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5. A sample path of state and the corresponding SA, KB, and deep filters
with o7 = 0.5 and o7 = 1.0, resp.

Table 4

Relative error dependence on oM.
ofM 0.0 0.1 0.5 1.0 15 2.0
SA 0.3556 0.3767 0.4615 0.5600 0.6561 0.6948
EKB 0.3153 0.3475 0.5107 0.5925 0.6905 0.7299
DF 0.5297 0.5384 05172 0.5556 0.6275 0.6383

Next, as in the previous subsection, we examine the robust-
ness of each filters. We consider the models:

. dXt — Sln(5X[)dt + th,
(NM) ’ {dyt = X[dt + O']NMth,

. dXt = Sln(SXt)dt + dW[,

The relative errors for three algorithms are exhibited in Table 4.
For smaller o™, the EKB turns to outperform both the SA filter
and deep filter. When o4™ is large, both the SA filter and deep
filter exhibit more robustness performance.

(4.12)

4.3. A linear model (2-D)

In this section, we consider a two-dimensional model given as
follows:
{dXt = AX[dt =+ Gth,

dY; = HX,dt + o1dV,, (4.13)

where W, and V, are independent standard Brownian motions in
R?2. We take

[t 1] [t o], [t 0]  _[s o0
S HN R R R R R

Here s, is a scalar parameter. Clearly, when s; = 0, the observa-
tion noise is degenerate. In this example, we generate M = 500
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Fig. 6. A sample path of state and the corresponding SA, KB, and deep filters
with o7 = 1.5 and oy = 2.0, resp.

Table 5

Relative errors of the state and the corresponding filters (2-D: linear model).
51 0.0 0.1 0.5 1.0 15 2.0
SA 0.3796 0.3843 0.5129 0.6228 0.6644 0.6758
KB 0.3371 0.4904 0.5480 0.5942 0.6247
DF 0.2980 0.3491 0.5444 0.6404 0.6861 0.7269

Monte Carlo samples to train the deep filter and to search for the
optimal parameter matrix R* in the SA filter. For deep filter, we
choose the forward neural network with layers (2ng, 128, 64, 32,
16,8, 8,2) and use the stochastic gradient descent algorithm
with learning rate Ir= 0.01. We also take the batch size to be
64 and epoch to be 200. For the SA filter, we iterate M = 500
times. The relative errors for these filters are listed in Table 5.

Sample paths of the states and their corresponding SA, KB,
and deep filters are given in Figs. 7-12. As shown in this table,
the KB filter fails when s; = 0. However, when s; # 0, The KB
filter outperforms SA filter and deep filter. Recall that for linear
models with non-degenerate observation noise, the KB is optimal.
In addition, the SA filter performs a little better than the deep
filter in this example.  Finally, we test the robustness of each
filters by examining the error dependence on of™ with fixed
siM = 0.5.

. dXt = AXtdt + th,
(NM) : {dYt = HX,dt + oMdV,,

. dX[ = AXtdt + th,
(AM): {dYt = HX.dt + ofMdV;,

NM M
N _ | Sh 0 AM_S'? 0
o1 —[0 1]’ o —[o 1

As shown in Table 6, when st < siM = 0.5, the KB filter
performs better. On the other hand, when si" > s'™, both the SA

(4.14)
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1.0

Fig. 9. A sample path of X! and the corresponding SA, KB, and DF filters (top)

Fig. 7. A sample path of X! and the corresponding SA, KB, and deep filters
& per t P & P and that of X? and the corresponding SA, KB, and deep filters (bottom) with

(top), and that of X2 and the corresponding SA, KB, and DF filters (bottom) with

sp = 0.0. s1 =0.5.
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Fig. 10. A sample path of X! and the corresponding SA, KB, and deep filters
(top) and that of X? and the corresponding SA, KB, and deep filters (bottom)
with s; = 1.0.

Fig. 8. A sample path of X;' and the corresponding SA, KB, and DF filters (top)
and that of X? and the corresponding SA, KB, and deep filters (bottom) with
s1=0.1.
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Fig. 11. A sample path of th and the corresponding SA, KB, and DF filters (top)
and that of X2 and the corresponding SA, KB, and deep filters (bottom) with
sy = 1.5.
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Fig. 12. A sample path of X, and the corresponding SA, KB, and DF filters (top)
and that of X? and the corresponding SA, KB, and deep filters (bottom) with
s1 = 2.0.
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Table 6

Relative error dependence of siM.
sim 0.0 0.1 0.5 1.0 15 20
SA 0.4877 0.4858 0.5223 0.5651 0.6337 0.6669
KB 0.4348 0.4338 0.4861 0.5695 0.6559 0.6968
DF 0.5290 0.5326 0.5431 0.5772 0.6246 0.6508

filter and the deep filter outperforms that KB. This demonstrates
the robustness of both the SA filter and deep filter when the
actual noise is larger than the nominal noise.

5. Concluding remarks

This work has been devoted to studying a novel filtering
method for systems whose observations are degenerate. For such
systems, the standard techniques in the literature do not work
due to the degeneracy. The proposed methods are based on
stochastic approximation methods. A number of examples, in-
cluding linear and nonlinear systems are considered. The com-
putational results are promising. The suggested methods open
up new windows for further investigation. In particular, it would
be interesting to consider the SA filtering under a discrete-time
system of the form X;11 = F(X;) + R(Yn, — H(Xy)), for suitable
functions F and H, to develop the corresponding SA algorithms,
and to study related convergence properties and numerical per-
formance.
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