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Abstract
This work focuses on optimal harvesting-renewing for a stochastic population. A
mixed regular-singular control formulation with a state constraint and regime switch-
ing is introduced. The decision-makers either harvest or renew with finite or infinite
harvesting/renewing rates. The payoff functions depend on the harvesting/renewing
rates. Several properties of the value function are established. The limiting value func-
tion as the white noise intensity approaches infinity is identified. The Markov chain
approximation method is used to find numerical approximation of the value function
and optimal strategies.

Keywords Harvesting problem · Controlled diffusion · Singular control · State
constraint · Markovian switching
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1 Introduction

This work focuses on harvesting and renewing strategies for stochastic ecosystems
that are represented by controlled stochastic differential equations. Mathematically,
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the problem we consider belongs to a class of singular stochastic control problems,
namely harvesting-type problems. Such problems have been studied extensively in
various settings for different domain of applications; see [1, 2, 8–12, 17, 19, 24]. To
mention just a few of the recent developments, we refer to [25, 26] for single species
and interacting population systems with regime switching. The paper [3] focuses on
sustainable harvesting policies under long-run average criteria, which are further stud-
ied in [18]; see also [21] for a related work on a predator–prey system and [14] for an
ergodic two-sided singular control formulation. In [6, 7], the authors study ecosystems
inwhich both renewing andharvesting actions are included.Optimal exploitation prob-
lems of renewable natural resources, which are harvesting-type problems, are studied
in [13, 27]. Related works on a general one-dimensional diffusion that is reflected at
zero can be found in [4] and references therein. Intensive treatment of stochastic pop-
ulation systems and hybrid diffusions can be found in [20, 28], while applications in
various areas of singular stochastic control can be found in [5, 23] andmany references
therein.

In this work, we propose a generalized harvestingmodel for a stochastic population.
The controller can perform either a regular control or a singular control to harvest and
renew the species. Moreover, we also consider the control objective associated with
renewing and harvesting. It should be noted that in optimal harvesting formulations in
[1, 2, 6, 7, 25], the control cost is simply combinedwith the price functions. As a result,
it is frequently seen thatwhen themanager decides to harvest (resp., renew), she should
do that with the maximal possible harvesting rates (resp. renewing rates); see [1, 6,
7]. In [13, 27], interesting phenomena appear when the control objective is taken into
account. For instance, the maximal possible rates are no longer optimal for harvesting
and renewing in certain cases.With the generalized formulation proposed in this work,
the distinctions are even more pronounced. In addition, as a new twist, state constraint
is considered in this work. In particular, the time horizon of the control problem is
[0, τ ] where τ is the first time the population process is below a predetermined level.
Another important issue of interest is the impact of a white noise with large intensity.
For Kolmogorov-type ecosystems, it is known that very large white noise make the
species extinct, and have a major impact on harvesting actions; see [1, 20, 26]. A
novelty of the paper is the identification of the limiting value function as the white
noise intensity approaches infinity for a general stochastic population.

In contrast to the existing results, our new contributions in this paper are as follows.
(i) We formulate a harvesting problem with renewing and the consideration of con-
trol objective, a state constraint, and regime switching. Both bounded and unbounded
harvesting-renewing rates are allowed. (ii) We establish the finiteness and the conti-
nuity of the value function. We show that in common cases, it is optimal to keep the
population size in a compact set. (iii) We study the impact of a white noise with large
intensity on harvesting. (iv) Based on the Markov chain approximation method, we
construct a controlled Markov chain to approximate the given controlled population.
It enables us to approximate the value function and near-optimal strategies.

The rest of our work is organized as follows. Section 2 begins with the problem
formulation. Section 3 focuses on properties of the value function and the impact of a
white noise with large intensity. In Sect. 4, we construct a controlled Markov chain to
approximate the given controlled population system. Finally, the paper is concluded
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with several numerical examples for illustration together with additional remarks in
the last section.

2 Formulation

We work with a complete filtered probability space (�,F ,P, {Ft }) with the filtration
{Ft } satisfying the usual condition (i.e., it is right-continuous and F0 contains all the
null sets). Let R+ = [0,∞) and Z+ = {0, 1, 2, . . . }. For a real number x , we denote
x+ = max{x, 0} and x− = max{−x, 0}. Thus, x = x+ − x− and |x | = x+ + x−.
Suppose that the population size ξ(t) of a species at time t is given by

dξ(t) = b
(
ξ(t),�(t)

)
dt + σ

(
ξ(t),�(t)

)
dw(t). (2.1)

In the model, w(·) is a one-dimensional standard Brownian motion and �(·) is a
continuous-time Markov chain. Moreover, �(·) and w(·) are independent and {Ft }-
adapted. Suppose �(·) takes values in M = {1, 2, . . . ,m0} with generator � =
(�α	)m0×m0 and m0 being a positive integer. The coefficients b(·, ·) and σ(·, ·) are
real-valued functions defined on R+ × M. The transition probabilities of �(·) are
described by

P{�(t + 
t) = 	|�(t) = α} =
{

�α	
t + o(
t) if α �= 	,

1 + �αα
t + o(
t) if α = 	.
(2.2)

Note that�α	 ≥ 0 if α �= 	 and
∑

	∈M �α	 = 0 for any α ∈ M. To illustrate, consider
the stochastic logistic population growth model given by

dX(t) = X(t)
(
κ1(�(t)) − κ2(�(t))X(t)

)
dt + κ3(�(t))X(t)dw(t), (2.3)

where κ1(·), κ2(·), κ3(·) are real-valued functions defined on the state spaceM of the
Markov chain �(·). The switching component �(·) is introduced to capture the major
environmental shifts (daily or seasonal changes or catastrophes) leading to the changes
in the carrying capacities and interactions in different environments. To visualize the
dynamics of (2.3), without loss of generality, assume that�(0) = α. Then, theMarkov
chain rests in state α for an exponentially distributed random duration, in this time
interval, the model given by (2.3) obeys

dX(t) = X(t)
(
κ1(α) − κ2(α)X(t)

)
dt + κ3(α)X(t)dw(t),

until the Markov chain �(·) jumps to another state 	. Then, the model (2.3) obeys

dX(t) = X(t)
(
κ1(	) − κ2(	)X(t)

)
dt + κ3(	)X(t)dw(t)

for an exponentially distributed random time until the Markov chain �(·) jumps to a
new state again and so on.
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To proceed, we introduce the generator of the process
(
ξ(t),�(t)

)
. For a function

�(·, ·) : R × M �→ R satisfying �(·, α) ∈ C2(R) for each α ∈ M, we define

L�(x, α) = b(x, α)�′(x, α) + 1

2
σ 2(x, α)�′′(x, α) + ∑

	∈M
�α	�(x, 	),

where�′(·, α) and�′′(·, α) denote the first and second derivatives (w.r.t. x) of�(·, α),
respectively.

