

1 **Impact assessment of coastal marine range shifts to support proactive management**

2 Running head: Impact assessment of marine range shifts

5 Amy K. Henry¹ and Cascade J. B. Sorte¹

6 ¹Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697-

7 2525 USA

10 Corresponding author: Cascade J. B. Sorte

11 phone: 949-824-6971

12 email: csorte@uci.edu

13

14

15

16 **Keywords:** EICAT, impact assessment, marine species, range shift, range expansion, species
17 invasions

18

19 Manuscript type: Review

20 **Abstract**

21 Climate change is reshuffling Earth's biota as species ranges shift to track increasing habitat
22 temperatures. While redistribution may be necessary for species persistence, there can also be
23 impacts on existing communities upon arrival of novel, range-shifting species. Anticipating the
24 beneficial versus deleterious impacts of range-shifting species is essential for determining
25 whether active management is needed, which could include employing strategies from
26 facilitation (eg managed relocation) to suppression (eg prevention/control). We employ an
27 impact assessment protocol developed for invasive species to evaluate potential consequences
28 of range shifts in coastal marine ecosystems of North America. Our review demonstrates how
29 invasion impact assessment combined with species vulnerability assessment could support
30 decisions about management of range shifts. We found that ~50% of these shifting coastal
31 species have had negative impacts in their expanded range. The importance of proactive
32 management is likely to increase as the number and extent of range shifts accelerates.

33

34

35 **In a nutshell:**

36 • Novel species can arrive in locations due to introduction by humans or shifts in species'
37 native ranges as habitat temperatures increase.

38 • There is no "one size fits all" approach to managing novel species, particularly for native
39 range shifts: range shifts can be necessary for native species to cope with climate change, and
40 our results show that in some cases, they lead to relatively peaceful coexistence, whereas in
41 other cases, range-shifting species may disrupt communities.

42 • Our review suggests that impact assessments developed for invasive species can be
43 used to anticipate the consequences (both negative and positive) of native species range shifts.

44 **Introduction**

45 Climate change is causing shifts in species' ranges in taxa and systems worldwide (Sorte *et al.*
46 2010, Pecl *et al.* 2017, Lenoir *et al.* 2020). As conditions become more hospitable at cold-
47 temperature range boundaries, species can expand into areas spatially contiguous with
48 documented native ranges. Importantly, range shifts occur piecemeal, with changes in species
49 distributions reshuffling ecosystems. Understanding the impacts of native species range shifts is
50 critical for anticipating effects of climate change and designing management plans for
51 preserving biodiversity. Here, we focus on the impacts of species additions to communities at
52 expanding range limits. We employed an impact assessment approach developed for invasive
53 species to evaluate the consequences of native species range shifts (ie expansion of range
54 limits) and, by so doing, explore the potential for this approach to inform management decisions.

55 Range shifts are both a response and driver of global change impacts: while
56 redistribution is necessary for some species to persist, range-shifting species can have impacts
57 in their expanded ranges that threaten current inhabitants. When climatic conditions become
58 unsuitable, species unable to adapt in place must move or perish (Berg *et al.* 2010).

59 Redistribution is, therefore, crucial for preventing extinctions. Across the Western Hemisphere,
60 Lawler *et al.* (2009) predicted 10-20% (and up to 90%) species turnover in the next century
61 based on analysis of 2,954 bird, mammal, and amphibian species. For species included in
62 climate change vulnerability analyses (primarily terrestrial animals and plants), the proportion
63 doomed to extinction approximately doubles in models without redistribution (Thomas *et al.*
64 2004, Urban 2015). Many species likely cannot shift their ranges fast enough to keep pace with
65 climate change (Urban 2015), begging the question of whether humans should intervene on
66 their behalf via deliberate, managed relocation (McLachlan *et al.* 2006, Hoegh-Guldberg *et al.*
67 2008). A main concern about managed relocation is that deliberate range shifts, as with those
68 occurring naturally, can lead to unintended consequences.

69 The consequences of both range shifts and deliberate translocation of native species

70 can include negative impacts on communities in the expanded range (ie decreases in native
71 populations or human activities), even to the point of causing extinctions. For example, in
72 western North America, the barred owl *Strix varia* has displaced a threatened species, the
73 northern spotted owl *Strix occidentalis caurina* (Kelly *et al.* 2003, Long & Wolfe 2019). Barred
74 owl removals are underway, and although eradication from its expanded range is not feasible,
75 suppression of barred owl populations may be necessary to prevent extinction of the spotted
76 owl (Long & Wolfe 2019). Similarly, management (via tree removal to slow spread) of the
77 shifting southern pine beetle *Dendroctonus frontalis* appears necessary for preventing
78 extirpation of pitch pines *Pinus rigida* in the Eastern US (Heuss *et al.* 2019). Not all range shift
79 impacts are negative: shifting species can play beneficial roles in their expanded ranges (ie
80 increase native populations or human activities), particularly when they increase resources. As
81 an example, the tropical seaweed *Turbinaria ornata* provides habitat and enhances food supply
82 for herbivorous fish in the South Pacific (Bittick *et al.* 2019), and it has chemical properties that
83 make it potentially useful in pharmaceuticals (Ananthi *et al.* 2010). However, this seaweed also
84 negatively impacts corals in some areas (Brown & Carpenter 2015), highlighting the importance
85 of considering both positive and negative interactions for evaluating management options for
86 range shifts. Given that climate change is accelerating (Cheng *et al.* 2019), there will likely be
87 an increase in the number and rate of range shifts and the immediacy of considering whether
88 range shifts should be actively managed. An essential step in evaluating management
89 scenarios is range shift impact assessment (McLachlan *et al.* 2006, Hoegh-Guldberg *et al.*
90 2008).

91 Impact assessment protocols developed for invasive species could be effective tools for
92 anticipating outcomes of native species range shifts. These assessments involve compiling
93 published data or expert opinions to categorize species based on likely impacts. The
94 transferability of impact assessments depends on whether a species' impacts in one (ie
95 previously studied) location is representative of its impacts elsewhere (ie in areas where it has

96 not yet arrived or been studied). For invasions, the impacts of a particular invasive species tend
97 to be consistently positive or negative; however, the magnitude of these impacts can vary
98 across locations with different environments and community members (Kulhanek *et al.* 2011,
99 Kumschick *et al.* 2015). These caveats of using existing data from one location/community to
100 anticipate impacts in a different location/community likely also apply to range-shift impact
101 assessments. Impact assessments are, thus, best used to “flag species with high potential
102 impacts” (Blackburn *et al.* 2014), and identify those that might pose high risk within groups of
103 spreading species (eg Rockwell-Postel *et al.* 2020).

