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ABSTRACT
In this paper, we obtain a moderate deviations principle (MDP) for a class of Langevin dynamic systems with a strong damping and fast
Markovian switching. To facilitate our study, first, analysis of systems with bounded drifts is dealt with. To obtain the desired moderate
deviations, the exponential tightness of the solution of the Langevin equation is proved. Then, the solution of its first-order approximation
using local MDPs is examined. Finally, the MDPs are established. To enable the treatment of unbounded drifts, a reduction technique is
presented near the end of the paper, which shows that Lipschitz continuous drifts can be dealt with.
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I. INTRODUCTION
This work is devoted to obtaining a moderate deviations principle for a class of Langevin equations with a strong damping and fast

Markovian switching. Originally used for describing themotion of a system subject to combined deterministic and stochastic forces,1 Langevin
dynamic systems have been a basic mathematical physics model studied intensively in the literature; see, for example, applications to classical
mechanics and thermodynamics,2–4 stochastic chemical kinetics,5 and statistical physics.6–8 In mathematical physics, one often uses asymp-
totic analysis to reduce the computational complexity; see Refs. 3 and 6–11 and references therein. In this paper, we focus on the asymptotic
properties of the Langevin dynamic systems throughmulti-scale formulation. Our aim is to fill in a gap between the range of normal deviations
and large deviations. The use of theMarkovian switching is to capture the features of random environments that are not fitting into the setting
of usual stochastic differential equations. The essence is that in the overall systems, both continuous dynamics and discrete events coexist and
interact. Such systems are often termed hybrid systems and used widely in many different applications.12 To make the computation feasible,
one often has to be contented with finding approximate solutions. A useful modeling and computational step is to use a multi-scale formula-
tion. In the literature, Simon and Ando13 used such an idea and introduced the so-called hierarchical decomposition and aggregation; Sethi
and Zhang14 initiated the study of nearly optimal controls for flexible manufacturing systems. In this paper, the fast Markov chain is along
the aforementioned line of modeling, whereas the use of a strong damping follows from the motivations in the early works;6,7 see also the
application examples in Ref. 15.

For each ε > 0, considering the motion of a small particle with mass μ in the force field b(q) +√εσ(q)ẇ with variable friction
proportional to the velocity, Newton’s law gives

⎧⎪⎪⎨⎪⎪⎩

μq̇ μ,ε(t) = b(qμ,ε(t)) +
√
εσ(qμ,ε(t))ẇ(t) − α(qμ,ε)q̇ μ,ε(t),

qμ,ε(0) = q, q̇ μ,ε(0) = p; p, q ∈ Rd,
(1.1)

where b(q) is the deterministic part of the force, ẇ(t) is the standard Gaussian white noise in Rd, and σ(q) is a d × d matrix. The term
α(qμ,ε(t))q̇ μ,ε(t) is the variable friction to the motion, and α(qμ,ε(t)) is a scalar representing the friction coefficient.
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If the friction coefficient α is independent of q, it has been proven that the Smoluchowski–Kramers approximation holds.10,16 That is,
qμ,ε(t) converges to gε(t) in probability as μ→ 0, where gε(t) is the solution of the equation,

ġ ε(t) = b(gε(t))
α(gε(t)) +

√
ε
σ(gε(t))
α(gε(t)) ẇ(t), gε(0) = q ∈ Rd. (1.2)

It justifies the replacement of the motion of the particle by the first-order Eq. (1.2). If the friction coefficient is state-dependent, it was proved
in Ref. 11 that qμ,ε(t) converges to the solution of the first-order equation of the same type as (1.2), where an extra noise-induced drift term is
added.

Dealing with the case of state-dependent friction coefficient and μ = ε2, Cerrai and Freidlin6 considered the following Langevin equation
with a strong damping:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε2q̈ε(t) = b(qε(t)) − α(qε(t))q̇ε(t) +
√
εσ(qε(t))ẇ(t),

qε(0) = q ∈ Rd, q̇ε(0) =
p
ε
∈ Rd.

(1.3)

They established large deviations principles (LDPs, for short) for the solution {qε(t)}ε≥0 of (1.3) in C([0,T],Rd), the space of continuous
functions defined on [0,T] taking values in Rd, and demonstrated that such LDPs have the same rate function (or action functional) I and
the same speed function ε−1 with LDPs of the following first-order dynamic system:

ġε(t) =
b(gε(t))
α(gε(t))

+
√
ε
σ(gε(t))
α(gε(t))

ẇ(t), gε(0) = q ∈ Rd. (1.4)

Recently, in our work,17 we have extended the above results by considering the LDPs of the time-inhomogeneous Langevin equations with a
strong damping in a random environment. More precisely, consider

⎧⎪⎪⎨⎪⎪⎩

ε2q̈ε(t) = b(t, qε(t), ξt/ε) − αε(t, qε(t))q̇ε(t) +
√
εσε(t, qε(t))ẇ(t),

qε(0) = q0 ∈ Rd, q̇ε(0) = q1 ∈ Rd,
(1.5)

where ξt represents the random environment. It was shown that the solution {qε(t)}ε≥0 of the second-order Eq. (1.5) and its corresponding
first-order equation still possesses the same LDPs assuming that the corresponding first-order equation satisfies a local LDP.

Under a Markovian switching random environment setting in Ref. 15, LDPs were also established for Langevin equations by using
appropriate H-functionals. In contrast to Ref. 15, we examine a different asymptotic range in this paper, which is somewhat closer to the
asymptotic normality range. Nevertheless, the techniques used in Ref. 15 are no longer applicable and different approaches must be used. We
establish the moderate deviations principles (MDPs, for short) of the following Langevin dynamic system with a Markovian switching:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε2q̈ε(t) = b(qε(t), rε(t)) − αε(qε(t))q̇ε(t) +
√
εσ(qε(t), rε(t))ẇ(t),

qε(0) = q ∈ Rd, q̇ε(0) =
p
ε
∈ Rd,

(1.6)

where rε(t) is a fast-varying continuous-timeMarkov chain with a finite state spaceM = {1, 2, . . . ,m} generated byQ(t)/ε. TheQ(t) ∈ Rm×m

is itself a generator of a Markov chain. The corresponding first-order equation of the Langevin Eq. (1.6) is given by

ġε(t) =
b(gε(t), rε(t))
αε(gε(t))

+
√
ε
σ(gε(t), rε(t))
αε(gε(t))

ẇ(t), gε(0) = q ∈ Rd. (1.7)

We note that the above first-order equation is not of the exact form of Smoluchowski–Kramers approximation of (1.6) due to the
state-dependent friction coefficient.11 Note also that under irreducibility18 (p. 23) of Q(t), there is an averaged system in Rd when
ε→ 0; i.e.,

q̇0(t) =
b(q0(t), ν(t))
α(q0(t))

, q0(0) = q ∈ Rd, (1.8)

where α(⋅) is the limit of {αε(⋅)}ε>0. For convenience, we write α0 = α. The α(⋅) is a pointwise limit of αε(⋅). However, we require more in
assumption (A3), which is about the convergence rate of norm ∥αε − α∥.
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For simplicity of presentation, we first treat the case that the drift is bounded. Near the end of the paper, we present how Lipschitz type
of condition can be incorporated, leading to a reduction to the bounded coefficient case. We focus on the MDPs problems for the family
{qε(t)}ε>0 in (1.6) on the space C0([0, 1];Rd). That is, we are interested in the asymptotic behavior of the trajectory

Xε(t) =
1√
εh(ε)(qε(t) − q0(t)), t ∈ [0, 1], (1.9)

where h(ε) is the scale of deviations satisfying

h(ε)→ +∞ and
√
εh(ε)→ 0, as ε→ 0. (1.10)

If h(ε) is identically equal to 1, it is in the normal deviation range, leading to the central limit theorem (CLT). If h(ε) = 1/√ε, it is in the large
deviations range, with the large deviations estimates provided in Ref. 19. To fill in the gap between the CLT scale and the large deviations scale,
it is natural and necessary to study the moderate deviations where the scale satisfies condition (1.10). For the moderate deviations principle of
Langevin dynamics (1.3), earlier work can be found in Ref. 7 and references therein. This paper demonstrates that not only do the solutions
of the second-order Eq. (1.6) and those of the first-order Eq. (1.7) verify the same large deviations principle, but also they satisfy the same
moderate deviations principle. Because of the ε-dependence of the drift and diffusion coefficients in (1.7), we first establish the exponential
equivalence with respect to the MDPs between gε(t) and fε(t) that satisfy

ḟ ε(t) =
b(fε(t), rε(t))
α(fε(t))

+
√
ε
σ(fε(t), rε(t))
α(fε(t))

ẇ(t). (1.11)

More specifically, for any positive j,

lim
ε→0

1
h2(ε) log P

⎛
⎝
sup
t∈[0,1]

∣ηε(t) − η̂ε(t)∣ > j
⎞
⎠
= −∞,

where

ηε(t) =
gε(t) − q0(t)√

εh(ε) and η̂ε(t) =
fε(t) − q0(t)√

εh(ε) . (1.12)

In Ref. 20, Guillin established moderate deviations principles for stochastic differential equations with a small diffusion, where the random
environment is an exponentially ergodic Markov process. In reference to his work, we are able to obtain that under suitable conditions, η̂ε(t)
satisfies an LDP in C0([0, 1],Rd) with speed h−2(ε) and a good rate function S given by

S(γ) = I(γ − ∫
⋅

0
D1(q0(s), ν(s))γ(s)ds), (1.13)

for any γ ∈ C0([0, 1],Rd), where D1(⋅, ⋅) is to be specified later. Our method is based on the explicit criteria for exponential tightness given
by Liptser and Pukhalskii21 and the equivalence of local moderate deviations principle between Xε(t) and ηε(t). Finally, the exponential
equivalence with respect to the MDPs between ηε(t) and η̂ε(t) and the MDPs of η̂ε(t) yields the MDPs of Xε(t).

The rest of the paper is arranged as follows. In Sec. II, we first present some definitions and preliminary results. Then, assumptions on the
Markov chain and coefficients in Langevin dynamics as well as the main result are presented. Section III is devoted to the proof of our main
theorem. Section IV provides further discussions. Importantly, it proposes an alternative assumption, removes the boundedness condition of
the drift, and indicates how to reduce such a case to the analysis under boundedness conditions. Finally, an Appendix is placed at the end of
the paper to conclude the paper.

II. FORMULATION AND MAIN RESULTS
Denote by ∣ ⋅ ∣ the Euclidean norm of a vector in Rd, ⟨⋅, ⋅⟩ the inner product in Rd, and C0([0, 1],Rd) the space of continuous functions

from [0, 1] to Rd starting from 0 and equipped with the sup-norm ∥ ⋅ ∥. We use x′ to denote the transpose of a vector x ∈ Rd, and ∇ (resp.,
∇x) to represent the partial derivatives (gradient) (resp., partial derivatives with respect to first variable if more than one variable is involved).
Furthermore, [⋅]t denotes the quadratic variation of a stochastic process at time t. Recall that for a real-valued stochastic process Xt defined
on a probability space (Ω, F ,P), the quadratic process [X]t is defined as
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[X]t = lim∥P∥→0∑
n
k=1(Xtk − Xtk−1)

2,

where ∥P∥ is the mesh of partitions of [0, t] and the convergence is in probability. Throughout the paper, K is a generic positive constant
independent of ε whose value may be different for different appearances.