Next, we suppose that the population can be instantaneously harvested, instanta-
neously renewed, harvested with bounded rates, or renewed with bounded rates. In
order to harvest or renew instantaneously (that is, harvest or renew with infinite rates),
the controller needs to exercise an impulsive control. Meanwhile, to harvest or renew
with bounded rates, the controller performs a regular control. Specifically, we assume
the dynamics of the species is given by

X(t) = x + ∫ t
0 b

(
X(s),�(s)

)
ds + ∫ t

0 σ
(
X(s),�(s)

)
dw(s)

− ∫ t
0 f

(
X(s),C(s)

)
ds − Y (t) + Z(t),

(2.4)

where x ∈ R+, X(t) is the population size at time t ≥ 0, f : R+ × U �→ R is the
harvesting-renewing rate corresponding to the controlC(·) taking values in a nonempty
compact set U in R, while Y (·) and Z(·) are impulsive controls. In particular, Y (t)
denotes the amount of the species that has been instantaneously harvested up to time
t , while Z(t) denotes the amount of the species that has been instantaneously renewed
up to time t .
Notation. For each time t , X(t−) represents the state before harvesting or renewing
starts at time t , while X(t) is the state immediately after. We assume the initial popula-
tion size to be X(0−) = x and initial regime to be�(0) = α, respectively.Hence, X(0)
may not be equal to X(0−) due to an impulsive harvesting Y (0) or an impulsive renew-
ing Z(0). Throughout the paper, we use the convention that Y (0−) = Z(0−) = 0.
The jump sizes of Y (·) and Z(·) at time t are denoted by 
Y (t) = Y (t) − Y (t−) and

Z(t) = Z(t) − Z(t−), respectively. Thus,

Y (t) =
∑

0≤s≤t


Y (s), Z(t) =
∑

0≤s≤t


Z(s).

Suppose λ ∈ R+ and denote

S = {x ∈ R+ : x ≥ λ}.

In this work, we consider the harvesting problem on the time horizon [0, τ ], where

τ = inf{t ≥ 0 : X(t) /∈ S}.

The price per unit of the species is a positive constant a1. The harvesting and renewing
control is costly. Consider a function g : R+ ×M×U �→ R+. The accumulated cost
of the regular control C(·) is
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∫ τ

0
e−δsg

(
X(s),�(s),C(s)

)
ds,

where δ > 0 is the discount factor. Note that we separate cost and income here.
Later, we will take into account of both and set up the payoff. Regarding the
regular control C(·), the accumulated income of selling the harvested amount is∫ τ

0 e−δsa1 f +(
X(s),C(s)

)
ds and the accumulated expense of the renewed amount

is
∫ τ

0 e−δsa1 f −(
X(s),C(s)

)
ds. For notational simplicity, we define the price-cost

function p : R+ × M × U → R given by

p(x, α, c) = a1 f (x, c) − g(x, α, c) for (x, α, c) ∈ R+ × M × U . (2.5)

Then, the payoff functional associated with the regular control C(·) is

Ex,α

[ ∫ τ

0
e−δs p

(
X(s),�(s),C(s)

)
ds

]
,

where Ex,α denotes the expectation with X(0−) = x and �(0) = α. Let a2 and
a3 be two positive constants. Suppose that the cost of instantaneous harvesting a
unit of the species is a2, while the cost of instantaneous renewing a unit of the
species is a3. Then, the accumulated cost of exercising the impulsive control Y (·)
is

∫ τ

0 e−δsa2dY (s), while the accumulated income of selling the harvested amount by
Y (·) is ∫ τ

0 e−δsa1dY (s). Meanwhile, the accumulated cost of exercising the impulsive
control Z(·) is ∫ τ

0 e−δsa3dZ(s) and the accumulated expense of the renewed amount
by Z(·) is ∫ τ

0 e−δsa1dZ(s). Hence, the payoff functional associated with the impulsive
controls Y (·) and Z(·) is

Ex,α

[ ∫ τ

0
e−δs(a1 − a2)dY (s) −

∫ τ

0
e−δs(a1 + a3)dZ(s)

]
.

We define

q = a1 − a2, r = a1 + a3.

Then, for a harvesting-renewing strategy � ≡ (C,Y , Z), we define the payoff func-
tional as

J (x, α,�) = Ex,α

[ ∫ τ

0
e−δs p

(
X(s),�(s),C(s)

)
ds

+
∫ τ

0
e−δsqdY (s) −

∫ τ

0
e−δsrdZ(s)

]
.

(2.6)

Control strategy LetAx,α denote the collection of all admissible controls with initial
condition X(0−) = x , �(0) = α. A harvesting-renewing strategy � = (C,Y , Z)

will be in Ax,α if it satisfies the following conditions.
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(a) The processesC(·), Y (·), and Z(·) are adapted to σ {w(s),�(s) : 0 ≤ s ≤ t};C(·)
takes values in U , Y (·) and Z(·) are impulsive controls with non-decreasing, non-
negative, piecewise constant, and right-continuous sample paths; 
Y (s)
Z(s) =
0 for any s ∈ R+; 
Y (s) = 
Z(s) = 0 for any s ≥ τ ;

(b) System (2.4) has a unique solution X(·) with X(t) ∈ S for any t ∈ [0, τ ];
(c) 0 ≤ J (x, α,�) < ∞, where J (·) is the functional defined in (2.6).

The problem we are interested in is to maximize the payoff functional and find an
optimal strategy �∗ = (C∗,Y ∗, Z∗) ∈ Ax,α such that

J (x, α,�∗) = V (x, α) := sup
�∈Ax,α

J (x, α,�). (2.7)

The function V (·) is called the value function.
The standing assumptions are given below.

(A) (a) For any n ∈ Z+, there exists a positive constant Kn such that for any x, y ∈ R+
with |x | ≤ n, |y| ≤ n and any α ∈ M,

|b(x, α) − b(y, α)| + |σ(x, α) − σ(y, α)| ≤ Kn|x − y|.

Moreover, for each initial condition (x, α) ∈ R+ ×M, the population system
(2.1) has a unique global solution.

(b) The control set U is a nonempty compact set of real numbers, 0 ∈ U , a1, a2, a3
are positive constants and a1 > a2. The function g(·, ·, ·) is continuous and
bounded on R+ ×M×U . The function f (·, ·) is continuous and bounded on
R+ × U and f (·, 0) = 0.