104 The goals and characteristics of impact assessments are the same whether novel
105 species are invasive or native in adjacent locations: to evaluate novel species’ impacts in a way
106 that is comparable across taxa and locations and transparently incorporates the best available
107 data with moderate effort (Blackburn *et al.* 2014, Hawkins *et al.* 2015, Eisenmenger *et al.* 2016,
108 Turbé *et al.* 2017). At least 29 protocols exist for invasive species impact assessment, some of
109 which identify maximum potential impacts while others predict likelihood of introduction and
110 spread (Roy *et al.* 2017). Invasion impact assessments have yielded both species-specific
111 information (eg prioritizing weed species for management in the northeastern US; Rockwell-
112 Postel *et al.* 2020) as well as an understanding of the most impactful taxa and impact
113 mechanisms (eg greater impacts of invasive mammals than birds in Europe, particularly via
114 feeding habits; Kumschick *et al.* 2011). However, it is unclear whether impact assessments
115 developed for invasive species will be useful for anticipating impacts of range shifts, particularly
116 if data availability is low for native species that have not been seen as problematic or targeted
117 for study.

118 The objective of this review is to assess the potential impacts of range-shifting native
119 species on populations of interacting species in the expanded range. We applied an impact
120 assessment modified from the Environmental Impact Classification of Alien Taxa (EICAT;
121 Blackburn *et al.* 2014, Hawkins *et al.* 2015). The EICAT protocol was chosen because it was

122 recently adopted for use by the IUCN (International Union for the Conservation of Nature), the
123 body that manages the Global Invasive Species Database (www.iucngisd.org/) and Red List of
124 Threatened Species (www.iucnredlist.org/). We also applied a modified version of the Socio-
125 economic Impact Classification of Alien Taxa (SEICAT) protocol (Bacher *et al.* 2017), which
126 uses the same approach and yields scores on the same scale as EICAT.

127 We used EICAT and SEICAT to evaluate both detrimental and beneficial impacts of
128 range shifts in coastal marine ecosystems of North America (Table 1). We collated impacts data
129 from both expanded and native ranges of shifting species, defining impacts based on the
130 relationship between a range shifter's presence/abundance and the robustness of an interacting
131 species' population or human activity. In addition to evaluating the sign and magnitude of these
132 impacts, we tested the hypothesis that impacts increase outside of species' native ranges (as
133 shown for many invasive species; Cure *et al.* 2012). Our study is the first to demonstrate the
134 effectiveness of this impact assessment approach as a tool for evaluating outcomes of native
135 species range shifts that could be incorporated into management plans.

136

137 **Methods**

138

139 **Identification of study species**

140 We identified 39 marine species whose poleward range limits were documented as shifting
141 northward along the coastline (<15 km from shore) of North America, including plants,
142 invertebrates, fish, a protist, and a bird (WebTable 1). Of these, 26 species were compiled by
143 Sorte *et al.* (2010), and we added 13 species from an updated literature review. We searched
144 Google Scholar (on 08/20/2019) using this search string: marine "range expansion" species
145 "range shift". We reviewed titles and, when appropriate, text of the first 600 results, identifying
146 11 additional species from 14 papers (WebTable 1). We added two species from our literature
147 files (WebTable 1).

148

149 **Review of published impacts**

150 Evidence of species' impacts was compiled from online database searches and literature
151 review. We conducted individual Web of Science searches for the 39 shifting species using
152 each species' scientific name (and synonyms). Papers reporting species impacts were identified
153 by reviewing titles and abstracts. For species with >800 Web of Science results, the first 400
154 results were reviewed and remaining results were filtered using this search string: "ecology" OR
155 "invas*" OR "impact". For species with <100 Web of Science results, we also performed Google
156 Scholar searches, and relevant papers were identified from the first 400 results. Additional
157 impact studies were added opportunistically from citations within papers found in database
158 searches. In total, we reviewed 11,508 papers for this impact assessment of 39 range-shifting
159 species.

160

161 **Impact assessment**

162 We evaluated environmental and socioeconomic impacts using modified versions of the
163 Environmental Impact Classification of Alien Taxa (EICAT; Hawkins *et al.* 2015) and Socio-
164 economic Impact Classification of Alien Taxa (SEICAT; Bacher *et al.* 2017) protocols. The
165 EICAT and SEICAT protocols focus on impacts on native, non-human populations and human
166 activities, respectively. Primary modifications were the inclusion of beneficial (rather than only
167 detrimental) impacts and use of studies in species' native and expanded ranges to estimate
168 impacts (rather than only non-native ranges). These modifications were intended to minimize
169 the influence of study/publication bias, although we acknowledge that researchers historically
170 focused on negative over positive interactions (Bertness & Callaway 1994) and are more likely
171 to study/publish results of strong over weak interactions (Gurevitch & Hedges 1999).

172 Impacts were classified by mechanism. We identified the following mechanisms as
173 responsible for negative impacts by shifting species on native (non-human) species:

174 competition, predation, herbivory, disease transmission, interaction with other invaders, physical
175 disturbance, poisoning/toxicity, and “other” negative impacts (including those with unknown
176 mechanisms). We also found evidence of positive ecological impacts by the following
177 mechanisms: food provisioning, habitat provisioning, and “other” positive impacts. Our SEICAT
178 analysis revealed socioeconomic impacts associated with alterations in health; material and
179 immaterial assets; and social, spiritual, or cultural relations.

180 We assigned levels of impacts based on categories described in the EICAT and SEICAT
181 protocols (Hawkins *et al.* 2015, Bacher *et al.* 2017). Impacts range across a semi-quantitative
182 gradient from 1 (lowest) to 5 (highest). For each published study, we scored impacts of shifting
183 species based on the highest level response from the categories shown in Table 1. Impact
184 scores, thus, represent the maximum impact that has been observed. Both EICAT and SEICAT
185 protocols were modified to incorporate positive impacts, essentially switching the direction or
186 sign of negative impacts (Table 1). Species for which we found no published papers on impacts
187 were categorized as “data deficient”.

