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ABSTRACT

In this paper, we obtain a moderate deviations principle (MDP) for a class of Langevin dynamic systems with a strong damping and fast
Markovian switching. To facilitate our study, first, analysis of systems with bounded drifts is dealt with. To obtain the desired moderate
deviations, the exponential tightness of the solution of the Langevin equation is proved. Then, the solution of its first-order approximation
using local MDPs is examined. Finally, the MDPs are established. To enable the treatment of unbounded drifts, a reduction technique is
presented near the end of the paper, which shows that Lipschitz continuous drifts can be dealt with.
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. INTRODUCTION

This work is devoted to obtaining a moderate deviations principle for a class of Langevin equations with a strong damping and fast
Markovian switching. Originally used for describing the motion of a system subject to combined deterministic and stochastic forces,' Langevin
dynamic systems have been a basic mathematical physics model studied intensively in the literature; see, for example, applications to classical
mechanics and thermodynamics,” * stochastic chemical kinetics,” and statistical physics.” * In mathematical physics, one often uses asymp-
totic analysis to reduce the computational complexity; see Refs. 3 and 611 and references therein. In this paper, we focus on the asymptotic
properties of the Langevin dynamic systems through multi-scale formulation. Our aim is to fill in a gap between the range of normal deviations
and large deviations. The use of the Markovian switching is to capture the features of random environments that are not fitting into the setting
of usual stochastic differential equations. The essence is that in the overall systems, both continuous dynamics and discrete events coexist and
interact. Such systems are often termed hybrid systems and used widely in many different applications.'” To make the computation feasible,
one often has to be contented with finding approximate solutions. A useful modeling and computational step is to use a multi-scale formula-
tion. In the literature, Simon and Ando'’ used such an idea and introduced the so-called hierarchical decomposition and aggregation; Sethi
and Zhang'* initiated the study of nearly optimal controls for flexible manufacturing systems. In this paper, the fast Markov chain is along
the aforementioned line of modeling, whereas the use of a strong damping follows from the motivations in the early works;”’ see also the
application examples in Ref. 15.

For each &> 0, considering the motion of a small particle with mass y in the force field b(q) + \/eo(gq)w with variable friction
proportional to the velocity, Newton’s law gives

{qu(t) = b(g" (1)) + Veo (g™ (1) i(t) - a(g")a" (1), Ly

7*°(0) = g, 4"°(0) = p; p.qe R,

where b(q) is the deterministic part of the force, w(t) is the standard Gaussian white noise in R?, and ¢(q) is a d x d matrix. The term
a(g™(t))g"¢(t) is the variable friction to the motion, and a(g"*(t)) is a scalar representing the friction coefficient.
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If the friction coefficient « is independent of g, it has been proven that the Smoluchowski-Kramers approximation holds.'”'® That is,

q"(t) converges to g°(¢) in probability as 4 — 0, where g°(¢) is the solution of the equation,

ey bEO) | 0@ 0) e

It justifies the replacement of the motion of the particle by the first-order Eq. (1.2). If the friction coefficient is state-dependent, it was proved
in Ref. 11 that ¢"*() converges to the solution of the first-order equation of the same type as (1.2), where an extra noise-induced drift term is
added.

Dealing with the case of state-dependent friction coefficient and y = &%, Cerrai and Freidlin® considered the following Langevin equation
with a strong damping:

£4e(t) = b(ge(1)) — a(qe(t)) e (t) + Vea (ge (1)) w(t), .
2:(0) =qe R, 4(0) = %’ eRY .

They established large deviations principles (LDPs, for short) for the solution {ge(t) }eso of (1.3) in C([0, T],R?), the space of continuous
functions defined on [0, T] taking values in R?, and demonstrated that such LDPs have the same rate function (or action functional) I and
the same speed function ™' with LDPs of the following first-order dynamic system:

b(g() | ro(a (1)
a(e(0) *Vealg (D)

Recently, in our work,"” we have extended the above results by considering the LDPs of the time-inhomogeneous Langevin equations with a
strong damping in a random environment. More precisely, consider

w(t), g(0)=qeR" (1.4)

(1) =

{fzés(t) = b(t:qe(£), &ye) — ae(£,4e()) 3 (8) + VVeoe (£ go (1)) (), (L3)

2:(0) = qo € RY,  Ge(0) = g e R,

where £, represents the random environment. It was shown that the solution {q.(t) }e>0 of the second-order Eq. (1.5) and its corresponding
first-order equation still possesses the same LDPs assuming that the corresponding first-order equation satisfies a local LDP.

Under a Markovian switching random environment setting in Ref. 15, LDPs were also established for Langevin equations by using
appropriate H-functionals. In contrast to Ref. 15, we examine a different asymptotic range in this paper, which is somewhat closer to the
asymptotic normality range. Nevertheless, the techniques used in Ref. 15 are no longer applicable and different approaches must be used. We
establish the moderate deviations principles (MDPs, for short) of the following Langevin dynamic system with a Markovian switching:

{szqsm = b(ge(£), re(t)) = ae(@e(1)) (1) + Va0 (ge(£), re(£) o (t), w6

9:(0) =R, 3.(0)= 2R,

where r¢(t) is a fast-varying continuous-time Markov chain with a finite state space M = {1,2,...,m} generated by Q(¢)/e. The Q(t) ¢ R™"
is itself a generator of a Markov chain. The corresponding first-order equation of the Langevin Eq. (1.6) is given by

o b(ge(t),re(2)) o(ge(t),re(t)) . _ d
&e(t) = (g (D) +e 2 (.(0)) w(t), g(0)=qeR" (1.7)

We note that the above first-order equation is not of the exact form of Smoluchowski-Kramers approximation of (1.6) due to the

state-dependent friction coefficient.!’ Note also that under irreducibility’ (p. 23) of Q(t), there is an averaged system in R? when
e — 0;ie.,

b(g0(1). v(1))
a(q0(t))

where a(-) is the limit of {a,(-) }e>0. For convenience, we write ag = a. The a(-) is a pointwise limit of a.(-). However, we require more in
assumption (A3), which is about the convergence rate of norm ||at: — «.

ao(t) = . q0(0)=geR%, (1.8)
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For simplicity of presentation, we first treat the case that the drift is bounded. Near the end of the paper, we present how Lipschitz type
of condition can be incorporated, leading to a reduction to the bounded coefficient case. We focus on the MDPs problems for the family

{ge(t) }es0 in (1.6) on the space C°([0,1];R?). That is, we are interested in the asymptotic behavior of the trajectory

Xe(t) = \[h()(qs(t) q(t)), te[0,1], (1.9)

where h(¢) is the scale of deviations satisfying
h(e) —» +oo0 and \/eh(e) — 0, ase — 0. (1.10)

If h(¢) is identically equal to 1, it is in the normal deviation range, leading to the central limit theorem (CLT). If h(¢) = 1/+/, it is in the large
deviations range, with the large deviations estimates provided in Ref. 19. To fill in the gap between the CLT scale and the large deviations scale,
it is natural and necessary to study the moderate deviations where the scale satisfies condition (1.10). For the moderate deviations principle of
Langevin dynamics (1.3), earlier work can be found in Ref. 7 and references therein. This paper demonstrates that not only do the solutions
of the second-order Eq. (1.6) and those of the first-order Eq. (1.7) verify the same large deviations principle, but also they satisfy the same
moderate deviations principle. Because of the e-dependence of the drift and diffusion coefficients in (1.7), we first establish the exponential
equivalence with respect to the MDPs between g, (t) and f.(t) that satisfy

b(fe(t)re(t)) | olfe(t)r(t)) ,

fe(t) = "0)) (1) w(t). (1.11)
More specifically, for any positive j,

lim———log P e(t e (t

lim hz() og (s[uplfv() n()>1)
where

ﬂs(t) gf(t) qo(t) and ﬂs(t) fﬁ(t) qo(t). (112)

- Veh(e) Veh(e)

In Ref. 20, Guillin established moderate deviations principles for stochastic differential equations with a small diffusion, where the random
environment is an exponentially ergodic Markov process. In reference to his work, we are able to obtain that under suitable conditions, 7 ()
satisfies an LDP in C°([0,1],R?) with speed h~*(¢) and a good rate function S given by

s =1y~ [ Dalan(s)v(s)p(s)ds), (1.13)

for any y € C°([0,1],R?), where Dy (-,-) is to be specified later. Our method is based on the explicit criteria for exponential tightness given
by Liptser and Pukhalskii’' and the equivalence of local moderate deviations principle between X.(¢) and #,(t). Finally, the exponential
equivalence with respect to the MDPs between 7, (t) and () and the MDPs of 7(t) yields the MDPs of X,(t).