A. Exponential tightness and local MDP
Let us start with some definitions and preliminary results. We first recall the definition of LDPs (large deviations principle); see Ref. 22.

Let Yε = {Yε(t)}t∈[0,1] be a C0([0, 1],Rd) family.

Definition II.1. The family Yε obeys the LDPs in C0([0, 1],Rd) with speed v(ε) and a good rate function I with respect to the supremum
norm if

(a) there exists I : C0([0, 1],Rd)→ [0,∞] such that I is inf-compact in that the level sets {I ≤ L} for any L ≥ 0 are compact;
(b) for any open set G in C0([0, 1],Rd),

lim inf
ε→0

v(ε) log P(Yε(t) ∈ G) ≥ −inf
y∈G

I(y);

(c) for any closed subset F in C0([0, 1],Rd),

lim sup
ε→0

v(ε) log P(Yε(t) ∈ F) ≤ −inf
y∈F

I(y).

Next, we recall the definitions of exponential tightness and local LDP, which give sufficient conditions to a full LDP.

Definition II.2. The family {Yε} is said to be exponentially tight with speed v(ε)→ 0 in the space C0([0, 1],Rd) if there exists an
increasing sequence of compact sets {Oj}j≥1 of C0([0, 1],Rd) such that

lim
j→∞

lim sup
ε→0

v(ε) log P(Yε(t) ∉ Oj) = −∞. (2.1)

Sufficient conditions for exponential tightness in the space of continuous trajectory can be found in Liptser and Pukhalskii21
(Theorem 3.1); see also Feng and Kurtz23 (Remark 4.2). It requires us to prove

lim
j→∞

lim sup
ε→0

1
h2(ε) log P

⎛
⎝
sup
t∈[0,1]

∣Xε(t)∣ > j
⎞
⎠
= −∞, (2.2)

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P

⎛
⎝

sup
s≤t≤s+δ

∣Xε(t) − Xε(s)∣ > j
⎞
⎠
= −∞, ∀j > 0. (2.3)

Definition II.3. The family {Yε} is said to satisfy a local LDP with speed v(ε)→ 0 in C0([0, 1],Rd) with the rate function Î if for any
y ∈ C0([0, 1],Rd),

lim
δ→0

lim sup
ε→0

v(ε) log P(Yε ∈ B(y, δ))

= lim
δ→0

lim inf
ε→0

v(ε) log P(Yε ∈ B(y, δ))

= −̂I(y),

(2.4)

where B(y, δ) is the ball of radius δ centered at y.

The LDP is guaranteed by the following well-known theorem; see Refs. 22 and 24.

Proposition II.4. If the family {Yε} is exponentially tight and satisfies a local LDP with the rate function Î in C0([0, 1],Rd), then it satisfies
the full LDP with the rate function I(y) ≡ Î(y), which is inf-compact.
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B. Assumptions
Let rε(t) be a continuous-time and time-inhomogeneous Markov chain with a finite state spaceM = {1, . . . ,m} and a generatorQ(t)/ε,

whereQ(t) is a generator and ε is a small parameter as given at the beginning of the paper. For aMarkov chain with time-dependent generator
Q(t), we refer the reader to the definition of Ref. 18 (Sec. 2.3). Recall that a generator Q(t) (or its associated Markov chain) is irreducible for
t ≥ 0 if the system of equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ν(t)Q(t) = 0,
m

∑
i=1
νi(t) = 1

(2.5)

has a unique solution such that νi(t) > 0 for each i ∈M. Throughout the paper, we assume the irreducibility of Q(t) for each t ∈ [0, 1]. We
impose the following assumptions on the coefficients b(⋅, ⋅), σ(⋅, ⋅), and αε(⋅) in dynamics (1.6).

Assumption II.5. We assume the following conditions:

(A1) For each i ∈M, b(⋅, i) : Rd → Rd is a bounded and continuous function with bounded first-order partial derivatives.
(A2) For each i ∈M, σ(⋅, i) : Rd → Rd×n is a bounded and continuous function with bounded first- and second-order partial derivatives.
(A3) The function αε(⋅) : Rd → R satisfying that αε(⋅) ∈ C1

b(Rd) (the class of bounded continuously differentiable functions on Rd) and
that there exist some constants 0 < ℓ0 ≤ ℓ1 <∞ and K > 0 such that

ℓ0 = lim inf
ε→0

inf
x∈Rd

αε(x), ℓ1 = lim sup
ε→0

sup
x∈Rd

αε(x), sup
x∈Rd
∣∇αε(x)∣ ≤ Kε2,

and

lim
ε→0

sup
x∈Rd

∣αε(x) − α(x)∣√
εh(ε) = 0.

(A4) w(⋅) is a Wiener process in Rn independent of the Markov chain rε(⋅).

Remark II.6. Assumptions (A1) and (A2) are concerned with the functions b(⋅, ⋅) and σ(⋅, ⋅). The boundedness of function b can
be weakened to the Lipschitz continuity, which will be addressed in Sec. IV. Assumption (A3) is a technical condition, which is neces-
sary to ensure e2(ε) defined later in (3.30) approaching 0 in order to establish the exponential tightness. One of the examples is that
αε(x) = ε2 sin(x) + c0 and the limit α(x) = c0, a constant.

Throughout the paper, both rε and w are defined on the probability space (Ω, F ,{F t},P). We introduce the following notation. For
each i ∈M,

b1(x, i) =
b(x, i)
α(x) and σ1(x, i) =

σ(x, i)
α(x) . (2.6)

Under the irreducibility of rε, the averaged coefficients

b(x, ν) =
m

∑
i=1

b(x, i)νi and b1(x, ν) =
m

∑
i=1

b1(x, i)νi =
b(x, ν)
α(x) (2.7)

are well-defined for x ∈ Rd. Moreover, we denote

(D1)jk(x, i) =
∂

∂xk
bj1(x, i) andD1(x, i) = ((D1)jk(x, i))1≤j,k≤d,

D1(x, ν) =
m

∑
i=1

D1(x, i)νi.
(2.8)

Define
λε(t) = 1√

εh(ε)∫
t

0
b(q0(s), rε(s)) − b(q0(s), ν(s))ds, (2.9)

λε1(t) =
1√
εh(ε)∫

t

0
b1(q0(s), rε(s)) − b1(q0(s), ν(s))ds, (2.10)

M̂ε
t =

1
h(ε)∫

t

0
σ1(q0(s), rε(s))dw(s), (2.11)
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with q0 and rε being given earlier. To proceed, we recall some preliminary results to be used in the rest of the paper.

Lemma II.7 (Ref. 18, Sec. 5.3.3). For each i ∈M, let βi(⋅) be a bounded measurable deterministic function and

ñεi(t) =
1√
ε∫

t

0
(I{rε(s)=i} − νi(s))βi(s)ds,

with ñ ε(t) = (ñ ε1(t), . . . , ñ εm(t))′, where z′ denotes the transpose of z. Then, ñ ε(⋅) converges weakly to a Gaussian process ñ(⋅) such that

Eñ(t) = 0, E[ñi(t)ñj(t)] = ∫
t

0
βi(s)βj(s)Aij(s)ds,

and

Aij(t) = νi(t)∫
∞

0
ψij(u, t)du + νj(t)∫

∞

0
ψji(u, t)du

where Ψ(u, t) = (ψij(u, t)) satisfies
Ψ(t, t0)

dt
= Ψ(t, t0)Q(t0), t ≥ 0, Ψ(0, t0) = I − P(0)(t0)

and
P(0)(t) = (ν(t), . . . , ν(t))′.

Denote A(t) ∶= (Aij(t))1≤i,j≤m, and define the matrix B(t) = (bi(q0(t), j))1≤i≤d,1≤j≤m. Let C̃(t) = B(t)A(t)B′(t), and define a function
B̃ : [0, 1] ×M→ Rd as

B̃(s, i) = b(q0(s), i) − b(q0(s), ν(s)).

Similarly, we could also define the matrix B1 = ((bi1(q0(t), j))ij, C̃1(t), and the function B̃1. Then, recalling Theorem 4.1 in Ref. 25, we have
the following lemma.

Lemma II.8. Under Assumption II.5, λε(t) (resp. (λε1(t)) satisfies an LDP in C0([0, 1],Rd) with speed h−2(ε) and a good rate function IB̃r
(resp. IB̃1

r ), where

IB̃r (γ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
1

0
sup
β∈Rd
[⟨γ̇(s),β⟩ − 1

2
⟨C̃(s)β,β⟩]ds, if dγ(s) = γ̇(s)ds, γ(0) = 0,

+∞, otherwise

[resp., IB̃1
r , where IB̃1

r is defined as above with C̃(s) replaced by C̃1(s)].

Corollary II.9. Under Assumption II.5, supt∈[0,1]∣λε(t)∣ satisfies an LDP in R with speed h−2(ε) and a good rate function J. In particular,

lim
x→∞

J(x) = +∞,

lim
j→∞

lim
ε→0

1
h2(ε) log P

⎛
⎝
sup
t∈[0,1]

∣λε(t)∣ ≥ j
⎞
⎠
= −∞. (2.12)

Proof. The result is a consequence of contraction principle and is similar to Ref. 20 (Corollary 1), so the verbatim is omitted here. ◻

Lemma II.10. Under Assumption II.5, M̂ε
t satisfies an LDP in C0([0, 1],Rd) with speed h−2(ε) and rate function Iw given by

Iw(γ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
1

0
sup
β∈Rd
(β′γ̇(s) − 1

2
β′Σ2

s β)ds, if dγ(s) = γ̇(s)ds, γ(0) = 0,

+∞, otherwise,
(2.13)

where
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Σ2
s =

m

∑
i=1
σ1(q0(s), i)σ′1(q0(s), i)νi(s).

Proof. Under assumption (A2) and (A3), σ1(⋅, ⋅) is bounded and Lipschitz with respect to the first variable, following the proof of
Ref. 20 (Proposition 1) [see also Ref. 21 (Theorems 2.1 and 3)], and leads to the desired result. ◻

We conclude this section by stating our main result. The proof is postponed until Sec. III.