188 For both EICAT and SEICAT assessments, we collected additional information about the
189 shifting species and study. These characteristics included taxonomic classifications, study
190 location, and whether the study was conducted in the shifting species’ “native” or non-native,
191 “expanded” range. Ranges were defined as “native” or “expanded” based primarily on
192 documentation within the source reporting the range shift (WebTable 1). “Expanded” ranges
193 were designated as such conservatively, acknowledging potential lack of benchmark data for
194 species ranges, with most range shifts documented after 1985 (Sorte *et al.* 2010). We evaluated
195 the relationship between average EICAT impact levels in the native versus expanded range for
196 the 7 species that were studied in both range types. This analysis was performed using a linear
197 mixed effect model (lmer; lmerTest R package, Kunetsova 2017) in the statistical computing
198 language R (version 4.0.2, R Core Team 2020) with range (native or expanded) as a fixed factor
199 and species as a random effect. Visual inspection of Pearson residuals indicated no deviation

200 from linearity or normality and no major outliers. There was also no deviation from
201 homoscedasticity (Levene's test, $F = 0.0002$, $p > 0.05$). We validated the fit of this model against
202 a model without random effects using AICc (nlme R package, Pinheiro *et al.* 2020).

203

204 **Results & Discussion**

205 The effectiveness of this assessment approach for anticipating impacts of range shifts depends
206 partly on data availability, and we found that environmental impact was studied for a similar
207 proportion of these 39 range shifters as for invasive species. Environmental impacts were
208 documented for 32 (82%) of the 39 shifting species while 7 (18%) of the species were data
209 deficient (WebTable 2). In reviews of invasive species impacts, the proportion of species that
210 were data deficient ranged from 4% (2 of 50 alien mammal and bird species in Europe;
211 Kumschick *et al.* 2011) and 18% (18 of 100 invasive plant species in the northeastern US;
212 Rockwell-Postel *et al.* 2020) in regional studies to 71% (296 of 415 bird species; Evans *et al.*
213 2016) for global studies of all invasive species within a taxonomic group. Our results suggest
214 that data availability does not preclude using assessments such as EICAT to anticipate impacts
215 of range shifts.

216 Fewer data were available to assess impacts of range shifts on socioeconomic systems,
217 for which 72% of species were unstudied and categorized as data deficient (WebTable 2). In
218 comparison, only 26% (78 of 300) of invasive species in Europe (comprising mammals, birds,
219 fish, insects, and plants) were data deficient for socioeconomic impacts (Kumschick *et al.* 2015).
220 Kumschick *et al.* (2015) showed that environmental and socioeconomic impacts were highly
221 correlated, both within and across taxonomic groups. Although this relationship supports use of
222 an impact assessment approach, more studies of range shift impacts on human systems are
223 needed.

224 In total, environmental and/or socioeconomic impacts were documented for 34 (87%) of
225 39 species. Our assessments were based on 184 papers, 154 papers reporting environmental

226 impacts and 30 papers about socioeconomic impacts (~6 and ~3 papers per studied species,
227 respectively) (Figure 1).

228 Published impacts of range shifts were more often negative than positive, although half
229 (51%) of species were documented as having both beneficial and detrimental impacts across
230 environmental and socioeconomic systems (S/EICAT score of 2+). Overall, only negative
231 impacts were reported for 26% of species and only positive impacts were reported for 10% of
232 species (Figures 2, 3, WebTable 2). Environmental impacts on interacting species were
233 observed for 51% of range-shifting species. Of these, 30% were documented as having
234 primarily positive impacts, including habitat-forming seagrass and coral, and fishery species of
235 crab. Half (50%) of the shifting species had documented impacts that were primarily negative,
236 most due to consumption (herbivory or predation) of native species by range-shifting gastropods
237 and fish, as well as two shifters acting as competitors and one disease-causing protistan
238 parasite. The remaining 20% of species had recorded impacts that were both negative and
239 positive. These species (including sponge, coral, mangrove plant, crab, and fish species)
240 provided food or habitat while also negatively impacting native species via consumption,
241 competition, or physical disturbance.

242 The maximum impacts reported for these shifting species were Major impacts (score of
243 4), meaning a native species was lost or gained in a community because of the range shift, but
244 not permanently so. In most cases, including 7 of 9 studies and 4 of 6 species, Major impacts
245 were related to habitat availability. Creation of habitat was often beneficial but could also be
246 detrimental. For example, habitat created by shifting mangrove species supported a native
247 parrotfish and increased commercial fishery yields (Mumby *et al.* 2004) but also altered
248 community structure and increased invasive species (Demopoulos & Smith 2010). Two shifting
249 species had Major impacts via consumptive effects: the predatory sea slug *Phidiana hiltoni*
250 decreased native sea slugs (Goddard *et al.* 2011), and *Lottia picta*, an herbivorous gastropod
251 (limpet), was associated with catastrophic declines in seagrass meadows (Zimmerman *et al.*

252 1996). We did not find evidence of global extinctions (Massive impacts; score of 5) caused by
253 coastal marine range shifts in North America. This is perhaps not surprising given impacted
254 species are generally characterized by high fecundity, little to no parental care, and broad
255 dispersal capacity, which could allow population replenishment from few surviving individuals
256 (McCauley *et al.* 2015, Le Pape *et al.* 2017). Since redistribution is likely necessary for global
257 persistence of many species, range shifts may contribute more to biodiversity preservation than
258 to biodiversity loss.

259 Most impact studies synthesized here were conducted in shifting species' native ranges,
260 including 69% of studies on environmental impacts and 96% of studies on socioeconomic
261 impacts. If impact assessment for range shifts only included impacts measured in species' non-
262 native ranges, as for invasion impact assessments underway, then the number of data deficient
263 species would increase from 13% to 63%. This pattern highlights the need for more studies in
264 expanded ranges of shifting species as well as the importance of understanding whether
265 impacts in the native range are indicative of impacts in the expanded range of shifting species.