Remark 2.1 For simplicity, we require the systems of equations having a global solu-
tion. In fact, the existence and uniqueness of global solutions for a large class of
Kolmogorov systems are guaranteed under suitable conditions; see the recent work
[22] and the references therein, and also [20] for various sufficient conditions so that
the population system (2.1) has a unique global solution. Of course, here we are deal-
ing with a controlled system so some modifications are needed. Nevertheless, in order
to concentrate on our main task, we choose to simply assume this condition.

The mixed regular-singular control formulation together with the consideration
of a state constraint, cost function allows us to take into account various aspects of
harvesting-type problems that have not been considered to date. For instance, depend-
ing on the costs, one can choose to apply either an impulsive harvesting/renewing or
harvest and renew through the regular control.

Remark 2.2 The consideration of λ is motivated by sustainability. To the best of our
knowledge, the available literature focuses on the case λ = 0 in which the optimal
or near-optimal harvesting strategies might drive the population process to a very low
level or extinction; see [1, 6, 25]. Because of the state constraint, one needs to treat
carefully control actions when the population size is close to λ.

The function f : R+ × U �→ R is the harvesting-renewing rate corresponding to
the control C(·). In [7], the authors studied the case f (x, c) = c and g(x, α, c) = 0
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for any (x, α, c) ∈ R+ × M × U . Motivated by the observations in [1, Section
3] and [13], one can also take f (x, c) = min{cx, κ} and g(x, α, c) = 0 for any
(x, α, c) ∈ R+ × M × U , where κ is a positive constant. By considering the general
form f : R+×U �→ R, our formulation ismuchmore general than the aforementioned
cases.

3 Properties of the Value Function

This section is devoted to several properties of the value function. We begin with a
lemma that allows us to establish the finiteness and construct upper bounds of the
value function.

Lemma 3.1 Let (A) be satisfied. Suppose that there exists a function� : S×M �→ R+
such that �(·, α) ∈ C2(S) for each α ∈ M and �(·, ·) solves the following coupled
system of quasi-variational inequalities

max

{
G�(x, α), q − �′(x, α),�′(x, α) − r

}
≤ 0 for (x, α) ∈ S × M, (3.1)

where

G�(x, α) = (L − δ)�(x, α) + max
c∈U

[
p(x, α, c) − �′(x, α) f (x, c)

]
.

Recall that δ is the discount factor given in the payoff functional (2.6). Then, we have

V (x, α) ≤ �(x, α) for (x, α) ∈ S × M.

Proof For a fixed (x, α) ∈ S × M and � = (C,Y , Z) ∈ Ax,α , let X denote the
corresponding harvested process. Choose N sufficiently large so that |x | < N . Define

τN = inf{t ≥ 0 : X(t) ≥ N }, TN = N ∧ τN ∧ τ.

Then,
τN → ∞ and TN → τ almost surely as N → ∞, (3.2)

where τ = inf{t ≥ 0 : X(t) /∈ S}. Then, Dynkin’s formula leads to

E
[
e−δTN �

(
X(TN ),�(TN )

)] = �(x, α) + E

∫ TN

0
e−δs(L − δ)� (X(s),�(s)) ds

−E

∫ TN

0
e−δs�′ (X(s),�(s)) f

(
X(s),C(s)

)
ds

+E

∑

0≤s≤TN

e−δs
[
�(X(s),�(s−)) − �(X(s−),�(s−))

]
.

(3.3)
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It follows from (3.1) that

E

∫ TN

0
e−δs(L − δ)� (X(s),�(s)) ds − E

∫ TN

0
e−δs�′ (X(s),�(s)) f

(
X(s),C(s)

)
ds

≤ −E

∫ TN

0
e−δs p (X(s),C(s),�(s)) ds.

(3.4)

For each s ∈ [0, TN ], by the mean value theorem, there exists a point X̃(s) between
X(s) and X(s−) such that

�(X(s),�(s−)) − �
(
X(s−),�(s−)

) = −
Y (s)�′(X̃(s),�(s−)
)

+
Z(s)�′(X̃(s),�(s−)
)
.

By (3.1), we have

�
(
X(s),�(s−)

) − �
(
X(s−),�(s−)

) ≤ −q
Y (s) + r
Z(s). (3.5)

It follows from (3.3), (3.4), (3.5), and the nonnegativity of �(·, ·) that

�(x, α) ≥ E

∫ TN

0
e−δs p

(
X(s),�(s),C(s)

)
ds

+E

∫ TN

0
e−δsqdY (s) − E

∫ TN

0
e−δsrdZ(s).

Letting N → ∞, it follows from (3.2) and the bounded convergence theorem that
�(x, α) ≥ J (x, α,�). Taking supremum over all � ∈ Ax,α , we obtain �(x, α) ≥
V (x, α). The conclusion follows. 
�

Using Lemma 3.1, we proceed to present an easily verifiable condition for the
finiteness of the value function.

Theorem 3.1 Let (A) be satisfied. Moreover, suppose that there is a positive constant
K such that

b(x, α) ≤ δx + K for (x, α) ∈ S × M. (3.6)

Then, there exists a positive constant M such that

V (x, α) ≤ qx + M for (x, α) ∈ S × M.

Proof Define

�(x, α) = qx + Kq + κ0

δ
for (x, α) ∈ S × M,

where

κ0 = sup
(y,α,c)∈R+×M×U

(
p(y, α, c) − q f (y, c)

)
.
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By assumption (A)(b), κ0 is finite. Since q = a1−a2 < r = a1+a3 and�′(x, α) = q,
it is clear that

q − �′(x, α) = 0, �′(x, α) − r < 0 for (x, α) ∈ S × M. (3.7)

By (3.6), we have

G�(x, α) = b(x, α)q − δ
(
qx + Kq+κ0

δ

)
+ max

c∈U

[
p(x, α, c) − q f (x, c)

]

≤ (δx + K )q − (δqx + Kq + κ0) + κ0
= 0 for (x, α) ∈ S × M.

(3.8)

It follows from (3.7) and (3.8) that

max

{
G�(x, α), q − �′(x, α),�′(x, α) − r

}
≤ 0 for (x, α) ∈ S × M.

That is, �(·, ·) solves the system of inequalities (3.1). By virtue of Lemma 3.1,
V (x, α) ≤ �(x, α) for any (x, α) ∈ S × M. This completes the proof. 
�

Next, we establish the continuity of the value function.

Theorem 3.2 Let (A) be satisfied. Then, the following assertions hold.

(a) For any x, y ∈ S and α ∈ M,

V (x, α) ≥ q(x − y)+ − r(y − x)+ + V (y, α). (3.9)

(b) V (·) is Lipschitz continuous on S × M.

