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a b s t r a c t

This paper is concerned with a general filtering scheme of a continuous-time dynamic system in which
the state is not completely observable. The observation process consists of a function of the state with
additive noise. Typically, such noise is assumed to be non-degenerate. In this case, various filtering
schemes can be developed. For example, in a linear case, the Kalman–Bucy (KB) filter applies and
leads to a recursive filtering equation for the conditional expectation of the state given the observation
up to time t . Nevertheless, in applications, only some state variables are directly observable and the
rest are not. This gives rise to filtering with degenerate observation noise. In this case, traditional
filtering schemes fail. This paper develops a viable scheme to address possible degenerate observation
noise. In this paper, we propose a recursive filtering equation in which the gain matrix is a matrix-
valued parameter to be determined. We adopt the Monte Carlo training procedure used for deep
filtering to determine the best gain matrix. In particular, given the state and observation equations,
we generate their Monte Carlo samples. Given a gain matrix, we generate the corresponding state
estimation samples, which leads to the error function of the state and its estimation. The problem is to
choose the gain matrix to minimize the error function. We develop a stochastic approximation method
for such a minimization task; we term the procedure the SA filter, where SA stands for stochastic
approximation. We focus on computational experiments and demonstrate the performance of the SA
filter and its robustness. We also compare the SA filter with the (extended) Kalman–Bucy filter and
the deep filter in both linear and nonlinear models.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is devoted to a continuous-time filtering problem
ith possible degenerate observation noise. There are many real-
orld applications of state estimation and filtering including ma-
euvered target tracking, speech recognition, telecommunication,
nd financial engineering. Filtering is concerned with dynamics
n which the state variables are not completely observable. The
raditional approach is to derive estimators based on observation
sing the least squares criteria. Under the setup of Gaussian
istributions, the corresponding filtering problem is to find the
onditional mean of the state given the observation up to time
. The best known filter is the Kalman–Bucy (KB) filter in linear
odels. We refer the reader to Fleming and Rishel (1975) for
etails.

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Wei Xing
Zheng under the direction of Editor Torsten Söderström.

∗ Corresponding author.
E-mail addresses: hongjiang.qian@uconn.edu (H. Qian), qz@uga.edu

Q. Zhang), gyin@uconn.edu (G. Yin).
 s

ttps://doi.org/10.1016/j.automatica.2022.110376
005-1098/© 2022 Elsevier Ltd. All rights reserved.
Early development in nonlinear filtering can be found in
Duncan (1967) focusing on conditional densities for diffusion
processes, Mortensen (1968) for the most probable trajectory
pproach, Kushner (1964) for nonlinear filtering equations, and
akai (1969) for unnormalized equations.
For recent progress on general filtering, we refer the reader

o Frey, Schmidt, and Xu (2018) and Gao and Tembine (2016).
n Frey et al. (2018), the authors used Galerkin’s approxima-
ion to solve a Zakai equation, whereas in Gao and Tembine
2016), the authors considered distributed mean-field filters for
raffic networks and developed a scheme decomposing the entire
tate space into subspaces and performing the distributed filters
ndependently. Their main effort was still on developing approx-
mation methods of infinite-dimensional filtering equations. We
ote that the difficulty of using the conditional distribution based
iltering is the underlying stochastic differential equations are
nfinite dimensional. Thus the aforementioned methods still have
o deal with the inherent ‘curse of dimensionality’. This makes
he filtering very difficult and challenging for general nonlinear
ystems.

https://doi.org/10.1016/j.automatica.2022.110376
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2022.110376&domain=pdf
mailto:hongjiang.qian@uconn.edu
mailto:qz@uga.edu
mailto:gyin@uconn.edu
https://doi.org/10.1016/j.automatica.2022.110376
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In this paper, we study the filtering problem and focus on
finite dimensional filters. In particular, we consider the model
in which the state Xt is not completely observable. The observa-
tion Yt is given by a function of Xt with additive noise. In the
literature, typically or almost always, the observation noise is
assumed to be non-degenerate in the sense that the product of
the noise coefficient matrix and its transpose is invertible. In this
case, various filtering schemes can be developed. For instance,
in a linear model, the Kalman–Bucy filter applies and leads to a
recursive filtering equation for conditional expectation of Xt given
the observation up to time t . Nevertheless, in applications, often
some components of Xt are directly observable and the rest are
not. To begin, we consider several examples.