266 We compared impacts between native and expanded ranges for 7 species that were
267 studied in both (Figure 4, WebFigure 1). We found that species with stronger negative impacts
268 documented in the native range were also shown to be more detrimental when shifting into new
269 communities. However, impacts in expanded ranges tended to be more negative than impacts
270 in native ranges, with impact increasing by more than one level between the native and
271 expanded range (fixed effect estimate 1.78 [95% CI: 0.89, 2.59]). For 6 of 7 species, impacts
272 were more negative in the expanded than native range, while mean impacts were the same in
273 both ranges for 1 species (Figure 4). Species' impacts were never documented as more positive
274 after range shifts (Figure 4). Furthermore, average impacts were negative for 4 of 7 species in
275 native ranges and 6 of 7 species in expanded ranges (Figure 4). Thus, impacts reported in
276 expanded ranges of shifting species were indicated by – yet often more negative than – impacts
277 in native ranges.

278 Including studies from the native range not only increased the proportion of species for
279 which impact scores could be assigned, it also led to a more balanced assessment of both
280 detrimental and beneficial impacts of range shifts. While non-native species invasions are
281 decreasing global biodiversity (Doherty *et al.* 2016), range shifts are becoming increasingly
282 necessary for maintaining biodiversity (Thomas *et al.* 2004, Urban 2015) despite sometimes
283 causing negative impacts locally (see examples above). Therefore, while a focus on negative
284 impacts may be appropriate for invasive species management, decisions about range shifts will
285 need to consider both negative and positive impacts. Negative impacts may be more often
286 reported in expanded ranges where shifting species are more likely to be seen as detrimental,
287 while positive impacts may be more often studied in native ranges where species are deemed
288 beneficial. Therefore, while similarities between range shifts and invasions allow their impacts to
289 be assessed using a common protocol, range shifts are unique in their potential benefits for
290 global biodiversity. A more balanced impact assessment for range shifts, which helps to
291 minimize the influence of study and publication bias, would ideally include positive impacts and
292 studies conducted in native ranges.

293

294 **Conclusions**

295 Whereas managing non-native species invasions focuses on suppression (eg Hulme 2006),
296 management of range shifts is likely to require considering a broader scope of options, including
297 facilitation. Impact assessments developed for invasive species could be used as indicators of
298 potential consequences of range shifts, whether they occur with or without direct human
299 intervention. Our study of 39 range-shifting coastal marine species showed that data were
300 available to assess environmental impacts of >80% of species, similar to the proportion of
301 invasive species that can be assessed using the EICAT protocol. Given that this approach relies
302 on previously published studies, and in light of likely biases in the available literature, we
303 advocate for incorporating both negative and positive impacts studied across the native and

304 expanded ranges of shifting species. We note that the EICAT approach is largely precautionary
305 as it focuses on maximum recorded impacts. For well-studied species, it might be useful to
306 consider average and most commonly reported impacts. Still, given our finding that impacts
307 were more negative in expanded than native ranges, we should not be complacent about the
308 potential for impacts to be more detrimental than previously recorded. Since socioeconomic
309 impacts are rarely reported (<30% of study species), expert opinion could be solicited to fill this
310 data gap.

311 Impact assessments for range shifts would ideally be paired with vulnerability
312 assessments, both for species impacted in the expanded range and for the shifting species
313 themselves. Both shifting species and impacted species are candidates for management,
314 depending on their vulnerability (to changing climate or range-shift impacts), perceived value
315 (eg to biodiversity or economy), and cost/feasibility of interventions. Managers are probably
316 already aware of species in their jurisdiction that are endangered or of conservation concern,
317 and impacts on these species will likely be common justification for suppressing range shifts (as
318 with removals underway for shifting barred owls and pine beetles; Long & Wolfe 2019, Heuss *et*
319 *al.* 2019). In contrast, facilitation of range shifts (and even managed relocation) might be
320 considered when the potential range shifter is endangered. A first step in vulnerability
321 assessment would be to determine whether the shifting species or impacted species are
322 included on the IUCN Red List (www.iucnredlist.org/) of >32,000 species threatened with global
323 extinction (Van der Colff *et al.* 2020). Second, for species not on the IUCN Red List, vulnerability
324 could be assessed using an established protocol, such as the IUCN Red List extinction risk
325 assessment protocol (eg Short *et al.* 2011). The approach proposed here, combining impact
326 assessment with vulnerability assessment, minimizes cost because (1) both assessments rely
327 on previously published data, and (2) by starting with the impact assessment of an identified
328 range-shifting species, vulnerability assessments can target the shifting species itself and a
329 subset of species in the expanded range that are likely to be impacted. Management

330 alternatives can then be compared following a structured decision framework, such as those
331 developed for managed relocations, which incorporate information on the risks and feasibility of
332 options for attaining management goals (McLachlan *et al.* 2006, Hoegh-Guldberg *et al.* 2008).
333 Even when management is not feasible, the results of these impact assessments could inform
334 adaptation strategies (eg governance of transboundary shifts in fisheries species; Lindegren &
335 Brander 2018, Pinsky *et al.* 2018).

336 The recommendations above are based on a species-specific approach to management,
337 which may not be feasible for species that are not well studied, particularly as range shifts
338 accelerate. Thus, future studies should seek to identify generalities in the consequences of
339 range shifts. For example, Bradley *et al.* (2019) demonstrated that for invasions, impacts accrue
340 more rapidly from species of higher trophic levels, highlighting the need for more proactive
341 management of invasive predators and herbivores. As with invasive species, impacts of range
342 shifts are likely to be greatest for species with highest population sizes and individual effects.
343 Therefore, strong impacts of range shifts might be indicated by characteristics such as life
344 history strategies and trophic levels of shifting species or community-level resistance to
345 disturbance in expanded ranges (Catford *et al.* 2009, Wallingford *et al.* 2020). However,
346 generalizing impacts between species groups is premature, as our study revealed high
347 variability between species, with strong impacts by species at both the top and bottom (eg
348 habitat-forming primary producers) of the food chain and few taxonomic patterns (WebTable 2).

349 Our findings serve as evidence that there is no “one size fits all” approach for managing
350 range shifts, which depend on the level and type of impacts combined with human interests and
351 options for intervention. Of range shifts reviewed here, ~50% led to observed negative impacts
352 on environmental and/or socioeconomic systems (Figures 2,3). At the same time, redistribution
353 is increasingly important for global persistence of these species, some of which have already
354 experienced contractions of low-latitude range boundaries (eg Fenberg *et al.* 2014, Timbs *et al.*
355 2019). While our review focused on impacts of species addition (through range shifts or

356 managed relocation), this approach could also be used to illuminate impacts of species loss in
357 areas of range contraction. In summary, impact assessments developed for invasive species
358 combined with vulnerability assessments is a promising approach for evaluating whether range
359 shifts are, on balance, detrimental or beneficial. The next step in proactive management
360 involves determining the level of negative impacts that we are willing to accept, particularly
361 given beneficial impacts and extinction risks for range-shifting species.

