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ABSTRACT

The widespread use of machine learning algorithms in settings
that directly affect human lives has instigated significant interest
in designing variants of these algorithms that are provably fair.
Recent work in this direction has produced numerous algorithms
for the fundamental problem of clustering under many different
notions of fairness. Perhaps the most common family of notions
currently studied is group fairness, in which proportional group
representation is ensured in every cluster. We extend this direction
by considering the downstream application of clustering and how
group fairness should be ensured for such a setting. Specifically,
we consider a common setting in which a decision-maker runs a
clustering algorithm, inspects the center of each cluster, and de-
cides an appropriate outcome (label) for its corresponding cluster.
In hiring for example, there could be two outcomes, positive (hire)
or negative (reject), and each cluster would be assigned one of these
two outcomes. To ensure group fairness in such a setting, we would
desire proportional group representation in every label but not
necessarily in every cluster as is done in group fair clustering. We
provide algorithms for such problems and show that in contrast
to their NP-hard counterparts in group fair clustering, they permit
efficient solutions. We also consider a well-motivated alternative
setting where the decision-maker is free to assign labels to the
clusters regardless of the centers’ positions in the metric space. We
show that this setting exhibits interesting transitions from compu-
tationally hard to easy according to additional constraints on the
problem. Moreover, when the constraint parameters take on natural
values we show a randomized algorithm for this setting that always
achieves an optimal clustering and satisfies the fairness constraints
in expectation. Finally, we run experiments on real world datasets
that validate the effectiveness of our algorithms.
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1 INTRODUCTION

Machine learning applications have seen widespread use across
diverse areas from criminal justice to hiring to healthcare. These
applications significantly affect human lives and risk contributing to
discrimination [4, 29]. As a result, research has been directed toward
the creation of fair machine learning algorithms [17]. Much existing
work has focused on the supervised setting. However, significant
attention has recently been given to clustering—a fundamental
problem in unsupervised learning and operations research. While
many important notions of fair clustering have been proposed,
the most relevant to our work is group (demographic) fairness
[3, 6, 8,9, 12, 15, 19, 26, 27]. In many of those works, fairness is
maintained at the cluster level by imposing constraints on the
proportions of groups present in each cluster. For example, we may
require the racial demographics of each cluster to be close to the
dataset as a whole (demographic/statistical parity) or that no group
is over-represented in any cluster.

While constraining the demographics of each cluster is appro-
priate in some settings, it may be unnecessary or impractical in
others. In decision making applications, each cluster eventually has
a specific label (outcome) associated with it which may be more
positive or negative than others. If the same label is applied to
multiple clusters, we may only wish to bound the demographics
of points associated with a given label as opposed to bounding the
demographics of each cluster.

To be more concrete, consider the application of clustering for
market segmentation in order to generate better targeted adver-
tising [2, 11, 24, 34]. In this setting, we select or engineer features
which are informative for targeted advertising and apply clustering
(e.g., k-means) to the dataset. Then, we analyze the resulting centers
(prototypical examples) and make decisions for targeted advertising
in the form of recommending specific products or offering certain
deals. These products or deals may have different levels of quality,
i.e., we may assign labels such as: mediocre, good, or excellent to
each cluster based on the quality of its advertisements. For the
clusters of a given label (treated as one), it is possible that a certain
demographic would be under-represented in the excellent label or
that another could be over-represented in the mediocre label. In fact,
the reports in [14, 28, 33] indicate that targeted advertising may
under-represent certain demographics for some advertisements. An
algorithm that ensures each group is represented proportionally in
each label could remedy this issue. While applying group fair clus-
tering algorithms would also ensure demographic representation
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in the clusters and thus the labels, it could come at the price of a
higher deformation in the clustering since points would have to be
routed to possibly faraway centers just to satisfy the representation
proportions. On the other hand, ensuring fair representation across
the labels, but not necessarily the centers is less restrictive and
likely to cause less deformation to the clustering.

Another similar example is clustering for job screening [30]
in which we have a dataset of candidates,! and each candidate is
represented as a point in a metric space. Clustering could be applied
over this set to obtain k many clusters. Then, the center of each
cluster is given a more costly examination (e.g., a human carefully
screening a job application). Accordingly, the centers would be
assigned labels from the set: hire, short-list, scrutinize further, or
reject. Naturally, more than one cluster could be assigned the same
label. Clearly, the greater concern here is demographic parity across
the labels, but not necessarily the individual clusters. Thus, group
fair clustering would yield unnecessarily sub-optimal solutions.

While in the above examples the label of the center was decided
according to its position in the metric space. One can envision
applications in Operations Research where the label assignment
of the center is not dependent on its position [32, 36]. Rather, we
would have a set of centers (facilities) of different service types
(or quality) and we would have a budget for each service type.
Further, to ensure group fairness we would satisfy the demographic
representation over the service types offered. In this setting, we
would have to choose the labels so as to minimize the clustering cost
subject to further constraints such as budget and fair demographic
representation.

The above examples illustrate the need for a group fairness defini-
tion at the label level when clustering is applied in decision-making
settings or when the different centers (facilities) provide different
types of services. In addition to being sufficient, evaluating fairness
at the label level rather than cluster level can also be necessary.
When the metric space is correlated with group membership it
may be costly, counterproductive, or impossible to get meaningful
clusters that each preserve the demographics of the dataset. For
example, if the metric space is geographic as in many facility lo-
cation problems, a person’s location can be correlated with their
racial group membership due to housing segregation. The same
is true in machine learning when common features like location
redundantly encode sensitive features such as race. In this case, the
more strict approach of group fairness in each cluster could cause
a large enough degradation in clustering quality that the entity in
charge chooses a classical “unfair” clustering algorithm instead. In
legal terms, this unfair clustering approach may exhibit disparate
impact—members of a protected class may be adversely affected
without provable intent on the part of the algorithm. However,
disparate impact is allowed if the unfair clustering can be justi-
fied by business necessity (e.g., the fair clustering alternative is too
costly)[35].

Thus, our work can be seen as a less stringent, less costly, and
fundamentally different approach which still satisfies some similar
fairness criteria to existing group fair clustering formulations. In

In some countries, such as India, the number of candidates can be in the millions for
government jobs: https://www.bbc.com/news/world-asia-india-43551719.
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addition, the decision-maker may not be concerned with the demo-
graphic representation in all labels, but rather only a specific set of
label(s) such as hire and short-list. It may also be desired to enforce
different lower and upper representation bounds for different labels.