Example 1. Consider a stochastic acceleration problem, which
is well known in dynamic systems and statistical physics; see
Kesten and Papanicolaou (1980/81), Nguyen and Yin (2021), and
references therein. For simplicity, we consider a real-valued pro-
cess representing the stochastic acceleration. Let Xt be the posi-
tion of a particle on the real line with t being the time. Then Ẋt
is the velocity and Ẍt is the acceleration. Use a(·) : [0, T ] ↦→ R to
enote a nonlinear continuous function. Suppose that the particle
s subject to stochastic disturbances, which are unavoidable in
eality. Denote the source of disturbances or the driving noise
y Wt , a Brownian motion with intensity σ (Xt ). We can then
epresent the stochastic acceleration using the following differ-
ntial equation Ẍt = a(Xt )dt + σ (Xt )Ẇt , where Ẇt denote the
ormal time derivative of a standard Brownian motion Wt . Define
1
t = Xt and X2

t = Ẋ1
t . Interpreting the above in the usual sense

f stochastic calculus, for the vector Xt = (X1
t , X2

t )
′
∈ R2 (with z ′

enoting the transpose of z) and W̃t = (0,Wt ), we have

dXt =

[
X2
t

a(X1
t )

]
dt +

[
0 0
0 σ (X1

t )

]
dW̃t .

ssume the velocity X2
t is observable. Then, the observation equa-

tion is given by dYt = [X1
t , X2

t ]
′dt + [1, 0]′dVt , where Vt is a

rownian motion independent of W̃t . The covariance matrix of
he observation noise is given by [1, 0]′[1, 0], which is degener-
ate. In this example, the covariance matrix of the state equation
is also degenerate.

Example 2. Denote the position of a particle in a fluid by Xt with
Xt ∈ Rd, and its velocity by ξt = (d/dt)Xt . Consider the random
ovement of the particle in a fluid due to collisions with the
olecules of the fluid, whose state is given by m dξt

dt = −λξt +Ẇt ,
here m is the mass, λ is the friction coefficient, and Wt is a

standard d-dimensional Brownian motion. However, the velocity
is not directly observable, rather we can only observe the position
of the particle with noise that is described by a chemical Langevin
equation Ẍt = b(Xt ) + σ (Xt )V̇t , with X0 = x0 ∈ Rd and Ẋ0 = ξ0 ∈

d. b(x)+ σ (x)V̇t represents a particle in the force field, and Vt is
n m-dimensional standard Brownian motion and V̇t is its formal
erivative. Assume that Wt and Vt are independent. Although the

state is non-degenerate, the observation, similar to the stochastic
acceleration model, is degenerate. For details of a more general
model, see Nguyen and Yin (2021). Note that in that reference, an
additional small parameter ε is included to represent the strong
damping.

Example 3. Building on the research of Ross and Hudson, ‘‘com-
partmental’’ epidemic models were first introduced by Kermack
and McKendrick (1927) in a series of three papers (known as the
‘‘trilogy’’). Then the study on mathematical models has flourished.
Much attention has been devoted to analyzing, predicting the
spread, and designing controls of infectious diseases in host pop-
ulations. The so-called SIR models have received much attention;
2

they have been used in a wide range of applications and also
had much influence on the COVID-19 modeling. The SIR models
subdivide the population into Susceptible St , Infected It , and
Removed Rt classes leading to⎧⎨⎩

dSt =
(
αt − βtSt It − µSt

)
dt + σ1,tStdWt

dIt =
(
βtSt It − (µt + ρt + γt

)
It )dt + σ2,t ItdWt

dRt = (γt It − µtRt )dt + σ3,tRtdWt .

