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ABSTRACT

COVID-19 exposure-notification apps have struggled to gain adop-
tion. Existing literature posits as potential causes of this low adop-
tion: privacy concerns, insufficient data transparency, and the type
of appeal - collective- vs. individual-good - used to frame the app.
As policy guidance suggests using tailored advertising to evalu-
ate the effects of these factors, we present the first field study of
COVID-19 contact tracing apps with a randomized, control trial of
14 different advertisements for CovidDefense, Louisiana’s COVID-
19 exposure-notification app. We find that all three hypothesized
factors — privacy, data transparency, and appeals framing - relate to
app adoption, even when controlling for age, gender, and commu-
nity density. Our results offer (1) the first field evidence supporting
the use of collective-good appeals, (2) nuanced findings regard-
ing the efficacy of data and privacy transparency, the effects of
which are moderated by appeal framing and potential users’ demo-
graphics, and (3) field-evidence-based guidance for future efforts to
encourage pro-social health technology adoption.
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« Security and privacy — Social aspects of security and pri-
vacy; Usability in security and privacy; - Human-centered com-
puting — Empirical studies in collaborative and social computing.
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1 INTRODUCTION

To combat SARS-CoV-2 - also known as "coronavirus" — and its asso-
ciated illness COVID-19, countries and other entities have worked
to develop vaccines and a variety of other mitigation tools. One
such tool is contact-tracing technology that serves as the founda-
tion for exposure-notification apps (COVID-19 apps) that can alert
users when they have been exposed to coronavirus. These apps
have been developed and deployed in 77 countries and U.S. states.!.

Similar to other pro-social COVID-19 behaviors such as vac-
cination and mask adoption, greater adoption of COVID-19 apps
improves their efficacy. Yet, adoption has been low, with the highest
adoption rates per jurisdiction hovering around 30% and typical
adoption rates closer to 10%.2

Prior work has sought to understand people’s considerations for
adopting such apps through self-report and lab-based studies. These
works suggest that people’s adoption is likely driven by concerns
regarding the app’s privacy and data collection practices, as well as
perceptions of whether the benefits of the apps - to themselves or
to society — outweigh their privacy and data concerns [43, 58, 63].

However, none of this prior work observed how these consider-
ations affect actual adoption of these apps in the wild. Self-report
studies on privacy-related behavior — such as the adoption of
COVID-19 apps - have known flaws due to the “Privacy Para-
dox” which shows a disconnect between one’s beliefs about privacy
choices and one’s actual behavior. While the evidence for this para-
dox can be caused by a poor translation from beliefs to behaviors,
this can also be caused by measurement device biases. People will
claim that they would choose a more privacy-oriented product
or would not be willing to share information, but when observed
making such decisions in real life, they often forgo privacy pro-
tections [2, 41, 52]. Thus, to offer real-world insights into users’
adoption of a privacy-sensitive health application in the context of
COVID-19, we conduct the first, to our knowledge, field study of
COVID-19 app adoption.

We collaborated with the state of Louisiana to conduct a random-
ized, controlled field experiment on the impact of tailored messag-
ing addressing the attributes found most relevant to app adoption

!See the Linux Public Health Foundation dashboard (https://landscape.Ifph.io/) for a
running list of deployed COVID-19 apps.

2There has been little official reporting of COVID-19 app adoption rates outside of the
popular press; we refer to https://time.com/5905772/covid-19-contact-tracing-apps/
for these adoption statistics.
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in prior work — the app’s benefits, privacy, and data collection -
on adoption of the state’s COVID-19 exposure-notification app,
CovidDefense. Specifically, we test the impact of advertisements
that contain two types of messaging addressing factors identified
in prior work and recommended in policy guidance [49]: (a) app
benefits framed as either a collective- or individual-good and (b)
transparency regarding privacy and/or data collection.

We conducted our field experiment on the Google Ads Platform
using 14 different ads. Ads were randomly displayed to Louisiana
residents and generated 7,010,271 impressions.3

The outcome measured was whether the user clicked the respec-
tive ad; those who clicked were redirected to the Louisiana Depart-
ment of Public Health app download page (http://coviddefensela.
com/).*

Using these data we address four research questions:

RQ1: Is messaging that presents the benefit of app installation
as a collective-good appeal (i.e., with societal benefit) more
effective than messaging that appeals to individual-good?

RQ2: Is messaging that makes privacy transparent more effec-
tive than messaging that does not? And, which privacy-
transparency statements are most/least effective, those that:
(a) broadly reassure people about privacy concerns, or those
that specifically focus on enhanced control over data collec-
tion — through a statement emphasizing either (b) general,
non-technical privacy control or (c) technically concrete pri-
vacy control?

RQ3: Is messaging that makes data collection transparent (i.e., stat-
ing clearly what data is being collected by the app) more
effective than messaging that does not inform potential users
what data the app will collect?

RQ4: How do demographics (age, gender, geography) moderate
the adoption of CovidDefense and the experimental effects
observed in RQs1-3?