The rest of the paper is arranged as follows. In Sec. II, we first present some definitions and preliminary results. Then, assumptions on the
Markov chain and coefficients in Langevin dynamics as well as the main result are presented. Section 111 is devoted to the proof of our main
theorem. Section IV provides further discussions. Importantly, it proposes an alternative assumption, removes the boundedness condition of
the drift, and indicates how to reduce such a case to the analysis under boundedness conditions. Finally, an Appendix is placed at the end of
the paper to conclude the paper.

Il. FORMULATION AND MAIN RESULTS

Denote by | - | the Euclidean norm of a vector in RY, (-,-) the inner product in R? and C°([0,1],R?) the space of continuous functions
from [0, 1] to R? starting from 0 and equipped with the sup-norm | - |. We use x" to denote the transpose of a vector x € R% and V (resp.,
V) to represent the partial derivatives (gradient) (resp., partial derivatives with respect to first variable if more than one variable is involved).
Furthermore, [-]; denotes the quadratic variation of a stochastic process at time ¢. Recall that for a real-valued stochastic process X; defined
on a probability space (Q, F,P), the quadratic process [X]; is defined as
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. 2
[(X]: = hmupuaozzzl(x& =X )%

where |P| is the mesh of partitions of [0, ¢] and the convergence is in probability. Throughout the paper, K is a generic positive constant
independent of ¢ whose value may be different for different appearances.

A. Exponential tightness and local MDP

Let us start with some definitions and preliminary results. We first recall the definition of LDPs (large deviations principle); see Ref. 22.
Let Y* = {Y*(t) }e[01] bea C°([0, 1], R?) family.

Definition IL.1. The family Y* obeys the LDPs in C°([0, 1], R?) with speed v(e) and a good rate function I with respect to the supremum
norm if

(a) there exists I : C°([0,1],R?) — [0, c0] such that I is inf-compact in that the level sets {I < L} for any L > 0 are compact;
(b) for any open set G in C°([0,1],RY),

liminfv(e)log P(Y*(t) € G) > —infI(y);
=0 yeG

(c) forany closed subset F in C°([0,1],R?),
lim supv(e)log P(Y*(t) € F) < —in}fl(y).
e—0 Y&

Next, we recall the definitions of exponential tightness and local LDP, which give sufficient conditions to a full LDP.

Definition I1.2. The family {Y*} is said to be exponentially tight with speed v(e) — 0 in the space C°([0,1],R?) if there exists an
increasing sequence of compact sets {O;}j»1 of C°([0,1],R?) such that

limlim sup v(e) log P(Y*(¢) ¢ O;) = —o0. (2.1)

Sufficient conditions for exponential tightness in the space of continuous trajectory can be found in Liptser and Pukhalskii”’
(Theorem 3.1); see also Feng and Kurtz”’ (Remark 4.2). It requires us to prove

1
limlim sup—— log P| sup |X:(¢)| >j| = —oo, (2.2)
joeo eng H2(€) & (te[m] g
1
limlimsup sup ———log P| sup |Xc(t) = Xe(s)|>j]=—-00, Vj>O0. (2.3)
=0 e pse[og]hz(s) & (s<t<£—6| e() E( )| ]) !

Definition I1.3. The family {Y*} is said to satisfy a local LDP with speed v(e) — 0 in C°([0,1],R?) with the rate function T if for any
ye C([0,1],RY),
}Siné lim sup v(e) log P(Y* € B(y,8))
- e—0
= }Sinélim ionfv(e) log P(Y* € B(»,6)) (2.4)

=-1(y),

where B(y, ) is the ball of radius & centered at y.

The LDP is guaranteed by the following well-known theorem; see Refs. 22 and 24.

Proposition IL4. If the family {Y*} is exponentially tight and satisfies a local LDP with the rate functionT in C°([0,1],R?), then it satisfies
the full LDP with the rate function I( y) = 1(y), which is inf-compact.
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B. Assumptions
Let r¢(t) be a continuous-time and time-inhomogeneous Markov chain with a finite state space M = {1, ...,m} and a generator Q(t)/e,

where Q(t) is a generator and ¢ is a small parameter as given at the beginning of the paper. For a Markov chain with time-dependent generator
Q(t), we refer the reader to the definition of Ref. 18 (Sec. 2.3). Recall that a generator Q(¢) (or its associated Markov chain) is irreducible for
t > 0 if the system of equations

v(1)Q(t) =0,
Zvi(t) =1

i=1

(2.5)

has a unique solution such that v;(#) > 0 for each i € M. Throughout the paper, we assume the irreducibility of Q(t) for each ¢ € [0,1]. We
impose the following assumptions on the coefficients b(-,-), (-, ), and a,(+) in dynamics (1.6).

Assumption I1.5. We assume the following conditions:

(A1) Foreachie M,b(-i):R? - R?isabounded and continuous function with bounded first-order partial derivatives.

(A2) Foreachie M,o(i): R? - R™" is a bounded and continuous function with bounded first- and second-order partial derivatives.

(A3) The function () : RY — R satisfying that a.(-) € C}(R?) (the class of bounded continuously differentiable functions on R?) and
that there exist some constants 0 < £y < ¢; < oo and K > 0 such that

£ = liminfinf a:(x), ¢ = lim sup sup ae(x), sup|Va.(x)| < Ke’,
e0 xerd e>0  xeRd xeR4

and
lim sup e (x) — ()| =0.

e20 g \/Eh(E) -

(A4) w(-) is a Wiener process in R” independent of the Markov chain r.(-).

Remark I1.6. Assumptions (A1) and (A2) are concerned with the functions b(-,-) and o(-,-). The boundedness of function b can
be weakened to the Lipschitz continuity, which will be addressed in Sec. IV. Assumption (A3) is a technical condition, which is neces-
sary to ensure e;(¢) defined later in (3.30) approaching 0 in order to establish the exponential tightness. One of the examples is that
as(x) = & sin(x) + ¢o and the limit a(x) = ¢, a constant.

Throughout the paper, both r, and w are defined on the probability space (Q, F, { F},P). We introduce the following notation. For
eachie M,

N b(xi) N o(x1)
bi(x,i) = ) and o(x,i) = ) (2.6)
Under the irreducibility of re, the averaged coefficients
- m ) - m ) B(x, V)
b(x,v) = Zb(x,z)vi and bi(x,v) = z bi(x,i)vi = (2.7)
i=1 i=1 a(x)
are well-defined for x € R?. Moreover, we denote
) 9 . )
(DY (5) = b, (1) and Dy (5.) = ((D1)}05) <4z
k
m (2.8)

Di(x,v) = ;Dl(x, i)vi.

Define
KW= ey P, 1(9) - Blao(s) w(s)ds, 9
K= ey S (@0 7(5) =i (a0 (5) v(s) s, @10
M; = Wi)/otal(qo(s),rs(s))dw(s), 2.11)
J. Math. Phys. 63, 123304 (2022); doi: 10.1063/5.0095042 63, 123304-5
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with g, and . being given earlier. To proceed, we recall some preliminary results to be used in the rest of the paper.

Lemma IL.7 (Ref. 18, Sec. 5.3.3). For each i € M, let B,(-) be a bounded measurable deterministic function and

7 (t) = %\/Ot(l{re(s):i} = vi(s))Bi(s)ds,

withi®(t) = (R5(t), ..., 715,(t))’, where 2’ denotes the transpose of z. Then, 7 (+) converges weakly to a Gaussian process 7i(+) such that

BA(1) < 0. BEOTO]= [ BOBOA)E
and

Ay(t) = Vi(t)fo V/fj(u,t)duwj(t)fo i (u, t)du
where ¥(u,t) = (l//ij(u, t)) satisfies

3%%Q:q«nmyxmy >0, ¥(0,t0) =1-P(t)

and
PO = (1), ..., v())".