(1.1)

Note that all three components are subject to the same Brownian
motion perturbation reflecting that the noise comes from the
same source. Clearly, this is a degenerate diffusion model. For
the meaning of the various parameters, we refer to Dieu, Du,
Nguyen, and Yin (2016) for further details. In fact, there has
been much effort on studying a more general class of nonlinear
stochastic models known as Kolmogorov systems; see the most
recent results (Nguyen, Nguyen, & Yin, 2021). Assume that each
variable can be observed with the same additive noise. That is, the
observation Yt is given by dYt = [St , It , Rt ]

′dt +[1, 1, 1]′dVt , with
Vt being a standard real-valued Brownian motion independent of
Wt . It is readily seen that the observation noise is degenerate.

In the above examples, the observation noise is degenerate.
Thus, the traditional filtering schemes fail. It is the purpose of
this paper to develop a viable filtering scheme to address possible
degenerate observation noise.

Recently, a deep neutral network (DNN) based filtering was
developed in Wang, Yin, and Zhang (2021). The idea was to
generate Monte Carlo samples from the given model and make
use of these samples to train a deep neutral network. The ob-
servation process from the Monte Carlo is used as the inputs to
the DNN and the state is used as the target. A least squares loss
function of the target and calculated output is used for the neutral
network training in order to obtain the corresponding weight
vectors. Then these weight vectors are applied to a separate set
of Monte Carlo samples from of an actual dynamic model. The
corresponding process is called the deep filter (DF). It is shown
in Wang et al. (2021), the deep filter compares favorably with the
traditional Kalman filter in linear cases and the extended Kalman
filter in nonlinear cases. In addition, the deep filter can deal with
models involving random switching processes.

In this paper, to address possible degenerate observation noise,
we consider a recursive equation for the state estimation in which
the gain is a matrix-valued parameter to be estimated. We adopt
the Monte Carlo training procedure in deep filter to determine
the best gain matrix. In particular, given the state and observation
equations, we generate their Monte Carlo samples. Given a gain
matrix, we generate the corresponding state estimation samples.
This leads to the error function of the state and its estimation. The
goal is to choose the gain matrix to minimize the error function.

We use a stochastic approximation method to search for the
optimal gain in connection with state estimations. The algorithms
are of stochastic gradient descent type. A comprehensive study of
asymptotic properties of stochastic approximation methodologies
can be found in Kushner and Yin (2003).

The main contribution of this paper is the development of a
novel approach for general SA filtering of systems with possi-
ble degenerate observation noise. Such an approach provides a
recursive form and is shown to be computationally comparable
with the deep filtering methods. The recursive form is desirable
from an application point of view in construct to the ‘black-box’
type filtering of the deep filtering. In addition, the SA filter is
robust when the actual observation noise is higher than that of
the nominal model.

The rest of the paper is arranged as follows. In the next section,
we present the model under consideration and the corresponding
SA filter. Section 3 presents the asymptotic results. Numerical
experiments are reported in Section 4. Finally, some concluding

remarks are given in Section 5.
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. The model

Let Xt ∈ Rd1 denote the state process satisfying the stochastic
differential equation

dXt = f (Xt )dt + σdWt , X0 = x, (2.2)

here f (x) is a function of Xt , σ is a matrix of appropriate
dimensions, and Wt is an Rd2 Brownian motion. We consider the
case that Xt is not fully observable. Assume a function of Xt is
observable with additive noise so that the observation process
Yt ∈ Rd3 is given by the equation

dYt = h(Xt )dt + σ1dVt , (2.3)

here h is a function of Xt , σ1 is a matrix of suitable dimensions,
and Vt ∈ Rd4 is a Brownian motion. When σ1σ

′

1 is invertible,
various filtering schemes can be developed. For example, in a
linear model, Kalman–Bucy filter renders a recursive equation
for the conditional expectation of Xt given the observation up
to time t . Nevertheless, in applications, very often, only some
components of Xt are observable and the rest are not, which
leads to degenerate observation noise with singular σ1σ

′

1. In this
ase, the existing filtering schemes fails. A main objective of this
aper is to develop a viable filtering scheme to address possible
egenerate observation noise.