Collective-good appeals (i.e., pro-social messages that speak to
community benefit) are suggested as a best practice by existing
policy guidance [49]. However, the efficacy of such appeals is em-
pirically debated in the context of COVID-19 [55] on the basis of
evidence from self-report data, laboratory experiments, and hybrid
self-report tracking [38, 48, 60] and the impact of these appeals
in other privacy-sensitive technology settings has not been well
studied.

Existing policy guidance also encourages transparency in ad-
vertising promoting pro-social health behaviors, and prior work
on people’s intent to adopt COVID-19 apps emphasizes the impor-
tance of privacy and data collection concerns on people’s adoption
intent [43, 58, 63, 76]. However, there is little field evidence re-
garding how individuals respond to data transparency and privacy
statements in a privacy-sensitive health technology context. While
prior research in the privacy domain (e.g., 11, 24, 68) has found
that increased transparency and sense of control regarding exist-
ing privacy and data collection may reduce concerns and increase

3 As is typical in digital marketing campaigns, ads may be displayed during Google
search more than once to the same user/IP address and thus the number of impressions
is larger than the population of Louisiana.

4 A user may have seen more than one ad because Google does not allow us to control
this. However, if the user clicked on an ad, the click was associated with the specific
ad on which they clicked.
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willingness to share data, it is an open question whether such trans-
parency can be effectively provided through tailored messaging [59].
Findings from some prior work [36] suggest that it can; but this and
other work suggest that increasing the salience of privacy through
transparency at the time of the choice to adopt the app could also
artificially increase people’s concerns about privacy [36, 59].

The results of our field study show that tailored messaging can
effectively influence the pro-social behavior of installing a COVID-
19 app. We find that significantly more people click on messages
that use collective-good appeals than those that use individual-good
appeals (RQ1). Furthermore, in a series of moderation analyses, we
find that transparency about privacy (RQ2) and data collection
(RQ3) moderate this effect. Specifically, collective-goods appeals
are even more effective when paired with a privacy-transparency
statement, but are less effective when additionally paired with
a data-transparency statement. Individual-goods appeals exhibit
the opposite effects. Such differences suggest that digital privacy
and data transparency can be effectively provided through tailored
messaging, but we must think carefully about how an application’s
purpose and framing may impact people’s privacy considerations
and reasoning. Finally, our results shed light on how priming with
an individual-good appeal increases gender and age differences
in receptiveness to the app and to the different privacy controls
presented (RQ4).

Our findings offer insight into how users make privacy-benefits
trade-offs when making decisions to adopt an app in the wild. We
confirm in the field prior self-report results on the importance of
individualist vs. collectivist mindset [60], and expand the existing
body of literature to provide insight into the real world impact of
the tension between our desire to improve community health by
sharing personal data and our individual desire for privacy.

2 RELATED WORK

Here, we review the prior work most closely related to our study: on
the factors that influence COVID-19 app adoption and on privacy-
and data-transparency statements in the context of digital health.

2.1 Factors Influencing Intent to Adopt
COVID-19 Apps

When considering whether to use an app for COVID-19 contact
tracing, previous research has shown three main considerations: the
functionality of the app, concerns regarding privacy, and concerns
regarding data collection.

The two main functions of COVID-19 contact tracing apps are
to indicate to a user if they have been exposed (an individual-
good) and to help the broader community reduce the spread of the
virus (a collective-good) [58]. Li et al. [43] found that of these dual
purposes of the app were more influential in determining intention
to install than security or privacy concerns. Williams et al. [74]
finds that even the possibility of a collective-good outcome can
convince otherwise hesitant users to participate in COVID-19 apps,
sometimes begrudgingly. However, some individuals indicate a
reluctance to install a COVID-19 app regardless of how well the
app works [32, 43, 63].

User privacy is well-documented as a main source of hesitancy
for individuals to download and use COVID-19 apps, stemming
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from both general privacy concern as well as specific concerns
about the privacy of contract-tracing apps [23, 32, 40, 43, 63, 74, 76,
78]. However, there is still debate about whether people’s stated
privacy concerns actually influence COVID-19 app adoption once
controlling for other factors such as incentives [21], institutional
trust [28, 31, 69], political ideology [44], and general perceptions of
COVID-19 [14, 21, 43, 69, 71]. Additionally, there is indication that
privacy concerns can be linked to app functionality. For instance,
there is evidence that people’s privacy considerations about COVID-
19 apps can be moderated by the way in which the app works,
specifically the centralization of the contact-tracing mechanism.
There is not a consensus in prior work regarding whether users
prefer a centralized or decentralized system: Zhang et al. [76] find
from their conjoint analysis that a decentralized system had higher
app adoption whereas other studies find the opposite [28, 43].
Another implementation choice regards the data used for con-
tact tracing. Some COVID-19 contact-tracing apps operate using
only proximity data, relying on Bluetooth to detect proximity be-
tween devices, while other apps rely on GPS location data. Prior
work [58, 63] finds that users worry about data collection in general,
regardless of data type, and also find that users are more comfort-
able with apps that use proximity vs. location data. These concerns
and considerations interplay with users’ concerns about their pri-
vacy, as some of these concerns focus on the privacy of the data
collected by the app, even if it is stored only on their device as is the
case for decentralized apps. ®> Regardless, the majority of deployed
contact-tracing apps are decentralized and use proximity data [20].