1.1 Our Contributions

We introduce the problem of fairness in labeled clustering in which
group fairness is ensured within the labels as opposed to each
cluster. Specifically, we are given a set of centers found by a clus-
tering algorithm, then having found the centers, we have to satisfy
group fairness over the labels. We consider two settings: (1) la-
beled clustering with assigned labels (LCAL) where the center
labels are decided based on their position as would be expected
in machine learning applications and (2) labeled clustering with
unassigned labels (LCUL) where we are free to select the center
labels subject to some constraints. We note that throughout we
consider the set of centers to be given and fixed (although in the
unassigned setting their labels are unknown), therefore the prob-
lem is essentially a routing (assignment) problem where points
are assigned to centers rather than a clustering problem. We how-
ever, refer to it as clustering since we minimize the clustering cost
throughout and since our motivation is clustering based. Moreover,
many of the application cases of the assigned labels setting would
not alter the centers as that would not change the assigned labels
which are given manually through further inspection [11, 30, 34]
or in the case of the unassigned labels we would have a fixed set of
centers. Further, the work of [15] in fair clustering follows a similar
setting where the centers are fixed.

For the LCAL (assigned labels) setting, we show that if the num-
ber of labels is constant, then we can obtain an optimal clustering
cost subject to satisfying fairness within labels in polynomial time.
This is in contrast to the equivalent fair assignment problem in fair
clustering which is NP-hard|[9, 18].2 Furthermore, for the important
special case of two labels, we obtain a faster algorithm with running
time O(n(logn + k)).

For the LCUL (unassigned labels) setting, we give a detailed
characterization of the hardness under different constraints and
show that the problem could be NP-hard or solvable in polynomial
time. Furthermore, for a natural specific form of constraints we
show a randomized algorithm that always achieves an optimal
clustering and satisfies the fairness constraints in expectation.

We conduct experiments on real world datasets that show the
effectiveness of our algorithms. In particular, we show that our
algorithms provide fairness at a lower cost than fair clustering and
that they indeed scale to large datasets. We note that due to the
space limit, some proofs are relegated to the appendix.

2 RELATED WORK

Much of the investigation into fairness in machine learning and
automated systems was sparked by the seminal work of [17]. That
work and others [20, 37] respond to the reality that points which
should receive similar classifications, but belong to different demo-
graphic groups may not be near each other in the feature space.

%In this equivalent problem, the set of centers is given. We seek an assignment of
points to these centers that minimizes a clustering objective and bounds the group
proportions assigned to each center.
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Our approach accounts for this phenomenon as well by allowing
points from different groups to be distant in the metric space and
assigned to different clusters, but receive the same label.

The most closely related work in the clustering space addresses
group (demographic) fairness among the members of each cluster [3,
6,8,9,12,15,18, 19, 26]. However, as noted earlier, these approaches
can diverge quite a bit from the problem we consider and are not
directly comparable. Some work also considers the less related fair
data summarization problem of bounding group proportions among
the set of centers/exemplars [27]. In addition, several other notions
of fair clustering and summarization exist to capture the diverse
settings and objectives for which fairness is desirable. These include
service guarantees bounding the distance of points to centers [25],
preserving nearby pairs or communities of points in the metric
space [10], equitable group representation [1, 23], and fair candidate
selection[7].

In particular, the setting of [15] is very similar to ours in that the
set of centers is fixed, and the problem amounts to routing points
to centers so as to minimize the clustering cost function. However,
unlike our work, the constraint is to satisfy conventional group
fairness in the clusters; whereas in our setting, we are concerned
with group fairness only within the labels.

3 PRELIMINARIES AND PROBLEM
FORMULATION

We are given a complete metric graph with a set of vertices (points)
C where |C| = n. Further, each point has a color assigned to
it according to the function y : C — H where H is the set of
possible colors, with cardinality R, i.e. | H | = R. We refer to the
set of points with color h € H by C h_ We further have a distance
function d : C XC — R which defines a metric. We are given
a set S of centers that have been selected, S contains at most k
many centers, i.e. |S| < k. Furthermore, we have the set of labels £
where £ has a total of m many possible labels, i.e. | £ | = m. The
function ¢ : S — L assigns centers to labels. Our problem always
involves finding an assignment from points to centers, ¢ : C — S
such that it is the optimal solution to a constrained optimization
problem where the objective is a clustering objective. Specifically,
we always have to minimize the objectives:( Yjec (. ¢(j)))1/p,
where p = 0,1, and 2 for the k-center, k-median, and k-means
objectives, respectively. We note that for the k-center with p = oo,

1/p
the objective reduces to a simpler form ( 2jec dP(j, ¢(j))) =

maxjec d(j, #(j)) which is the maximum distance between a point
Jj and its assigned center ¢(j). We consider the number of colors R
to be a constant throughout. This is justified by the fact that in most
applications demographic groups tend to be limited in number.

As mentioned earlier, we have two settings and accordingly two
variants of this optimization: (1) labeled clustering with assigned
labels (LCAL) where the centers have already been assigned labels
and (2) labeled clustering with unassigned labels (LCUL) where
the centers have not been assigned any labels and can be assigned
any arbitrary labels from the set £ subject to (possible) additional
constraints.

We pay special attention to the two label case where £ = {P, N}
with P being a positive outcome label and N being a negative
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outcome label, although many of our results can be extended to the
general case where | L|=m > 2.

3.1 Labeled Clustering with Assigned Labels
(LCAL):
In this problem the labels of the centers have been assigned, i.e. the

function ¢ is fully known and fixed. We look for an assignment ¢
which is the optimal solution to the following problem:

)1/” (1a)

min (37 d? (i, 6(J)

jeC

VLe LYhe H:lpy [Cil <Y ICH I <up Y [Cil  (1b)

ieS ieS i€eS
£(i)=L t(i)=L e(i)=L
VLe L: (LB < ) |Cil<(UB) (10)

i€S:¢(i)=L
where C; refers to the points ¢ assigns to the center i,ie. C; = {j €

Clo(j) =i} Cl}-’ = C; NC", ie. the subset of C; with color h. l}Ll and

uﬁ are lower and upper proportional bounds for color h. Clearly,

lﬁ, uﬁ € [0, 1]. Constraints (1b) are the proportionality (fairness)
constraints that are to be satisfied in fair labeled clustering. Notice
how we have a superscript L in l}Ll and uﬁ , this is to indicate that
we may desire different proportional representations in different
labels. For example, for the case of two labels £ = {P, N}, we may
not want to enforce proportional representation in the negative
label so we set l}]lv = 0 and uY = 1 but we may want to enforce
lower representation bounds in the positive label and therefore set
I¥ to some non-trivial value. Note that these constraints generalize
those of fair clustering, in fact we can obtain the constraints of
fair clustering by letting each center have its own label (m = k)
and enforcing the proportional representation bounds to be the
same throughout all labels. However, in our problem we focus on
the case where the number of labels m is constant since in most
applications we expect a small number of labels (outcomes). In fact,
a large number could cause a problem in terms of decision making
and result interpretability.