. Asymptotic results

Let X̂t denote an estimate of Xt . We consider the filtering
cheme of the form

X̂t = f (̂Xt )dt + R(dYt − h(̂Xt )dt), X̂0 = EX0, (3.4)

here R is a constant gain (d1 × d2) matrix to be determined.
Based on Monte Carlo simulations and stochastic approximation
methods, our new approach converts the filtering problem to
a stochastic optimization problem to estimate the best gain R.
Specifically, for each fixed R, we generate Monte Carlo samples
of Xt , Yt and X̂t from (2.2), (2.3), and (3.4). Using these sample
paths, we can define an error function of R

J(R) = E
∫ T

0
|Xt − X̂t |

2
dt, (3.5)

or a given T . However, when we carry out the simulation, we
are taking samples. Thus in lieu of J(R), we are using a noisy
sampled error J̃(R, ζ ) where ζ denotes the noise appeared in
the sample. Then we use a stochastic approximation approach to
search for R that minimizes the error. In particular, let Rn denote
the approximation sequence given by the recursive equation

Rn+1 = Rn − εnD̃J(Rn, ζn), (3.6)

here the finite difference

J̃(Rn, ζn) =
1
2δn

(̃
J(Rn + δn, ζ

+

n ) − J̃(Rn − δn, ζ
−

n )
)
,

pproximates the gradient of J(R) with ζ±
n denotes two different

oise processes, and εn > 0, δn > 0 satisfying
∑

εn = ∞,
δn = ∞, and εn/δn → 0 as n → ∞. The εn is the stepsize

or the stochastic approximation, whereas δn is the stepsize for
inite difference; see Kushner and Yin (2003) for different choices
f these stepsize.

emark 4. Note that (3.6) is a stochastic approximation algo-
ithm for approximating a matrix-valued parameter R. A proper
ay of writing the recursive formula is to use a vectorization of
by piling up the columns of R. That is, R̂ = vec(R1, . . . , Rd2 ) ∈
(d1d2)×1 (a (d d ) column vector), where Ri is the ith column of R.
1 2

3

ext, define J̃±i = J̃(rℓ,i±δℓei, ζ±

ℓ ) and the central finite difference
J̃+i − J̃−i ]/(2δℓ) and so on, where ei is the standard unit vector.
hen we can write the recursion for R̂ℓ either componentwise or
n a vector form. However, for notational simplicity, we decided
o use (3.6) instead. We name such a state estimation procedure
tochastic approximation based filter or in short SA filter. In what
ollows, we carry out numerical experiments to examine the per-
ormance of our stochastic approximation based filtering scheme.
efore proceeding further, we state a convergence theorem.

heorem 5. Consider (3.6). Suppose that
εn → 0, δn → 0, and εn/δn → 0 as n → ∞,

∑
n εn = ∞,

n δn = ∞, but
∑

n(εn/δn)
2 < ∞;

{ζn} is a stationary φ-mixing sequence such that for each R,
J̃(R, ζn) = J(R) and that for each R, E |̃J(R, ζn)|

2
< ∞;

the differential equation
˙ = −∇J(R), R(0) = R0 (3.7)

as a unique solution for each initial condition R0;
the differential equation (3.7) has a unique stationary point R∗,
hich is stable in the sense of Lyapunov.
Then the sequence {Rn} converges weakly (also with probability

ne) to R∗ as n → ∞.

roof. The proof of the above theorem is essentially contained
n the book of Kushner and Yin (2003). We only make some brief
omments. The main idea is the use of the so-called ordinary dif-
erential equation approach, which relies on the interplay of the
iscrete-time iterations and continuous-time ordinary differential
quation (3.7). Define tn =