Prior field work on COVID-19 App Adoption. Due to the emerging
nature of the pandemic, there has been little field work studying
how people’s adoption considerations influence their behavior in
the real world. Our work seeks to build on findings from prior
self-report work while filling the gap of empirical field evidence.

Most closely related to our work, Munzert et al. [48] tested the
effect of presenting collective-good appeals in combination with
privacy and functionality-related information in a video interven-
tion on people’s adoption of a COVID-19 app. Subjects in their
study participated in an opt-in survey panel in Germany and their
digital behavior could be tracked by the survey panel, allowing the
researchers to observe whether participants installed Germany’s
COVID-19 app at some point after seeing the video intervention
in the survey. Their experiment found no effects from the video
intervention, though this might be an artifact of some experimental
limitations, as identified in Toussaert [66], which include 1. the
nature of the intervention, which involved exposure to a training
video during a survey-based study rather than as part of real-world
installation behavior and which combined multiple experimental
messages, preventing isolation of the impact of the collective-good
appeal from the other experimental factors, 2. the sample size, and
3. the opt-in nature of the participant pool. In contrast, our work
isolates and focuses specifically on the impact of appeals in tailored
messaging, presenting the first, to our knowledge®, direct field

5Note that it is possible for even decentralized apps to have privacy leaks [10, 32, 50, 56],
and thus user’s privacy concerns are not unfounded.

Banker and Park conducted a field study on the impact of collective-good appeals on
clicks to CDC guidelines at the very beginning of the pandemic [7]. However, health
information consumption and pro-social health behavior are importantly different
constructs.
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evaluation in the general population of the efficacy of collective-
good appeals in encouraging pro-social COVID-19 behavior, as
well as the first direct field evidence of the impacts of privacy and
data transparency on adoption of a pro-social health technology.
Specifically, we tested this in tailored advertising messaging used
to encourage adoption of an exposure notification app at the time it
was released to the population. Importantly, our work does not rely
on surveys, online studies or an opt-in sample. Instead, we directly
measure the outcome of interest: whether a prospective user clicks
to download the app.

2.2 Privacy and Digital Health

Outside of a COVID-19 setting, privacy concerns in digital and
mobile health applications (often termed mHealth apps) have an
extensive research history. Contact-tracing mHealth apps have
been studied before in other settings such as tuberculosis [9], in-
fluenza [25], and HIN1 [62], though much of the framing of these
studies has been from the perspective of the individual benefits
they provide [64], and an emphasis on privacy in these studies is
generally lacking given the nascentness of mHealth at the time of
their study.

More broadly, privacy influences an individual’s interest in adopt-
ing mHealth applications [5, 22, 53, 54]. Early on in the study of
privacy effects on mHealth app adoption, Klasnja et al. [37] explored
the privacy perspectives of different data types and found that GPS
location data was particularly sensitive. Prasad et al. [53] found
that an individual may have differing attitudes towards sharing the
same data with different individuals, reporting that individuals who
wore fitness trackers were less likely to share data with friends and
family than with strangers. Among other things, Demographics
such as age, education, occupation, and digital penetration in the
user’s country may also play a role in privacy perceptions around
mHealth applications [33, 61].

Prior work typically finds that the main predictors of mHealth
app adoption are trust, utility, and ease of use [3, 16, 17, 51, 65,
70, 77] with moderating effects from age, gender, location, and
education. These findings align well with the literature on adoption
intention for mHealth apps specifically designed for COVID-19 as
described above.

Focusing specifically on privacy and sensitivity around data
collection, Jacobs et al. [30] explores the data sharing preferences
of different groups of people by role in a data ecosystem around
breast cancer. They find that patients, doctors, and navigators have
different comfort levels with data sharing, e.g., patients are hesitant
to share data about their emotional state. Warner et al. [72] explore
the specific privacy concerns within group of HIV-positive men
using a geo-social dating app and find that some users disclose
their status to reduce their exposure to stigma while others avoid
disclosure to avoid being stigmaized.

More broadly, there is limited prior work on the effect of privacy
and sense of control on the sharing of personal health related data,
perhaps because individuals do not have much control over their
own health data, and sometimes are not even able to access it
themselves. While HIPAA and other health-related privacy policies
have been developed to let users exercise informed consent over
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sharing health information, such mechanisms are dated and may
not be applicable for mHealth [47].

Outside of the health domain, prior work on privacy more
broadly has found that when people have greater sense of con-
trol over their data, they are likely to be willing to share more data
(e.g. [11, 68, 75]), even if this control is merely an artifact of trans-
parency and not of actual usage of the data. Therefore, in this study,
we build upon this prior work specifically in the health domain:
we explore the role of messaging related to privacy control, and
the transparency of the data being collected, on the likelihood to
adopt a COVID-19 app, and how these factors intersect with how
the appeal of the app is framed, and the socio-demographics of the
adopter.