In constraints (1c), (LB); and (UB) are pre-set upper and lower
bounds on the number of points assigned to a given label, clearly
(LB)1, (UB); € {0,1,...,n} . They are additional constraints we
introduce to the problem that have not been previously considered
in fair clustering. Our motivation comes from the fact that since
positive or negative outcomes could be associated with different
labels, it is reasonable to set an upper bound on the total number
of points assigned to a positive label, since a positive assignment
may incur a cost and there is a bound on the budget. Similarly, we
may set a lower bound to avoid trivial solutions where most points
are assigned to negative outcomes and no or very few agents enjoy
the positive outcome.

3.2 Labeled Clustering with Unassigned Labels
(LCUL):

In labeled clustering with unassigned labels LCUL, the labels of

the centers have not been assigned. As noted, this captures certain

OR applications in which the label of a center is not related to its
position in the metric space.
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Similar to the case with assigned labels LCAL, we would also
wish to minimize the clustering objective. In general we have the
following optimization problem:

) . \p

min () d” (. $()))) (2)

bt jeC
VLe LVhe ML |Cil <y |ChI<ubdCil (@)

ieS ieS ieS
¢(i)=L £(i)=L £(i)=L
VLe L:(LB)p < |Cil<(UB) (2¢)
i€S:¢(i)=L

VL € £:(CL); < |SF| < (cU), (2d)

Note how in the above objective ¢ has been added as an opti-
mization variable unlike the objective in (1) for LCAL. Further, we

have added constraint (2d) where ST refers to the subset of centers
that have been assigned label L by the function ¢, i.e. sk = {i €
S|€(i) = L}. This constraint simply lower bounds st by (CL); and
upper bounds it by (CU). This constraint models minimal service
guarantees (lower bound) and budget (upper bound) guarantees.
Clearly, (CL)r, (CU)r € {0,1,...,k}. Further, setting (CL); = 0
and (CU)p = k VL € L allows any label to have any number of
centers, effectively nullifying the constraint. We show in a subse-
quent section that forcing certain constraints on the problem can
make it NP-hard and that relaxing some constraints would make
the problem permit polynomial time solutions.

4 ALGORITHMS AND THEORETICAL
GUARANTEES FOR LCAL

4.1 LCAL is Polynomial Time Solvable:

LCAL is problem (1) where we have a collection of centers and we
wish to minimize a clustering objective subject to proportionality
constraints (1b) and possible constraints on the number of points
each label is assigned (1c). Fair allocation® is a problem which has
a very similar form to our problem; the centers have already been
decided and we wish to satisfy the same proportionality constraints
in every cluster, specifically the optimization problem is:

1/p
. P
mq;n(jezcd G.$0)) (32)
VieS,Vhe H:I,|Ci| <|C| <uplCil (3b)

It may be thought that the above optimization is simpler than that of

LCAL (1), since all clusters have to satisfy the same proportionality
bounds and there is no bound on the total number of points assigned
to a any specific cluster. However, [9, 18] show that the problem
is in fact NP-hard for all clustering objectives. We show in the
theorem below that LCAL can be solved in polynomial time for all
clustering objectives.

Theorem 1. Labeled clustering with assigned labels LCAL is solvable
in polynomial time for the all clustering objectives (k-center, k-median,
and k-means).

Proor. The key observation is that any assignment function
¢, will assign a specific number of points ny, to the centers with
label L. Further, we have that 3} ¢  ny = n since all points must be
covered. Now, since | £ | = m is a constant, this means that there is

3Fair allocation [8, 9, 19] is a sub-problem solved in fair clustering to finally yield a
full algorithm for fair clustering.
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a polynomial number of ways to vary the total number of points
distributed across the labels. More specifically, the total number of
ways to distribute points across the given labels is upper bounded

by nxnx---xn=n™1 Note that once we decide the number
e ————

m-1

of points assigned to the first (m — 1) labels, the last label must be
assigned the remaining amount to cover all n points, so we have a
total of n™1 possibilities. Since we have established, that there is
a polynomial number of possibilities for distributing the number of
points across the labels, if we can solve LCAL optimally for each
possibility and simply take the minimum across all possibilities
then we would obtain the optimal solution.

Now that we are given a specific distribution of number of points
across labels, i.e. (n1,...,nr,...,n,) where ;¢ r n, = n, we have
to solve LCAL optimally for that distribution. The problem amounts
to routing points to appropriate centers such that we minimize the
clustering objective and satisfy the distribution of number of points
across the labels along with the color proportionality. To do that we
construct a network flow graph and solve the resulting minimum
cost max flow problem. The network flow graph is constructed as
follows:

e Vertices: the set of verticesis V = {s}UC U(UhE«HSh)U(UhE(H LMo

L U{t}. Vertex s is the source, further we have a vertex for each
point, hence the set of vertices C. For each color h € H we create
a vertex for each center in S and for each label in £, these vertices
constitute the sets Uheﬂsh and Upeqy LP respectively. We also
have a vertex for each label in £ and finally the sink ¢.

o Edges: the set of edges is E = Es,¢c U Eg_n U Egn_, o1 U
Epn_, p UE ot Essc consists of edges from the source s to
every point j € C, Eo_,gn consists of edges from every point
j € C to the center of vertices of the same color in sh, Egn_, pn
consists of edges from the colored centers to their corresponding
label of the same color, E /. _, . consists of edges from the colored
labels to their corresponding label, finally E p_,; consists of edges
from every label in L to the sink ¢.

e Capacities: the edges of Es_, have a capacity of 1, the edges

of E 1, , have a capacity of {uﬁnLJ, the edges of Ey_,; have a
capacity of ny.
o Demands: the vertices of £" have a demand of [l{: nL-‘, the ver-

tices of £ have a demand of nj .
¢ Costs: all edges have a cost of zero except the edges of E-_,gn
where the cost of the edge between the point and the center is set
according to the distance and the clustering objective (k-median
or k-means). As noted earlier a vertex j will only be connected to
the same color vertex that represents center i in the network flow
graph, we refer to that vertex by i*(/) and clearly i¥(/) € Sx()
Specifically, V(j, i)f(j)) € Ec_,gh,cost(j, ix(y = dP (j,i) where
p =1 for the k-median and p = 2 for the k-means.
We write the cost for a constructed flow graphas 3’ ;e ¢ jes 47 (J, 1) xij
where x;; is the amount of flow between vertex j and center i¥ 0,
Since all capacities, demands, and costs are set to integer values.
Therefore we can obtain an optimal solution (maximum flow at
a minimum cost) in polynomial time where all flow values are
integers. Therefore, we can solve LCAL optimally for a given dis-
tribution of points.
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The above construction are for the k-median and k-means. For
the k-center we slightly modify the graph. First, we point out that
unlike the k-median and k-means, for the k-center the objective
value has only a polynomial set of possibilities (kn many exactly)
since it is the distance between a center and a vertex. So our network
flow diagram is identical but instead of setting a cost value for the
edges in edges of E_, s, we instead pick a value d from the set
of possible distances d(j, i) where j € C,i € S and draw an edge
between a point j and a center ix() only if d(j,i) < d. Also we do
not need to solve the minimum cost max flow problem, instead the
max flow problem is sufficient. O

4.2 Efficient Algorithms for LCAL for the Two
Label Case:
For the k-median and k-means and the two label case we present

an algorithm with O(n(log (n) + k)) running-time. The intuition
behind our algorithm is best understood for the case with “exact

population proportions” for both the positive and negative labels®*.

h
First, we note that each color h € H exists in proportion ry, = %

where we refer to ry, as the population proportion. The case of exact
population proportions for the positive and negative labels, is the
one where Vh € H,VYL € {P,N} : I}E = uﬁ =rp= ||C;’||

That is, the upper and lower proportion bounds coincide and are
equal to the proportion of the color in the entire set. This forces
only a limited set of possibilities for the total number of points (and
their colors) which we can assign to either P or N. For example,
if we have two colorsand r; = rp = % then we can only assign

an equal number of red and blue points to P and likewise to N.