∑n−1
j=0 εj, m(t) = max{n : tn ≤ t},

nd the piecewise constant interpolation R0(t) = Rn for t ∈

tn, tn+1) and the shift sequence Rn(t) = R0(t + tn). Note that
(t) is just a ‘‘look back’’ map indicating what is the discrete

teration number associated with the continuous time t . The
imit ordinary differential equation is obtained first, and then the
onvergence to the stationary point R∗ is derived using stability
f the ordinary differential equation. A crucial step is averaging.
he rational is that Rn varies relatively slowly compared to the
oise in {D̃J(R, ζn)}. Choose ∆n > 0 with ∆n → 0 as n → ∞

uch that limn sup{εj : j ≥ n}/∆n → 0. For each n choose an
ncreasing sequence mn,1 < mn,2 < · · · (with mn,1 = n) such that

mn,l+1−1
j=mn,l

εj/∆n = 1 + o(1) with o(1) → 0 as n → ∞ so that
tmn,l+1 − tmn,l )/∆n → 1 as n → ∞ uniformly in l. For a fixed R,
he noise is averaged out in that

1
∆n

mn,l+1−1∑
j=mn,l

εjD̃J(R, ζj) → ∇J(R) as n → ∞. (3.8)

ote that in the above, we need the convergence to hold in the
ense of in probability, which follows from the fact that {D̃J(R, ζn)}
is a stationary mixing sequence. In fact the limit also holds in the
sense of with probability one because mixing implies ergodicity.
Then the ordinary differential equation (3.7) can be obtained. The
convergence of {Rn} follows from the argument in Kushner and
Yin (2003, Chapter 8) (see also Kushner & Yin, 2003, Chapter 6);
the details are omitted, however.

Remark 6. The conditions we used are not the weakest but it
is good enough for our purposes. The use of stationary mixing
sequence instead of independent and identically distributed ran-
dom variables enables one to use correlated random seeds in
simulation so as to do something like variance reduction. In lieu
of stationary mixing, we can simply require (3.8) holding. The
results above are based on a sequence of decreasing stepsizes
{εn}. A constant stepsize algorithm can be used with certain
modifications. In such a case, the pertinent notion of convergence
is in the sense of weak convergence.
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. Numerical experiments

In this section, we study several representative examples and
xamine the performance of the SA filter given in (3.4)–(3.6). We
ompare the SA filter with the Kalman–Bucy filter given in Flem-
ng and Rishel (1975) and the deep filter developed in Wang et al.
2021). By and large, the KB filter is a mean–variance optimal
ilter. However, when the observation noise is degenerate, the KB
ilter cannot be applied. The SA filter is in a recursive form with
ain parameter matrix to be estimated. The main advantage of
he SA filter is its recursive structure and its capability of treating
ystems with possible degenerate observation noise. The deep fil-
er is a deep neural network based filter and is less structured and
ses ‘black box’ type approach thanks to the hidden layers of the
nderlying neural network. In particular, we consider the filtering
ver the interval [0, T ] and set T = 1. We take discretization step

size h = 0.002 which corresponds to the partition of [0, T ] into
N = 500 subintervals and let δn = δ = 0.5 when computing
D̃J(R, ζ ). We also take the window size n0 = 50 for deep filter and
take the initial value R0 as the matrix of ones with appropriate
dimension. In the figures and tables, we use the SA, KB, and DF
to denote SA filter, KB filter, and deep filter, respectively.