Denote A(t) := (Aij(t))1<ijem> and define the matrix B(t) = (b'(qo(t),]))1<icd1<j<m- Let C(£) = B(t)A(t)B'(t), and define a function
B:[0,1] x M - R%as

B(s,1) = b(qo(s)1) = b(qo(s), v(s)).

Similarly, we could also define the matrix By = ((b}(qo(t),j))s> C1(t), and the function B;. Then, recalling Theorem 4.1 in Ref. 25, we have
the following lemma.

Lemma I1.8. Under Assumption I1.5, X*(t) (resp. (A{(t)) satisfies an LDP in C°([0,1],RY) with speed h™> (&) and a good rate function i
(resp. IBY), where

. S sup 360 JC@BBJds i dn(s) = ) v(0) <o,

BeRrd

+o0o, otherwise
[resp., 1P, where IP' is defined as above with C(s) replaced by Ci(s)].
Corollary IL.9. Under Assumption IL5, sup;ejo11|A°(t)| satisfies an LDP in R with speed h™* (&) and a good rate function J. In particular,

lim J(x) = +oo,

1
limlim——log P| sup [A°(¢£)| > ] = —oc. (2.12)
j=ooe=0h2 () (tE[O,I]
Proof. The result is a consequence of contraction principle and is similar to Ref. 20 (Corollary 1), so the verbatim is omitted here. |

Lemma IL.10. Under Assumption IL5, Mt satisfies an LDP in C°([0,1],RY) with speed h™> (&) and rate function I, given by

1 ,‘ T j =y(s)ds =
Luy) = fo sup(ﬁ OB Zsﬁ)ds, if dy(s) = §(s)ds, y(0) =0,

pem (2.13)

+o0o, otherwise,

where

J. Math. Phys. 63, 123304 (2022); doi: 10.1063/5.0095042 63, 123304-6
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o icrl(qo(s),i)a{(cm(s),i)w(s).

Proof. Under assumption (A2) and (A3), 01(-,-) is bounded and Lipschitz with respect to the first variable, following the proof of
Ref. 20 (Proposition 1) [see also Ref. 21 (Theorems 2.1 and 3)], and leads to the desired result. |

We conclude this section by stating our main result. The proof is postponed until Sec. II1.

Theorem I1.11. Suppose that the r¢(t) is an inhomogeneous irreducible Markov chain with generator Q(t) /e, where ¢ is a small parameter.
Furthermore, suppose that conditions (A1)-(A5) hold. Then, X.(t) satisfies an LDP in C°([0,1],R?) with speed h™*(¢) and a good rate function
S given for y € C°([0,1],R?) by

$0) =1(y= [ D@ 1s)p(s)es) @19
where I is defined by
1(y) = inf{I{" (y - ¢) + Lu(9); 9 € C°([0,1,R") }. (2.15)

Furthermore, assuming that Cy(s) is invertible, I(y) can be explicitly expressed as

) { L[N I s if dy(s) = #($)ds, y(0) =0, 16

+o00, otherwise.

lll. PROOF OF MDP

This section is devoted to the Proof of Theorem IL.11. Note that (1.6) can be rewritten as a first-order system,

4:(t) = pe(1),
pe(t) = b(qe(),re(t)) — ae(qe())pe(t) + VVeo(qe(t), re(£) )i (1),

9:(0) =g €', pi(0)=Z "

From the variation of parameters formula, we have
_ 1 g 1
pe(t) = Lt 4 ff AV p(ge(s),re(s))ds + — He(t), (.1)
€ e Jo &2

where forany0<s<t<1,0<e<1,

Ac(ts) = elz/st(xe(qg(u))du, Ac(t) = Ac(50),
H(1) = /e O[O 0(qu(5),(9)dus),

Then, the solution g, () of (1.6) can be expressed as

P (s 1 [ S _a(sn 1 1t
qg(t)=q+€/(; e A gs 4 8—2/0 fo el )b(qs(u),rg(u))duds+ :Zfo He(s)ds. (3.2)

Employing integration by parts formula gives
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_ b(ge(s).7:(5)) , to(qe(s),re(s))
100 [l TV Tkt O RO 6
where

Re(t) = P/ -4(9) g ocg(qg(t))./ eI (0 (5), re(s))ds
- /0 (/0 A (”‘)b(%(u) rg(u))du) 2 1( ))(Vocg(qe(s)) , e (s))ds

(3.4)
S He(8) = | S He(s)(Vae(ge(s))s e (s) )ds

t 1
- ae(ﬂs(t)) 0 ae(q ( ))

= ZR (1)
k=1

In view of the definition of X, () in (1.9), we have that for any ¢ € [0, 1],

Xe(t) = (:(1) = qo(1))

\/h()
) [H0r9) B9,
7 wul) " ala) 35)
ta(qe(s),re(s s
ok o) ey W)+ ey R
= 17(8) + 15(8) + 15(¢).

A. Exponential tightness

By virtue of the sufficient conditions, to prove the exponential tightness of X; (), we need only verify (2.2) and (2.3). To proceed, we first
obtain a priori estimates for q,(t) and p,(1).

Proposition IIL.1. There is a constant K independent of € such that

1 t
@l <k(1e 5 [ 1)), G9)
lp<(1)] < K(l ot i sup le(t)I) 3.7)
te[O 1]

The Proof of Proposition III.1 is postponed to Appendix for a better flow of presentation. In order to achieve the exponential tightness
of X,(t), we first give the exponential tightness of H,(#) with respect to MDPs, which is the main ingredient for that of X,(¢).

Lemma II1.2. Under assumptions of Theorem 1111,

lim hm su log P sup |He(t)| > (3.8)
Jimlim sup sy og (Jh( 7 oy e 1)
Proof. If f € C*([0,]) and g € C([0, ]), then the following Stieltjes integral

[1dgs). =0

is well defined. By integration by parts, it follows

[ 9dg(s) ~f(e)g(e) - fr)g(e) - [ g 0<nsnst 69)
In particular, if g(0) = 0, then
t t
[ F6)dg(s) = g(r @)+ [ () =g(sD (). 120 (310)
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The above formula will be used frequently implicitly in the sequel. Since the trajectory of the Markov chain r¢(+) has piecewise constant sample
paths, let

0=7<T1 <2< <7< -~

be the jump times. Denote by n(t) the random counting process representing the number of jumps up to time ¢. Noting that r.(¢) = r.(7y) for

t € [Tk Tks1 )> denoting ik = re(7y), and using integration by parts formula (3.9) with f(s) = e 0(g¢(s), i) and g(s) = w(s) on each interval
[Tk Tks1) yields

t nO-1 ~q (s ) t
J @ Orta@a@du = 5 [T Ootaiau s [ f)dgs)

"%l(f(rkﬂ)gum) ~fmem) - [ e ()

F(O80) S ()s ) = [ 2OF)

- F(05() - F(0)(0) - [ g} ()
- w(0)a(q7:(0))

+ [ w0 - we) O D o, (9) + Do a9 ]as (3.1)

Using estimates (3.7) and assumptions (A1) and (A3) leads to

1
o) S0P O] < K oS ()| <K ()nw(t)n(e +e+ sup He(t>|)

€[0.1] te[0,1]
(s +1)

h(e)

|w (t)|+K\/_w(t)(\/—h()

Sup |H. (t)l)

It follows

(f ey ) (f ey b ] > 31 = K (o)] >o)

(\/'h( ) e IHe(£)] > js 1 K\/Ellw(t)IISO)

€[0,1

(\/_h(e)tsup |He(£)] > js 1 - K\/el|w(t) | >0)+IP’(1K\/_||w(t) <0)

€[0,1

A0 ety ) (01 1)

Denote
e1(e) == K(e+ 1) +j\/eh(e) — K aconstant, as e — 0.