Theorem II.11. Suppose that the rε(t) is an inhomogeneous irreducible Markov chain with generator Q(t)/ε,where ε is a small parameter.
Furthermore, suppose that conditions (A1)–(A5) hold. Then, Xε(t) satisfies an LDP in C0([0, 1],Rd) with speed h−2(ε) and a good rate function
S given for γ ∈ C0([0, 1],Rd) by

S(γ) = I(γ − ∫
⋅

0
D1(q0(s), ν(s))γ(s)ds), (2.14)

where I is defined by

I(γ) = inf{IB̃1
ξ (γ − φ) + Iw(φ);φ ∈ C

0([0, 1],Rd)}. (2.15)

Furthermore, assuming that C̃1(s) is invertible, I(γ) can be explicitly expressed as

I(γ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2∫

1

0
∥(C̃ 1(s) + Σ 2

s )−1/2γ̇(s)∥ds, if dγ(s) = γ̇(s)ds, γ(0) = 0,

+∞, otherwise.
(2.16)

III. PROOF OF MDP
This section is devoted to the Proof of Theorem II.11. Note that (1.6) can be rewritten as a first-order system,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q̇ε(t) = pε(t),
ε2ṗε(t) = b(qε(t), rε(t)) − αε(qε(t))pε(t) +

√
εσ(qε(t), rε(t))ẇ(t),

qε(0) = q ∈ Rd, pε(0) =
p
ε
∈ Rd.

From the variation of parameters formula, we have

pε(t) =
p
ε
e−Aε(t) + 1

ε2∫
t

0
e−Aε(t,s)b(qε(s), rε(s))ds +

1
ε2
Hε(t), (3.1)

where for any 0 ≤ s ≤ t ≤ 1, 0 < ε < 1,

Aε(t, s) ∶=
1
ε2∫

t

s
αε(qε(u))du, Aε(t) = Aε(t, 0),

Hε(t) ∶=
√
εe−Aε(t)∫

t

0
eAε(s)σ(qε(s), rε(s))dw(s).

Then, the solution qε(t) of (1.6) can be expressed as

qε(t) = q +
p
ε∫

t

0
e−Aε(s)ds + 1

ε2∫
t

0
∫

s

0
e−Aε(s,u)b(qε(u), rε(u))duds +

1
ε2∫

t

0
Hε(s)ds. (3.2)

Employing integration by parts formula gives
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qε(t) = q + ∫
t

0

b(qε(s), rε(s))
αε(qε(s))

ds +
√
ε∫

t

0

σ(qε(s), rε(s))
αε(qε(s))

dw(s) + Rε(t), (3.3)

where

Rε(t) ∶=
p
ε∫

t

0
e−Aε(s)ds − 1

αε(qε(t))∫
t

0
e−Aε(t,s)b(qε(s), rε(s))ds

− ∫
t

0
(∫

s

0
e−Aε(s,u)b(qε(u), rε(u))du)

1
α2ε(qε(s))

⟨∇αε(qε(s)), q̇ε(s)⟩ds

− 1
αε(qε(t))

Hε(t) − ∫
t

0

1
α2ε(qε(s))

Hε(s)⟨∇αε(qε(s)), q̇ε(s)⟩ds

∶=
5

∑
k=1

Rk
ε(t)

(3.4)

In view of the definition of Xε(t) in (1.9), we have that for any t ∈ [0, 1],

Xε(t) =
1√
εh(ε)(qε(t) − q0(t))

= 1√
εh(ε)∫

t

0

b(qε(s), rε(s))
αε(qε(s))

− b(q0(s), ν(s))
α(q0(s))

ds

+ 1
h(ε)∫

t

0

σ(qε(s), rε(s))
αε(qε(s))

dw(s) + 1√
εh(ε)Rε(t)

∶= 1ε1(t) + 1ε2(t) + 1ε3(t).

(3.5)

A. Exponential tightness
By virtue of the sufficient conditions, to prove the exponential tightness of Xε(t), we need only verify (2.2) and (2.3). To proceed, we first

obtain a priori estimates for qε(t) and pε(t).

Proposition III.1. There is a constant K independent of ε such that

∣qε(t)∣ ≤ K(1 +
1
ε2∫

t

0
∣Hε(s)∣ds), (3.6)

∣pε(t)∣ ≤ K
⎛
⎝
1 + 1

ε
+ 1
ε2

sup
t∈[0,1]

∣Hε(t)∣
⎞
⎠
. (3.7)

The Proof of Proposition III.1 is postponed to Appendix for a better flow of presentation. In order to achieve the exponential tightness
of Xε(t), we first give the exponential tightness of Hε(t) with respect to MDPs, which is the main ingredient for that of Xε(t).

Lemma III.2. Under assumptions of Theorem II.11,

lim
j→∞

lim sup
ε→0

1
h2(ε) log P

⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ > j

⎞
⎠
= −∞. (3.8)

Proof. If f ∈ C1([0, t]) and g ∈ C([0, t]), then the following Stieltjes integral

∫
t

0
f (s)dg(s), t ≥ 0,

is well defined. By integration by parts, it follows

∫
t2

t1
f (s)dg(s) = f (t2)g(t2) − f (t1)g(t1) − ∫

t2

t1
g(s)df (s), 0 ≤ t1 ≤ t2 ≤ t. (3.9)

In particular, if g(0) = 0, then

∫
t

0
f (s)dg(s) = g(t)f (0) + ∫

t

0
(g(t) − g(s))df (s), t ≥ 0. (3.10)
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The above formula will be used frequently implicitly in the sequel. Since the trajectory of theMarkov chain rε(⋅) has piecewise constant sample
paths, let

0 = τ0 < τ1 < τ2 < ⋅ ⋅ ⋅ < τk < ⋅ ⋅ ⋅

be the jump times. Denote by n(t) the random counting process representing the number of jumps up to time t. Noting that rε(t) = rε(τk) for
t ∈ [τk, τk+1), denoting ik = rε(τk), and using integration by parts formula (3.9) with f (s) = eAε(s)σ(qε(s), ik) and g(s) = w(s) on each interval
[τk, τk+1) yields

∫
t

0
eAε(s)σ(qε(s),αε(s))dw(s) =

n(t)−1

∑
k=0
∫

τk+1

τk
eAε(s)σ(qε(s), ik)dw(s) + ∫

t

τn(t)
f (s)dg(s)

=
n(t)−1

∑
k=0
(f (τk+1)g(τk+1) − f (τk)g(τk) − ∫

τk+1

τk
g(s)df (s))

+ f (t)g(t) − f (τn(t))g(τn(t)) − ∫
t

τn(t)
g(s)df (s)

= f (t)g(t) − f (0)g(0) − ∫
t

0
g(s)df (s)

= w(t)σ(q, rε(0))

+ ∫
t

0
(w(t) −w(s))eAε(s)[αε(qε(s))

ε2
σ(qε(s), rε(s)) +∇xσ(qε(s), rε(s))pε(s)]ds. (3.11)

Using estimates (3.7) and assumptions (A1) and (A3) leads to

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ ≤ K

1
h(ε)∥w(t)∥ + K

1
h(ε)∥w(t)∥

⎛
⎝
ε2 + ε + sup

t∈[0,1]
∣Hε(t)∣

⎞
⎠

≤ K (ε + 1)
h(ε) ∥w(t)∥ + K

√
ε∥w(t)∥

⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣

⎞
⎠
.

It follows

P
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ > j

⎞
⎠
= P
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ > j; 1 − K

√
ε∥w(t)∥ > 0

⎞
⎠

+ P
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ > j; 1 − K

√
ε∥w(t)∥ ≤ 0

⎞
⎠

≤ P
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ > j; 1 − K

√
ε∥w(t)∥ > 0

⎞
⎠
+ P(1 − K

√
ε∥w(t)∥ ≤ 0)

≤ P(∥w(t)∥ > jh(ε)
K(ε + 1) + j√εh(ε)) + P(∥w(t)∥ ≥

1
K
√
ε
).

Denote

e1(ε) ∶= K(ε + 1) + j
√
εh(ε)→ K a constant, as ε→ 0.

Then, Bernstein’s inequality26 (pp. 153–154) yields

P(∥w(t)∥ > jh(ε)
e1(ε)

) = P(∥w(t)∥ > jh(ε)
e1(ε)

; [w(t)]1 ≤ 1) ≤ exp(
−j 2h2(ε)
e21(ε)

)
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and

P(∥w(t)∥ ≥ 1
K
√
ε
) ≤ exp(− 1

Kε
).

Thus, combining above estimates gives

P
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ > j

⎞
⎠
≤ exp(−j

2h2(ε)
e21(ε)

) + exp(− 1
Kε
)

≤ 2(exp(− j
2h2(ε)
e21(ε)

) ∨ exp(− 1
Kε
)),

(3.12)

which implies (3.8). The proof is complete. ◻

Using the integration by parts formula (3.11), we have

∣Hε(t) −Hε(s)∣ =
√
ε∣e−Aε(t)w(t)σ(q, rε(0)) − e−Aε(s)w(s)σ(q, rε(0))∣

+
√
ε∣∫

t

0
(w(t) −w(u))e−Aε(t,u)B(u)du − ∫

s

0
(w(s) −w(u))e−Aε(s,u)B(u)du∣

≤ K
√
ε∣e−Aε(t) − e−Aε(s)∣ ∣w(t)∣ + K

√
εe−Aε(s)∣w(t) −w(s)∣

+
√
ε∣∫

s

0
(w(t) −w(s))e−Aε(t,u)B(u)du∣

+
√
ε∣∫

s

0
(w(s) −w(u))[e−Aε(t,u) − e−Aε(s,u)]B(u)du∣

+
√
ε∣∫

t

s
(w(t) −w(s))e−Aε(t,u)B(u)du∣ =:

5

∑
k=1

2εk(t, s),

where

B(u) ∶= αε(qε(u))
ε2

σ(qε(u), rε(u)) +∇xσ(qε(u), rε(u))pε(u).

Lemma III.3. Under the assumption of Theorem II.11, for any j > 0,

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( 1√

εh(ε) sup
s≤t≤s+δ

∣Hε(t) −Hε(s)∣ > j) = −∞. (3.13)

Proof. Since

P( 1√
εh(ε) sup

s≤t≤s+δ
∣Hε(t) −Hε(s)∣ > j) ≤

5

∑
i=1

P( 1√
εh(ε) sup

s≤t≤s+δ
∣ IIεi(t, s)∣ > j/5)

≤ 5(max
1≤i≤5

P( 1√
εh(ε) sup

s≤t≤s+δ
∣ IIεi(t, s)∣ > j/5)),

(3.14)

to prove (3.13), it suffices to show

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( 1√

εh(ε) sup
s≤t≤s+δ

∣ IIεi(t, s)∣ > j) = −∞, i = 1, 2, 3, 4, 5.

Step 1: Note that

IIε1(t, s) = K
√
ε∣e−Aε(t) − e−Aε(s)∣ ∣w(t)∣ ≤ 2K

√
ε∣w(t)∣.

To proceed, we need an exponential inequality of the form
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P[sup
s≤t
∣Bs∣ ≥ δ] ≤ 2d exp(−δ2/(2dt)), (3.15)

for a d-dimensional Brownian motion B. This can be seen as follows:

P[sup
s≤t
∣Bs∣ ≥ δ] = P

⎡⎢⎢⎢⎢⎣
sup
s≤t

sup
∣θ∣=1
⟨θ,Bs⟩∣ ≥ δ

⎤⎥⎥⎥⎥⎦
= P[sup

s≤t
⟨θ1,Bs⟩ ≥ δ] ≤

d

∑
i=1

P[sup
s≤t

θi1B
i
s ≥

δ
d
]

≤
d

∑
i=1
{P[sup

s≤t
Bi
s ≥

δ
θi1d
] + P[inf

s≤t
Bi
s ≤

δ
θi1d
]},

where ⟨⋅, ⋅⟩ denotes the inner product, θ1 = Bs/∣Bs∣ is a unit vector in Rd, and θi1 and Bi
s are ith coordinates of θ1 and Bs, respectively.