4.1. A linear model (1-D)

First we consider a one-dimensional linear model with{
dXt = 0.5Xtdt + dWt ,

dYt = Xtdt + σ1dVt ,
(4.9)

here Wt and Vt are independent standard Brownian motions.
or training purposes, we generate M = 1000 Monte Carlo
amples. For the SA filter, we take εn = ε = 0.1 and the
umber of maximum iteration M̃ = 5000 times. To compare
ith the deep filter, we consider a fully connected deep neural
etwork with seven layers including input and output layers. The
umber of neurons for each layer are n0, 64, 32, 16, 8, 8 and
, respectively. In addition, we take the learning rate lr= 0.01,
atch size 64, and epoch 50. The sigmoid activation function is
sed when performing optimization procedure with stochastic
radient descent (SGD). Finally, the performance of each filter is
easured with a separate set of M = 1000 Monte Carlo samples.
or any two processes ξ 1 and ξ 2 (e.g., ξ 1

= {Xnh} and ξ 2
= {̂Xnh}),

e measure their difference by

ξ 1
− ξ 2

∥ =

∑N
n=n0

∑M
m=1 |ξ 1

n (ωm) − ξ 2
n (ωm)|

M(N − n0 + 1)Ξ
, with

Ξ =

∑N
n=n0

∑M
m=1(|ξ

1
n (ωm)| + |ξ 2

n (ωm)|)

M(N − n0 + 1)
.

n Table 1, it shows the relative errors of the corresponding state
nd the SA filter, KB filter, and the deep filter, respectively. The
ptimal value of R∗ for the SA filter is also provided. As can be
een from Table 1, as the observation noise σ1 ̸= 0, all filters
erform well. The SA filter performs better than the deep filter,
nd the KB filter outperforms both the SA filter and deep filter.
evertheless, when σ1 = 0, the KB filter fails while both the SA
ilter and deep filter perform well. In addition, the optimal R∗

ppears to decrease w.r.t. σ1. This suggests that larger filtering
ain is needed when the observation noise gets smaller.
In Figs. 1, 2, and 3, a sample path of state and the correspond-

ing SA, KB, and deep filters are plotted immediately below with
σ1 = 0, 0.1, 0.5, 1, 1.5, and 2.

Next, we examine the robustness of the SA filter. We consider
two models: the nominal model (NM) used to train the system
4

Fig. 1. A sample path of state and the corresponding SA, KB, and deep filters
with σ1 = 0.0 and σ1 = 0.1, resp.

Fig. 2. A sample path of state and the corresponding SA, KB, and deep filters
with σ1 = 0.5 and σ1 = 1.0, resp.
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Table 1
Relative errors of the state and the SA, KB, and deep filters (1-D: linear
model).
σ1 0.0 0.1 0.5 1.0 1.5 2.0

SA 0.1565 0.2112 0.4793 0.6658 0.7156 0.7233
KB 0.2014 0.4418 0.5614 0.6249 0.6272
DF 0.0678 0.2192 0.4954 0.6872 0.7622 0.8069
R∗ 8.9688 7.6544 1.4832 0.4691 0.2831 0.1813

Table 2
Relative error dependence on σ AM

1 .

σ AM
1 0.0 0.1 0.5 1.0 1.5 2.0

SA 0.4653 0.4067 0.5041 0.5717 0.6178 0.6756
KB 0.3222 0.3248 0.4655 0.6042 0.6753 0.7387
DF 0.5287 0.5218 0.5309 0.5804 0.6120 0.6551

Fig. 3. A sample path of state and the corresponding SA, KB, and deep filters
with σ1 = 1.5 and σ1 = 2.0, resp.

and the actual model (AM) used for testing. Here we consider the
NM and AM with different observation noise:

(NM) :

{
dXt = 0.5Xtdt + dWt ,

dYt = Xtdt + σNM
1 dVt ,

AM) :

{
dXt = 0.5Xtdt + dWt ,

dYt = Xtdt + σ AM
1 dVt .