Then, Bernstein’s inequality”® (pp. 153-154) yields

P(u (t)||>f’1§8§) (Hw(t)||>Z’8[ (O] < )<exp(‘j;hz(e’)

J. Math. Phys. 63, 123304 (2022); doi: 10.1063/5.0095042
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and
IP(Hw(t)H > %ﬁ) < exp(—Kis).

Thus, combining above estimates gives

i o) <o i) -ool-c)
A 2 )

which implies (3.8). The proof is complete.

Using the integration by parts formula (3.11), we have

[He(t) = He(s)| = vVele ™D w(t)a(q,7e(0)) = €O (s)a(g,7.(0))
e /Ot(w(t)—w(u))e"*f("”B(u)du—fos(w(s)—w(u))e-‘*f“’“’B(u)du
< Ky/ele O = e O u()] + Ky/ee " Olu(t) = w(s)|

e fo “(w(t) - w(s))e O B(u)du
el [ () = w() [ - 0 B(u)du
+/e f (w(t) - w(s))e O B(u)du| = kZS;Zi(t,s),

on

o

0

o

where

B(u) = 2L o0, ), () + Vo), re(0))pe).

Lemma II1.3. Under the assumption of Theorem II.11, for any j > 0,

lim lim sup sup hz( ) log (\/5}11( j. sup |He(t) — He(s)| >j) =-

60 e0 " sef0,1] <t<s+d
Proof. Since

1 5
Pl ——— sup |He(t) — He(s)| > P sup |1I; (¢,s)| > j/5
(e 0 -101) < (i s 91>

1

<5 maxP| —=—~ sup |1 (ts)| >j/5] ],
(1955 (\/Eh(s)sgtgsILJ (&)1 >3/ ))

to prove (3.13), it suffices to show

lim lim sup sup (e )log (\/E;l(s)ssup |15; (,5)| > j

00 0 sef0,1] <t<s+d

Step 1: Note that
I (1,5) = K/gle ™ — e Jw(1)] < 2K/elw(t)].

To proceed, we need an exponential inequality of the form

) =-o00, 1=1,2,3,4,5

(3.12)

(3.13)

(3.14)

J. Math. Phys. 63, 123304 (2022); doi: 10.1063/5.0095042
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]P’I:sup|B:| > 6] < 2d exp(-6°/(2dt)), (3.15)

s<t

for a d-dimensional Brownian motion B. This can be seen as follows:

d o
P[sup|Bs\ > 8] = P[sup sup(6, Bs)| > 8] = P[sup(@l,Bs > ] > P [sup 0\ B; > g]
i=1

s<t s<t |9\:1 s<t s<t

<d]P’suBi 9 +]P)lnfB<8
S22 gy = od

where (-,-) denotes the inner product, 6; = B;/|Bj| is a unit vector in R, and 6} and B! are ith coordinates of 6, and B;, respectively.
Then, applying Proposition 1.8 in Ref. 26, we have

d 62
P Bs|>8|<2 -},
[i‘i?' | ] ZP{ 2d2(6;>2t}

Noting 61| = 1 implies infiic4(6})* > %, and taking infimum on the right-hand side with |6;| = 1 yields (3.15). Consequently,

jh(e)
P(sffiﬂaw (e )'Hl(t ) >’) - P(ssiliﬁa'w(t)'
0) 1) j2He) (19
< (0<Stl<lsp+a|w(t)| ) <2n CXP( m) <2n exp(—m).

Thus, we have

lim lim sup sup

1
lo sup |1Ii(t,s)|>7| = -
fimlim s se[mhzo 8 (ﬁh(e)sg;is‘ 1(59)] ])

Step 2: Using the same argument to (3.16), it has

F{ so0, iy 109121) <2 s Jo01- 52 ) s2 w5555 )

which implies

lim lim sup sup

log P| su
=0 e 55[01}12() & ( 5

s<t£s+6\/_h( ) ‘HZ(t S)| >]) (317)

Step 3: Invoking estimate (3.7), it yields

‘/ (w(t) = w(s))e ) B(u)dul <

<K(1+¢&)|w(t) —w(s)| + Klw(t) - w(s)|ts[1(1)1i]|Hg(t)|.

<) = w(9)] sup 1B [

uel0,1

Thus, for any L > 0,

K(1+¢)
{2 o 15001 <7 s S0 -wtor )

(5,2‘115'“](” )] sup IH1)| > H(e) 2K sup [u(r) - w(s>|<Lh<s))

s<t<s+6 te[0,1] s<t<s+6

( sup [w(t) - w(S)| sup |He(t)| > jh(e)/2K; sup [w(t) - w(s)] >Lh(8))

jh(e) ) 1 J
<Pl sup |w(t) —w(s)|> +P sup |He(t)| > ——F=——
(sgg}ia' O =wOl> kv ) F\ Vo SOl sxe e
+ ]P’( sup |w(t) —w(s)| > Lh(s)). (3.18)
S<t<s+6
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In view of (3.12), it is readily to see that

sup |He(1)| >

1 J _
(\/Eh(f) te[0,1] ) ZKL\/Eh(e)) o

lim lim sup sup

lo
-0 50 s€[0,1] hl(s) &

In addition, a similar argument to (3.16) yields

lim lim sup su
§=0 o0 psE OIT] hZ( )

o s o) 001> 1) ==

and

lim lim sup su
=0 e0 pse[oli] hz( )

log ]P’( sup |w(t) —w(s)| > Lh(s)) =-

s<t<s+0

Combining (3.19)-(3.21), we have

lim lim sup su lo IP’( ! sup | II5(¢ s)|>')—
imte sup 3108 a2 15091
Step 4: Note that

IE(4,5) < 20/ sup |w(u)| sup |B(u)|‘/ SAt) _ (s g

0<u<s+6 ue[0,1]

<K& sup w(u)|ez( + i + 1 + i sup |H, (t)|)
&2

0<u<s+4 te[0,1]

0<u<s+6 0<u<s+8

<KVE(l+e) sup |w(u>|+1<¢z sup (s sup [HL(H)}

Applying a similar argument to (3.18) and recalling estimate (3.16), one obtains

lim lim sup sup ——

im i log P| sup I t5)>)
0=0  e0  sef0,1] hz() 8 (s<t£s+5\/_h( )‘ 1(69)] 2]

Step 5: Since

Hé(t’s) = \/E ft(w(t) - u)(s))e_Az(t-“)B(u)du‘
<2v/& sup |w(t)| sup |B(u)| ft -Ad() g,

s<t<s+6 ue[0,1]

<KVe(1+e) sup [w(t)]+ Ky sup [w(t)] sup [He(t)],

s<t<s+0 s<t<s+0 te[0,1]

following Step 4 gives

limlim sup sup ——

log P su 15(¢,s) >)
0=0 e0  sef0,1] hz() s (s<tsg5\/_h( )‘ 5( | /

Finally, combining all of the above steps completes the proof.

1. Proof of Eq. (2.2)
By virtue of the Lipschitz property of b(,-) and the boundedness of b(-,-) and ac(-), we have

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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| b)) Blaos)v9)
'““’"’fh(e)f w(@() () ‘

scitation.org/journal/jmp

'b(qe(5),7e(5)) — b(qo(5),7:(5)) , b(qo(s), 7e(5)) = b(4o(s), ¥(s))

1
) ‘ Veh(e) f a:(qe(s)) a:(qe(s))

L b(@0(),7(s)  b(qo(s),7(s)) | b(qo(s), v(s))

RECIORIO)N

aa(Qs(S)) az(qO(S)) “5(40(5))
< g/0f|X5(s)|ds+K|/1€(t)| +K§3§%.