Proof (a) Fix � = (C,Y , Z) ∈ Ay,α . Define

C̃(t) = C(t), Ỹ (t) = Y (t) + (x − y)+, Z̃(t) = Z(t) + (y − x)+, t ≥ 0,

and �̃ = (C̃, Ỹ , Z̃). Then, �̃ ∈ Ax,α and

J (x, α, �̃) = q(x − y)+ − r(y − x)+ + J (y, α,�).

Since V (x, α) ≥ J (x, α, �̃), we have

V (x, α) ≥ q(x − y)+ − r(y − x)+ + J (y, α,�),

from which, (3.9) follows by taking supremum over � ∈ Ay,α .
(b) Similar to (3.9), we have

V (y, α) ≥ q(y − x)+ − r(x − y)+ + V (x, α). (3.10)
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In view of (3.9), (3.10), for any x, y ∈ S and α ∈ M,

|V (x, α) − V (y, α)| ≤ (|q| + |r |)|x − y|.

Thus, V (·) is Lipschitz continuous on S × M. 
�

For population models given by diffusion processes, under optimal or near-optimal
harvesting strategies, one should keep the population sizes in a bounded set. In other
words, if the initial population is too high, an impulsive harvesting should be performed
instantaneously; see [1, 6, 7]. We proceed to provide a proof of that result for a gen-
eral setting of a controlled regime-switching diffusions with a mixed regular-singular
control.

Theorem 3.3 Suppose that there exists a number U > λ such that

q
(
b(x, α)− δ(x −U )

)
+ sup

c∈U

(
a2 f (x, c)− g(x, α, c)

)
< 0, (x, α) ∈ (U ,∞)×M.

(3.11)
Then, for each (x, α) ∈ (U ,∞) × M,

V (x, α) = V (U , α) + q(x −U ).

Remark 3.1 By assumption (A)(b),

κ1 := sup
(x,α,c)∈R+×M×U

(
a2 f (x, c) − g(x, α, c)

)
< ∞.

If lim sup
x→∞

b(x, α) < −κ1/q for each α ∈ M, then we can take

U = sup
{
x > λ + 1 : sup

α∈M
b(x, α) ≥ −κ1/q

}
.

Proof Fix some (x, α) ∈ (U ,∞) × M, � = (C,Y , Z) ∈ Ax,α , and let X be the
corresponding harvested process. Let ε ∈ (0, 1) be a constant and define

�(y, α) = q(y −U ) + ε for (y, α) ∈ [U ,∞) × M. (3.12)

We can extend �(·, ·) to the entire S × M so that �(·, α) is a C2 function for each
α ∈ M, and �(y, α) > 0 for all (y, α) ∈ S × M. By assumption (3.11), we can
check that

(L − δ)�(y, α) + a2 f (y, c) − g(y, α, c) < 0, (y, α, c) × [U ,∞) × M × U .

123



Journal of Optimization Theory and Applications

Thus,

(L − δ)�(y, α) − q f (y, c) < −[
a2 f (y, c) − g(y, α, c)

] − q f (y, c)
= −[

(a2 + q) f (y, c) − g(y, α, c)
]

= −p(y, α, c), (y, α, c) × [U ,∞) × M × U .

(3.13)
For an integer N satisfying N > U , we define

τN = inf{t ≥ 0 : X(t) ≥ N }, γ̃U = inf{t ≥ 0 : X(t) ≤ U }, TN = N ∧ τN ∧ γ̃U .

We have TN → γ̃U almost surely as N → ∞. Note that γ̃U ≤ τ . By Dynkin’s
formula,

E
[
e−δTN �(X(TN ),�(TN ))

] − �(x, α)

= E

∫ TN

0
e−δs(L − δ)� (X(s),�(s)) ds

−E

∫ TN

0
e−δs�′ (X(s),�(s)) f

(
X(s),C(s)

)
ds

+E

∑

0≤s≤TN

e−δs
[
�(X(s),�(s−)) − �(X(s−),�(s−))

]
.

(3.14)

For each s ∈ [0, TN ], we have

�(X(s),�(s−)) − �(X(s−),�(s−)) = −q
Y (s) + q
Z(s)
≤ −q
Y (s) + r
Z(s).

(3.15)

We obtain from (3.13), (3.14), and (3.15) that

E
[
e−δTN �(X(TN ),�(TN ))

] − �(x, α)

≤ −E

∫ TN

s0
e−δs p

(
X(s),�(s),C(s)

)
ds

−E

∑

0≤s≤TN

e−δsq
Y (s) + E

∑

0≤s≤TN

e−δsr
Z(s).

(3.16)

Since �(y, α) > 0 for any (y, α) ∈ S × M, it follows from (3.16) that

E

∫ TN

0
e−δs p

(
X(s),�(s),C(s)

)
ds

+E

∑

0≤s≤TN

e−δsq
Y (s) − E

∑

0≤s≤TN

e−δsr
Z(s)

≤ �(x, α).
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Letting N → ∞, we obtain

E

∫ γ̃U

0
e−δs p

(
X(s),�(s),C(s)

)
ds

+E

∑

0≤s≤γ̃U

e−δsq
Y (s) − E

∑

0≤s≤γ̃U

e−δsr
Z(s)

≤ �(x, α).

(3.17)

As a result,

J (x, α,�) ≤ V (U , α) + �(x, α)

= V (U , α) + q(x −U ) + ε.

Letting ε → 0 yields

J (x, α,�) ≤ V (U , α) + q(x −U ). (3.18)

Since (3.18) holds for any � ∈ Ax,α ,

V (x, α) ≤ V (U , α) + q(x −U ). (3.19)

On the other hand, it is obvious (by harvesting instantaneously x − U at time t = 0)
that

V (x, α) ≥ V (U , α) + q(x −U ). (3.20)

In view of (3.19) and (3.20),

V (x, α) = V (U , α) + q(x −U ).

The conclusion follows. 
�
We proceed to discuss the impact of large white noise. By using Lemma 3.1, we

construct an upper bound for the value function. Then, we show that the value function
approaches the upper bound as the white noise intensity approaches infinity. The
following result is motivated by the presence of multiplicative noise.

Theorem 3.4 Suppose that λ > 0. Moreover, there exist positive constants β ∈ (0, 1),
K , and N such that

xb(x, α) ≤ K (1 + x2), b(x, α)q − δq(x − λ) ≤ K (xβ + 1), (3.21)

and

|σ(x, α)| ≥ Nx for (x, α) ∈ S × M.

Then,

lim
N→∞ V (x, α) = q(x − λ),
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uniformly on [λ, M] × M for any positive constant M > λ.

Proof Let M > λ. For a fixed ε ∈ (0, r − q), let Kε > 0 be sufficiently large such
that

(M + 1)β

Kε

≤ ε,
β

Kε

≤ r − q − ε.