(4.10)

e fix σNM
1 = 0.5 and vary the value of σ AM

1 . When testing
obustness, the coefficients of the NM in (4.10) are used to feed
the KB filter, while the actual states and the corresponding obser-
vation driving the KB filter are generated by the AM. The same
data usage applies to both the SA filter and deep filter. That is,
the NM is used to train the neural network, while the AM yields
the actual ‘physical’ process. The corresponding errors for the SA
filter, the Kalman–Bucy filter, and the deep filter are given in
Table 2. It is clear from Table 2 when σ AM

1 ≤ σNM
1 = 0.5, the

KB filter performs better. However, when σ AM > σNM
= 0.5,
1 1 b

5

Table 3
Relative errors of the state and the SA, KB, and deep filters (1-D: nonlinear).
σ1 0.0 0.1 0.5 1.0 1.5 2.0

SA 0.1659 0.2185 0.4879 0.6171 0.6105 0.6649
EKB 0.2080 0.5295 0.6078 0.5976 0.6248
DF 0.0752 0.2298 0.5485 0.7377 0.7706 0.8304
R∗ 8.7331 7.4385 1.6909 0.4558 0.3134 0.2056

Fig. 4. A sample path of state and the corresponding SA, KB, and deep filters
with σ1 = 0.0 and σ1 = 0.1, resp.

both the SA filter and the deep filter provide better results. This
suggests that both the SA filter and the deep filter are more robust
when the actual observation noise is large.

4.2. A nonlinear model (1-D)

Next, we consider the following one-dimensional non-linear
model{
dXt = sin(5Xt )dt + dWt ,

dYt = Xtdt + σ1dVt ,
(4.11)

where Wt and Vt are independent standard Brownian motions.
For deep filter, we use the learning rate lr= 0.01, the batch size
64, and epoch 50. Furthermore, we take εn = ε = 0.1 in the SA
filter. In this case, the KB filter needs to be replaced by extended
KB filter. Table 3 displays the errors of different algorithms and
the corresponding optimal R∗ of the SA filter. A sample path of the
tate and that of the corresponding EKB filter, the SA filter and the
eep filter are given in Figs. 4, 5, and 6, respectively, for different
1. As in the linear model, the EKB filter fails when σ1 = 0. When
1 ̸= 0, all three filters perform similarly. The deep filter falls
ehind when σ gets larger.
1
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Fig. 5. A sample path of state and the corresponding SA, KB, and deep filters
with σ1 = 0.5 and σ1 = 1.0, resp.

Table 4
Relative error dependence on σ AM

1 .

σ AM
1 0.0 0.1 0.5 1.0 1.5 2.0

SA 0.3556 0.3767 0.4615 0.5600 0.6561 0.6948
EKB 0.3153 0.3475 0.5107 0.5925 0.6905 0.7299
DF 0.5297 0.5384 0.5172 0.5556 0.6275 0.6383

Next, as in the previous subsection, we examine the robust-
ess of each filters. We consider the models:

NM) :

{
dXt = sin(5Xt )dt + dWt ,

dYt = Xtdt + σNM
1 dVt ,

AM) :

{
dXt = sin(5Xt )dt + dWt ,

dYt = Xtdt + σ AM
1 dVt .

(4.12)

he relative errors for three algorithms are exhibited in Table 4.
or smaller σ AM

1 , the EKB turns to outperform both the SA filter
nd deep filter. When σ AM

1 is large, both the SA filter and deep
ilter exhibit more robustness performance.

.3. A linear model (2-D)

In this section, we consider a two-dimensional model given as
ollows:{
dXt = AXtdt + σdWt ,

dYt = HXtdt + σ1dVt ,
(4.13)

here Wt and Vt are independent standard Brownian motions in
2. We take

=

[
1 −1
1 1

]
, σ =

[
1 0
0 1

]
,H =

[
1 0
0 1

]
, σ1 =

[
s1 0
0 1

]
.

Here s1 is a scalar parameter. Clearly, when s1 = 0, the observa-
ion noise is degenerate. In this example, we generate M = 500
6

Fig. 6. A sample path of state and the corresponding SA, KB, and deep filters
with σ1 = 1.5 and σ1 = 2.0, resp.