Los/é*

In addition, due to e () < ¢~ , it yields

. Iplve
h(E)Eo

‘fh(e) 5()‘ ‘\fh(enf s

Using the boundedness of b(-,-) and a,(-) to estimate R2(-) yields

YN P te_A,(z,s) o). ru(s))ds
e GR rerrro  ARCCC I B

Furthermore, (3.7) yields

A (g (u), () ) du
0

1 3 Ke
e ()| ¢(s)ld
| RO < e . pe(s)ls

Ke
" B\Jeh(e)

a(q0(s))

(3.25)

(3.26)

(3.27)

Keg 1 e
\/_h(s)(l e r:%P;]Hs(t”)/ |/ 4G b(ge(u), re(u) ) dulds

K(e +¢)

<o) K( Veh(e) b ) )

R(t|<

1
= fz\/_h(s)( t:[ltl)li’ |He (t)|)/ |He(s)|ds

K(e +¢)

‘x/h()

< ey S . (t>|+m<s)( T S [

€[0,1]

sup |H, (f)l) +K\/_h(€)(

(\/_h()te[m] Veh(€) e[,

Combining estimates (3.25)-(3.29) and applying Gronwall’s inequality lead to

Heols K(m:‘é%'Hs(”') +”’1(5)( VEh(e) o
a4,

+KA°(8)| + —— ae(gs(s))

+ex(e),

where

CKBVE | KE K@) e a0
2= Gyl T (e T en(e) TS et

First, the boundedness of functions o(+,-) and a.(-) and Bernstein’s inequality imply

sup |He(t)]

sup |H(t)]

(3.28)

2
) (3.29)

ase — 0. (3.30)
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o). 7)),
Ol ey e

)

hmhm sup hz( ) log IF’( sup — [(e)

jooo te[0,1]

Second, Lemma III.2 suggests

]l_l)rilollmsuphz( )log ]P’(K\/_h(s)(\/_h( )res%}z |Hs(t)|) )

—Jlgghr?jglphz( )1 g (\[h( )t:lfﬁ |He(1)] > j/(K\/Eh(e))) =-

Finally, using Corollary I1.9 and Lemma III.2 yields

limlim suphz( ) log IP’( sup |Xe(t)] >])

Jj=oo 0 te[0,1]

Thus, (2.2) is proved.
2. Proof of Eq. (2.3)
In what follows, we consider arbitrary but fixed s € [0,1],8 > 0,and let 0 < s < t < s+ § < 1. Note that

[ ) B,

e ) alan(w) .
0(qe(u),re(u)) re(u u s 3.31

h(e)f w(ge(w)) U ey Bl ~Rels)

i= T (4s) + (4 s) + TE(1 ).

Xe(t) = Xe(s) =

Effectively, we consider X, (t) — X,(s) in a small interval shrinking to zero and divide the difference into three parts to estimate their difference.
Similar to (3.14), it is sufficient to show that for any positive j,

lim lim sup sup

log P sup |TIE(%5) >'):—oo, i=1,2,3
-0 .0 sEOl]hz() & ( ‘ | !

s<t<s+0

In view of (3.4), the explicit form of the term III5(¢) can be written as

&€ 1 ¢ —. u
1015 (t,5) = P A g,

VEh(e) e Js

fh(s>(as<qs(t)>f O )~ b [ g )
e L (L b)) s (Tl ). e
OV ;(e> (as(qi(r»Hf(” - a£<q1(s))Hf(5))

e . sy BT, )

- Y (R0 - R 9. (3.32)
k=1
Observe that , ,
P / —Ae(u) Ip| £ —lgs/s2 & _ppt)é
R t R du _-
e~ Rl = ‘\fh(f) ‘ Veh(e)e| 6o° £
;'12'(\/)_ =re3(e) -0, ase — 0.
0
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Step I: For the term R2(t) — R(s), note that

1
“e(%(t)) e (qe

(S))‘ < ale(ai)) - ac(ae(9)] = gl ve(arls (s )i

1
<Ke (1 Tt S |H£(t)|)|t—s|

€% te[0,1]
< Ked + K& sup |He(1)],
te[0,1]

where s* = 0s + (1 - 6¢) for some constant 6 € [0, 1]. It follows

1

o (g (1)) ae(qe(s))
\/_hféi)fo [0 [e ~A(tu) _ A (S“>]h(q5(u) rg(u))du|

+W fs’e—As(t,u)h(qs(u), re(u))du

Ked +K8( ! sup |H£(t)|)

IR(1) - R2(s)] < [ (g (), )

fh(e)

<
Veh(e) Veh(e) te[0,1]

K | —ads) S\ A (su)
+\/El}é(£)‘e t 1‘[0 e |du
—A.(tu)
+\/_h(s) /se b(qe(u),re(u))du

K+/ed 1 Ké?
< K‘S( \/Eh(e) tf[‘?}i]'H‘f(t)') * (o)

=es(e,0) + K6(

sup |He
NG (t)')

where eq (e, 8) := K\/28/h(e) + Ke*/(y/eh(e)) — 0 as & — 0. Then, (3.12) yields

P( sup |RE(1) = R(5)] >j) sP( o o JHe(0)] > jmaled)

s<t<s+ €) tef0,1] Ké

(- es(2,9))"H (e) 1
< Z(exp(— e (e) ) v exp(—K—e)).

log IP’( sup |R§(t) —R§(5)| >j) ="

s<t<s+0

It follows

lim lim sup sup
60 0 sef0,1] hz( )

Step 2: For the term R (t) — R2(s), the boundedness of function b(-,-) and a(-) implies

R0 - RO < s (e v 7lgo)), 1) e

1 1
‘fh()'t‘s'( : stf[‘él?'Hf“")
K68 Ko

< he) V(o) b HeOF

Then, (3.12) yields, for any j > 0,

P( sup [Re(£) = R(s)| >j) < P(\/_}ll()tsup |H(1)] > J—Kxéw

s<t<s+8 €[0,1]

Aol ) el )

(3.33)
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It is readily to see that

lim lim sup sup

log P| sup |R2(t) - R2(s >')=—
6=0 ¢ se[01]h2() & (s<ts§6| ® >

Step 3: We then deal with the term R (¢) — Ri(s) in (3.32). Observe that

1
mm‘wm»“?

(He() = He(s)) —

1
a:(q:(1))
:mmm

By virtue of (3.12) and (3.33), one has, for any j > 0,

1 1
mwm‘mmmk*)

1 1 1] j
P su - H:(s)| > =
(\/Eh(S)ss:gpw [Ofs(qs(S)) ae(qe(1)) | 2 2)
<P sup |He(8)] > —— |+ P[ —L— sup |H.()] > [ —2——
\/_h( )te[01 4Ked Veh(e) te[0,1] 4K3+/¢h(e)
. 1 ]
< sup |He(t +P| ——— sup |H:(t)| > ——
(wmuﬁ'”'wg (ﬁmu&'”'VwJ
i’ (e) -k’ (e) 1
< 3(exp(—m) eXp(—m) \% exp(—fe)). (3.34)
It follows
1 1 1
lim lim sup su lo su - He(s)|>j] = —o0. (3.35)
s s 51087 i 50 | i~ o [4O])
Thus, Lemma IIL.3 and (3.35) give
lim lim sup sup ——log IP’( sup |RE(t) - Ri(s)] >j) = —o0. (3.36)
80 o0 sefoa] M7 (€ ( ) s<t<s+o

Step 4: For the term R} (t) — R:(s), we have

2 p—
IR (1) — R2(s)| < Kellt - sup |Hg(t)|(l + 1 + i sup |Hs(t)|)

\/gh(f) te[0,1]

Sfmﬁﬁ“mfmiﬁW“”

Then, (3.34) implies

lim lim sup sup

log P| su th—Ris >')=—
Mawﬁmw>g( p ()~ B(5)|>

s<t<s+0

Finally, we deal with terms III(¢) and III5(¢) in (3.31). For III(t), owing to the boundedness of functions b(-,-), & (-), b(--), and
a(-), it follows that

lim lim sup sup

log P| sup |III5(¢)|>j)| =~
30 ennp gg[ol]hz( ) g ( p | 1( )‘ ])

s<t<s+0

Besides, Bernstein’s inequality implies

lim lim sup sup

log P| sup |III5(¢) >'):—
=0 o0 se[0,1] hZ() 8 ( | : ‘ /

s<t<s+6

Consequently, combining all of the above steps, we obtain
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. 1
limlim sup sup ——

log Pl sup |Xe(t) = Xe(s)|>7]=—o0.
i s sup 7l ( p X:(8) - X.(5) J)

s<t<s+6

This concludes the exponential tightness proof of X.(t).

B. Local MDP

In this section, we consider the exponential equivalent property for X.(¢) and #,(t) defined in (1.9) and (1.12) in a local sense. We more
or less follow Ref. 17 (Proof of Proposition 4.4) with modifications to deal with moderate deviations.