For the case of three colors with r; = %, rp = %, r3 = %, then we
can only assign points of the following form across the different
labels: points for the first color = 2¢, points for the second color =

3¢, points for the third color = ¢ where c is a non-negative integer.

We refer to this smallest "atomic" number of points by natomic and
the number of color h of its subset by ngtomic'

Now we define some notation P(j) = min;cp d(j,i) and N(j) =
min;en d(J, 1), i.e. the distance of the closest centers to j in P and
N, respectively. Further, ¢! (P) and ¢~ (N) are the set of points
assigned to the positive and negative centers by the assignment ¢,
respectively. We can now define the drop of a point j as drop(j) =
N(j) — P(j), clearly the larger drop(j) the higher the cost goes
down as we move it from the negative to the positive set. We can
obtain a sorted values of drop for each color in O(n(logn + k))
run-time.

The algorithm is shown (algorithm block (1)). In the first step
we start with all points in N, then in step 2 we move the minimum
number of n’" . for each color  to satisfy the size bounds for
each label (constraint (1c)). Finally in the loop starting at step 3, we
move more points to the positive label (in an “atomic” manner) if it
lowers the cost and is within the size bounds.

Theorem 2. Algorithm (1) finds the optimal solution and runs in

O(n(log n+ k)) time.

Proor. First we prove that the solution is feasible. Constraint
(1b) for the color proportionality holds, this can is clearly the case

4The general case is shown in the appendix.
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Algorithm 1 Exact Preservation for k-median / k-means

1: Find an assignment ¢y that assigns all points to their nearest
center in N, this means that |¢61(N)| = n and |¢61(P)| =0.
Set ¢* = ¢p.

2: Move qp, = ry max{(LB)p,n — (UB) 5} many points of color h
with the highest values in drop from the negative label to the
positive label

3: fori= (ﬁ) to ;-2— do

4 Take ngtomic

values in drop, call the new assignment ¢’.

5. if ¢’71(P) and ¢’ (N) are within bounds and cost(¢’) <

cost(¢*) then

many points from each color h with the highest

6 update the assignment to ¢* = ¢’
7. else

8 break

9: endif

10: end for

before the start of the loop since the centers with negative labels
cover the entire set which is color proportional and the the centers
with positive labels cover cover nothing which is also color propor-
tional. In each iteration, we move an atomic number of each color
from the negative to the positive label and hence both the negative
and the positive set of centers satisfy color proportionality in the
points they cover.

For constraint (1b) because of exact preservation of the color pro-
portions, we can always tighten the bounds (LB); and (UB);, for
each label L such that there multiples of nytomic without modifica-
tion to the problem, so we assume that (LB) xy = a natomic, (LB)p =
b natomics (UB)N = @’ Matomic, (UB)p = b’ natomic where a,a’,b, b’
are non-negative integers and clearly a < b and a’ < b’. Step 2
satisfies the lower bound on the number of points in the positive
label and the upper bound for the negative set. Note that if this step
fails then the problem has infeasible constraints. Further, since we
have moved the minimum number of points from the negative set
to the positive set, it follows that the upper bounds on the positive
are also satisfied since (LB)p < (UB)p, also the lower bound on
the negative set is also satisfied since (LB) 5y < (UB)y. Finally in
step 5, the size bounds are always checked fair therefore both labels
are balanced.

Optimally follows since we move the points with the highest
drop value to the positive set (these are also the points closest to
the positive set). Further, in step 5 we stop moving any points to
the positive if there isn’t a reduction in the clustering cost. Note
that since the values in drop are sorted, another iteration would
not reduce the cost.

Finding the closest center of each label for every point takes
O(nk) time. Finding and sorting the values in drop clearly takes
O(nlogn) time. The algorithm does constant work in each iteration
for at most n many iterations. Thus, the run time is O(n(logn +

k)). o

With more elaborate conditional statements, the above algo-
rithms can be generalized to give all solution values for arbitrary
choices of label size bounds (constraint(1c)) with the same asymp-
totic run-time. Such a solution would be useful as it would enable
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the decision maker to see the complete trade-off between the label
sizes and the clustering cost (quality).

5 ALGORITHMS AND THEORETICAL
GUARANTEES FOR LCUL

5.1 Computational Hardness of LCUL

We start by discussing the hardness of LCUL. In contrast to LCAL,
the LCUL problem it not solvable in polynomial time. In the fact,
the following theorem shows that even if we were to drop one
constraint for the LCUL (problem (2)) we would still have an NP-
hard problem.

Theorem 3. For the LCUL problem with two labels and two colors,
dropping one of the constraints(2b), (2c), or (2d) still leads to an NP-
hard problem.

Having established the hardness of LCUL for different sets of
constraints, we show that it is fixed-parameter tractable® for a
constant number of labels. This immediately follows since a given
choice of labels for the centers leads to an instance of LCAL which is
solvable in polynomial time and there are at most mk many possible
choice labels.

Theorem 4. The LCUL problem is fixed-parameter tractable for a
constant number of labels.

It is also worth wondering if the problem remains hard if we were
to drop two constraints and have only one instead. Interestingly, we
show that even for the case where the number of labels m is super-
constant (m = Q(1)), if we only had the color-proportionality
constraint (2b) or the constraint on the number of labels (2c), then
the problem is solvable in polynomial time. However, if we only had
constraint (2d) for the number of centers a label has, the problem
is still NP-hard.

Theorem 5. Even if number of labels m = Q(1), the LCUL problem
is solvable in polynomial time under constraint (2b) alone or constraint
(2¢c) alone. However, it is NP-hard under constraint (2d) alone.