362

363 **Data Availability**

364 The final dataset is available on Dryad, DOI 10.7280/D1770W.

365

366 **Acknowledgments**

367 We thank S. Lira, J. Viramontes, C. Hoeft, and A. Vara for assistance with the database and
368 literature review. M. Bracken, B. Bradley, and members of the Sorte Lab provided feedback that
369 improved the manuscript. This research was funded through the 2017-2018 Belmont Forum and
370 BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND program,
371 and with the National Science Foundation (ICER-1852060) and benefited from conversations
372 and feedback (particularly on the EICAT protocol and analysis) from project collaborators.

373

374 **References**

375

376 Ananthi S, Raghavendran H, Sunil AG, *et al.* 2010. In vitro antioxidant and in vivo anti-
377 inflammatory potential of crude polysaccharide from *Turbinaria ornata* (Marine Brown Alga).

378 *Food Chem Toxicol* **48**: 187-92.

379

380 Bacher S, Blackburn TM, Essl F, *et al.* 2017. Socio-economic impact classification of alien taxa
381 (SEICAT). *Methods Ecol Evol* **9**: 159-68.

382

383 Berg MP, Kiers ET, Driessen G, *et al.* 2010. Adapt or disperse: understanding species

384 persistence in a changing world. *Global Change Biol* **16**: 587-98.

385

386 Bertness MD, Callaway R. 1994. Positive interactions in communities. *Trends Ecol Evol* **9**: 191-

387 3.

388

389 Bittick SJ, Clauzing RJ, Fong CR, *et al.* 2019. A rapidly expanding macroalga acts as a

390 foundational species providing trophic support and habitat in the South Pacific. *Ecosystems* **22**:

391 165-73.

392

393 Blackburn TM, Essl F, Evans T, *et al.* 2014. A unifies classification of alien species based on the

394 magnitude of their environmental impacts. *Plos Biol* **12**: e1001850.

395

396 Bradley BA, Laginhas BB, Whitlock R, *et al.* 2019. Disentangling the abundance-impact

397 relationship for invasive species. *Proc Natl Acad Sci USA* **116**: 9919-24.

398

399 Brown AL and Carpenter RC. 2015. Water flow influences the mechanisms and outcomes of

400 interactions between massive *Porites* and coral reef algae. *Mar Biol* **162**: 459-68.

401

402 Catford JA, Jansson R, and Nilsson C. 2009. Reducing redundancy in invasion ecology by

403 integrating hypotheses into a single theoretical framework. *Div Distrib* **15**: 22-40.

404

405 Cheng L, Abraham J, Hausfather Z, *et al.* 2019. How fast are the ocean warming? *Science* **363**:

406 128-29.

407

408 Cure K, Benkwitt CE, Kindinger TL, *et al.* 2012. Comparative behavior of red lionfish *Pterois*
409 *volitans* on native Pacific versus invaded Atlantic coral reefs. *Mar Ecol-Prog Ser* **467**: 181-92.

410

411 Demopoulos AWJ and Smith CR. 2010. Invasive mangroves alter macrofaunal community
412 structure and facilitate opportunistic exotics. *Mar Ecol-Prog Ser* **404**: 51-67.

413

414 Doherty TS, Glen AS, Nimmo DG, *et al.* 2016. Invasive predators and global biodiversity loss.
415 *Proc Natl Acad Sci USA* **113**:11261-5.

416

417 Eisenmenger N, Giljum S, Lutter S, *et al.* 2016. Towards a conceptual framework for social-
418 ecological systems integrating biodiversity and ecosystem services with resource efficiency
419 indicators. *Sustainability-Basel* **8**: 201.

420

421 Fenberg PB, Posbic K, and Hellberg ME. 2014. Historical and recent processes shaping the
422 geographic range of rocky intertidal gastropod: phylogeography, ecology, and habitat
423 availability. *Ecol Evol* **4**: 3244-55.

424

425 Goddard JHR, Gosliner TM, Pearse JS. 2011. Impacts associated with the recent range shift of
426 aeolid nudibranch *Phidiana hiltoni* (Mollusca, Opisthobranchia) in California. *Mar Biol* **158**: 1095-
427 109.

428

429 Gurevitch J, Hedges LV. 1999. Statistical issues in ecological meta-analyses. *Ecology* **80**: 1142-
430 9.

431

432 Hawkins CL, Bacher S, Essl F, *et al.* 2015. Framework and guidelines for implementing the
433 proposed IUCN environmental impact classification for alien taxa (EICAT). *Divers Distrib* **21**:
434 1360-63.

435

436 Heuss M, D'Amato AW, and Dodds KJ. 2019. Northward expansion of southern pine beetle
437 generates significant alterations to forest structure and composition of globally rare *Pinus rigida*
438 forests. *Forest Ecol Manag* **434**: 119-30.

439

440 Hoegh-Guldberg O, Hughes L, McIntyre S, Lindenmayer DB, Parmesan C, Possingham HP,
441 and Thomas CD 2008. Assisted colonization and rapid climate change. *Science* **321**: 345-6.

442

443 Hulme PE. 2006. Beyond control: wider implications for the management of biological invasions.
444 *J Appl Ecol* **43**: 835-47.

445

446 Kelly EG, Forsman ED, and Anthony RG. 2003. Are barred owls displacing spotted owls?
447 *Condor* **105**: 45-53.

448

449 Kulhanek SA, Ricciardi A, and Leung B. 2011. Is invasion history a useful tool for predicting the
450 impacts of the world's worst aquatic invasive species? *Ecol Appl* **21**: 189-202.

451

452 Kumschick S, Alba C, Hufbauer RA, *et al.* 2011. Weak or strong invaders? A comparison of
453 impact between the native and invaded ranges of mammals and bird alien to Europe. *Divers*
454 *Distrib* **17**: 663-72.