Lemma IIL4. Under the assumptions of Theorem IL11, for any y € C°([0,1],R?) an absolutely continuous function and § > 0,N > 0, there
exist ﬁl > O,ﬁz > 0, and an’€ such that for all € <7

P(IX:(1) =yl < B) 2 P(lne(1) ~yll < Br) — exp(~NH’(¢)), (3.37)
P(llne(t) = 7]l < B) 2 P(IXe(t) = y| < B2) — exp(~NH’(e)). (3.38)
Proof. Letting y(-) € C°([0,1],R?) an absolutely continuous function and f8 > 0 arbitrary but fixed, the definition of X.(¢) in (1.9)
implies
P(Xe(t) € B(y,p)) = P(qe(t) € B(qo(t) + V/eh(e)y, /eh()P)). (3.39)
Denoting ¢: := qo(t) + /gh(e)y(t), then ¢(-) € C([0,1],R?) and is also absolutely continuous. Denote by g (¢) the solution of the following
auxiliary equation:
4L (1) = b(gore()) = ()t (1) + Veo(gure(t) )i (2), (3.40)
af(0)=q<R’, 3(0) =2 ere, '
and gf (t) the solution of
: b(ge (1)) o(gnre(t)) . d
(1) = +e w(t), ¢f(0)=qgeR" (3.41)
8 (1) o (p0) w(gr) (1), &(0)=q
Note that
196 () — @il < 1ge(t) — g ()] + Iq2 (£) — gf ()] + |87 () — ge ()] + |ge (£) — |
Step 1: Estimate of |g:(¢) — g (¢)|- Similar to (3.1)—(3.4), it is readily seen that
t t s t
ql(t)=q+ B/ e O gs 4 i/ / e M by, re(u))duds + if HY (s)ds, (3.42)
e Jo e Jo Jo e Jo

where
1 t
AL(t,5) ::7/ ac(gu)du,  AL(t) = AL (1,0),
& s

t
HY (1) = /2 f ) (0 12(s) ) dw(s).
0
Because of the boundedness of a.(-), we have the following estimates that will be used frequently in the subsequent development:
Afns) > O (3.43)
(6> 2(e-5) .

Employing the integration by parts yields
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b(gs,7e(s)) (s, 7e(s))
900 = 9
qe(t)_q+f0 SR ff Ty () + RE() (3.44)
where

RY(t) :=§/O-te_A?(s)ds txs((p:)f _Aw(ts)b(q)s,rg(s))ds
- [ ( A Se"‘f“’”b(w,n(u))du)mw«xe(ws)@qu
HO) = [ oy HEO(Tap), s

‘xs( t)
= Z REY (1)
k=1

Taking integration by parts only to stochastic integral in (3.42) yields

L (b)) e b)) s

t( 0(ge(s),re(s)) _0(¢5,T§(S)) w(s
( (@) alp) )d )
L RY(E) — RY(1)] + [REE) — R (1) + [RE() — R (1)

|9 (t) — g ()] <

(3.45)

Denoting

o o) o(pers)
Mi(r): ﬁfo( @) alg) )"’ ©), (3.46)

M; (t) is a local martingale. In light of

e—AE(s,u)b(qs(u))ge(u)) _ e*Af(S,u)b((Pmrg(uw))
_ (E,Ae(s,u) Y (S’u))b(qg(u), re(u)) + A (5'“)[b(q5(u),7’e(”)) = b(pure(u))],

the mean value theorem and estimates (3.43) imply

|e—A£(S,u) _ e_Af(S)u)l _ e—(@As(s,u)+(1—9)Af(S,u))‘As(s’ u) _ AE(P(S, u)|

—lo(s—u) /& s
<o) fumqg(u)—(pqu} (3.47)

< Ke O™ (s ) sup [ge(v) — g,

usv<s

where 6 € [0, 1]. Then, using the boundedness and the Lipschitz property of b(-, ), we have

t s
(e b, () = b () )ads
e Jo Jo
t s )
< if f Ke 6™/ (s — 1) sup |ge(v) — gu|duds
e Jo Jo usv<s
t s 2
+ f / Ke O™/ 10, (u) - @ulduds
o Jo

t
< Kszf sup |qe(u) — @ulds.
0

0<u<s
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For the term R!(t) — Ri*? (), estimate (3.47) and Young’s inequality for convolution suggest

t 2 s
R - RE (0] < B[k [Flg. ) — gulduds
<K|‘D‘f f ~lo(s-w)/¢ |ge(1) — @u|duds

(3.48)
<K|p‘f ~los/ ds/ g (s) — @s|ds
K e uld:
< ef Oiligslq (u) = @ulds.
For the term R () — R¥%(¢), we have
0y _ R - 1 o1 4 4
R0 - R0 = | s t) - st 0] < K0+ 172D, 649
For the term R2 () — R (t), it gives
5 _ 59 _ g 1 . _ ! 1 9
IRE(1) - RI* (1)) = ‘  artaey Pl ae)ds — [ SHE()(Veu(). i)
¢ 1 1
[%(qs(s)) o [P wata .
‘ S} o e T00e), () ~ )Vl ), )
= Bl + Bz.
The mean value theorem and estimate (3.7) then yield
2 2 !
By < Ke'|He(8) [ (" + &+ ||Hs(f)||)f sup |e(u) — @ulds.
0 o<uss
Due to assumption (A3), we obtain
B < K [ TH(9) - HE©)](Vau(a(9).(9)ds
t
¢ ()[(Vae(qe(5)), 4e(5)) = (Vae(s), ps) I ds
<K& [ H(9) = HE @)l [pu()lds + K& [ HE () (e(s)] + s
<K e+ [H)]) [ 1) - HE () lds
k(e )]+ [ oo)ds ) |HE (1))
€ 0 € .
<K(& +e+ |He(1)|) (| He(1)] + ||H§0(f)||)+K€2H1‘ﬁp(t)||f0 |ps|ds.
Combining all of the above estimates gives
l:(1) = gf (1) < K(& + &) (|He (1) [* + HHs(f)HH)/ sup |9 (u) = pulds + K|Mi(1)] 1)
+K(1+¢ +€+||He(t)||)(HHe(f)H+||H§p(t)H)+K€ \Hf(t)H/O |¢s|ds.
Step 2: Estimate of |g¢ (t) — gf (¢)|. From (3.40) and (3.41), we have
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€L (1) = ~ae(p) (4 (1) ~ gL (1)).

An integration gives
£

42 - g (1) ‘ Tl

o) - L
e 2|

where p?(t) := g¢(t). Similar to the argument with Proposition IIL1, it is readily to have

lqe(t)|<K(1+ s[up IH"’(t)I)

o) <K 145+ sup 2 (o) |
ts[O 1]

Thus, estimate (3.7) yields
l? (1) = gf ()] < K(e* + &+ [HE (1)) + |ple/ o < K(e + |HE (1)])- (3.52)

Step 3: Estimate of |gf (t) — g:(t)|. Note that

o [hgun(®) | bla), rs(t)):l [a(%re(t)) a(ge(1),e(1))
ge(t) gf(t) (Xg((Pt) (xe(gf(t)) \/_

g0(0) = g:(0) =g e R".

alp)  wlen) |0 (3.53)

Taking integration and using the Lipschitz property of function b/a., we have
8¢ (1) = ge(1)| < Kllge(t) = i | + [M(1)), (3.54)

where M5(t) is a local martingale defined as

o) 0@ r() ,
M) = Ve [T )

Therefore, combining estimates (3.51), (3.52), and (3.54), and applying Gronwall’s inequality, we obtain
lg:(£) = 9ol < Ke™ ge(8) = g + Ke™ (IMi (1) ] + | M5(1)])
t
# K[ (14 e [HODUHO + 1O + 21 O] [ lodds]
+ Ke (e + [HL (1)),

where
G:=K(& + &) (|He(t)| + & [He(t)| +1).