5.2 A Randomized Algorithm for label
proportional LCUL:

Here we consider a natural special case of the LCUL problem which
we call color and label proportional case (CLP) where the con-
straints are restricted to a specific form. In CLP each label must
have color proportions “around” that of the population, i.e. color
h has proportion ry, in each label L € L. Further, each label has a
proportion ey, € [0,1] and }j ¢ p ar = 1, this proportion decides
the number of points the label covers and the number of centers
it has. Le., label L covers around ay n many points and has around
apk many centers. Therefore, the optimization takes on the follow-
ing form below where we have included the € values to relax the
constraints (note that for every value of €, we have that € > 0):

)I/P

min ( 374" (7. $()) (42)

jeC

5 An algorithm is called fixed-parameter tractable if its run-time is O (f (k)n¢) where
f (k) can be exponential in k, see [13] for more details.
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VLe LYheH : (= ef )Y 1Cil <) [CH | < (m+ et DI Cil

i€S: IES: i€S:
¢(i)=L e(i)=L ¢(i)=L
(4b)
VLe L:(ar—eP)n < Z |Cil < (aL+€P)n (4c)
i€S:t(i)=L
VL e L£:(ap -k < |S"| < (ap + )k (4d)

We note that even when the constraints take on this specific
form the problem is still NP-hard as shown in the theorem below:

Theorem 6. The CLP problem is NP-hard even for the two color and
two label case.

We show a randomized algorithm (algorithm block (2)) which
always gives an optimal cost to the clustering and satisfies all con-
straints in expectation and further satisfies constraint (4d) deter-
ministically with a violation of at most 1. Our algorithm is follows
three steps. In step 1 we find the assignment ¢* by assigning each
point to its nearest center, thereby guaranteeing an optimal cluster-
ing cost. In step 2, we set the center-to-label probabilistic assign-
ments pi = ar. Then in step 3, we apply dependent rounding, due
to Gandhi et al. [21], to the probabilistic assignments to find the
deterministic assignments. This leads to the following theorem:

Theorem 7. Algorithm 2 gives an optimal clustering and satisfies
constraints (4b,4c,4d) in expectation with (4d) being satisfied deter-
ministically at a violation at most 1.

Proor. The optimality of the clustering cost follows immedi-
ately since each point is assigned to its closest center. Now, we
show that the assignment satisfies all of the constraints. We have
pi = qr for each center i. Now we prove that constraints (2b,2c,2d)
hold in expectation over the assignments P]’;. Note that Pi is also
an indicator random variable for center i, taking label L. Then we
can show that using property (A) of dependent rounding (marginal

probability) that:
E[ > ICilI=E[).|Ci|Pi]=) |Ci|E[P]]

i€S:t(i)=L ieS i€S
= ICilp =ar Y ICil=arn
ieS ieS

Clearly, constraint (4c) is satisfied. Through a similar argument we
can show that the rest of the constraints also hold in expectation.

We have that VL € £ : |SY] = Y,cs PI’; = Yiesar = ark.
By property (B) of dependent rounding (degree preservation) we
have VL € £ : |SL| € {lark], [ark]}. Therefore constraint (4d)
is satisfied in every run of the algorithm at a violation of at most
1. O

Algorithm 2 Randomized LCUL Algorithm

1: Find the assignment ¢* by assigning each point to its nearest
center in S.

2: For each center i, set its probabilistic assignment for label L to
pi =ar.

3: Apply dependent rounding [21] to probabilistic assignments
p]’; to get the deterministic assignments P};

We note that dependent rounding enjoys the Marginal Prob-
ability property which means that Pr[P] = 1] = p;. This en-
ables us to satisfy the constraints in expectation. While we note
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that letting each center i take label L with probability a; would
also satisfy the constraints in expectation. Dependent rounding
also has the Degree Preservation property which implies that
VL € L : Yjes PI‘; € {[Ziesp]ij , [ZieSPH} which leads us to
satisfy constraint (4d) deterministically (in every run of the algo-
rithm) with a violation of at most 1. Further, dependent rounding
has the Negative Correlation property which under some condi-
tions leads to a concentration around the expected value. Although,
we cannot theoretically guarantee that we have a concentration
around the expected value, we observe empirically (section 6.2)
that dependent rounding is much better concentrated around the
expected value, especially for constraint (4c) for the number of
points in each label.

6 EXPERIMENTS

We run our algorithms using commodity hardware with our code
written in Python 3.6 using the NumPy library and functions from
the Scikit-learn library [31]. We evaluate the performance of
our algorithms over a collection of datasets from the UCI reposi-
tory [16]. For all datasets, we choose specific attributes for group
membership and use numeric attributes as coordinates with the
Euclidean distance measure. Through all experiments for a color
h € H with population proportion rj, = ||C_h|| we set the the upper
and lower proportion bounds to I, = (1-8)r, and uy, = (1+8)ry, re-
spectively. Note that the upper and lower proportion bounds are the
same for both labels. Further, we have § € [0, 1], and smaller values
correspond to more stringent constraints. In our experiments, we
set § to 0.1. For both the LCAL and LCUL we measure the price of

fair solution cost
~ color-blind solution cost _ - X
cost of the fair variant and color-blind solution cost is the cost of

the “unfair” algorithm which would assign each point to its closest
center.

We note that since all constraints are proportionality constraints,
we calculate the proportional violation. To be precise, for the color
proportionality constraint (2b), we consider a label L and define
AI}; € [0,1] where Ai is the smallest relaxation of the constraint
for which the constraint is satisfied, i.e. the minimum value for
which the following constraint is feasible given the solution: (lﬁ -

fairness PoF = where fair solution cost is the

AY) Nieswe(i= | Cil < Viesue(i)-L |ch < (up+A}) Siese(iy=L | Cil
having found Aﬁ we report Acolor Where Acolor = MaX (pegijc 1) Ai.

Similarly, we define the proportional violation for the number of

points Aéoints Jlabel 2ssigned to a label as the minimal relaxation

of the constraint for it to be satisfied. We set Apints/label to the
maximum across the two labels. In a similar manner, we define
Acenter/label for the number of centers a label receives.

We use the k-means++ algorithm [5] to open a set of k centers.
These centers are inspected and assigned a label. Further, this set
of centers and its assigned labels are fixed when comparing to
baselines other than our algorithm.

Clustering Baseline: In the labeled setting and in the absence of
our algorithm, the only alternative that would result in. a fair out-
come is a fair clustering algorithm. Therefore we compare against
fair clustering algorithms. The literature in fair clustering is vast,
we choose the work of [8] as it can be tailored easily to this setting
in which the centers are open. Further, it allows both lower and
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upper proportion bounds in arbitrary metric spaces and results in
fair solutions at relatively small values of PoF compared to larger
PoF (as high as 7) reported in [12]. Our primary concern here is not
to compare to all fair clustering work, but gauge the performance
of these algorithms in this setting. We also compare against the
“unfair” solution that would simply assign each point to its closest
center which we call the nearest center baseline. Though this in
general would violate the fairness constraints it would result in the
minimum cost.