3 METHODS

To answer our research questions, we conducted a randomized,
controlled field experiment using Google Ads. Here, we review
our experimental design, data collection, ethical considerations,
analysis approach, and the limitations of our work.

3.1 Experimental Design

Upon the public release of the CovidDefense app, we ran 14 separate
Google display ad campaigns from February 1 to 26, 2021. In col-
laboration with the state of Louisiana, these were the only Google
Display ads run for CovidDefense during that time. Each campaign
was targeted, via IP address, at people who reside in Louisiana.”
All campaigns used the same settings, ad destination, and ad image
from the state of Louisiana’s CovidDefense marketing materials,
and all campaigns were run concurrently. The 14 ads varied only
in their text data in alignment with the 14 conditions summarized
in Figure 1. Two examples of how an ad was presented to a user on
a computer through Google Ads are depicted in Figure 2.

To evaluate existing policy guidance and findings from prior
work, as summarized in the introduction, we chose to explore the
factors of appeals, data transparency, and privacy transparency
on contact tracing app adoption. Prior research finds additional
adoption decision factors, such as who is operating the app/data
infrastructure and whether the app is centralized or decentralized.
We did not evaluate these additional factors as we were working
with one app provider and a single app.

The image used in the ads were provided by the State of Lou-
siana’s graphics design team. We used the same image on all of
the ads. The layout of the ads is dictated by Google and thus the
only items we could control were the ad text and ad image. The
text of the 14 ads was chosen in the following manner. One of two
appeals — individual (“Get notified of COVID exposure”) or col-
lective (“Reduce COVID infections”) — appeared at the beginning
of the ad text. These phrases were limited to 30 characters by the
Google Ads platform. We selected these phrases based on a pilot
test in collaboration with the state of Louisiana, in which a market
research firm surveyed approximately 800 respondents to identify
the best message phrasings that were most appealing on a variety of
criteria. This allowed us to adopt already-successful messages and
investigate, through this randomized study how the type of appeal,

Prior work has validated the accuracy of this state-level targeting [6].
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as well as privacy and data transparency messaging, influenced app
adoption.

Following the appeal, either one of three privacy-transparency
statements was added, or there was no privacy statement. The pri-
vacy statements either was broadly stated (“...without harming your
privacy”), or had a technical (“App data stays on your device”) or
non-technical (“You control the data you share”) statement of con-
trol over privacy. Finally, a privacy statement could also have been
paired with a data collection statement (“The app uses information
about who you have been near”). The entire text of all 14 ads can
be found in Appendix A.

3.2 Data Collection

We observe a total of 7,010,271 impressions on our ads. Google Ads
does not allow for a user to limit impressions on campaigns, so
we manually monitored campaign performance and aimed to stop
each campaign at 500,000 + 35,000 impressions, with an average
of 500,733.6 impressions per campaign. In total, we observe 28,026
clicks on our 14 campaigns. The average Click Through Rate (CTR -
the outcome of interest — the proportion between number of clicks
and number of impressions) of the 14 campaigns was 0.398%, with
standard deviation of 0.100%.

Along with the number of clicks and number of impressions, we
also observe measures of demographics (age, gender and commu-
nity density: urban vs. rural). Demographics are provided through
Google Ads metadata. Age and gender are inferred by the Google
Ads platform through past browsing behavior; the accuracy of these
inferences has been validated against gold-standard social scientific
probabilistic survey panels and other self-report data sources [46].
To label participants’ community density we map participant coun-
ties (called Parishes in Louisiana), which are determined by Google
Ads based on IP address, using the Census mapping to commu-
nity density. 97.8% of the impressions (6,858,820) had an associated
Parish while 55.9% of the impressions (3,920,232) had both age and
gender labels.

3.3 Analysis

Our main analysis examines differences in click through rates
(CTRs) for different ads based on their messaging text. For state-
ments about statistical significance, we report & = 0.05.

For RQ1, we perform an analysis with a two-sided two proportion
z-test on the CTRs of collective-good and individual-good ads. This
analysis uses all the impression data (n=7,010,271).

For RQ2-3, we run the regressions defined in Tables 2-5, using all
the impression data (n=7,010,271). For RQ4, regarding demograph-
ics and geographics, we run the regressions defined in Tables 6-10.
For privacy reasons, Google Ads separates demographic and loca-
tion data and thus we cannot analyze age, gender, and community
density with the entire dataset. As such, the regression models for
RQ4 only analyze those impressions which have the relevant de-
mographic (n=3,920,232) or geographic (n=6,858,820) information.

We report statistics as odds ratios for each regression. The odds
ratio compares the ratio of odds for a baseline event to the odds
for the contrasting event. Additionally, since the geographic and
demographic data are a subset of our entire dataset (97.8% and 55.9%
respectively), it is natural to be concerned that analyzing these
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Figure 1: Experimental design for the 14 messages shown in the field study.