Define

�(x, α) = q(x − λ) + (x + 1)β

Kε

, (x, α) ∈ S × M.

Detailed computations lead to

�′(x, α) = q + β

Kε(x + 1)1−β
,

�′′(x, α) = − β(1 − β)

Kε(x + 1)2−β
, (x, α) ∈ S × M.

It is clear that

q − �′(x, α) ≤ 0, �′(x, α) − r ≤ 0 for (x, α) ∈ S × M. (3.22)

By assumption (A)(b),

κ2 := sup
(x,α,c)∈R+×M×U

[
p(x, α, c) − �′(x, α) f (x, c)

]
< ∞.

Hence,

G�(x, α) ≤ b(x, α)q + β

Kε(x + 1)1−β
b(x, α)

− β(1 − β)N 2x2

2Kε(x + 1)2−β
− δq(x − λ) − δ(x + 1)β

Kε

+ κ2.

(3.23)

For x ≥ λ > 0, by the first inequality in (3.21),

β

Kε(x + 1)1−β
b(x, α) ≤ β

Kεx(x + 1)1−β
xb(x, α)

≤ βK (1 + x2)

Kεx2−β

≤ βK

Kε

(
xβ + 1

λ2−β

)
.
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It follows from (3.21) and (3.23) that for x ≥ λ,

G�(x, α) ≤ K (xβ + 1) + β

Kε(x + 1)1−β
b(x, α) − β(1 − β)N 2x2

Kε(x + 1)2−β
+ κ2

≤
[
K + βK

Kε

− β(1 − β)N 2x2−β

2Kε(x + 1)2−β

]
xβ + K + βK

Kελ2−β
+ κ2.

Hence, there exists a positive number N0 such that for any N ≥ N0,

G�(x, α) ≤ 0 for (x, α) ∈ S × M. (3.24)

By (3.22), (3.24), and Lemma 3.1, we obtain

V (x, α) ≤ q(x − λ) + (x + 1)β

Kε

, (x, α) ∈ S × M

provided that N ≥ N0. In particular, since
(M + 1)β

Kε

≤ ε, then for N ≥ N0, we have

V (x, α) ≤ q(x − λ) + ε for (x, α) ∈ [λ, M] × M. (3.25)

Let � = (C,Y , Z) ∈ Ax,α given by

C(t) = 0, Y (t) = x − λ, Z(t) = 0 for t ≥ 0.

Then, J (x, α,�) = q(x − λ). It follows that V (x, α) ≥ q(x − λ). This together with
(3.25) yields that

0 ≤ V (x, α) − q(x − λ) ≤ ε for (x, α) ∈ [λ, M] × M,

which leads to the desired conclusion. 
�
We have a similar result regarding to the case of additive noise.

Theorem 3.5 Suppose that λ > 0. Moreover, there exist positive constants K and N
such that

xb(x, α) ≤ K (1 + x2), b(x, α)q − δq(x − λ) ≤ K , (3.26)

and

|σ(x, α)| ≥ N for (x, α) ∈ S × M.

Then,

lim
N→∞ V (x, α) = q(x − λ),

uniformly on [λ, M] × M for any positive constant M > λ.
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Proof Let M > λ. For a fixed ε ∈ (0, r − q), let β ∈ (0, 1) be such that βK < δ and
let Kε > 0 be sufficiently large such that

β

Kε

≤ r − q − ε,
(M + 1)β

Kε

≤ ε.

Define

�(x, α) = q(x − λ) + (x + 1)β

Kε

for (x, α) ∈ S × M.

We have

�′(x, α) = q + β

Kε(x + 1)1−β
,

�′′(x, α) = − β(1 − β)

Kε(x + 1)2−β
, (x, α) ∈ S × M.

We can check that

q − �′(x, α) ≤ 0, �′(x, α) − r ≤ 0 for (x, α) ∈ S × M. (3.27)

By assumption (A)(b),

κ3 := sup
(x,α,c)∈R+×M×U

[
p(x, α, c) − �′(x, α) f (x, c)

]
< ∞.

Hence,

G�(x, α) ≤ b(x, α)q + β

Kε(x + 1)1−β
b(x, α)

− β(1 − β)N 2

2Kε(x + 1)2−β
− δq(x − λ) − δ(x + 1)β

Kε

+ κ3.

(3.28)

For x ≥ λ > 0, by the first inequality in (3.26),

β

Kε(x + 1)1−β
b(x, α) ≤ β

Kεx(x + 1)1−β
xb(x, α)

≤ βK (1 + x2)

Kεx2−β

≤ βK

Kε

(
xβ + 1

λ2−β

)
.
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It follows from the second inequality in (3.26) and (3.28) that for x ≥ λ,

G�(x, α) ≤ K + βK

Kε

(
xβ + 1

λ2−β

)
− β(1 − β)N 2

2Kε(x + 1)2−β
− δxβ

Kε

+ κ3

≤ K + βK

Kελ2−β
+ κ3 − δ − βK

Kε

xβ − β(1 − β)N 2

2Kε(x + 1)2−β
.

Since βK < δ, we can choose a constant λ1 > λ such that

K + βK

Kελ2−β
+ κ3 − δ − βK

Kε

xβ ≤ 0 for (x, α) ∈ [λ1,∞) × M.

There exists a positive number N0 such that for any N ≥ N0,

K + βK

Kελ2−β
+ κ3 − β(1 − β)N 2

2Kε(x + 1)2−β
≤ 0 for (x, α) ∈ [λ, λ1].

Hence, for N ≥ N0,

G�(x, α) ≤ 0 for (x, α) ∈ S × M. (3.29)

By (3.27), (3.29), and Lemma 3.1, we have

V (x, α) ≤ q(x − λ) + (x + 1)β

Kε

for (x, α) ∈ S × M

provided that N ≥ N0. In particular, since
(M + 1)β

Kε

≤ ε, for N ≥ N0,

V (x, α) ≤ q(x − λ) + ε for (x, α) ∈ [λ, M] × M. (3.30)

Let � = (C,Y , Z) ∈ Ax,α given by

C(t) = 0, Y (t) = x − λ, Z(t) = 0 for t ≥ 0.

Then, J (x, α,�) = q(x − λ). It follows that V (x, α) ≥ q(x − λ). This together with
(3.30) gives us that

0 ≤ V (x, α) − q(x − λ) ≤ ε for (x, α) ∈ [λ, M] × M,

which leads to the desired conclusion. 
�
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4 Numerical Approximation

Formally, the associated Hamilton–Jacobi–Bellman equation of the underlying prob-
lem is given by

max

{
G�(x, α), q − �′(x, α),�′(x, α) − r

}
= 0 for (x, α) ∈ S × M,

�(x, α) = 0 for (x, α) /∈ S × M,

(4.1)

where

G�(x, α) = (L − δ)�(x, α) + max
c∈U

[
p(x, α, c) − �′(x, α) f (x, c)

]
.