455

456 Kumschick S, Bacher S, Evans T, *et al.* 2015. Comparing impacts of alien plants and animals in
457 Europe using a standard scoring system. *J Appl Ecol* **52**: 552-61.

458

459 Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest Package: Tests in Linear Mixed
460 Effects Models. *J Stat Softw* **82**:1-26. doi: 10.18637/jss.v082.i13

461

462 Lawler JJ, Shafer SL, Kareiva P, *et al.* 2009. Projected climate-induced faunal change in the
463 Western Hemisphere. *Ecology* **90**: 588-97.

464

465 Le Pape O, Bonhommeau S, Nieblas AE, and Fromentin JM. 2017. Overfishing causes frequent
466 fish population collapses but rare extinctions. *Proc Natl Acad Sci USA* **114**: E6274.

467

468 Lenoir J, Bertrand R, Comte L, *et al.* 2020. Species better track climate warming in the oceans
469 than on land. *Nat Ecol Evol* **4**: 1044-59.

470

471 Lindegren M, and Brander K. 2018. Adapting fisheries and their management to climate change:
472 A review of concepts, tools, frameworks, and current progress toward implementation. *Rev Fish
473 Sci Aquacult* **26**: 400-15.

474

475 Long LL and Wolfe JD. 2019. Review of the effects of barred owls on spotted owls. *J Wildlife
476 Manage* **83**: 1281-96.

477

478 McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, and Warner RR. 2015. Marine
479 defaunation: animal loss in the global ocean. *Science* **347**: 1255641.

480

481 McLachlan JS, Hellmann JJ, and Schwartz MW. 2007. A framework for debate of assisted
482 migration in an era of climate change. *Cons Biol* **21**: 297-302.

483

484 Mumby PJ, Edwards AJ, Aria-González JE, *et al.* 2004. Mangroves enhance the biomass of
485 coral reef fish communities in the Caribbean. *Nature* **427**: 533-36.

486

487 Parmesan C and Yohe G. 2003. A globally coherent fingerprint of climate change impacts
488 across natural systems. *Nature* **421**: 37-42.

489

490 Pecl GT, Araújo MB, Bell JD, *et al.* 2017. Biodiversity redistribution under climate change:
491 impacts on ecosystems and human well-being. *Science* **355**: eaai9214.

492

493 Pinheiro J, Bates D, DebRoy S, *et al.* 2020. *nlme: Linear and Nonlinear Mixed Effects Models*. R
494 package version 3.1-150, <https://CRAN.R-project.org/package=nlme>.

495

496 Pinsky ML, Reygondeau G, Caddell R, Palacios-Abrantes J, Spijkers J, and Cheung WW. 2018.
497 Preparing ocean governance for species on the move. *Science* **360**: 1189-91.

498

499 R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria:
500 R Foundation for Statistical Computing.

501

502 Rockwell-Postel M, Laginhas BB, and Bradley BA. 2020. Supporting proactive management in
503 the context of climate change: prioritizing rang-shifting invasive plants based on impacts. *Biol
504 Invasions* **22**: 2371-83.

505

506 Roy HE, Rabitsch W, Scalera R, *et al.* 2017. Developing a framework of minimum standards for
507 the risk assessment of alien species. *J Appl Ecol* **55**: 526-38.

508

509 Short FT, Polidoro B, Livingstone SR, *et al.* 2011. Extinction risk assessment of the world's
510 seagrass species. *Biol Cons* **144**:1961-71.

511

512 Sorte CJB, Williams SL, Carlton JT. 2010. Marine range shifts and species introductions:
513 comparative spread rates and community impacts. *Global Ecol Biogeogr* **19**: 303-16.

514

515 Thomas JA, Telfer MG, Roy DB, *et al.* 2004. Comparative losses of British butterflies, birds, and
516 plants and the global extinction crisis. *Science* **19**: 1879-81.

517

518 Timbs JR, Powell EN, and Mann R. 2019. Changes in the spatial distribution and anatomy of a
519 range shift for the Atlantic surfclam *Spisula solidissima* in the Mid-Atlantic Bight and on Georges
520 Bank. *Mar Ecol-Prog Ser* **620**: 77-97.

521

522 Turbé A, Strubbe A, Mori E, *et al.* 2017. Assessing the assessments: evaluation of four impact
523 assessment protocols for invasive alien species. *Divers Distrib* **23**: 297-307.

524

525 Urban MC. 2015. Accelerating extinction risk from climate change. *Science* **348**: 571-73.

526

527 Van der Colff D, Kumschick S, Foden W, *et al.* 2020. Comparing the IUCN's EICAT and Red
528 List to improve assessments of the impact of biological invasions. *NeoBiota* **62**: 509-23.

529

530 Wallingford PD, Morelli TL, Allen JM, *et al.* 2020. Adjusting the lens of invasion biology to focus
531 on the impacts of climate-driven range shifts. *Nat Clim Change* **10**: 398-405.

532

533 Zimmermann RC, Kohrs DG, and Alberte RS. 1996. Top-down impact through a bottom-up
534 mechanism: the effect of limpet grazing on growth, productivity and carbon allocation of *Zostera*
535 *marina* L. (eelgrass). *Oecologia* **107**: 560-67.

536 **Figure captions**

537

538 **Figure 1.** Number of published studies on environmental and socioeconomic impacts of 39
539 coastal marine species that have undergone range shifts in North America.