Get notified of covid
exposure

CovidDefense

Install CovidDefense

M COVID
O DEFENSE

COViDdefenseLA.com

Get notified of covid exposure

S O

Install CovidDefense

L\

Figure 2: Two examples of how Ad #1 is displayed on a computer.

subsets may lead to different conclusions. However, we analyzed
the results of RQ2 through RQ4 with just the dataset subsets and
found that the results are robust to such modeling specifications,
defined by overlapping confidence intervals on the odds ratios for
the same regressions with the different subsets. These results can
be found in Tables 2-10 by comparing the “All data” column to the
“Just Demographic” and “Just Geographic” columns.

Data Archival. Data and analysis scripts for this experiment are
available at https://doi.org/10.7910/DVN/MLUR6D.

3.4 Ethics

Our study was approved by our institution’s ethics review board and
exempted from review by the Louisiana Department of Health IRB.
All data collection occurred within the publicly available Google
Ads platform and was explicitly approved by Google Ads. We only
had access to information about users in the manner in which
Google provided them. The data were presented to us in an ag-
gregate manner, which preserved the users privacy in accordance

with Google Ads privacy policy.® This aggregate data included ge-
ographic location of an impression with resolution to the Parish
level. Google also provided some demographic information which
are either user-supplied or inferred by browsing habits.

Further, we were careful to consider the potential real world
effects of our ads. To that end, we were aware that some combi-
nations of messaging could act as a deterrent to future adoption
of these technologies. Since our research takes the view that adop-
tion of contact tracing apps should be encouraged, we chose to not
include combinations of messages that might work against that
goal - that is why in our experimental design we only showed
a data-transparency statement in combination with a privacy-
transparency statement.

3.5 Limitations

Our results rely on a single study, from a single state (Louisiana)
and with demographic data that rely on Google’s ability to accu-
rately classify gender, region, and age. The largest limitation of our

8https://safety.google/privacy/ads-and-data/.
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study design is that we only capture clicks on ads instead of full
downloads and app use. Our study was designed this way with a
privacy focus and there is no way for us to reasonably measure con-
version rate from click to download.However future studies could
examine app adoption and use in conjunction with pro-social mes-
saging questions. Additionally, while we chose the language used in
our ad messages carefully, other forms of appeals or transparency
statements could have been used. We encourage future studies to
further investigate the impact of collective- vs. individual-goods
appeals, as well as privacy and data transparency, on encouraging
pro-social digital health behavior.

Further, we are limited in our demographic analysis by what the
Google Ads platform provides us. While the demographic infer-
ences made by Google Ads have been found to be very accurate
[46], not all individuals in our dataset have inferred demographics
and we are limited in our demographic analyses to the three demo-
graphics offered by Google Ads. We encourage further research on
this topic with additional demographic data collected from consent-
ing individuals. We do note that our sample is from a population of
technology adopters who use the internet on mobile, desktop, or
tablet platforms. Thus, our results should be interpreted as indica-
tive of that population, however this is not necessarily a limitation
as the CovidDefense and other contact tracing apps require at least
as much technology adoption as we see in our sample.

Finally, at the time of data collection (February 1 to 26) Louisiana,
and the whole United States, was seeing a decline in the number of
reported COVID-19 cases, hospitalizations, and deaths, while simul-
taneously seeing vaccinations just starting to become available to
the broader public. Since the situation was constant across all ads
presented, we can conclude that the responses we observe measure
human behavior to the messages presented in the ads conditioned
on the state of the pandemic and media environment at the time.

4 RESULTS

Our experimental factors — appeal, privacy transparency, and data
transparency — all significantly relate to CTR.

4.1 RQ1: Collective-good appeals are superior

Advertisements mentioning individual-good perform significantly
worse (y? = 598.54; df=1, p < 0.001) than those that use collective-
good appeals (CTR of 0.341% vs. 0.458%) in ads containing only an
appeal, see Figure 3a. This is still the case even when controlling
for other experimental factors (O.R.=0.745; Appendix Table 2), and
the interactions between them (O.R.=0.880; p < 0.001; Appendix
Table 3), demographics (O.R.=0.747; p < 0.001; Appendix Table 6),
and community density (O.R.=0.744; p < 0.001; Appendix Table 6).

4.2 RQ2 and RQ3: Effect of transparency
statements depends on appeal

The type of appeal (collective or individual) moderates the impact
of the transparency statements. We conclude this by observing
significant interactions between the appeal and the transparency
statements in logistic regression models (Appendix Table 3). Subse-
quently, performing a regression on each appeal individually, we
report the odds ratios and errors for the transparency statements
for each appeal in Figure 3b.
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Messages with a collective-good appeal have a higher CTR when
they have additional privacy-transparency statements — all three
of the statements have O.R.s that range from 1.106 to 1.203 (Ap-
pendix Table 4), all with p < 0.001 - but result in lower CTR
responses when paired with a data-transparency statement, i.e.,
when ads explicitly mentions what data is being collected (O.R. =
0.911; p < 0.001; Appendix Table 4 ). On the other hand, messages
with an individual-good appeal have a lower CTR when paired with
a technical privacy-transparency statement (O.R. = 0.619; p < 0.001;
Appendix Table 5). However, the broad and non-technical control
privacy-transparency statements cannot be deemed to affect the
CTR of the same individual-good appeal (p = 0.070 and p = 0.396,
respectively). Moreover, contrary to the negative effect of data
transparency on CTR in the collective-good appeal condition, when
data collection is made transparent in the individual-good appeal
condition, we observe a higher CTR than in messages without such
data transparency (O.R.=1.08; p < 0.001; Appendix Table 5). We
observe that, in a single regression model containing interactions
between the transparency statements and the appeals (Appendix
Table 3), a data-transparency statement reduces the difference in
CTR between messages with collective- vs. individual-good appeals,
while inclusion of a privacy statement increases the difference in
CTR between messages with the two different appeals.