Datasets: We use two datasets from the UCI repository: The
Adult dataset consisting of 32,561 points and the CreditCard
dataset consisting of 30,000 points. For the group membership at-
tribute we use race for Adult which takes on 5 possible values (5
colors) and marriage for CreditCard which takes on 4 possible
values (4 colors). For the Adult dataset we use the numeric entries
of the dataset (age, final-weight, education, capital gain, and hours
worked per week) as coordinates in the space. Whereas for the
CreditCard dataset we use age and 12 other financial entries as
coordinates.

6.1 LCAL Experiments

Adult Dataset: After obtaining k centers using the k-means++
algorithm, we inspect the resulting centers. In an advertising set-
ting, it is reasonable to think that advertisements for expensive
items could be targeting individuals who obtained a high capital
gain. Therefore, we choose centers high in the capital gain coor-
dinate to be positive (assign an advertisement for an expensive
item). Specifically, centers whose capital gain coordinate is > 1,100
receive a positive label and the remaining centers are assigned a
negative one. Such a choice is somewhat arbitrary, but suffices to
demonstrate the effectiveness of our algorithm. In real world scenar-
ios, we expect the process to be significantly more elaborate with
more representative features available. We run our algorithm for
LCAL as well as the fair clustering algorithm as a baseline. Figure
1 shows the results. It is clear that our algorithm leads to a much
smaller PoF and the PoF is more robust to variations in the number
of clusters. In fact, our algorithm can lead to a PoF as small as 1.0059
(0.59%) and very close to the unfair nearest center baseline whereas
fair clustering would have a PoF as large as 1.7 (70%). Further, we
also see that the unlike the nearest center baseline, fair labeled
clustering has no proportional violations just like fair clustering.

Here for the LCAL setting, we compare to the optimal (fairness-
agnostic) solution where each point is simply routed to its closest
center regardless of color or label. We use the same setting at
that from section 6. We set § = 0.1 and measure the PoF. Since the
(fairness-agnostic) solution does not consider the fairness constraint
we also measure its proportional violations. Figures 6 and 7 show
the results over the Adult and CreditCard datasets. We can clearly
see that although the (fairness-agnostic) solution has the smallest
cost it has large color violation. We also see that our algorithm
unlike fair clustering achieves fairness but at a much lower PoF.

CreditCard Dataset: Similar to the Adult dataset experiment,
after finding the centers using k-means++, we assign them positive
and negative labels. For similar motivations, if the center has a
coordinate corresponding to the amount of balance that is > 300,000
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Figure 1: Adult dataset results (a):PoF, (b):A¢olor

we assign the center a positive label and a negative one otherwise.
Figure 2 shows the results of the experiments. We see again that
our algorithm leads to a lower price of fairness than fair clustering,
but not to the same extent as in the Adult dataset but it still has
no proportional violation just like fair clustering.

LR

" E)
Num umber of lusters

(a): PoF ’ (b): Color Proportional Violation
Figure 2: CreditCard dataset results (a):PoF, (b):Acolor

As mentioned in section 4.2, algorithm (1) can allow the user to
obtain the solutions for different values of |¢~1(P)| (the number of
points assigned to the positive set) without an asymptotic increase
in the running time. In figure 3 we show a plot of |¢~!(P)]| vs the
clustering cost. Interestingly, requiring more points to be assigned
to the positive label comes at the expense of a larger cost for some
instances (Adult with k = 15) whereas for others it has a non-
monotonic behaviour (Adult with k = 10). This can perhaps be
explained by the different choices of centers as k varies. There are
5 centers with positive labels for k = 10 (50% of the total), but only
4 for k = 15 (less than 30%) making it difficult to route points to
positive centers.

Adult CreditCard

— 0custers
— 15custers

D o0 1000 15000 20000 25000 30000
b

© 000 10000 15000 20000 25000 30000
jumber of points assigned to the posiive label Number of points assigned to the positive label

Figure 3: A plot of |¢~1(P)| vs the clustering cost (normalized
by the maximum cost obtained).

6.2 LCUL Experiments

Similar to the LCAL setting for LCUL we get the centers by running
k-means++. However, we do not have the labels. We compare our
algorithm (algorithm 2) to two baselines: (1) Nearest Center with
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Random Assignment (NCRA) and (2) Fair Clustering (FC). We refer
to our algorithm (block 2) as LFC (labeled fair clustering). In NCRA
we assign each point to its closest center which leads to an optimal
clustering cost, whereas for fair clustering (FC) we solve the fair
clustering problem. For both NCRA and FC we assign each center
label L with probability af .

1

We use two labels with a1 = 7 and a; = %. For all colors and

labels we set eAL = 6“2,L = 0.2 and for all labels we set ef = e’lf =

h,
eLc = e'g = 0.1. Further, all algorithms satisfy the constraints in
expectation, therefore we seek a measure of centrality around the
expectation like the variance. Each algorithm is ran 50 times and

we report the average values of Acolor.Apoints/labels ad Acenter/label-

Figure 4: LCUL results on the Adult dataset. (a):PoF, (b):Aco10rs
(c):Apoints/label »(d):Acenter/label-
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Figure 5: LCUL results on the CreditCard dataset. (a):PoF,
(b):Acolor (C):Apoints/label (d):Acenter/label -

Figures 4 and 5 show the results for Adult and CreditCard.
For PoF, our algorithm achieves an optimal clustering and hence
coincides with NCRA whereas fair clustering achieves a much
higher PoF as large as 1.5. For the color proportionality (Acolor),
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we see that fair clustering has almost no violation whereas the
NCRA and labeled clustering have small but noticeable violations.
For the number of points a label receives (Apoints/label) We notice
that all algorithms have a violation although labeled clustering has
a smaller violation mostly. As noted earlier, we suspect that this
is a result of dependent rounding’s negative correlation property
leading to some concentration around the expectation. Finally, for
the number of centers a label receives (Acenter/label)> clearly LFC
has a much lower violation.

6.3 Algorithm Scalability

Here we investigate the scalability of our algorithms. In particular,
we take the Census1990 dataset which consists of 2,458,285 points
and sub-sample it to a specific number, each time we find the centers
with the k-means algorithm6, assign them random labels, and solve
the LCAL and LCUL problems. Note since we care only about the
run-time a random assignment of labels should suffice. Our group
membership attribute is gender which has two values (two colors).
We find our algorithm are indeed highly scalable (figure 6) and
that even for 500,000 points it takes less than 90 seconds. We note
in contrast that the fair clustering algorithm of [8] would takes
around 30 minutes to solve a similar size on the same dataset. In
fact, scalability is an issue in fair clustering and it has instigated
a collection of work such as [6, 26]. The fact that our algorithm
performs relatively well run-time wise is worthy of noting.

LCAL LeuL

Figure 6: Dataset size vs algorithm Run-Time: (left) LCAL,
(right) LCUL.