Then, applying Proposition 1.8 in Ref. 26, we have

P[sup
s≤t
∣Bs∣ ≥ δ] ≤ 2

d

∑
i=1

exp{− δ2

2d2(θi1)2t
}.

Noting ∣θ1∣ = 1 implies inf1≤i≤d(θi1)2 ≥ 1
d , and taking infimum on the right-hand side with ∣θ1∣ = 1 yields (3.15). Consequently,

P( sup
s≤t≤s+δ

1√
εh(ε) ∣ II

ε
1(t, s)∣ > j) ≤ P( sup

s≤t≤s+δ
∣w(t)∣ > jh(ε)

2K
)

≤ P( sup
0≤t≤s+δ

∣w(t)∣ > jh(ε)
2K
) ≤ 2n exp(− j 2h2(ε)

8K2n(s + δ)) ≤ 2n exp(− j 2h2(ε)
8K2n(1 + δ)).

(3.16)

Thus, we have

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( 1√

εh(ε) sup
s≤t≤s+δ

∣ IIε1(t, s)∣ > j) = −∞.

Step 2: Using the same argument to (3.16), it has

P( sup
s≤t≤s+δ

1√
εh(ε) ∣ II

ε
2(t, s)∣ > j) ≤ P( sup

s≤t≤s+δ
∣w(t)∣ > jh(ε)

2K
) ≤ 2 exp(− j 2h2(ε)

8K2(1 + δ)),

which implies

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ

1√
εh(ε) ∣ II

ε
2(t, s)∣ > j) = −∞. (3.17)

Step 3: Invoking estimate (3.7), it yields

∣∫
s

0
(w(t) −w(s))e−Aε(t,u)B(u)du∣ ≤ ∣w(t) −w(s)∣ sup

u∈[0,1]
∣B(u)∣∫

s

0
e−Aε(t,u)du

≤ K(1 + ε)∣w(t) −w(s)∣ + K∣w(t) −w(s)∣ sup
t∈[0,1]

∣Hε(t)∣.

Thus, for any L > 0,

P( sup
s≤t≤s+δ

1√
εh(ε) ∣ II

ε
3(t, s)∣ > j) ≤ P( sup

s≤t≤s+δ

K(1 + ε)
h(ε) ∣w(t) −w(s)∣ >

j
2
)

+ P
⎛
⎝

sup
s≤t≤s+δ

∣w(t) −w(s)∣ sup
t∈[0,1]

∣Hε(t)∣ ≥ jh(ε)/2K; sup
s≤t≤s+δ

∣w(t) −w(s)∣ ≤ Lh(ε)
⎞
⎠

+ P
⎛
⎝

sup
s≤t≤s+δ

∣w(t) −w(s)∣ sup
t∈[0,1]

∣Hε(t)∣ ≥ jh(ε)/2K; sup
s≤t≤s+δ

∣w(t) −w(s)∣ > Lh(ε)
⎞
⎠

≤ P( sup
s≤t≤s+δ

∣w(t) −w(s)∣ > jh(ε)
K(1 + ε)) + P

⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ >

j
2KL
√
εh(ε)

⎞
⎠

+ P( sup
s≤t≤s+δ

∣w(t) −w(s)∣ > Lh(ε)). (3.18)
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In view of (3.12), it is readily to see that

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P

⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ >

j
2KL
√
εh(ε)

⎞
⎠
= −∞. (3.19)

In addition, a similar argument to (3.16) yields

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ
∣w(t) −w(s)∣ > jh(ε)

K(1 + ε)) = −∞ (3.20)

and

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ
∣w(t) −w(s)∣ > Lh(ε)) = −∞. (3.21)

Combining (3.19)–(3.21), we have

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( 1√

εh(ε) sup
s≤t≤s+δ

∣ IIε3(t, s)∣ > j) = −∞. (3.22)

Step 4: Note that

IIε4(t, s)≤ 2
√
ε sup
0≤u≤s+δ

∣w(u)∣ sup
u∈[0,1]

∣B(u)∣ ∣∫
s

0
e−Aε(t,u) − e−Aε(s,u)du∣

≤ K
√
ε sup
0≤u≤s+δ

∣w(u)∣ε2
⎛
⎝
1 + 1

ε2
+ 1
ε
+ 1
ε2

sup
t∈[0,1]

∣Hε(t)∣
⎞
⎠

≤ K
√
ε(1 + ε) sup

0≤u≤s+δ
∣w(u)∣ + K

√
ε sup
0≤u≤s+δ

∣w(u)∣ sup
t∈[0,1]

∣Hε(t)∣.

Applying a similar argument to (3.18) and recalling estimate (3.16), one obtains

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ

1√
εh(ε) ∣ II

ε
4(t, s)∣ ≥ j) = −∞. (3.23)

Step 5: Since

IIε5(t, s) =
√
ε∣∫

t

s
(w(t) −w(s))e−Aε(t,u)B(u)du∣

≤ 2
√
ε sup
s≤t≤s+δ

∣w(t)∣ sup
u∈[0,1]

∣B(u)∣ ∣∫
t

s
e−Aε(t,u)du∣

≤ K
√
ε(1 + ε) sup

s≤t≤s+δ
∣w(t)∣ + K

√
ε sup
s≤t≤s+δ

∣w(t)∣ sup
t∈[0,1]

∣Hε(t)∣,

following Step 4 gives

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ

1√
εh(ε) ∣ II

ε
5(t, s)∣ > j) = −∞. (3.24)

Finally, combining all of the above steps completes the proof. ◻

1. Proof of Eq. (2.2)
By virtue of the Lipschitz property of b(⋅, ⋅) and the boundedness of b(⋅, ⋅) and αε(⋅), we have
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∣1ε1(t)∣ = ∣
1√
εh(ε)∫

t

0

b(qε(s), rε(s))
αε(qε(s))

− b(q0(s), ν(s))
α(q0(s))

ds∣

= ∣ 1√
εh(ε)∫

t

0

b(qε(s), rε(s)) − b(q0(s), rε(s))
αε(qε(s))

+ b(q0(s), rε(s)) − b(q0(s), ν(s))
αε(qε(s))

+ b(q0(s), ν(s))
αε(qε(s))

− b(q0(s), ν(s))
αε(q0(s))

+ b(q0(s), ν(s))
αε(q0(s))

− b(q0(s), ν(s))
α(q0(s))

ds∣

≤ K
ℓ0
∫

t

0
∣Xε(s)∣ds + K∣λε(t)∣ + K sup

x∈Rd

∣αε(x) − α(x)∣√
εh(ε) . (3.25)

In addition, due to e−Aε(s) ≤ e−ℓ0s/ε
2
, it yields

∣ 1√
εh(ε)R

1
ε(t)∣ = ∣

1√
εh(ε)

p
ε∫

t

0
e−Aε(s)ds∣ ≤ ∣p∣

√
ε

h(ε)ℓ0
. (3.26)

Using the boundedness of b(⋅, ⋅) and αε(⋅) to estimate R2
ε(⋅) yields

∣ 1√
εh(ε)R

2
ε(t)∣ = ∣

1√
εh(ε)

1
αε(qε(t))∫

t

0
e−Aε(t,s)b(qε(s), rε(s))ds∣ ≤

Kε2

ℓ20
√
εh(ε) . (3.27)

Furthermore, (3.7) yields

∣ 1√
εh(ε)R

3
ε(t)∣ ≤

Kε2

ℓ20
√
εh(ε)∫

t

0
∣∫

s

0
e−Aε(s,u)b(qε(u), rε(u))du∣ ∣pε(s)∣ds

≤ Kε2√
εh(ε)

⎛
⎝
1 + 1

ε
+ 1
ε2

sup
t∈[0,1]

∣Hε(t)∣
⎞
⎠∫

t

0
∣∫

s

0
e−Aε(s,u)b(qε(u), rε(u))du∣ds

≤ K(ε2 + ε)√
εh(ε) + K

⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣

⎞
⎠
, (3.28)

∣ 1√
εh(ε)R

5
ε(t)∣ ≤

Kε2

ℓ20
√
εh(ε)

⎛
⎝
1 + 1

ε
+ 1
ε2

sup
t∈[0,1]

∣Hε(t)∣
⎞
⎠∫

t

0
∣Hε(s)∣ds

≤ K(ε2 + ε)√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ + K

√
εh(ε)

⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣

⎞
⎠

2

≤ Kε
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣

⎞
⎠
+ K
√
εh(ε)

⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣

⎞
⎠

2

. (3.29)

Combining estimates (3.25)–(3.29) and applying Grönwall’s inequality lead to

∣Xε(t)∣ ≤ K
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣

⎞
⎠
+ K
√
εh(ε)

⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣

⎞
⎠

2

+K∣λε(t)∣ + K
h(ε) ∣∫

t

0

σ(qε(s), rε(s))
αε(qε(s))

dw(s)∣ + e2(ε),

where

e2(ε) ∶=
K∣p∣√ε
h(ε)ℓ0

+ Kε2√
εh(ε) +

K(ε2 + ε)√
εh(ε) + K sup

x∈Rd

∣αε(x) − α(x)∣√
εh(ε) → 0, as ε→ 0. (3.30)

First, the boundedness of functions σ(⋅, ⋅) and αε(⋅) and Bernstein’s inequality imply
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lim
j→∞

lim sup
ε→0

1
h2(ε) log P

⎛
⎝
sup
t∈[0,1]

K
h(ε) ∣∫

t

0

σ(qε(s), rε(s))
αε(qε(s))

dw(s)∣ > j
⎞
⎠
= −∞.

Second, Lemma III.2 suggests

lim
j→∞

lim sup
ε→0

1
h2(ε) log P

⎛
⎜
⎝
K
√
εh(ε)

⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣

⎞
⎠

2

> j
⎞
⎟
⎠

= lim
j→∞

lim sup
ε→0

1
h2(ε) log P

⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ >

√
j/(K
√
εh(ε))

⎞
⎠
= −∞.

Finally, using Corollary II.9 and Lemma III.2 yields

lim
j→∞

lim sup
ε→0

1
h2(ε) log P

⎛
⎝
sup
t∈[0,1]

∣Xε(t)∣ > j
⎞
⎠
= −∞.

Thus, (2.2) is proved.

2. Proof of Eq. (2.3)
In what follows, we consider arbitrary but fixed s ∈ [0, 1], δ > 0, and let 0 < s ≤ t ≤ s + δ < 1. Note that

Xε(t) − Xε(s) =
1√
εh(ε)∫

t

s

b(qε(u), rε(u))
αε(qε(u))

− b(q0(u), ν(u))
α(q0(u))

du

+ 1
h(ε)∫

t

s

σ(qε(u), rε(u))
αε(qε(u))

dw(u) + 1√
εh(ε)(Rε(t) − Rε(s))

∶= IIIε1(t, s) + IIIε2(t, s) + IIIε3(t, s).