Table 1: Modeling the statement differences by Appeal and
Gender

Dependent variable:

Clicks
Collective-Good Individual-Good
Male Female Male Female
1) [©)) (3) “)
Privacy.Broad 1.160 0.993 0.796 1.198
(1.049,1.283)  (0.906,1.087)  (0.707,0.896)  (1.076, 1.335)
p = 0.004™* p=0877 p = 0.0002** p = 0.002**
NonTech.Control 1.110 1.083 1.018 1.333
(1.009,1.222)  (0.986,1.188)  (0.899,1.152)  (1.185, 1.498)
p = 0.032* p=0.095 p=0784 p = 0.00001**
Technical. Control 1.236 0.980 0.460 0.827
(1.118,1.366)  (0.897,1.071)  (0.402,0.526)  (0.738, 0.927)
p = 0.00004** p = 0.660 p < 0.001"* p = 0.002**
Data.Transparency 0.849 0.961 1.275 1.058
(0.795,0.907)  (0.909,1.015)  (1.178,1.379)  (0.987, 1.134)
p = 0.00001** p=0.157 p < 0.001** p=0113
Constant 0.004 0.005 0.003 0.004
(0.004, 0.005) (0.005, 0.006) (0.003, 0.004) (0.004, 0.004)
p < 0.001"* p < 0.001** p < 0.001** p <0.001**
Observations 916,470 1,111,417 1,026,261 866,084
Log Likelihood —27,378.620 —36,413.650 —20,733.730 —24,634.080
Akaike Inf. Crit. 54,767.230 72,837.310 41,477.460 49,278.150
Note: *p<0.05; **p<0.01

4.3 RQ4: Demographic and geographic
influences

Next, we consider demographic differences in responses to our
CovidDefense advertisements. Thus far it has been debated, on the
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Figure 3: Main results from regression models. Error bars of 95% confidence are given. (a) Overall CTRs for individual- and
collective-good appeals. (b) Odds ratio for each transparency statement modeled twice for ads presented with each of the two
appeals. The individual-good appeal (in red) is above the collective-good appeal (in blue). Regression tables are Appendix
Tables 4 and 5. (c) Overall odds ratio for each demographic and geographic variable. Regression table is Appendix Table 6.

CTR by Age, Gender, and Appeal

Collective-Good

0.3

18-24 25-34 35-44 45-54 55-64 65+

Individual-Good

18-24 25-34 35-44 45-54 55-64 65+

Age

Gender — Female == Male

Figure 4: Click through rates (CTR) for each age group are reported with each curve representing an appeal and a gender.
Collective-good appeals to females have no difference across the ages, whereas males see a significant drop in CTR in the
middle ages. Individual-good appeals for females are non-decreasing across ages and generally flat for males. Regression
tables are Appendix Table 7 and 8. Error bars are 95% confidence Clopper-Pearson intervals.

basis of self-report evidence [8, 13, 73], whether men are less likely
to adopt pro-social behaviors such as mask wearing. In this work
we offer field evidence of a gender difference in receptiveness to
COVID-19 pro-social messaging and behavior: men are significantly
less likely to click on ads for CovidDefense (O.R. men = 0.794;
p < 0.001; Appendix Table 6). We find that this effect varies in
size based on the appeal shown in the ad. Both men and women
consistently prefer collective-goods ads and men are less likely to
click on both collective- and individual-goods ads. However, the
gap in CTR between men and women is significantly larger for
individual-goods ads: males click 23% less often than females when
shown individual-good ads compared to 10% less for collective-good
ads (with p < 0.001 for both; see Appendix Tables 7 and 8).

Overall, we find that users between 34-64 are significantly less
likely to click on the advertisements than those between 18 and
24 (O.R.s range from 0.874 - 0.951 with p < 0.05; see Figure 3¢ and
Appendix Table 6). On the other hand, those over 65 — who are
also at high risk for developing and dying from COVID-19 [19]-
are significantly more likely to click than those 18-24 (O.R. = 1.13;
p < 0.001; Appendix Table 6). However, these effects are moderated
both by the appeal of the ad shown and the gender of the ad viewer.
Specifically, CTRs do not vary among different age groups of women
when shown a collective-good ad (O.R.s range from 0.937-1.08 with
p > 0.1; Appendix Table 7), likely because of the strength of this
appeal for women, whom prior research shows are more relational
— focused on the collective good — than men [34]. On the other
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hand, when shown an individual-good appeal, women 45 to 65+ are
significantly more likely to click than younger women (each age
group above 45 sees an increase in CTR over the previous; O.R.s
range from 1.34-1.58 with p < 0.001; Appendix Table 8). There
is no difference between CTRs for ages 18-44 (O.R.s = 1.02 with
p > 0.7; Appendix Table 8). We hypothesize that, aligned with
[18], older women are cognizant of their higher COVID-19 risk and
thus are willing to click even on an ad with an appeal that is less
preferable and does not align with their broad tendency toward
relationally-guided behavior.