540

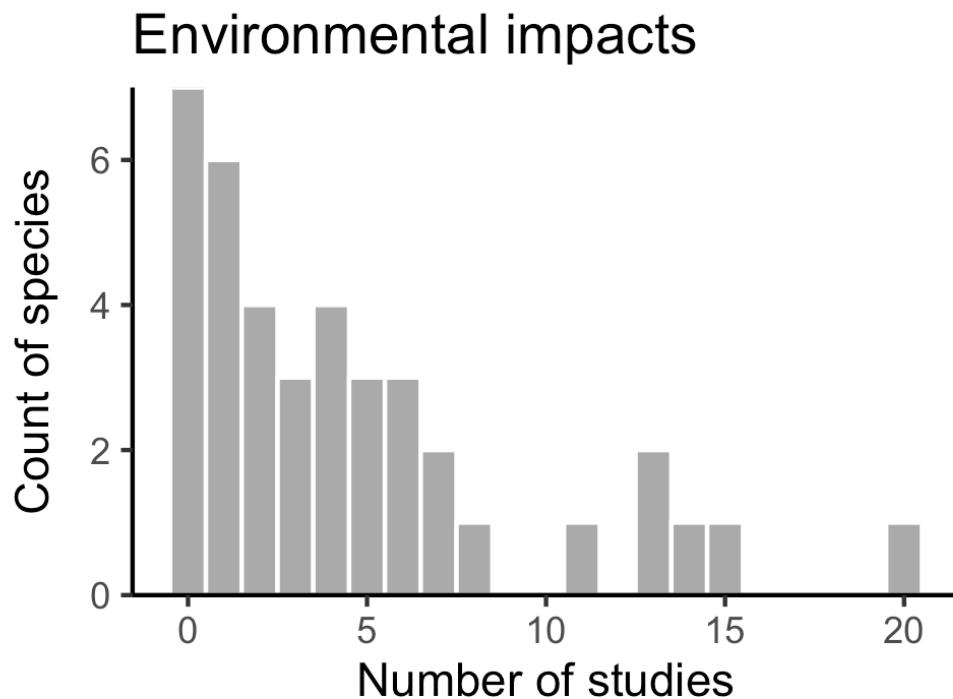
541 **Figure 2.** Maximum negative (red) and positive (blue) scores for environmental impacts of
542 range-shifting species based on the EICAT protocol (Table 1).

543

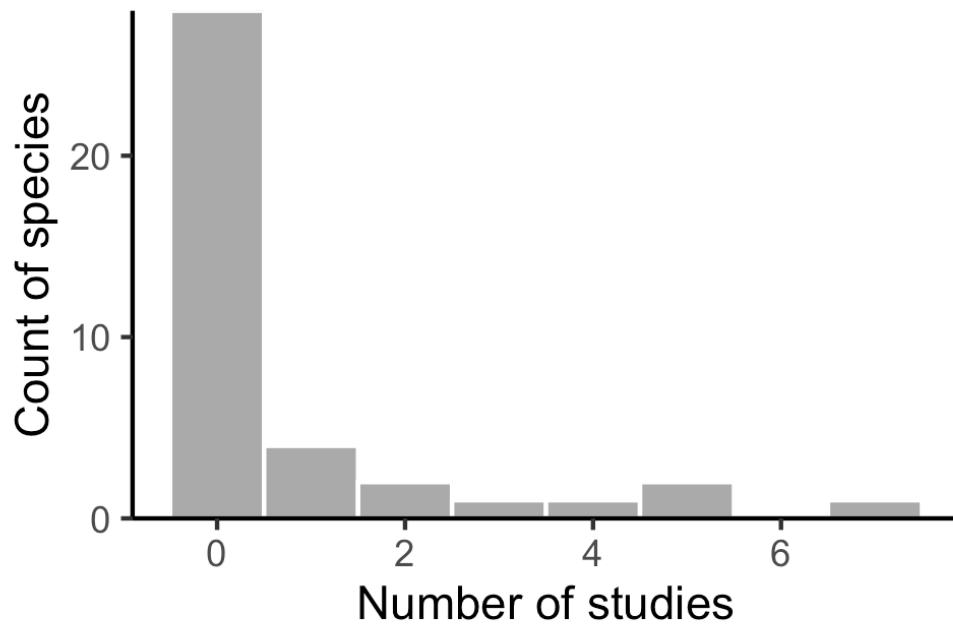
544 **Figure 3.** Maximum negative (red) and positive (blue) scores for socioeconomic impacts of
545 range-shifting species based on the SEICAT protocol (Table 1).