(3.31)

Effectively, we considerXε(t) − Xε(s) in a small interval shrinking to zero and divide the difference into three parts to estimate their difference.
Similar to (3.14), it is sufficient to show that for any positive j,

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ
∣ IIIεi(t, s)∣ > j) = −∞, i = 1, 2, 3.

In view of (3.4), the explicit form of the term IIIε3(t) can be written as

IIIε3(t, s) =
1√
εh(ε)

p
ε∫

t

s
e−Aε(u)du

− 1√
εh(ε)(

1
αε(qε(t))∫

t

0
e−Aε(t,u)b(qε(u), rε(u))du −

1
αε(qε(s))∫

s

0
e−Aε(s,u)b(qε(u), rε(u))du)

− 1√
εh(ε)∫

t

s
(∫

u

0
e−Aε(u,v)b(qε(v), rε(v))dv)

1
α2ε(qε(u))

⟨∇αε(qε(u)), q̇ε(u)⟩du

− 1√
εh(ε)(

1
αε(qε(t))

Hε(t) −
1

αε(qε(s))
Hε(s))

− 1√
εh(ε)∫

t

s

1
α2ε(qε(u))

Hε(u)⟨∇αε(qε(u)), q̇ε(u)⟩du

∶=
5

∑
k=1
(Rk

ε(t) − Rk
ε(s)). (3.32)

Observe that

∣R1
ε(t) − R1

ε(s)∣ = ∣
1√
εh(ε)

p
ε∫

t

s
e−Aε(u)du∣ = ∣p∣√

εh(ε)ε ∣
ε2

ℓ0
e−ℓ0s/ε

2

− ε
2

ℓ0
e−ℓ0t/ε

2

∣

≤ 2∣p∣√ε
ℓ0h(ε)

=: e3(ε)→ 0, as ε→ 0.
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Step 1: For the term R2
ε(t) − R2

ε(s), note that

∣ 1
αε(qε(t))

− 1
αε(qε(s))

∣ ≤ 1
ℓ20
∣αε(qε(t)) − αε(qε(s))∣ =

1
ℓ20
∣∇αε(qε(s+))pε(s+)∥t − s∣

≤ Kε2
⎛
⎝
1 + 1

ε
+ 1
ε2

sup
t∈[0,1]

∣Hε(t)∣
⎞
⎠
∣t − s∣

≤ Kεδ + Kδ sup
t∈[0,1]

∣Hε(t)∣,

(3.33)

where s+ = θs + (1 − θt) for some constant θ ∈ [0, 1]. It follows

∣R2
ε(t) − R2

ε(s)∣ ≤
1√
εh(ε) ∣

1
αε(qε(t))

− 1
αε(qε(s))

∣ ∣∫
t

0
e−Aε(t,u)b(qε(u), rε(u))du∣

+ 1√
εh(ε)ℓ0

∣∫
s

0
[e−Aε(t,u) − e−Aε(s,u)]b(qε(u), rε(u))du∣

+ 1√
εh(ε)ℓ0

∣∫
t

s
e−Aε(t,u)b(qε(u), rε(u))du∣

≤ Kεδ√
εh(ε) + Kδ

⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣

⎞
⎠

+ K√
εh(ε) ∣e

−Aε(t,s) − 1∣∫
s

0
∣e−Aε(s,u)∣du

+ K√
εh(ε) ∣∫

t

s
e−Aε(t,u)b(qε(u), rε(u))du∣

≤ K
√
εδ

h(ε) + Kδ
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣

⎞
⎠
+ Kε2√

εh(ε)

= e4(ε, δ) + Kδ
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣

⎞
⎠
,

where e4(ε, δ) ∶= K
√
εδ/h(ε) + Kε2/(√εh(ε))→ 0 as ε→ 0. Then, (3.12) yields

P( sup
s≤t≤s+δ

∣R2
ε(t) − R2

ε(s)∣ > j) ≤ P
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ >

j − e3(ε, δ)
Kδ

⎞
⎠

≤ 2(exp(−(j − e3(ε, δ))
2h2(ε)

K2δ2e21(ε)
) ∨ exp(− 1

Kε
)).

It follows

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ
∣R2
ε(t) − R2

ε(s)∣ > j) = −∞.

Step 2: For the term R3
ε(t) − R3

ε(s), the boundedness of function b(⋅, ⋅) and αε(⋅) implies

∣R3
ε(t) − R3

ε(s)∣ ≤
K√
εh(ε)∫

t

s
(∫

u

0
e−Aε(u,v)dv)∣⟨∇αε(qε(u)), q̇ε(u)⟩∣du

≤ Kε2√
εh(ε) ∣t − s∣

⎛
⎝
1 + 1

ε
+ 1
ε2

sup
t∈[0,1]

∣Hε(t)∣
⎞
⎠

≤ K
√
εδ

h(ε) +
Kδ√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣.

Then, (3.12) yields, for any j > 0,

P( sup
s≤t≤s+δ

∣R3
ε(t) − R3

ε(s)∣ > j) ≤ P
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ >

j − K√εδ/h(ε)
Kδ

⎞
⎠

≤ 2(exp(−(j − Kδ
√
ε/h(ε))2

K2δ2e21(ε)
) ∨ exp(− 1

Kε
)).
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It is readily to see that

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ
∣R3
ε(t) − R3

ε(s)∣ > j) = −∞.

Step 3: We then deal with the term R4
ε(t) − R4

ε(s) in (3.32). Observe that

1
αε(qε(t))

Hε(t) −
1

αε(qε(s))
Hε(s)

= 1
αε(qε(t))

(Hε(t) −Hε(s)) − [
1

αε(qε(t))
− 1
αε(qε(s))

]Hε(s).

By virtue of (3.12) and (3.33), one has, for any j > 0,

P( 1√
εh(ε) sup

s≤t≤s+δ
∣[ 1
αε(qε(s))

− 1
αε(qε(t))

]Hε(s)∣ >
j
2
)

≤ P
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ >

j
4Kεδ

⎞
⎠
+ P
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ >

√
j

4Kδ
√
εh(ε)

⎞
⎠

≤ P
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ >

j
4Kδ
⎞
⎠
+ P
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ >

√
j

4Kδ
⎞
⎠

≤ 3(exp(− j 2h2(ε)
16K2δ2e21(ε)

) ∨ exp(− −jh
2(ε)

4Kδe21(ε)
) ∨ exp(− 1

Kε
)). (3.34)

It follows

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( 1√

εh(ε) sup
s≤t≤s+δ

∣[ 1
αε(qε(s))

− 1
αε(qε(t))

]Hε(s)∣ > j) = −∞. (3.35)

Thus, Lemma III.3 and (3.35) give

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ
∣R4
ε(t) − R4

ε(s)∣ > j) = −∞. (3.36)

Step 4: For the term R5
ε(t) − R5

ε(s), we have

∣R5
ε(t) − R5

ε(s)∣ ≤
Kε2∣t − s∣√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣

⎛
⎝
1 + 1

ε
+ 1
ε2

sup
t∈[0,1]

∣Hε(t)∣
⎞
⎠

≤ Kεδ√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ +

Kδ√
εh(ε)

⎛
⎝
sup
t∈[0,1]

∣Hε(t)∣
⎞
⎠

2

.

Then, (3.34) implies

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ
∣R5
ε(t) − R5

ε(s)∣ > j) = −∞.

Finally, we deal with terms IIIε1(t) and IIIε2(t) in (3.31). For IIIε1(t), owing to the boundedness of functions b(⋅, ⋅),αε(⋅), b(⋅, ⋅), and
α(⋅), it follows that

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ
∣ IIIε1(t)∣ > j) = −∞.

Besides, Bernstein’s inequality implies

lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ
∣ IIIε2(t)∣ > j) = −∞.

Consequently, combining all of the above steps, we obtain
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lim
δ→0

lim sup
ε→0

sup
s∈[0,1]

1
h2(ε) log P( sup

s≤t≤s+δ
∣Xε(t) − Xε(s)∣ > j) = −∞.

This concludes the exponential tightness proof of Xε(t).

B. Local MDP
In this section, we consider the exponential equivalent property for Xε(t) and ηε(t) defined in (1.9) and (1.12) in a local sense. We more

or less follow Ref. 17 (Proof of Proposition 4.4) with modifications to deal with moderate deviations.

Lemma III.4. Under the assumptions of Theorem II.11, for any y ∈ C0([0, 1],Rd) an absolutely continuous function and β > 0,N > 0, there
exist β1 > 0,β2 > 0, and an ε̃ such that for all ε ≤ ε̃,

P(∥Xε(t) − y∥ < β) ≥ P(∥ηε(t) − y∥ < β1) − exp(−Nh2(ε)), (3.37)

P(∥ηε(t) − y∥ < β) ≥ P(∥Xε(t) − y∥ < β2) − exp(−Nh2(ε)). (3.38)

Proof. Letting y(⋅) ∈ C0([0, 1],Rd) an absolutely continuous function and β > 0 arbitrary but fixed, the definition of Xε(t) in (1.9)
implies

P(Xε(t) ∈ B(y,β)) = P(qε(t) ∈ B(q0(t) +
√
εh(ε)y,

√
εh(ε)β)). (3.39)

Denoting φt ∶= q0(t) +
√
εh(ε)y(t), then φ(⋅) ∈ C([0, 1],Rd) and is also absolutely continuous. Denote by qφε (t) the solution of the following

auxiliary equation:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε2q̈φε (t) = b(φt , rε(t)) − αε(φt)q̇φε (t) +
√
εσ(φt , rε(t))ẇ(t),

qφε (0) = q ∈ Rd, q̇φε (0) =
p
ε
∈ Rd,

(3.40)

and gφε (t) the solution of

ġφε (t) =
b(φt , rε(t))
αε(φt)

+
√
ε
σ(φt , rε(t))
αε(φt)

ẇ(t), gφε (0) = q ∈ Rd. (3.41)

Note that

∣qε(t) − φt ∣ ≤ ∣qε(t) − qφε (t)∣ + ∣qφε (t) − gφε (t)∣ + ∣gφε (t) − gε(t)∣ + ∣gε(t) − φt ∣.

Step 1: Estimate of ∣qε(t) − qφε (t)∣. Similar to (3.1)–(3.4), it is readily seen that

qφε (t) = q +
p
ε∫

t

0
e−A

φ
ε (s)ds + 1

ε2∫
t

0
∫

s

0
e−A

φ
ε (s,u)b(φu, rε(u))duds +

1
ε2∫

t

0
Hφ
ε (s)ds, (3.42)

where

Aφ
ε (t, s) ∶=

1
ε2∫

t

s
αε(φu)du, Aφ

ε (t) = Aφ
ε (t, 0),

Hφ
ε (t) ∶=

√
ε∫

t

0
e−A

φ
ε (t,s)σ(φs, rε(s))dw(s).