Among men who were shown a collective-good appeal, young
men (18-24 years old) and older men (65+ years old) are equally
likely to click when shown a collective-good ad (O.R.=1.02; p =
0.728; Appendix Table 7), and are significantly more likely to click
than middle-aged men (O.R.s range from 0.597-0.849; p < 0.001;
Appendix Table 7). Considering individual-good ads, we observe
a similar pattern, with no significant differences in the likelihood
of clicking among men aged 18-44 and those over 65 (O.R.s range
from 0.915-1.07; p > 0.1; Appendix Table 8), while men aged 45-64
are significantly less likely to click on the same ads (O.R.s range
from 0.760-0.785; p < 0.001; Appendix Table 8). We find that men,
especially those who are middle-aged and when presented with
individual-good appeal, are far less likely than women to click to
install CovidDefense.

Prior literature finds that men have lower perceptions of their
COVID-19 risk [18]. We hypothesize that the large gap in CTR
between men and women, which is especially pronounced when
presented with an individual-good appeal, is driven from the gender-
based risk tolerance differences documented in the literature. When
presented with an individual-good appeal that primes the viewer to
especially focus on their own risk, the gender differences are even
more pronounced.

Beyond the moderating effects of age and gender on the ap-
peal used to advertise CovidDefense, we also find gender differ-
ences in the effect of our privacy- and data-transparency statements
(see Table 1). While the effects shown in Figure 3b are consistent
across ages, we find that the overall effects of the privacy- and data-
transparency statements are primarily driven by men’s response to
these statements. When shown a collective-good appeal, men are
more likely to click if presented with privacy controls of any sort,
but are less likely to click if there is an explicit data-transparency
statement. Women, on the other hand, show different responses to
the transparency statements. Specifically, when combined with a
collective-good appeal, both privacy- and data-transparency state-
ments have no impact on women’s likelihood to click.

Further, while both men and women are less likely to click on
individual-good ads that include a technical privacy control, this
reduced likelihood to click is larger among men (CI for O.R. for
men: (0.402, 0.526); CI for O.R. for women: (0.738, 0.927); Table 1). In
addition, while men also respond negatively, or have no significant
response, to the non-technical privacy-transparency statements,
women exhibit higher CTRs when these statements are paired with
the individual-good appeal. Additionally, women are unaffected by
the inclusion of a data-transparency statement compared to men
who are more likely to click ads with an individual-good appeal
when a data-transparency statement is included.

Dooley, et al.

Finally, we examine the impact of geography on willingness to
click on ads for CovidDefense; see Appendix Table 10. In contrast
to the existing body of literature around urban-rural differences in
COVID-19 behavior, which finds that rural residents are less con-
cerned about COVID-19 and less likely to adopt pro-social COVID-
19 behaviors [12, 15, 27, 29], we find that Louisiana residents in rural
communities are significantly more likely to click on any of the pro-
posed ads (O.R. = 1.15; p < 0.001; Appendix Table 6). This finding is
robust across both appeals and all transparency statements with the
appeal preference also being robust between geographies; we ob-
serve that rural residents also find that collective-good statements
as preferable to individual-good appeals.

5 DISCUSSION

The results of our work offer implications for thinking about trans-
parent messaging in the promotion of privacy-sensitive health tech-
nologies. Given that the U.S. is a highly individualistic country,
it is perhaps surprising that collective-good appeals were more
effective than individual-good appeals in encouraging people in
Louisiana to click to adopt the CovidDefense app. Prior work finds
that Louisiana is the most collectivist U.S. state [1]. Collectivists
tend to engage in pro-social behavior that benefits the in-group,
rather than pro-social behavior that they perceive as benefiting
themselves individually [4, 35]. This effect may explain why resi-
dents of Louisiana respond best to societally-oriented benefits. On
the other hand, it may simply be the case that people understand
that the primary benefit of a COVID-19 exposure notification app
is indeed collective and that people respond best to messages that
are honest and transparent about the true benefit of the app.

Our findings for transparency regarding privacy and data collec-
tion are, however, more nuanced. Transparency about individual
data collection improves the efficacy of messages that are already
individually focused - those with individual-good appeals — while
the same transparency statement applied in a collectivist setting
appears to conflict with people’s sense of collective purpose. Re-
latedly, transparency regarding privacy and how individual data is
protected in a collective setting may reduce concerns about personal
privacy risk in a communal context, which prior work finds may be
especially elevated, while the same transparency may be ineffective
or even detrimental when placed in the context of individualistic
privacy-benefit trade-offs [67].