A closed-form solution to (4.1) is virtually impossible to obtain. Thus, we proceed
with the Markov chain approximation method; see [10, 15, 16]. That is, we construct
a discrete time, finite-state, controlled Markov chain to approximate the controlled
switching diffusions. In [10], the authors applied thatmethod to solve a harvesting-type
problem for a regime-switching diffusion with a regular control and a singular control.
In this paper, we need to adopt and modify the approximation to fit the combination
of a two-sided singular control and regular control formulation. In view of Theorem
3.3, we only need to choose a large positive integerU and compute the value function
on S ∩ [0,U ] = [λ,U ]. With x ∈ [λ,U ], we can rewrite (2.4) as

X(t) = x +
∫ t

0

(
b(X(s),�(s)

) − f
(
X(s),C(s)

)
ds +

∫ t

0
σ
(
X(s),�(s)

)
dw(s)

−Y (t) + Z(t).
(4.2)

The payoff functional is

J (x, α,�) = E

[ ∫ τ

0
e−δs p(X(s),�(s),C(s))ds

+
∫ τ

0
e−δsqdY (s) −

∫ τ

0
e−δsrdZ(s)

]
.

(4.3)

4.1 ApproximatingMarkov Chains

Let h be a discretization parameter for X(·). Assume without loss of generality that
U is a multiple of h. Define

Sh := [0,U ] ∩ {x ∈ [λ − h,U ] : x = kh, k ∈ Z+}.

Let {(Xh
n ,�

h
n) : n ∈ Z+} be a discrete-time controlled Markov chain with state space

Sh × M. For each n, the increments of the chain 
Xh
n = Xh

n+1 − Xh
n approximate

exactly one of the following quantities dynamically.

– Diffusion step:
(
b(X(t),�(t)) − f (X(t),C(t)

)
dt + σ(X(t),�(t))dw(t).
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– Impulsive harvesting step: −dY (t).
– Impulsive renewing step: dZ(t).

We use πh
n to denote the type of step n. We set πh

n = 0 if step n is a diffusion step,
πh
n = 1 if step n is an impulsive harvesting step, and πh

n = −1 if step n is an impulsive
renewing step. Each of these steps is described precisely in what follows.

(a) If πh
n = 0, a regular control Ch

n is exercised so that 
Xh
n is to behave like an

increment of
∫
(b − f )dt + σdw over a small time interval. (b) If πh

n = 1, a regular
control Ch

n and an impulsive harvesting 
Y h
n = h are applied. (c) If πh

n = −1, a
regular control Ch

n and an impulsive renewing 
Zh
n = h are applied.

Thus, the amounts of impulsive harvesting and impulsive renewing at any step
n are 
Y h

n = hI{πh
n =1} and 
Zh

n = hI{πh
n =−1}, respectively. Let Ch = {Ch

n } be a

sequence of regular controls. The space of regular controls is given by U . Let πh =
{πh

n }n≥0 denote the sequence of control types. We denote by ph ((x, α), (y, 	)|π, c)
the transition probability from state (x, α) to another state (y, 	) under the control
type π and regular control c. Denote Fh

n = σ {Xh
k ,�

h
k , π

h
k ,Ch

k , k ≤ n}.
The sequence {(πh

n ,Ch
n )} is said to be admissible if it satisfies the following con-

ditions:

(a) πh
n ,Ch

n areσ {Xh
0 , . . . , X

h
n ,�

h
0, . . . , �

h
n, π

h
0 , . . . , πh

n−1,C
h
1 , . . . ,Ch

n−1}−adapted,
(b) For any (x, α) ∈ Sh × M, we have

P{Xh
n+1 = x,�h

n+1 = α|Fh
n } = P{Xh

n+1 = x,�h
n+1 = α|Xh

n ,�
h
n, π

h
n ,Ch

n }
= ph

((
Xh
n ,�

h
n), (x, α)|πh

n ,Ch
n

)
,

(c) πh
n ∈ {0,±1},Ch

n ∈ U , Xh
n ∈ Sh,�h

n ∈ M for all n ∈ Z+.
The class of all admissible control sequences (πh,Ch) for initial state (x, α) will be
denoted by Ah

x,α .
For each (x, α, i, c) ∈ Sh×M×{0,±1}×U , we define a family of the interpolation

intervals 
th(x, α, i, c). The values of 
th(x, α, i, c) will be specified later. Then,
we define

th0 = 0, 
thk = 
th(Xh
k ,�

h
k , π

h
k ,Ch

k ), thn =
n−1∑

k=0


thk . (4.4)

For (x, α) ∈ Sh × M and (πh,Ch) ∈ Ah
x,α , the payoff functional for the controlled

Markov chain is defined as

Jh(x, α, πh,Ch) = E

ηh−1∑

k=0
e−δthk

{
p(Xh

k ,�
h
k ,C

h
k )
thk + q
Y h

k − r
Zh
k

}
, (4.5)

with ηh = inf{n ≥ 0 : Xh
n /∈ S}. The value function of the controlled Markov chain is

V h(x, α) = sup
(πh ,Ch)∈Ah

x,α

Jh(x, α, πh,Ch). (4.6)

The corresponding dynamic programming equation for the discrete approximation
is given by V h(x, α) = max{V h

i,c(x, α) : i ∈ {−1, 0, 1}, c ∈ U} for any (x, α) ∈
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Sh × M, where

V h
1,c(x, α) = (

V h(x − h, α) + qh
)
I{x>λ},

V h−1,c(x, α) = (
V h(x + h, α) − rh

)
I{x<U },

V h
0,c(x, α) = e−δ
th(x,α,0,c)

∑

(y,	)∈Sh
V h(y, 	)ph

(
(x, α), (y, 	)|0, c)I{x<U }

+p(x, α, c)
th(x, α, 0, c)I{x<U }.

Note that V h(x, α) = 0 for (x, α) /∈ Sh × M.

4.2 Transition Probabilities

Let Eh,π,c
x,α,n , Covh,π,c

x,α,n denote the conditional expectation and covariance given by

{Xh
k ,�

h
k , π

h
k ,Ch

k , k ≤ n − 1, Xh
n = x,�h

n = α, πh
n = π,Ch

n = c},

respectively. We proceed to define transition probabilities ph
(
(x, α), (y, 	)|π, c

)
so

that the controlled Markov chain {(Xh
n ,�

h
n)} is locally consistent with respect to

(X(·),�(·)) in the sense that the following hold.