546

547

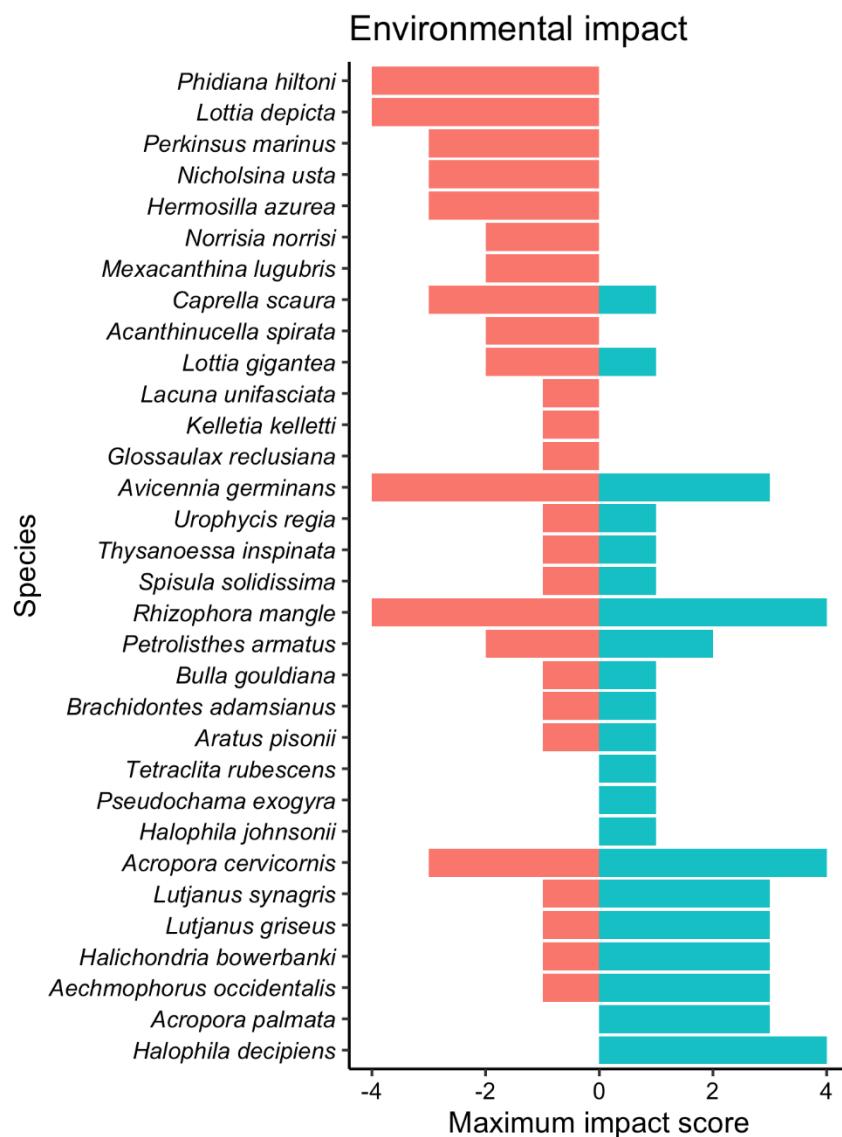

548 **Figure 4.** (a) Comparison of impact scores averaged across studies conducted in native versus
549 expanded ranges. Values range from -4 (major detrimental impact) to +4 (major beneficial
550 impact) for 8 species. The quadrants represent possible scenarios. For quadrants lying along
551 the diagonal 1:1 line, direction of impacts is the same in both ranges (negative at bottom left,
552 positive at top right). Alternately, impacts could switch from negative to positive (top left) or from
553 positive to negative (bottom right) during the range shift. Species in this analysis included (b)
554 black mangrove *Avicennia germinans*, (c) mangrove snapper *Lutjanus griseus*, and (d) dark
555 unicorn whelk *Mexacanthina lugubris*. Photo credits: (b) AR Hughes, (c) SA Bedgood, (d) DJ
556 Eernisse.

557


Table 1. Risk assessment impact levels

		EICAT (Environmental impacts)		SEICAT (Socioeconomic impacts)	
Impact Level		Negative	Positive	Negative	Positive
1	Minimal	Impacts possible (based on known interactions) but no change in native fitness observed	Impacts possible (based on known interactions) but no change in native fitness observed	Impacts possible (based on known uses) but no change in human activities observed	Impacts possible (based on known uses) but no change in human activities observed
2	Minor	Decreased fitness of a native species	Increased fitness of a native species	People continued to participate in an activity but with difficulty	People began to participate in an activity but with difficulty
3	Moderate	Decreased population size of a native species	Increased population size of a native species	Fewer people participated in an activity	More people participated in an activity
4	Major	Extirpation of a native population that could reestablish if the expander were removed	Establishment of a native population which would be lost if the expander were removed	An activity was suspended locally but would continue if the expander were removed	An activity commenced locally but would stop if the expander were removed
5	Massive	Extirpation of a native population which would not recover even if the expander were removed	Establishment of a native population which would persist even if the expander were removed	An activity was permanently lost in a location	An activity was permanently adopted in a location

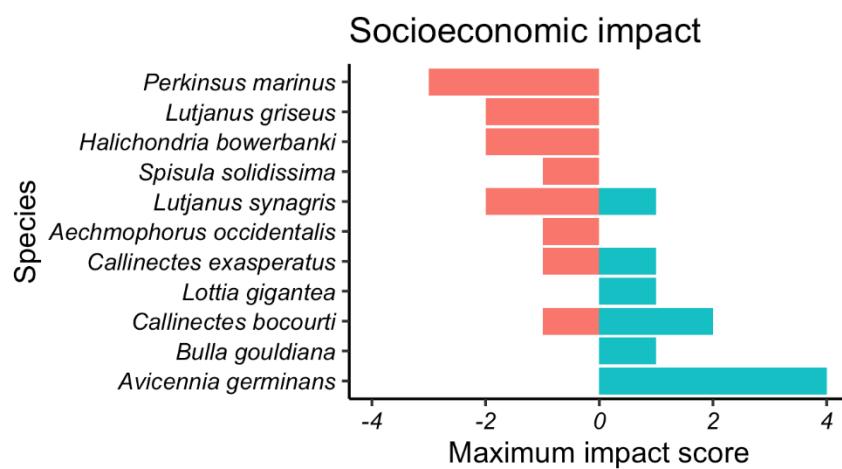
561 Figure 1


Socioeconomic impacts

562

563

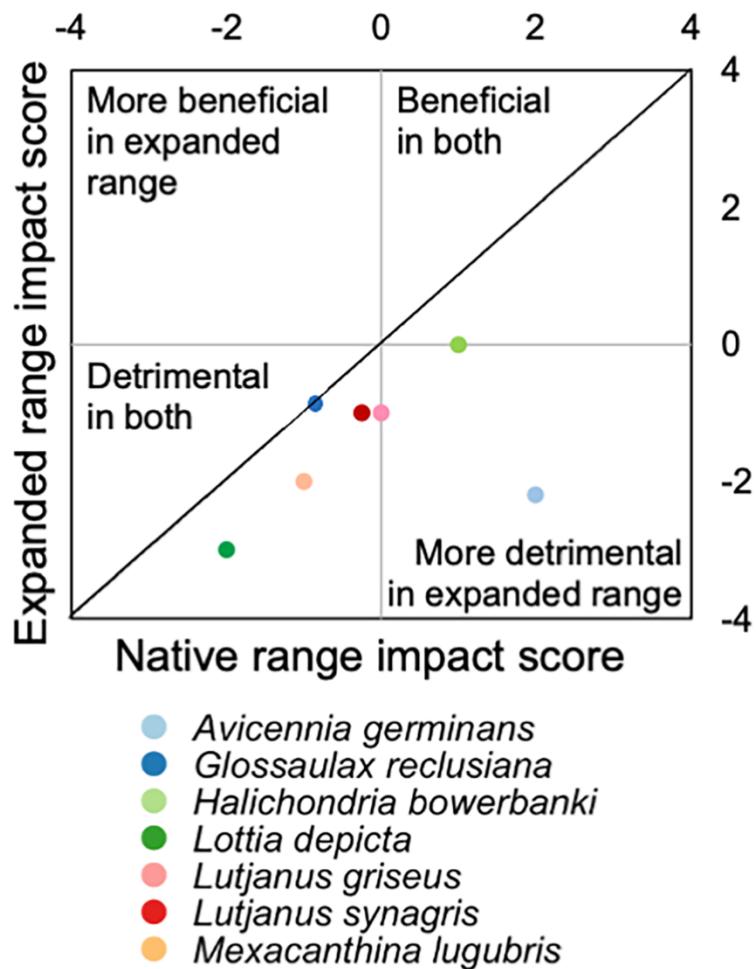
564 Figure 2



565

566

567 Figure 3


568

569

570

571 Figure 4a

572

573

574

Figure 4b

575

576

577 Figure 4c

578

579

580 Figure 4d

581