Table 5
Relative errors of the state and the corresponding filters (2-D: linear model).
s1 0.0 0.1 0.5 1.0 1.5 2.0

SA 0.3796 0.3843 0.5129 0.6228 0.6644 0.6758
KB 0.3371 0.4904 0.5480 0.5942 0.6247
DF 0.2980 0.3491 0.5444 0.6404 0.6861 0.7269

Monte Carlo samples to train the deep filter and to search for the
optimal parameter matrix R∗ in the SA filter. For deep filter, we
choose the forward neural network with layers (2n0, 128, 64, 32,
6, 8, 8, 2) and use the stochastic gradient descent algorithm
ith learning rate lr= 0.01. We also take the batch size to be
4 and epoch to be 200. For the SA filter, we iterate M̃ = 500
imes. The relative errors for these filters are listed in Table 5.

Sample paths of the states and their corresponding SA, KB,
nd deep filters are given in Figs. 7–12. As shown in this table,
he KB filter fails when s1 = 0. However, when s1 ̸= 0, The KB
ilter outperforms SA filter and deep filter. Recall that for linear
odels with non-degenerate observation noise, the KB is optimal.

n addition, the SA filter performs a little better than the deep
ilter in this example. Finally, we test the robustness of each
ilters by examining the error dependence on σ AM

1 with fixed
NM
1 = 0.5.

NM) :

{
dXt = AXtdt + dWt ,

dYt = HXtdt + σNM
1 dVt ,

AM) :

{
dXt = AXtdt + dWt ,

dYt = HXtdt + σ AM
1 dVt ,

(4.14)

where

σNM
1 =

[
sNM1 0
0 1

]
, σ AM

1 =

[
sAM1 0
0 1

]
As shown in Table 6, when sAM1 ≤ sNM1 = 0.5, the KB filter
performs better. On the other hand, when sAM > sNM , both the SA
1 1
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a
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Fig. 7. A sample path of X1
t and the corresponding SA, KB, and deep filters

top), and that of X2
t and the corresponding SA, KB, and DF filters (bottom) with

1 = 0.0.

Fig. 8. A sample path of X1
t and the corresponding SA, KB, and DF filters (top)

nd that of X2
t and the corresponding SA, KB, and deep filters (bottom) with

s1 = 0.1.
7

Fig. 9. A sample path of X1
t and the corresponding SA, KB, and DF filters (top)

nd that of X2
t and the corresponding SA, KB, and deep filters (bottom) with

1 = 0.5.

Fig. 10. A sample path of X1
t and the corresponding SA, KB, and deep filters

(top) and that of X2
t and the corresponding SA, KB, and deep filters (bottom)

with s1 = 1.0.
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Fig. 11. A sample path of X1
t and the corresponding SA, KB, and DF filters (top)

and that of X2
t and the corresponding SA, KB, and deep filters (bottom) with

s1 = 1.5.

Fig. 12. A sample path of X1
t and the corresponding SA, KB, and DF filters (top)

and that of X2
t and the corresponding SA, KB, and deep filters (bottom) with

s1 = 2.0.
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Table 6
Relative error dependence of sAM1 .

sAM1 0.0 0.1 0.5 1.0 1.5 2.0

SA 0.4877 0.4858 0.5223 0.5651 0.6337 0.6669
KB 0.4348 0.4338 0.4861 0.5695 0.6559 0.6968
DF 0.5290 0.5326 0.5431 0.5772 0.6246 0.6508

filter and the deep filter outperforms that KB. This demonstrates
the robustness of both the SA filter and deep filter when the
actual noise is larger than the nominal noise.

5. Concluding remarks

This work has been devoted to studying a novel filtering
method for systems whose observations are degenerate. For such
systems, the standard techniques in the literature do not work
due to the degeneracy. The proposed methods are based on
stochastic approximation methods. A number of examples, in-
cluding linear and nonlinear systems are considered. The com-
putational results are promising. The suggested methods open
up new windows for further investigation. In particular, it would
be interesting to consider the SA filtering under a discrete-time
system of the form X̂n+1 = F (̂Xn) + R(Yn − H (̂Xn)), for suitable
functions F and H , to develop the corresponding SA algorithms,
nd to study related convergence properties and numerical per-
ormance.
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