Because of the boundedness of αε(⋅), we have the following estimates that will be used frequently in the subsequent development:

Aφ
ε (t, s) ≥

ℓ0
ε2
(t − s). (3.43)

Employing the integration by parts yields
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qφε (t) = q + ∫
t

0

b(φs, rε(s))
αε(φs)

ds +
√
ε∫

t

0

σ(φs, rε(s))
αε(φs)

dw(s) + Rφε (t), (3.44)

where

Rφε (t) ∶=
p
ε∫

t

0
e−A

φ
ε (s)ds − 1

αε(φt)∫
t

0
e−A

φ
ε (t,s)b(φs, rε(s))ds

− ∫
t

0
(∫

s

0
e−A

φ
ε (s,u)b(φu, rε(u))du)

1
α2ε(φs)

⟨∇αε(φs), φ̇s⟩ds

− 1
αε(φt)

Hφ
ε (t) − ∫

t

0

1
α2ε(φs)

Hφ
ε (s)⟨∇αε(φs), φ̇s⟩ds

∶=
5

∑
k=1

Rk,φ
ε (t).

Taking integration by parts only to stochastic integral in (3.42) yields

∣qε(t) − qφε (t)∣ ≤ ∣
1
ε2∫

t

0
∫

s

0
(e−Aε(s,u)b(qε(u), rε(u)) − e−A

φ
ε (s,u)b(φu, rε(u)))duds∣

+ ∣
√
ε∫

t

0
(σ(qε(s), rε(s))

αε(qε(s))
− σ(φs, rε(s))

αε(φs)
)dw(s)∣

+ ∣R1
ε(t) − R1,φ

ε (t)∣ + ∣R4
ε(t) − R4,φ

ε (t)∣ + ∣R5
ε(t) − R5,φ

ε (t)∣.

(3.45)

Denoting

Mε
1(t) ∶=

√
ε∫

t

0
(σ(qε(s), rε(s))

αε(qε(s))
− σ(φs, rε(s))

αε(φs)
)dw(s), (3.46)

Mε
1(t) is a local martingale. In light of

e−Aε(s,u)b(qε(u), rε(u)) − e−A
φ
ε (s,u)b(φu, rε(u))

= (e−Aε(s,u) − e−A
φ
ε (s,u))b(qε(u), rε(u)) + e−A

φ
ε (s,u)[b(qε(u), rε(u)) − b(φu, rε(u))],

the mean value theorem and estimates (3.43) imply

∣e−Aε(s,u) − e−A
φ
ε (s,u)∣ = e−(θAε(s,u)+(1−θ)Aφ

ε (s,u))∣Aε(s,u) − Aφ
ε (s,u)∣

≤ e−ℓ0(s−u)/ε
2

∫
s

u
K∣qε(v) − φv ∣dv

≤ Ke−ℓ0(s−u)/ε
2

(s − u) sup
u≤v≤s
∣qε(v) − φv ∣,

(3.47)

where θ ∈ [0, 1]. Then, using the boundedness and the Lipschitz property of b(⋅, ⋅), we have

∣ 1
ε2∫

t

0
∫

s

0
(e−Aε(s,u)b(qε(u), rε(u)) − e−A

φ
ε (s,u)b(φu, rε(u)))duds∣

≤ 1
ε2∫

t

0
∫

s

0
Ke−ℓ0(s−u)/ε

2

(s − u) sup
u≤v≤s
∣qε(v) − φu∣duds

+ ∫
t

0
∫

s

0
Ke−ℓ0(s−u)/ε

2

∣qε(u) − φu∣duds

≤ Kε2∫
t

0
sup
0≤u≤s
∣qε(u) − φu∣ds.
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For the term R1
ε(t) − R1,φ

ε (t), estimate (3.47) and Young’s inequality for convolution suggest

∣R1
ε(t) − R1,φ

ε (t)∣ ≤
∣p∣
ε ∫

t

0
Ke−ℓ0s/ε

2

∫
s

0
∣qε(u) − φu∣duds

≤ K ∣p∣
ε ∫

t

0
∫

s

0
e−ℓ0(s−u)/ε

2

∣qε(u) − φu∣duds

≤ K ∣p∣
ε ∫

t

0
e−ℓ0s/ε

2

ds∫
t

0
∣qε(s) − φs∣ds

≤ Kε∫
t

0
sup
0≤u≤s
∣qε(u) − φu∣ds.

(3.48)

For the term R4
ε(t) − R4,φ

ε (t), we have

∣R4
ε(t) − R4,φ

ε (t)∣ = ∣
1

αε(qε(s))
Hε(t) −

1
αε(φt)

Hφ
ε (t)∣ ≤ K(∥Hε(t)∥ + ∥Hφ

ε (t)∥). (3.49)

For the term R5
ε(t) − R5,φ

ε (t), it gives

∣R5
ε(t) − R5,φ

ε (t)∣ = ∣∫
t

0

1
α2ε(qε(s))

Hε(s)⟨∇αε(qε(s)), q̇ε(s)⟩ds − ∫
t

0

1
α2ε(φs)

Hφ
ε (s)⟨∇αε(φs), φ̇s⟩ds∣

≤ ∣∫
t

0
[ 1
α2ε(qε(s))

− 1
α2ε(φs)

]Hε(s)⟨∇αε(qε(s)), q̇ε(s)⟩ds∣

+∣∫
t

0

1
α2ε(φs)

[Hε(s)⟨∇αε(qε(s)), q̇ε(s)⟩ −Hφ
ε (s)⟨∇αε(φs), φ̇s⟩]ds∣

∶= B1 + B2.

(3.50)

The mean value theorem and estimate (3.7) then yield

B1 ≤ Kε2∥Hε(t)∥(ε2 + ε + ∥Hε(t)∥)∫
t

0
sup
0≤u≤s
∣qε(u) − φu∣ds.

Due to assumption (A3), we obtain

B2 ≤ K∣∫
t

0
[Hε(s) −Hφ

ε (s)]⟨∇αε(qε(s)), q̇ε(s)⟩ds∣

+K∣∫
t

0
Hφ
ε (s)[⟨∇αε(qε(s)), q̇ε(s)⟩ − ⟨∇αε(φs), φ̇s⟩]ds∣

≤ Kε2∫
t

0
∣Hε(s) −Hφ

ε (s)∣ ∣pε(s)∣ds + Kε2∫
t

0
∣Hφ

ε (s)∣(∣pε(s)∣ + ∣φ̇s∣)ds

≤ K(ε2 + ε + ∥Hε(t)∥)∫
t

0
∣Hε(s) −Hφ

ε (s)∣ds

+K(ε2 + ε + ∥Hε(t)∥ + ε2∫
t

0
∣φ̇(s)∣ds)∥Hφ

ε (t)∥

≤ K(ε2 + ε + ∥Hε(t)∥)(∥Hε(t)∥ + ∥Hφ
ε (t)∥) + Kε2∥Hφ

ε (t)∥∫
t

0
∣φ̇s∣ds.

Combining all of the above estimates gives

∣qε(t) − qφε (t)∣ ≤ K(ε2 + ε)(∥Hε(t)∥2 + ε2∥Hε(t)∥ + 1)∫
t

0
sup
0≤u≤s
∣qε(u) − φu∣ds + K∣Mε

1(t)∣

+K(1 + ε2 + ε + ∥Hε(t)∥)(∥Hε(t)∥ + ∥Hφ
ε (t)∥) + Kε2∥Hφ

ε (t)∥∫
t

0
∣φ̇s∣ds.

(3.51)

Step 2: Estimate of ∣qφε (t) − gφε (t)∣. From (3.40) and (3.41), we have
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ε2q̈φε (t) = −αε(φt)(q̇φε (t) − ġφε (t)).

An integration gives

∣qφε (t) − gφε (t)∣ = ∣
ε2

αε(φt)
(q̇φε (t) − q̇φε (0))∣ ≤

ε2

ℓ0
∣pφε (t) −

p
ε
∣,

where pφε (t) ∶= q̇φε (t). Similar to the argument with Proposition III.1, it is readily to have

∣qφε (t)∣ ≤ K
⎛
⎝
1 + 1

ε2
sup
t∈[0,1]

∣Hφ
ε (t)∣
⎞
⎠
,

∣pφε (t)∣ ≤ K
⎛
⎝
1 + 1

ε
+ 1
ε2

sup
t∈[0,1]

∣Hφ
ε (t)∣
⎞
⎠
.

Thus, estimate (3.7) yields

∣qφε (t) − gφε (t)∣ ≤ K(ε2 + ε + ∥Hφ
ε (t)∥) + ∣p∣ε/ℓ0 ≤ K(ε + ∥Hφ

ε (t)∥). (3.52)

Step 3: Estimate of ∣gφε (t) − gε(t)∣. Note that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ġφε (t) − ġε(t) = [
b(φt , rε(t))
αε(φt)

− b(gε(t), rε(t))
αε(gε(t))

] +
√
ε[σ(φt , rε(t))

αε(φt)
− σ(gε(t), rε(t))

αε(gε(t))
]ẇ(t),

gφε (0) = gε(0) = q ∈ Rd.
(3.53)

Taking integration and using the Lipschitz property of function b/αε, we have

∣gφε (t) − gε(t)∣ ≤ K∥gε(t) − φt∥ + ∣Mε
2(t)∣, (3.54)

whereMε
2(t) is a local martingale defined as

Mε
2(t) ∶=

√
ε∫

t

0

σ(φs, rε(s))
αε(φs)

− σ(gε(s), rε(s))
αε(gε(s))

dw(s).

Therefore, combining estimates (3.51), (3.52), and (3.54), and applying Grönwall’s inequality, we obtain

∥qε(t) − φt∥ ≤ KeGt∥gε(t) − φt∥ + KeGt(∥Mε
1(t)∥ + ∥Mε

2(t)∥)

+ KeGt[(1 + ε2 + ε + ∥Hε(t)∥)(∥Hε(t)∥ + ∥Hφ
ε (t)∥) + ε2∥Hφ

ε (t)∥∫
t

0
∣φ̇s∣ds]

+ KeGt(ε + ∥Hφ
ε (t)∥),

where
G ∶= K(ε2 + ε)(∥Hε(t)∥ + ε2∥Hε(t)∥ + 1).

Step 4: For arbitrarily fixed β,N > 0, estimate (3.12) gives

P(∥Hε(t)∥ > L1) = P
⎛
⎝

1√
εh(ε) sup

t∈[0,1]
∣Hε(t)∣ >

L1√
εh(ε)

⎞
⎠

≤ exp(− L21
εe21(ε)

) + exp(− 1
Kε
).

Then, there exists a constant L1 = L1(N) and ε1 = ε1(K,N) such that the right hand side of the above inequality is less than
2 exp(−2Nh2(ε)). DenoteΩ1,ε = {ω : ∥Hε(t)∥ > L1}. Thus, under the eventΩc

1,ε,

G ≤ K(ε2 + ε)(L2 + ε2L + 1).
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Letting

β1 =
β

2KeK(ε2+ε)(L2+ε2L+1)
, (3.55)

the event {∥gε(t) − φt∥ ≤ β1∣Ωc
1,ε} implies the event {KeGt∥gε(t) − φt∥ ≤ β/2}. That is,

{(∥gε(t) − φt∥ ≤ β1)∣Ωc
1,ε} ⊂ {KeGt∥gε(t) − φt∥ ≤ β/2}.