Step 4: For arbitrarily fixed 5, N > 0, estimate (3.12) gives

B(|H(1)] > L) :P( T 2B [H(O)] > w1(8))

S”’( 2(e>) ()

Then, there exists a constant L; = L;(N) and & =& (K,N) such that the right hand side of the above inequality is less than
2exp(—-2NK*(e)). Denote Qi = {w: |He(t)| > L1 }. Thus, under the event QS ,,

G<K(&+e)(L*+£L+1).
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B
R TE GRS (3.55)

the event {||g:(t) — ¢¢| < B1|QS .} implies the event {Ke™| g, (t) - ¢,| < B/2}. That s,

{(lge() = il < B} € {Ke¥|ge(t) — i < B/2}.
In addition, due to the boundedness of the function o(,-), a.(+), there is a constant K > 0 such that the quadratic process
[M{]i <Ke, i=1,2

Then, Bernstein’s inequality implies

P(|Mi (1)) + |M5(1)] > L) <2 exp(~L3/4Ke).

Consequently, there exists a positive constant Ly = L;(N,K) such that the right hand side of the above inequality is less than
2 exp(—2NH(¢)). Denote

Qe = {w: [Mi()] + [ M2(8)] > L}
Under Q5 N Qf ,, we note that there exists an ¢ = &(K, L1, K, L) such that for all € < &,
Ke(|Mi(0)] + [ M5(1)]) < Ke™'La < /8.

Since the absolutely continuous function on a compact interval is differentiable almost everywhere, the integration by parts formula in
(3.11) holds also for HY (¢). Similar to Lemma II1.2, we are able to obtain

L3 1
P(|H? ()] > Ls) < exp(fﬁ) + exp(fK—s). (3.56)
1

Thus, there exists a constant L3 = L3(K,N) and &3 = &3(K,N) such that the right-hand side of the above inequality is less than
2 exp(—2NH?(¢)) for all & < £3. Denote

Qe = {w: |[HI ()] > Ls ).

Hence, under Qf, n Q5. N Q5 there exists an & = &4(K, L1, L3) such that for all € < ¢y,

Ke[(¢" + &+ |H(t) (| He(t)| + |HE(D)])] < 'g

t
ke )] [ pdds<E,
0

Ke (e + 2 (1)) < E.

Consequently, for all ¢ < min{ey, &2, €3, €1},
{(lge(t) = 1] < BOI(Ui=1 Q) } € {l1ge(t) — e < B
implies
P([g:(t) - 1] < B1) = 6 exp(-2NH’(e))

<P(|ge(r) — gl < Br) = P(Ui1 Q)
<P(Jlge(1) = gell < fr) 0 (UL19%)) < B(ge(t) = i < ).

Finally, choose &5 = es(N) such that 6exp(~2Nh*(e)) < exp(~Nh*(e)) for all e < es. Noting (3.39) and (3.55), we have for all
& S?:: minlgg5 &i
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P(|Xc(t) = y| < B) 2 P(|n:(t) =yl < Br) - exp(~NH"(¢)).
Likewise, observing
lge (1) = il < lge(t) = g (1) + [gZ (1) = qf ()] + |gZ (£) = qe(1)] + ge(t) - @ul:
we obtain
P(|ln:(t) = y] < B) 2 P(IXe(t) = y| < B2) - exp(~NK(e)).

Thus, the proof is complete. o

Theorem IIL5. Suppose that n,(t) satisfies a local LDP with speed h™>(€) and a rate function S(-) with S(y) = oo if y is not absolutely
continuous. Then, under the assumptions in Theorem IL11, the sequence X¢(t) satisfies a local LDP with the same speed h™* (&) and rate function
S(-). That is, for any y € C°([0,1],RY),

lim lim sup-~—— hz( ) log P(X:(t) € B(y,))

B—0 0

= };li‘l’(l)hlgllnfh @) log P(X:(t) € B(y.8))

==8(»).
Proof. By virtue of Lemma III.4, the proof is similar to Ref. 17 (Theorem 4.1). Thus, the detail is omitted here. O

Proof (Proof of Theorem I1.11). From Theorem IIL5, proving that X.(¢) satisfies an LDP with speed #™*(¢) and a good rate function
S(-) only requires to show that #,(t) satisfies a local LDP with speed h™2(¢) and a rate function S(-). In order to achieve the goal, we first
establish the exponential equivalence between #,(t) and 7 (t) with respect to MDPs, and then, we claim that () satisfies the LDPs, which
leads to the local LDPs with speed 4~2(¢) and the rate function S(-) defined in (2.14).

Now, we proceed to prove that for any j > 0,

Plnhz( j o8 P( P e (£) = 7e(1)] >J)
By the boundedness of a(+), a(+), and b(-,-), and the Lipschitz property, we have

ne(t) — e(2)] = ﬂ()@(t) —£(0)
i JYECCEIOREORIOT

0 R «?(f“?»

1 rto(ge(s),re(s))  o(fe(s) re(s w(s
+h(e>f w(@l)  ai) 4 ()’
<K [ ) s+ s [a(f(s) - atfi() s

1 o) ok rls)
+‘h(e)f wle) el O]

The Gronwall inequality yields that

Ie(t) = (1) < Kp%

+ KM (1)),

where

y _ 1 orta(ge(s),re(s))  a(fe(s),re(s)) w
MO =gk e e e

Noting assumption (A3), it is sufficient to prove that
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hth( ) log IF’( sup |M.(1)] >])

te[0,1]
For any fixed arbitrary positive £ > 0, observe
IP’( sup |M:(t)| >j) < IP’( sup |M.(t)| > j; [Mc]h < és) +P([Mc]1 > Le).
te[0,1] te[0,1]

Bernstein’s inequality implies

2

J

log P| sup |M:(t)|>j;[M.]; <le] < ——2——.
hz( ) g (te[0€]| ( )‘ J [ ] ) dehz(g)

Since we have eh®(g) — 0 as & — 0, it follows that for any positive j and 4,

te[0,1]

Elinhz( ) log IP’( sup |M(t)| > j; [Me]r < &9) = —o0.

To conclude, we need only establish

)L“;?i’ém()logp([ ]‘M) o

Since

a:(g:(s)) a(fe(s))

<K/ In:(£) = 7 (1)) dt+1<(xéw‘ s(yh(j)(X)l)

N il o on) () - a(x)]
SK(tE[Og]ns(t)l) +K(re[o§]’1s(t)|) ’ (xeRd Veh(e) )

1o 1 Ho(ge(s),re(s))  a(fe(s),re(s))
E[Ms]“em(s)fo ( )

the exponential equivalence holds if

ygg)gr;hz( ) log ( sup [n(t)[ > 13)

te[0,1]

yggglgh2( ) log ( sup [fe(t)[ > 13)

te[0,1]

Similar to (3.25),

In:(6)| = \/'h( )Igs(f) qo(t)]
- 1 b(ge(s).7e()) _ blgo(s), v(s) |, ‘ /’U(ge(S) 7o) (s)‘
\/Eh( a:(g(s)) @(qo(s)) h(e) o (g:(s))

<K [ nods ] [ bao(o),r(s)) = Blan(s), v

0 (x) — ax)| ‘o(g () ,
RS Joh(e) ‘h(e)f arles) )

Then, (2.9) and Gronwall’s inequality lead to

sup [e(8)] < K1) + K sup %)= ¢

10(ge(s), 7e(s)) 4 oo
tefo1] v Vem(e) k(o) f dw(s)|

a:(g:(s))

(3.57)

(3.58)
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In light of the boundedness of functions a(-,-) and a.(-), and Corollary IL.9, it is readily seen that

i o8 ( oy N >e) N

te[0,1]

Likewise, we could also obtain (3.58). Thus, the exponential equivalence with respect to MDPs between #,(¢) and 7:(t) is established.
The last thing we need to verify is the MDPs of #j:(¢). We provide a sketch of proof leaving details to Ref. 20. Let us recall (1.11) and
(1.12), and the notation introduced in (2.6), (2.7), (2.10), and (2.11). For ¢ € [0, 1],

1

— 1 t
= TS /0 b (51 re(5)) = Brlao(),v(Dds + o [ o) rls)) ().