E
h,0,c
x,α,n
Xh

n = b(x, α)
th(x, α, 0, c) + o(
th(x, α, 0, c)),
Covh,0,c

x,α,n
Xh
n = σ 2(x, α)
th(x, α, 0, c) + o(
th(x, α, 0, c)),

sup
n, ω

|
Xh
n | → 0 as h → 0.

(4.7)

To this end, motivated by the procedure in [10, 16], we construct the transition prob-
abilities below. For (x, α) ∈ Sh × M, λ ≤ x < U and c ∈ U , we define

Qh(x, α, 0, c) = σ 2(x, α) + h|b(x, α) − f (x, c)| − h2�αα + ζ(h).

We set ζ(h) = h. If, in addition, σ 2(x, α) > 0 for any (x, α) ∈ S×M, we can simply
take ζ(h) = 0. Then, we define

ph ((x, α), (x + h, α)|0, c) = σ 2(x, α)/2 + (
b(x, α) − f (x, c)

)+
h

Qh(x, α, 0, c)
,

ph ((x, α), (x − h, α)|0, c) = σ 2(x, α)/2 + (
b(x, α) − f (x, c)

)−
h

Qh(x, α, 0, c)
,

ph ((x, α), (x, 	)|0, c) = h2�α	

Qh(x, α, 0, c)
for α �= 	,

ph ((x, α), (x, α)|0, c) = ζ(h)

Qh(x, α, 0, c)
, 
th(x, α, 0, c) = h2

Qh(x, α, 0, c)
,

ph ((x, α), (y, 	)|0, c) = 0 for all not listed values of (y, 	) ∈ Sh × M.

(4.8)
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At impulsive harvesting and renewing steps, we define

ph ((x, α), (x − h, α)|1, c) = 1, 
th(x, α, 1, c) = 0,
ph ((x, α), (x + h, α)| − 1, c) = 1, 
th(x, α,−1, c) = 0.

(4.9)

Thus, ph ((x, α), (y, 	)| ± 1, c) = 0 for all nonlisted values of (y, 	) ∈ Sh × M.
The definition of ph((x, α), ·|i, c) for (x, α) /∈ S × M is not important since in the
analysis of the control problem, the chain will be stopped at the first time {Xh

n } exits
S. Using the above transition probabilities, we can check that the local consistency
conditions of {(Xh

n ,�
h
n)} in (4.7) are satisfied.

The convergence result is based on a continuous-time interpolation of the chain
and relaxed control representations. In addition, a “stretched-out” timescale is intro-
duced to overcome the possible non-tightness of the piecewise constant interpolations
associated with Y (·) and Z(·); see [10] and [15]. Using weak convergence methods,
we can obtain the convergence of the value function. The main convergence result is
given below. The proof is a modification of that in [10], we omit it for brevity.

Theorem 4.1 Let V (x, α) and V h(x, α) be value functions defined in (2.7) and (4.6),
respectively. Then, V h(x, α) → V (x, α) as h → 0.

5 Numerical Examples

We consider a stochastic population with harvesting and renewing given by

dX(t) = b(X(t),�(t))dt + σ(X(t),�(t))dw(t) − C(t)dt − dY (t) + dZ(t), (5.1)

where
b(x, α) = x(α − 1.5x), σ (x, α) = (α/2)x .

Suppose that M = {1, 2} and the generator � = (�α	)2×2 of the Markov chain �(·)
is given by

�11 = −1, �12 = 1, �21 = 1.5, �22 = −1.5.

We also assume that

q = 1, r = 2.25, δ = 0.05,

p(x, α, c) = 3c

2
− αc2

8(1 + x)
for (x, α, c) ∈ R+ × M × U ,

f (x, c) = c for (x, c) ∈ R+ × U .

The original price and costs are a1 = 1.5, a2 = 0.5, a3 = 0.75 and the regular control
cost function is g(x, α, c) = αc2

8(1+x) . Thus, for each x ∈ R+ and α ∈ M, g(x, α, c)
has a quadratic form. For a fixed regular control c and regime α ∈ M, the cost function
is decreasing with respect to the population size. This is motivated by an observation
in harvesting problems that when the species is rare, it is more difficult to harvest
leading to the higher harvesting cost; see [2]. By the state constraint, the time horizon
of the control problem is [0, τ ], where τ = inf{t ≥ 0 : X(t) < λ}. The value of λ and
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Fig. 1 Control type (left) and regular control (right) as functions of (x, α) for λ = 0.2 and U = {0}
(Example 5.1)

the control set U are to be determined. Using the transition probabilities constructed
in (4.8) and (4.9), we carry out the computation by using value iteration and policy
iteration method. For each (x, α) ∈ Sh × M, we use the following notations for the
nth iteration: Ch,n(x, α) is the regular control, πh,n(x, α) is the control type, and
V h,n(x, α) is the value function. Initially, we take

Ch,0(x, α) = 0, πh,0(x, α) = 1, V h,0(x, α) = q(x − λ) for (x, α) ∈ Sh × M.

Note that
(
πh,0(x, α),Ch,0(x, α)

)
corresponds to the control � = (C,Y , Z) ∈ Ax,α

given by

C(t) = 0, Y (t) = x − λ, Z(t) = 0 for t ≥ 0,

of the controlled switching diffusion (2.4). Based on our computation of the nth iter-
ation, we define

V h,n+1
1,c (x, α) = (

V h,n(x − h, α) + qh
)
I{x>λ},

V h,n+1
−1,c (x, α) = (

V h,n(x + h, α) − rh
)
I{x<U },

V h,n+1
0,c (x, α) = e−δ
th(x,0,c,α)

[
V h,n(x + h, α)ph ((x, α), (x + h, α)|0, c)

+V h,n(x − h, α)ph ((x, α), (x − h, α)|0, c)
+V h,n(x, α)ph ((x, α), (x, α)|0, c) ]

I{x<U } + p(x, α, c)
th(x, α, i, c)I{x<U }.

We find an improved value V h,n+1(x, α) and record the corresponding controls by

(
πh,n+1(x, α),Ch,n+1(x, α)

)
= argmax

{
V h,n+1
i,c (x, α) : i ∈ {−1, 0, 1}, c ∈ U

}
,

V h,n+1(x, α) = max
{
V h,n+1
i,c (x, α) : i ∈ {−1, 0, 1}, c ∈ U

}
.