7 CONCLUSION

Motivated by fairness considerations and the quality of outcome
each cluster receives, we have introduced fair labeled clustering.
We showed algorithms for the case where the centers’ labels are
decided and have shown that unlike fair clustering we end up with
a much lower cost while still satisfying the fairness constraints. For
the case where the centers’ labels are not decided we gave a detailed
characterization of the complexity and showed an algorithm for
a special case. Experiments have shown that our algorithms are
scalable and much faster than fair clustering.
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A OMITTED PROOFS

We note that all of our hardness results use the k-center problem
for simplicity. Before we introduce the hardness result, we note all
of our reductions are from exact cover by 3-sets (X3C) [22] where
we have universe U = {uy,uy, ..., u3q} and subsets Wy,..., W;
where t = g + r and for non-trivial instances r > 0. We form an
instance of LCUL by representing each one the subsets W, ..., W;
by a vertex and each element in U = {uy,uy,..., u3q} by a vertex.
The centers are the sets ‘W, ..., W; and they are given a blue color
whereas the rest of the points (in U) are red. Further, each point
u; is connected by a edge to a center ‘W if and only if u; € W;.
The distances between any two points is the length of the shortest
path between them. This clearly leads to a metric. See figure 7 for
an example. This is essentially a reduction we follow in all proofs,
sometimes changes are introduced and mentioned explicitly in the

proofs.
Wi W, Ws
a b c d e f
Figure 7: Example of the reduction for theorem (3). This
is an instance of the LUCL problem for an instance U =

{a,b,c.d. e, f}, W1 = {a,b,c}, W2 = {c,d, e} and W; = {d, e, f}
withg=2,|U| =3gandt =3.

Now we introduce the following theorem:

Theorem 8. Even if the color-proportionality constraint (2b) are
ignored’ LCUL is NP-hard.

ProoF. As mentioned we consider an instance of exact cover
by 3-sets (X3C) with universe U = {uy, us,...,u3q} and subsets
Wi, ..., W;. We construct an instance of LCUL where the propor-
tionality constraints are ignored. Further, we only have two labels
L ={N,P}, weset (CL)p =0,(CU)p =q,(CL)y =0,(CU)N =t
and (LB)p = 4q, (UB)p =3q+t, (LB)N = 0,(UB)y = 3q +1.

A solution for X3C leads to a solution for LCUL at cost 1: Take
the collection of ¢ many subsets that solve X3C and give their
corresponding centers in LCAL a positive label. Then it is clear
that |SP| = g and that the number of points covered by the positive
centers is 4q and that this done at a cost of 1. The centers that do
not correspond to the solution of X3C will be given a negative label
and assigned no points.

A solution for LCUL at cost 1 leads to a solution X3C: A solution
for LCUL cannot assign more than (CU)p = q many centers a
positive label and it has to cover 3q more points to have a total of
4q points and this has to be done at a distance of 1. By construction,
since each center is connected to 3 points, the LCUL solution cannot
have less than g centers. Further, to have 4q points, then each center
would have to cover a unique set of 3 points at a distance of 1. Since
points are connected to centers at a distance of 1 only if they are

"We can simply remove the constraint or set l}Ll =0, uls =1L,VheHLe L
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corresponding values are contained in the subsets corresponding
to those centers, it follows that the g subsets in the LCUL solution
are indeed an exact cover for X3C.

o

Here we instead we ignore the constraints on the number of
points a label should receive, i.e. constraints (2c and keep the propor-
tionality constraints. We show that this also results in an NP-hard
problem as demonstrated in the theorem below:

Theorem 9. Even if we do not specify the number of points a label
should receive (constraint(2c)), LCUL is NP-hard.

Proor. Similar to the proof of theorem (8) we follow the re-
duction from X3C with two labels for LCUL, i.e. £ = {N, P}, but
now we consider the color of the vertices. Vertices of the subsets
W, ..., W; are blue and all of the vertices of the elements of U are
red. For the LCUL instance, we set (CL)p = ¢, (CU)p = t,(CL) 5 =
0, (CU) N = t. The representation for the negative set is ignored, i.e.

ed = lblue = 0 and uf\e] = u{;{ue = 1. For the positive set, we only
have set a bound on the lower proportion for the red color, specifi-
cally lrid = %, uid =1and lllflue =0, ufflu = 1. As the reduction of
theorem (8) the optimal value of the k-center objective cannot be
less than 1.

A solution for X3C leads to a solution for LCUL at cost 1: Take
the g subsets in the solution of X3C and assign their corresponding
centers a positive labels, then ISP = q = (CU)p. Further since
elements of U are represented by red vertices, you will have 3¢
red vertices covered at a distance of 1, the red proportion of the
positive label would be 32 = § > 1P .
assign the rest of the centers a negative label.

A solution for LCUL at cost 1 leads to a solution X3C: A solution
for LCUL would have to choose at least (CL)p = g many centers.
Since all centers are blue and because there are only 3¢ many red
points in the graph, we would have to choose exactly g centers and
cover all of the 3g many red points to satisfy the color proportion-
ality constraints of lid. Since this is being done at a cost of 1, these
points must be representing elements in U that are contained in
the subsets corresponding to the selected centers. Further, since
every center is connected to exactly 3 points at radius 1, we have
found an exact cover. m]

To complete the solution

Theorem 10. Even if we do not specify the number of centers of
each label (ignoring constraints (2d) ), LCUL is NP-hard.

Proor. Similar to theorems (8,9) we follow the same reduction
from X3C. This time we ignore constraint (2d) on the number of
centers, ie. 0 < |SN|,|SP| < k. We set (LB)p = (UB)p = 4q
and (LB)n = 0, (LB) 5 = n. Further for the color proportionality

constraints, we have for the positive set we set [’ . = uf =3,
P P 1 re%] rl%d 4
lb}\lf e = uk}ue =z and for the negative set we have l1re q= lblue =0.
ured = ublue =L

A solution for X3C leads to a solution for LCUL at cost 1: Simply
let the subsets (centers) in the solution if X3C have a positive label
and assign all of the points in U to them. Clearly, we have (LB)p =
(UB)p = 4q and the red color has a representation of % and the
blue has a representation of ‘—1}. Furthe, this is done at an optimal
cost of 1.
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A solution for LCUL at cost 1 leads to a solution X3C: Since
(LB)p = (UB)p = 4q, lf;d = uid = %, and ll}))lue = ulflue = ‘—11, it
follows that the positive set should cover %4q = 3¢ many red points
and that it must also cover %4q = q many blue points. Since all
blue points are centers and all red points are from it follows that
we have to choose ¢ many centers to cover 3¢ many points at an

optimal cost of 1. This leads to a solution for X3C. O

Now we re-state the original theorem from the main paper:

Theorem 3. For the LCUL problem with two labels and two colors,
dropping one of the constraints(2b), (2c), or (2d) still leads to an NP-
hard problem.