Introduce 7j¢(t), defined as

) 1 ' B
Ws(t) = \/Ehl(f)\/o; bl(qo(s),h(s)) —b(qo(s),tv(s))ds
+@f0 Ul(q0(5)>7’s(s))dw(s)+./0ﬁl(qo(s))v(s))ﬁs(s)d&

We will establish that 7j:(¢) satisfies an LDP of Theorem II.11 and then the LDPs of #(¢) are guaranteed by the exponential equivalence
between 7 (t) and 7(t); see details in Ref. 20 (Sec. 4.2) and Ref. 25 (Theorem 5.6). By contraction principle, the LDP of 7j: () follows from
the LDP of R, (¢),

Re(t) = A{(¢) + M.

See Ref. 20 (Proposition 2). The last LDPs can be obtained by showing exponential tightness, a local LDP, and the explicit expression of the
rate fur}ction. The first two properties can be found in Ref. 20 (Secs. 4.1.1 and 4.1.2). For the explicit representation of the rate function, note
that if C; () is invertible for each ¢ € [0, 1], we have

o) = [(CTOHHONs  ifdy(s) = §(s)ds y(0) =0,

and otherw1se, i (y) oo, Thus, assuming the invertibility of Ci (s), the identification of the explicit form of the rate function is obtained by
perturbing 37 as 23 + pl,, where p is a positive number and I, is the d-dimensional identity matrix. Taking p — 0 completes the proof; see
details in Ref. 20 (Sec. 4.1.3). m|

C. Applications

For simplicity, we consider the one-dimensional Brownian motion of a particle in a gas or fluid studied in Ref. 3,

mi = —yx + F(x) + \/2yksTw(t),

where m is the mass of the particle, y is the friction coefficient, F(x) is the external forces, kg is the Boltzmann constant, T denotes the
temperature, and w(t) is the standard Brownian motion. Using the same setting as in Cerrai and Freidlin,® we mainly focus on the motion
of small particles. Thus, let m = &2, where ¢ < 1 is a small parameter. In addition, we also assume that the temperature T is small with T = ¢.
That is, we are in a low-temperature physics setting. Thus, we arrive at

5 = —pXe + F(xe) + Veow(t), (3.59)

where ¢ := \/2ykg. In this application, we are considering the constant friction coefficient related to the medium (gas or fluid, etc.) in which
the particle is located. The external force F(x) + \/eow(t) is under a finite number of configurations. For a certain configuration i, the external
force is F(x, i) + \/eo(i)w(t). In addition, those configurations are changing at a random time, which gives a stochastic process associated
with it. Consequently, we generalize (3.59) as

€% = —pie + F(xee(1)) + Vea(re(1))io(1), (3.60)

where r.(t) is a fast-varying continuous-time Markov chain used to describe the change of configurations. The state space of the
Markov chain r,(t) is finite with values in M = {1,...,m}, and the generator is Q(t)/e, where Q(t) is irreducible with a quasi-invariant
measure v(t).

J. Math. Phys. 63, 123304 (2022); doi: 10.1063/5.0095042 63, 123304-24
Published under an exclusive license by AIP Publishing


https://scitation.org/journal/jmp

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Consider the first order-equation (3.60)

o2 Fer() | o) o
‘ y y

and the averaged deterministic equation

o - Pl v(0)
Y

For each i € M, suppose F(-,i) is bounded and continuous with a bounded first-order partial derivative. Then, Theorem II.11 gives that
(xe — %0)/(\/eh(e)) satisfies an LDP in C°([0,1],R) with speed h™*(¢) and a good rate function S(-). Roughly speaking, the MDP result
shows that the asymptotic probability of P(|xe — xo| > 8v/2h(¢)) converges exponentially to 0 as ¢ — 0 for any § > 0. For more applications of
moderate deviations principle, we refer the reader to Refs. 27 and 28 for constructing asymptotic confidence interval and Ref. 29 for obtaining
an asymptotic evaluation for the exit time.
IV. DISCUSSION AND REMARKS
A. Discussion on nhon-homogeneity

This paper investigated the moderate deviations principles of the Langevin dynamics with a strong damping and rapid Markovian switch-
ing. We only consider the situation when the Langevin dynamics are time-independent. In fact, motivated by Refs. 25 and 30, one can extend
to the case when the dynamics are time-dependent, i.e., considering

€4:(t) = b(1,4e(1),7:(1)) — ate(1,4e(£) ) e(1) + Voo (£, ge(1), (1) Yo (1),

9:(0)=q R g() =2 R,

where r.(t) is a time-inhomogeneous irreducible Markov chain generated by Q(¢)/e. An analog of Theorem IL.11 can be obtained by
examining the time-inhomogeneity.

B. Unbounded b (-, i)

We can replace the boundedness condition on the function b(-, i) by the Lipschitz continuity. To this end, we assume that the following
condition holds.

(A1") Foreachie M, b(-i): R - R%is continuously differentiable with bounded derivatives.

By virtue of (A1), b(-,1) is Lipschitz continuous; that is, there exists a constant ¢; > 0 such that for all x, y € Rd,

|b(x,1) = b(y,1)] < c1lx = y].
Under Assumption IL.5 with (A1) replaced by (A1’), one can obtain [see Ref. 15 (Theorem 2.2)]

lim sup lim sup € log P(||ge|| > L) = —o0.

L—0 £—0

Thus, there exist some positive constants R and C such that

lim sup € log P(]g¢|| > R) < -C.
e—0

Consequently, (1.10) implies
1

lir?jglpm log P(||ge| > R) = —co. (4.1)

For any fixed M > R, let Sy = {x : [x| < M} be the sphere with center at the origin and radius M. We define the truncated version of function
bas b™, where for each i € M,

bM(x, i) = b(x, i)yM(x),
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with 4" (-) being a smooth function satisfying

1 ifx € Sum,
yM(x) = ] AZ (4.2)
0 ifx € R" — Sy+1.

Denote by ¥ (-) the solution of (1.6) with b replaced by b, and g}’ the solution of (1.8) with b replaced by b™. Because of the continuity of b
and a, ||g, | is finite. Thus, choosing M large enough, we have qo(t) g (t) for all £ € [0,1]. Defining X2 (¢) similar to (1.9), we establish the
exponential equivalence with respect to MDPs between X, and X as follows. For any j > 0,

hm sup 2 log P(|X: = X > )

( )
i el

<hmsuph2( )108 (”‘Js_qs I >0)

= hmsuphz( )log P(|lge - '] > 05 g | < M)

+ hm sup h2 log P(||qg qe || > 0; || gel > M)

()

< hmsuph2 log P(|lgc[| > M) = -

(e)

where the last inequality is because ge = g' when |q,[ < M and (4.1). Thus, establishing the LDPs of {X.(¢)} under Assumption IL.5 with
(A1) replaced by (A1') is equivalent to establishing that for {X2!(¢)}, which is the situation considered in Theorem IL11.
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APPENDIX: TECHNICAL ESTIMATES

Proof of Proposition IIL.1. From (3.2), due to assumption (A3),

(0] <l lp O] [l
|q|+e|p|+— / f O (1) )|+ [ HL)s
|q|+e|p|+£i IR COR IO Py ATABITS
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where = represents convolution. By Young’s inequality for convolution and the boundedness and Lipschitz property of (-, -), we obtain

1

&2

i t L5/ !
[ e s [b(au(s).ne(s))las

&2

é A :|b<qs(s>,rs(ls<>>|ds = o [ 1)) = B0 () + b0, () s (A1)
< E/o |ge(s)|ds + %

IN

/o T b(ge(s), () )ds

Thus,
K t 1 t
a0 <K lgl+elpl+ - [la)las+ 5 [H(9)las (A2)

and then, Gronwall’s inequality implies

a0l < K(lal +1p) + 5 [ M)l < K1+ 5 [TIH0)lds),

Furthermore, (3.1) implies
—A K t — U (t—s) /€ 1
peCoy] < Pl Kot 4 g sypas+ Lirco

and thanks to (A2), we obtain

—0ot/€ K
pe(£)] < 1] -t +K(1+|pl +ql) + 5 sup |He(2)|
€ €% te[0,1]

1 1
<SK|1+ -+ sup [He(t)] )
€ & ¢efo0,1]
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