The iterations stop as soon as the increment V h,n+1(x, α) − V h,n(x, α) reaches a
pre-specified tolerance level. We set the error tolerance to be 10−6.
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Fig. 2 Value function as a function of (x, α) for λ = 0.2 and U = {0} (Example 5.1)

Fig. 3 Control type (left) and regular control (right) as functions of (x, α) for λ = 0.2 and U = {k ∈ Z :
−2 ≤ k ≤ 3} (Example 5.2)

Example 5.1 Let λ = 0.2 and U = {0}. In view of Theorem 3.3, we can take U = 2.
Figure 1 shows the control type, regular control rate as functions of population size x
and regime α. The corresponding value function is shown in Fig. 2. Since U = {0},
the regular control does not work. The controller can harvest or renew by exercising
impulsive controls only. It appears that in both regimes, if x = λ = 0.2, an impulsive
renewing is performed. There is a levelUα depending on α so that we should apply an
impulsive harvesting whenever the population size is aboveUα and should not harvest
nor renew whenever the population size is in (λ,Uα). Thus, under this strategy, the
population size is in [λ,Uα] for t ∈ (0,∞).

Example 5.2 Let λ = 0.2 and U = {k ∈ Z : −2 ≤ k ≤ 3}. In view of Theorem 3.3, we
can take U = 2. Figure 3 shows the control type, regular control rate as functions of
population size x and regime α. The corresponding value function is shown in Fig. 4.
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Fig. 4 Value function as a function of (x, α) for λ = 0.2 and U = {k ∈ Z : −2 ≤ k ≤ 3} (Example 5.2)

Fig. 5 Control type (left) and regular control (right) as functions of (x, α) for λ = 0.2 and U = {k ∈ Z :
−2 ≤ k ≤ 3} (Example 5.3)

Compared to the preceding example, the controller have more options to harvest or
renew. Therefore, the value function in Fig. 4 is much larger than the preceding one.
Moreover, as shown in Fig. 3, the larger the population is, the higher the harvesting
rate is.

Example 5.3 Let λ = 0.4 and U = {k ∈ Z : −2 ≤ k ≤ 3}. In view of Theorem 3.3,
we can take U = 2. Figure 5 shows the control type, regular control rate as functions
of population size x and regime α. The corresponding value function is shown in
Fig. 6. It can be seen that the value function is smaller than that in Example 5.2.
This observation fits the fact that the one can harvest only if the population size is
higher than λ = 0.4 compared to 0.2 in Example 5.2. In this and previous numerical
experiments, we observe the same phenomena as follows: (a) if the population size
hits λ, an impulsive renewing is performed to keep the species in S = [λ,∞), which
is the harvesting-renewing domain; (b) for each α, there are levels L(1)

α , L(2)
α , and L(3)

α
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Fig. 6 Value function as a function of (x, α) for λ = 0.2 and U = {k ∈ Z : −2 ≤ k ≤ 3} (Example 5.3)
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Fig. 7 Control type (left), regular control (middle), and the value function (right) as functions of (x, α) for
λ = 0.2, U = {k/2 : −4 ≤ k ≤ 4, k ∈ Z}, (μ1, μ2) = (1, 0) (Example 5.4)

so that we should renewwith bounded rates if x ∈ (λ, L(1)
α ), we should not harvest nor

renew if x ∈ [L(1)
α , L(2)

α ), we should harvest with bounded rates if x ∈ [L(2)
α , L(3)

α ),
and we should perform an impulsive harvesting if x ∈ [L(3)

α ,U ].
It can be seen from the numerical experiments that we should keep the population

size in the interval [λ,U ] for t > 0. In other words, if the initial population size
x > λ, then τ = ∞ almost surely. Thus, compared with the well-known formulations
for harvesting-type problems, the proposed model offers an effective planning for the
balance between economical aspect and the sustainable purpose.
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Fig. 8 Control type (left), regular control (middle), and the value function (right) as functions of (x, α) for
λ = 0.2, U = {k/2 : −4 ≤ k ≤ 4, k ∈ Z}, (μ1, μ2) = (30, 0) (Example 5.4)
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Fig. 9 Control type (left), regular control (middle), and the value function (right) as functions of (x, α) for
λ = 0.2, U = {k/2 : −4 ≤ k ≤ 4, k ∈ Z}, (μ1, μ2) = (0, 30) (Example 5.4)

Example 5.4 We consider Eq. (5.1) with

b(x, α) = x(α − 1.5x), σ (x, α) = μ1x + μ2 for (x, α) ∈ R+ × M,

where the constants μ1 and μ2 are to be determined. The regular cost function is
g(x, α, c) = c2

10 , the control set is U = {k/2 : −4 ≤ k ≤ 4, k ∈ Z}, and we keep the
other data as in the preceding examples. To explore how noise impacts the problem,
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we first choose (μ1, μ2) = (1, 0) and record the results in Fig. 7. The results for
large white noise intensities when (μ1, μ2) = (30, 0) and (μ1, μ2) = (0, 30) are
presented in Figs. 8 and 9, respectively. It turns out, as stated in Theorems 3.4 and
3.5, when the white noise intensity is very large, the value function V (x, α) is close to
q(x −λ) for (x, α) ∈ [λ,∞)×M (see Figs. 8 and 9). Also, as shown in Figs. 8 and 9,
under a large white noise intensity, one should always harvest (either with themaximal
boundedharvesting rateC(x, α) = 2orwith an impulsive harvesting) andnever renew.
Meanwhile, as shown in Fig. 7, when the noise intensity is not large, the regular control
takes a variety of values in the control set U and the value function is much higher than
those in Figs. 8 and 9. We refer to [1, 6, 7] for more insight and numerical experiments
regarding how noise can impact harvesting and renewing actions.

6 Further Remarks

This paper has been devoted to the study of a generalized harvesting problem for a
stochastic population. We have established the finiteness and continuity of the value
function. Moreover, we have shown that for common population systems, it is impor-
tant to maintain the population size in a bounded set. We have also studied the impact
of large white noise on harvesting. A numerical algorithm has been constructed by the
Markov chain approximation methods. The numerical experiments have revealed the
effect of Markovian switching and control costs associated with harvesting/renewing
activities. It has been observed that under a mixed singular control formulation, the
decision-makers have more options to harvest or renew the species, which is much
more beneficial than the known models with no renewing, or with only one control
component. Moreover, the state constraint provides an effective strategy for sustain-
able purpose.

In this paper, we focus on single species. The development in this paper can be
carried over to the multidimensional case. As for single species models (Theorem
3.3), it appears that the controller should keep the population sizes in a bounded set.
However, in order to identify such a bounded set, one needs to be careful to handle the
interaction between species. Although multidimensional systems can be handled, the
multidimensional structure added more difficulty to study the impact of large white
noise. The computation of multidimensional ecosystems with many constraints and
controls is another challenging task. In addition, one can also consider the problem
under other constraints, random prices, and random cost functions.
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