In addition, due to the boundedness of the function σ(⋅, ⋅),αε(⋅), there is a constant K̃ > 0 such that the quadratic process

[Mε
i ]1 ≤ K̃ε, i = 1, 2.

Then, Bernstein’s inequality implies

P(∥Mε
1(t)∥ + ∥Mε

2(t)∥ > L2) ≤ 2 exp(−L22/4K̃ε).

Consequently, there exists a positive constant L2 = L2(N, K̃) such that the right hand side of the above inequality is less than
2 exp(−2Nh2(ε)). Denote

Ω2,ε = {ω : ∥Mε
1(t)∥ + ∥Mε

2(t)∥ > L2}.

UnderΩc
2,ε ∩Ωc

1,ε, we note that there exists an ε2 = ε2(K̃,L1,K,L2) such that for all ε ≤ ε2,

KeGt(∥Mε
1(t)∥ + ∥Mε

2(t)∥) ≤ KeGtL2 ≤ β/8.

Since the absolutely continuous function on a compact interval is differentiable almost everywhere, the integration by parts formula in
(3.11) holds also for Hφ

ε (t). Similar to Lemma III.2, we are able to obtain

P(∥Hφ
ε (t)∥ > L3) ≤ exp(−

L23
εe21(ε)

) + exp(− 1
Kε
). (3.56)

Thus, there exists a constant L3 = L3(K,N) and ε3 = ε3(K,N) such that the right-hand side of the above inequality is less than
2 exp(−2Nh2(ε)) for all ε ≤ ε3. Denote

Ω3,ε = {ω : ∥Hφ
ε (t)∥ > L3}.

Hence, underΩc
1,ε ∩Ωc

2,ε ∩Ωc
3,ε, there exists an ε4 = ε4(K,L1,L3) such that for all ε ≤ ε4,

KeGt[(ε2 + ε + ∥Hε(t)∥)(∥Hε(t)∥ + ∥Hφ
ε (t)∥)] ≤

β
8
,

KeGtε2∥Hφ
ε (t)∥∫

t

0
∣φ̇s∣ds ≤

β
8
,

KeGt(ε + ∥Hφ
ε (t)∥) ≤

β
8
.

Consequently, for all ε ≤ min{ε1, ε2, ε3, ε4},

{(∥gε(t) − φt∥ < β1)∣(∪3i=1Ωi,ε)c} ⊂ {∥qε(t) − φt∥ < β}

implies

P(∥gε(t) − φt∥ < β1) − 6 exp(−2Nh2(ε))
≤ P(∥gε(t) − φt∥ < β1) − P(∪3i=1Ωi,ε)
≤ P(∥gε(t) − φt∥ < β1 ) ∩ (∪3i=1Ωi,ε)c) ≤ P(∥qε(t) − φt∥ < β).

Finally, choose ε5 = ε5(N) such that 6 exp(−2Nh2(ε)) ≤ exp(−Nh2(ε)) for all ε ≤ ε5. Noting (3.39) and (3.55), we have for all
ε ≤ ε̃ ∶= min1≤i≤5 εi
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P(∥Xε(t) − y∥ < β) ≥ P(∥ηε(t) − y∥ < β1) − exp(−Nh2(ε)).

Likewise, observing

∣gε(t) − φt ∣ ≤ ∣gε(t) − gφε (t)∣ + ∣gφε (t) − qφε (t)∣ + ∣qφε (t) − qε(t)∣ + ∣qε(t) − φt ∣,

we obtain

P(∥ηε(t) − y∥ < β) ≥ P(∥Xε(t) − y∥ < β2) − exp(−Nh2(ε)).

Thus, the proof is complete. ◻

Theorem III.5. Suppose that ηε(t) satisfies a local LDP with speed h−2(ε) and a rate function S(⋅) with S(y) =∞ if y is not absolutely
continuous. Then, under the assumptions in Theorem II.11, the sequence Xε(t) satisfies a local LDP with the same speed h−2(ε) and rate function
S(⋅). That is, for any y ∈ C0([0, 1],Rd),

lim
β→0

lim sup
ε→0

1
h2(ε) log P(Xε(t) ∈ B(y,β))

= lim
β→0

lim inf
ε→0

1
h2(ε) log P(Xε(t) ∈ B(y,β))

= −S(y).

Proof. By virtue of Lemma III.4, the proof is similar to Ref. 17 (Theorem 4.1). Thus, the detail is omitted here. ◻

Proof (Proof of Theorem II.11). From Theorem III.5, proving that Xε(t) satisfies an LDP with speed h−2(ε) and a good rate function
S(⋅) only requires to show that ηε(t) satisfies a local LDP with speed h−2(ε) and a rate function S(⋅). In order to achieve the goal, we first
establish the exponential equivalence between ηε(t) and η̂ε(t) with respect to MDPs, and then, we claim that η̂ε(t) satisfies the LDPs, which
leads to the local LDPs with speed h−2(ε) and the rate function S(⋅) defined in (2.14).

Now, we proceed to prove that for any j > 0,

lim
ε→0

1
h2(ε) log P

⎛
⎝
sup
t∈[0,1]

∣ηε(t) − η̂ε(t)∣ > j
⎞
⎠
= −∞.

By the boundedness of αε(⋅),α(⋅), and b(⋅, ⋅), and the Lipschitz property, we have

∣ηε(t) − η̂ε(t)∣ =
1√
εh(ε) ∣gε(t) − fε(t)∣

= 1√
εh(ε)∫

t

0
∣b(gε(s), rε(s))

αε(gε(s))
− b(fε(s), rε(s))

α(fε(s))
∣ds

+∣ 1
h(ε)∫

t

0

σ(gε(s), rε(s))
αε(gε(s))

− σ(fε(s), rε(s))
α(fε(s))

dw(s)∣

≤ K∫
t

0
∣ηε(s) − η̂ε(s)∣ds +

K√
εh(ε)∫

t

0
∣αε(fε(s)) − α(fε(s))∣ds

+∣ 1
h(ε)∫

t

0

σ(gε(s), rε(s))
αε(gε(s))

− σ(fε(s), rε(s))
α(fε(s))

dw(s)∣.

The Grönwall inequality yields that

∣ηε(t) − η̂ε(t)∣ ≤ K sup
x∈Rd

∣αε(x) − α(x)∣√
εh(ε) + K∣M̃ε(t)∣,

where

M̃ε(t) =
1

h(ε)∫
t

0

σ(gε(s), rε(s))
αε(gε(s))

− σ(fε(s), rε(s))
α(fε(s))

dw(s).

Noting assumption (A3), it is sufficient to prove that
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lim
ε→0

1
h2(ε) log P

⎛
⎝
sup
t∈[0,1]

∣M̃ε(t)∣ > j
⎞
⎠
= −∞.

For any fixed arbitrary positive ℓ > 0, observe

P
⎛
⎝
sup
t∈[0,1]

∣M̃ε(t)∣ > j
⎞
⎠
≤ P
⎛
⎝
sup
t∈[0,1]

∣M̃ε(t)∣ > j; [M̃ε]1 ≤ ℓε
⎞
⎠
+ P([M̃ε]1 > ℓε).

Bernstein’s inequality implies

1
h2(ε) log P

⎛
⎝
sup
t∈[0,1]

∣M̃ε(t)∣ > j; [M̃ε]1 ≤ ℓε
⎞
⎠
≤ − j 2

2ℓεh2(ε) .

Since we have εh2(ε)→ 0 as ε→ 0, it follows that for any positive j and ℓ,

lim
ε→0

1
h2(ε) log P

⎛
⎝
sup
t∈[0,1]

∣M̃ε(t)∣ > j; [M̃ε]1 ≤ ℓε
⎞
⎠
= −∞.

To conclude, we need only establish

lim
ℓ→∞

lim
ε→0

1
h2(ε) log P(1

ε
[M̃ε]1 > ℓ) = −∞.

Since
1
ε
[M̃ε]1 =

1
εh2(ε)∫

1

0
(σ(gε(s), rε(s))

αε(gε(s))
− σ(fε(s), rε(s))

α(fε(s))
)
2

ds

≤ K∫
1

0
∣ηε(t) − η̂ε(t)∣2dt + K(sup

x∈Rd

∣αε(x) − α(x)∣√
εh(ε) )

2

≤ K
⎛
⎝
sup
t∈[0,1]

∣ηε(t)∣
⎞
⎠

2

+ K
⎛
⎝
sup
t∈[0,1]

∣η̂ ε(t)∣
⎞
⎠

2

+ K(sup
x∈Rd

∣αε(x) − α(x)∣√
εh(ε) )

2

,

the exponential equivalence holds if

lim
ℓ→0

lim
ε→0

1
h2(ε) log P

⎛
⎝
sup
t∈[0,1]

∣ηε(t)∣ > ℓ
⎞
⎠
= −∞, (3.57)

lim
ℓ→0

lim
ε→0

1
h2(ε) log P

⎛
⎝
sup
t∈[0,1]

∣η̂ε(t)∣ > ℓ
⎞
⎠
= −∞. (3.58)

Similar to (3.25),

∣ηε(t)∣ =
1√
εh(ε) ∣gε(t) − q0(t)∣

= 1√
εh(ε)∫

t

0
∣b(gε(s), rε(s))

αε(gε(s))
− b(q0(s), ν(s))

α(q0(s))
∣ds + ∣ 1

h(ε)∫
t

0

σ(gε(s), rε(s))
αε(gε(s))

dw(s)∣

≤ K∫
t

0
∣ηε(s)∣ds +

K√
εh(ε) ∣∫

t

0
b(q0(s), rε(s)) − b(q0(s), ν(s))ds∣

+ K sup
x∈Rd

∣αε(x) − α(x)∣√
εh(ε) + ∣ 1

h(ε)∫
t

0

σ(gε(s), rε(s))
αε(gε(s))

dw(s)∣.

Then, (2.9) and Grönwall’s inequality lead to

sup
t∈[0,1]

∣ηε(t)∣ ≤ K∣λε(t)∣ + K sup
x∈Rd

∣αε(x) − α(x)∣√
εh(ε) + K

h(ε) ∣∫
t

0

σ(qε(s), rε(s))
αε(gε(s))

dw(s)∣.
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In light of the boundedness of functions σ(⋅, ⋅) and αε(⋅), and Corollary II.9, it is readily seen that

lim
ℓ→0

lim
ε→0

1
h2(ε) log P

⎛
⎝
sup
t∈[0,1]

∣ηε(t)∣ > ℓ
⎞
⎠
= −∞.