Proor. This follows immediately from theorems (8,9,10) above.
O

Theorem 4. The LCUL problem is fixed-parameter tractable for a
constant number of labels.

Proor. This follows simply by noting that if the labels are as-
signed, then we have an LCAL instance which solvable in time that
is polynomial in n and k, since k < n, it follows that the run time
for solving LCAL is O(n®) for some constant c. Now, since there
are at most mK many label choices for the centers, it follows that

the run time is for LCUL is O(m*n°). O

Theorem 5. Even if number of labels m = Q(1), the LCUL problem
is solvable in polynomial time under constraint (2b) alone or constraint
(2c) alone. However, it is NP-hard under constraint (2d) alone.

PRrOOF. Let us consider the color proportionality constraint (2b)
alone. To solve the problem optimally and satisfy the constraint,
simply assign all points to their closest center and let all centers
take one label from the set L.

Now, we consider only the constraints on the number of cen-
ters for each label (2d). Again we assign each point to its closest
center for an optimal cost. To satisfy constraints (2d), assuming
the constraint parameters of (2d) lead to a feasible problem, then
each label L € L, assign it (CL); many centers arbitrarily. If some
centers have not been assigned any labels, then simply go to label
L which has not reached its upper bound (CU); and assign more
labels from it. We simply keep assigning labels from label values
that have not reached their upper bound on the number of centers
until all centers have a label.

Now, we consider only the constraints on the number of points
a label receives (2c). We simply follow the same reduction from
theorems (8,9,10), see also the beginning of this subsection for the
details of the reduction from X3C. We have t = g + r many subsets,
we let the number of labels of the LCUL instance be m =t = g +r.
Further, we partition the set of labels into two, i.e. £ = L1 ULy
where | L1 | = gand | L2 | = r, and we set the lower and upper
bounds for the labels according to these sets. Specifically, VL €
Ly : (LB), = (UB), = 4qand YL € L3 : (LB); = (UB); = 1.
Now, clearly a solution for X3C leads to a solution for the LCUL
instance, we simply let the subsets (centers) in the solution of X3C
be the centers for the label set £;. Each center is assigned a label
from £ and covers itself and 3 points from U, this leads to 4q
many points which clearly satisfies the upper and lower bounds.

Seyed A. Esmaeili, Sharmila Duppala, John P. Dickerson, and Brian Brubach

Further, the centers not the solution are assigned a label from £
and cover themselves, which is just 1 point and therefore satisfies
the constraints. Now for the reverse direction, consider the set £
where we have r many labels each covering 1 point. It clear, the
smallest cost would be for a center to be assigned to itself, it follows
that we are looking for » many centers and that each center should
only be assigned to itself. This then leaves us with ¢ many centers,
since no center can cover more than 4q many points at a distance
of 1, and since we have g many labels with each having to cover 4¢
many points, we clearly have a set cover, i.e. a solution for X3C. O

Theorem 6. The CLP problem is NP-hard even for the two color and
two label case.

Proor. We follow a reduction for X3C (see the beginning of the
appendix). We consider the two label case, £ = {N, P}. Similiar to
the previous reductions we will have ¢t many blue centers for the
subsets ‘W, ..., W; each being connected to its elements in U at
a distance of 1 with all elements in U being red. Note that |U| = ¢
and that t = ¢ + r. Now we also add 2g many blue centers which
are not connected to anything by an edge, expect for one center
which is connected by an edge to a new 3(r + 2q) many red points,
this means that any one of these red points is at a distance of 1
from this new center. Note that the increase in the problem size
is still polynomial in the original X3C problem. We set the color
proportionality constraint so that each label should have exactly 3:1
ratio of red points to blue points. Now the total number of points in
the problem is n = 4q + r + 2q + 3(r + 2q) = 4(3q + r). The number

— — — Ul
of centers k = q + r + 2q = 3q + r. Further, we set ap = G+
anday =1-ap = §Z:: We set the lower and upper size bounds

according to ap and ay, this leads to (LB)p = (UB)p = apn =

4(3q+7) = dgand (LB)y = (UB)y = 3547

_9 ,_ _9 _
Ggen) " = Bger) "=
%4(3(] +r) = 4(2q + r). Further, the number of centers for each

label are (CL)p = (CU)p = apk = (3q+r)k = (3q+r)3q+ r =qand
(CL)y = (CU)N = ank = 2q+r3q+ r=2q+r.

3q+r
A solution for X3C leads to a solution for LCUL at cost 1: Simply
let the ¢ many centers representing the solution set in ‘W, ..., W;

be the positive labeled centers and assign them the points that
belong to them and let all other centers be negative and assign the
last new center all of the 3(r + 2q) many red children points. We
then ¢ many positive centers covering 4¢ many points with the
color proportionality being 3:1 red points to blue points. Similarly,
for the negative set we have 2q + r many centers covering 4(2q +r)
many points at a color proportionality of 3:1 red to blue. This is
done at cost of 1, so clearly optimal.

A solution for LCUL at cost 1 leads to a solution X3C: Suppe
the new blue center with 3(r + 2q) many red children is assigned a
positive label, this to achieve an optimal cost all of its children have
to be assigned to it. This means that the positive set would have at
least 3(r + 2q) = 6q + 3r many points, but (LB)p = (UB)p = apn =
4q < 6q < 6q + 3r which causes a contradiction. Therefore that
center can never be positive. Therefore, we are looking for apk = ¢
many centers to cover apn = 4q many points and because of the
color proportionality constraint 3¢ many of them are red and g are
blue. Finding this set at an optimal cost is a solution for X3C. O



	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Preliminaries and Problem Formulation
	3.1 Labeled Clustering with Assigned Labels (`3́9`42`"̇613A``45`47`"603ALCAL):
	3.2 Labeled Clustering with Unassigned Labels (`3́9`42`"̇613A``45`47`"603ALCUL):

	4 Algorithms and Theoretical Guarantees for `3́9`42`"̇613A``45`47`"603ALCAL
	4.1 `3́9`42`"̇613A``45`47`"603ALCAL is Polynomial Time Solvable:
	4.2 Efficient Algorithms for `3́9`42`"̇613A``45`47`"603ALCAL for the Two Label Case:

	5 Algorithms and Theoretical Guarantees for `3́9`42`"̇613A``45`47`"603ALCUL
	5.1 Computational Hardness of `3́9`42`"̇613A``45`47`"603ALCUL
	5.2 A Randomized Algorithm for label proportional `3́9`42`"̇613A``45`47`"603ALCUL:

	6 Experiments
	6.1 `3́9`42`"̇613A``45`47`"603ALCAL Experiments
	6.2 `3́9`42`"̇613A``45`47`"603ALCUL Experiments
	6.3 Algorithm Scalability

	7 Conclusion
	8 Acknowledgments
	References
	A Omitted Proofs