Likewise, we could also obtain (3.58). Thus, the exponential equivalence with respect to MDPs between ηε(t) and η̂ε(t) is established.
The last thing we need to verify is the MDPs of η̂ε(t). We provide a sketch of proof leaving details to Ref. 20. Let us recall (1.11) and

(1.12), and the notation introduced in (2.6), (2.7), (2.10), and (2.11). For t ∈ [0, 1],

η̂ε(t) =
fε(t) − q0(t)√

εh(ε)
= 1√

εh(ε)∫
t

0
b1(fε(s), rε(s)) − b1(q0(s), ν(s))ds +

1
h(ε)∫

t

0
σ1(fε(s), rε(s))dw(s).

Introduce η̃ε(t), defined as

η̃ε(t) =
1√
εh(ε)∫

t

0
b1(q0(s), rε(s)) − b(q0(s), ν(s))ds

+ 1
h(ε)∫

t

0
σ1(q0(s), rε(s))dw(s) + ∫

t

0
D1(q0(s), ν(s))η̃ε(s)ds.

We will establish that η̃ε(t) satisfies an LDP of Theorem II.11 and then the LDPs of η̂ε(t) are guaranteed by the exponential equivalence
between η̂ε(t) and η̃ε(t); see details in Ref. 20 (Sec. 4.2) and Ref. 25 (Theorem 5.6). By contraction principle, the LDP of η̃ε(t) follows from
the LDP of R̃ε(t),

R̃ε(t) ∶= λε1(t) + M̂ε
t.

See Ref. 20 (Proposition 2). The last LDPs can be obtained by showing exponential tightness, a local LDP, and the explicit expression of the
rate function. The first two properties can be found in Ref. 20 (Secs. 4.1.1 and 4.1.2). For the explicit representation of the rate function, note
that if C̃1(t) is invertible for each t ∈ [0, 1], we have

IB̃1
r (γ) = ∫

1

0
⟨C̃−1(s)γ̇(s), γ̇(s)⟩ds, if dγ(s) = γ̇(s)ds, γ(0) = 0,

and otherwise, IB̃1
r (γ) =∞. Thus, assuming the invertibility of C̃1(s), the identification of the explicit form of the rate function is obtained by

perturbing Σ2
s as Σ2

s + ρId, where ρ is a positive number and Id is the d-dimensional identity matrix. Taking ρ→ 0 completes the proof; see
details in Ref. 20 (Sec. 4.1.3). ◻

C. Applications
For simplicity, we consider the one-dimensional Brownian motion of a particle in a gas or fluid studied in Ref. 3,

mẍ = −γẋ + F(x) +
√
2γkBTẇ(t),

where m is the mass of the particle, γ is the friction coefficient, F(x) is the external forces, kB is the Boltzmann constant, T denotes the
temperature, and w(t) is the standard Brownian motion. Using the same setting as in Cerrai and Freidlin,6 we mainly focus on the motion
of small particles. Thus, let m = ε2, where ε≪ 1 is a small parameter. In addition, we also assume that the temperature T is small with T = ε.
That is, we are in a low-temperature physics setting. Thus, we arrive at

ε2ẍε = −γẋε + F(xε) +
√
εσẇ(t), (3.59)

where σ ∶=
√
2γkB. In this application, we are considering the constant friction coefficient related to the medium (gas or fluid, etc.) in which

the particle is located. The external force F(x) +√εσẇ(t) is under a finite number of configurations. For a certain configuration i, the external
force is F(x, i) +√εσ(i)ẇ(t). In addition, those configurations are changing at a random time, which gives a stochastic process associated
with it. Consequently, we generalize (3.59) as

ε2ẍε = −γẋε + F(xε, rε(t)) +
√
εσ(rε(t))ẇ(t), (3.60)

where rε(t) is a fast-varying continuous-time Markov chain used to describe the change of configurations. The state space of the
Markov chain rε(t) is finite with values in M = {1, . . . ,m}, and the generator is Q(t)/ε, where Q(t) is irreducible with a quasi-invariant
measure ν(t).
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Consider the first order-equation (3.60)

v̇ε =
F(vε, rε(t))

γ
+
√
ε
σ(rε(t))

γ
ẇ(t)

and the averaged deterministic equation

ẋ0 =
F(x0, ν(t))

γ
.

For each i ∈M, suppose F(⋅, i) is bounded and continuous with a bounded first-order partial derivative. Then, Theorem II.11 gives that
(xε − x0)/(

√
εh(ε)) satisfies an LDP in C0([0, 1],R) with speed h−2(ε) and a good rate function S(⋅). Roughly speaking, the MDP result

shows that the asymptotic probability of P(∣xε − x0∣ ≥ δ
√
εh(ε)) converges exponentially to 0 as ε→ 0 for any δ > 0. For more applications of

moderate deviations principle, we refer the reader to Refs. 27 and 28 for constructing asymptotic confidence interval and Ref. 29 for obtaining
an asymptotic evaluation for the exit time.

IV. DISCUSSION AND REMARKS
A. Discussion on non-homogeneity

This paper investigated themoderate deviations principles of the Langevin dynamics with a strong damping and rapidMarkovian switch-
ing. We only consider the situation when the Langevin dynamics are time-independent. In fact, motivated by Refs. 25 and 30, one can extend
to the case when the dynamics are time-dependent, i.e., considering

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε2q̈ε(t) = b(t, qε(t), rε(t)) − αε(t, qε(t))q̇ε(t) +
√
εσ(t, qε(t), rε(t))ẇ(t),

qε(0) = q ∈ Rd, q̇ε(t) =
p
ε
∈ Rd,

where rε(t) is a time-inhomogeneous irreducible Markov chain generated by Q(t)/ε. An analog of Theorem II.11 can be obtained by
examining the time-inhomogeneity.

B. Unbounded b (⋅, i )
We can replace the boundedness condition on the function b(⋅, i) by the Lipschitz continuity. To this end, we assume that the following

condition holds.

(A1′) For each i ∈M, b(⋅, i) : Rd → Rd is continuously differentiable with bounded derivatives.

By virtue of (A1′), b(⋅, i) is Lipschitz continuous; that is, there exists a constant c1 > 0 such that for all x, y ∈ Rd,

∣b(x, i) − b(y, i)∣ ≤ c1∣x − y∣.

Under Assumption II.5 with (A1) replaced by (A1′), one can obtain [see Ref. 15 (Theorem 2.2)]

lim sup
L→0

lim sup
ε→0

ε log P(∥qε∥ > L) = −∞.

Thus, there exist some positive constants R and C such that

lim sup
ε→0

ε log P(∥qε∥ ≥ R) ≤ −C.

Consequently, (1.10) implies

lim sup
ε→0

1
h2(ε) log P(∥qε∥ ≥ R) = −∞. (4.1)

For any fixedM > R, let SM = {x : ∣x∣ ≤M} be the sphere with center at the origin and radiusM. We define the truncated version of function
b as bM , where for each i ∈M,

bM(x, i) = b(x, i)μM(x),
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with μM(⋅) being a smooth function satisfying

μM(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ∈ SM ,
0 if x ∈ Rd − SM+1.

(4.2)

Denote by qMε (⋅) the solution of (1.6) with b replaced by bM , and qM0 the solution of (1.8) with b replaced by bM . Because of the continuity of b
and α, ∥q0∥ is finite. Thus, choosingM large enough, we have q0(t) = qM0 (t) for all t ∈ [0, 1]. Defining XM

ε (t) similar to (1.9), we establish the
exponential equivalence with respect to MDPs between Xε and XM

ε as follows. For any j > 0,

lim sup
ε→0

1
h2(ε) log P(∥Xε − XM

ε ∥ > j)

= lim sup
ε→0

1
h2(ε) log P(∥q0 − q

M
0√

εh(ε)∥ > j)

≤ lim sup
ε→0

1
h2(ε) log P(∥qε − qMε ∥ > 0)

= lim sup
ε→0

1
h2(ε) log P(∥qε − qMε ∥ > 0; ∥qε∥ ≤M)

+ lim sup
ε→0

1
h2(ε) log P(∥qε − qMε ∥ > 0; ∥qε∥ >M)

≤ lim sup
ε→0

1
h2(ε) log P(∥qε∥ >M) = −∞,

where the last inequality is because qε = qMε when ∥qε∥ ≤M and (4.1). Thus, establishing the LDPs of {Xε(t)} under Assumption II.5 with
(A1) replaced by (A1′) is equivalent to establishing that for {XM

ε (t)}, which is the situation considered in Theorem II.11.
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APPENDIX: TECHNICAL ESTIMATES

Proof of Proposition III.1. From (3.2), due to assumption (A3),

∣qε(t)∣ ≤ ∣q∣ + ε∣p∣ +
1
ε2
∣∫

t

0
∫

s

0
e−Aε(s,u)b(qε(u), rε(u))duds∣ +

1
ε2∫

t

0
∣Hε(s)∣ds

≤ ∣q∣ + ε∣p∣ + 1
ε2
∣∫

t

0
∫

s

0
e−ℓ0(s−u)/ε

2

b(qε(r), rε(u))duds∣ +
1
ε2∫

t

0
∣Hε(s)∣ds

= ∣q∣ + ε∣p∣ + 1
ε2
∣∫

t

0
e−ℓ0s/ε

2

∗ b(qε(s), rε(s))ds∣ +
1
ε2∫

t

0
∣Hε(s)∣ds,
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where ∗ represents convolution. By Young’s inequality for convolution and the boundedness and Lipschitz property of b(⋅, ⋅), we obtain

1
ε2
∣∫

t

0
e−ℓ0s/ε

2

∗ b(qε(s), rε(s))ds∣ ≤
1
ε2∫

t

0
e−ℓ0s/ε

2

ds∫
t

0
∣b(qε(s), rε(s))∣ds

≤ 1
ℓ0
∫

t

0
∣b(qε(s), rε(s))∣ds =

1
ℓ0
∫

t

0
∣b(qε(s), rε(s)) − b(0, rε(s)) + b(0, rε(s))∣ds

≤ K
ℓ0
∫

t

0
∣qε(s)∣ds +

K
ℓ0
.

(A1)

Thus,
∣qε(t)∣ ≤ K + ∣q∣ + ε∣p∣ +

K
ℓ0
∫

t

0
∣qε(s)∣ds +

1
ε2∫

t

0
∣Hε(s)∣ds, (A2)

and then, Grönwall’s inequality implies

∣qε(t)∣ ≤ K(∣q∣ + ∣p∣) +
K
ε2∫

t

0
∣Hε(s)∣ds ≤ K(1 +

1
ε2∫

t

0
∣Hε(s)∣ds).

Furthermore, (3.1) implies

∣pε(t)∣ ≤
∣p∣
ε
e−Aε(t) + K

ε2∫
t

0
e−ℓ0(t−s)/ε

2

(1 + ∣qε(s)∣)ds +
1
ε2
∣Hε(t)∣,

and thanks to (A2), we obtain

∣pε(t)∣ ≤
∣p∣
ε
e−ℓ0t/ε

2

+ K(1 + ∣p∣ + ∣q∣) + K
ε2

sup
t∈[0,1]

∣Hε(t)∣

≤ K
⎛
⎝
1 + 1

ε
+ 1
ε2

sup
t∈[0,1]

∣Hε(t)∣
⎞
⎠
.

◻
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