Complicating our transparency findings, we observe gender ef-
fects in response to both the appeals and the privacy/data trans-
parency statements. Overall, we find that men, especially those who
are middle-aged and when presented with individual-good appeal,
are far less likely than women to click to install CovidDefense. Prior
literature finds that men have lower perceptions of their COVID-
19 risk [18]. We hypothesize that the large gap in CTR between
men and women, which is especially pronounced when presented
with an individual-good appeal, is driven from the gender-based
risk tolerance differences documented in the literature. When pre-
sented with an individual-good appeal that primes the viewer to
especially focus on their own risk, the gender differences are be-
coming more pronounced. Differences between men and women
also exist for the privacy- and data-transparency statements. The
overall transparency effects described above are primarily driven
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by men’s response to these statements. Women are unaffected by
the inclusion of privacy and data-transparency statements in the
more-effective collective-good ads. We hypothesize that this is the
case because women are more relational - focused on the collective
good — than men [34] and thus, similar to the lack of age effect ob-
served for women when presented with collective-good appeals, we
hypothesize that there is such strong alignment between women’s
tendency toward relational choices and the collective-good appeal
that other factors (e.g., age-specific risk perceptions, transparency
statements) have no significant effect.

When presented with an individual-good appeal, both men
and women are less likely to click when a technical privacy-
transparency statement is included; the size of this effect is sig-
nificantly larger for men. However, women are more likely to click
when a less-technical privacy statement is paired with an individual-
good appeal; while men are more likely to click — and women are
less likely to — when a data-transparency statement is added. Taken
together, these findings - that women are affected positively by
less technical statements of privacy while men are positively af-
fected by technical and data related privacy statements — align with
prior work finding that men and women focus on different privacy
controls: men have been found to focus more on technical privacy
controls, while women are more focused on privacy sentiment and
non-technical controls [26, 39, 45, 57].

In sum, our results suggest that a one-size-fits-all approach to ad-
vertising digital health applications may explain existing failures of
such applications, including COVID-19 exposure notification apps,
to achieve their potential [42, 78]. Future digital health applications
must carefully consider how to frame the benefits of adoption and
how to balance an ethical duty to privacy and data transparency
with the ways in which our findings reveal this transparency alters
the privacy-benefit calculus of different groups of potential users.

6 CONCLUSION

We present the first field study of COVID-19 app adoption. In a large-
scale randomized field study, we find that residents of Louisiana
are more likely to click on ads for exposure notification apps if
the ad included a collective-good appeal. This effect was moder-
ated (especially for men) by transparency regarding the individual
data being collected and privacy protections offered for that data,
likely due to the conflict between the sense of collective purpose
and the associated cost for individual privacy. Moreover, we find
age and gender differences in the likelihood to click the ads, fit-
ting with past literature on varying risks of COVID-19 across ages
and gender differences in perceptions of COVID-19 risk. These
differences included lower probability to click on ads with tech-
nical privacy controls for women and higher likelihood for older
people to click on ads due to the higher risk for COVID-19 asso-
ciated with older people. We also find that the gender differences
were made larger when the ads were individually-focused (with
individual-good appeal), suggesting that the priming for individual-
ism enhances gender differences. These findings may aid companies
and policy makers when promoting digital tools to improve public
health, especially those tools that have implications for privacy.
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APPENDIX

A ADVERTISEMENTS
The full text of the 14 ad campaigns are included here for clarity:

(1) Get notified of COVID exposure.

(2) Get notified of COVID exposure. CovidDefense uses infor-
mation about who you have been near, without harming
your privacy.

(3) Get notified of COVID exposure. CovidDefense uses infor-
mation about who you have been near. App data stays on
your device.

(4) Get notified of COVID exposure. CovidDefense uses infor-
mation about who you have been near. You control the data
you share.

(5) Get notified of COVID exposure, without harming your pri-
vacy.

(6) Get notified of COVID exposure. App data stays on your
device.

(7) Get notified of COVID exposure. You control the data you
share.

(8) Reduce COVID infections.

(9) Reduce COVID infections. The app uses information about
who you have been near, without harming your privacy.

(10) Reduce COVID infections. The app uses information about
who you have been near. App data stays on your device.
(11) Reduce COVID infections. The app uses information about
who you have been near. You control the data you share.
(12) Reduce COVID infections, without harming your privacy.
(13) Reduce COVID infections. App data stays on your device.
(14) Reduce COVID infections. You control the data you share.

B DATASETS

The entire dataset and model regressions can be found here: https:
//doi.org/10.7910/DVN/MLURGD.

There are two primary datasets: one which has all 7,010,271
impressions and demographic data, and another with just the im-
pressions that have associated geographic information. The former
includes columns for Google-estimated demographics like Age and
Gender, with many impressions having values of “Unknown”.

These two data tables for demographic and geographic impres-
sions were represented by a row for each impression with columns
for whether that impression resulted in a click; the age and gender
or geography of the impression; as well as indicator variables for
the presence or absence of ad information (appeals, privacy trans-
parency — broad privacy reassurance, non-technical control, and
technical control — and data transparency).

An associated R file is included which includes functions to
reproduce each model and associated statistics.

C REGRESSIONS

We report the full regression tables for all claims made in the paper.
Table 2 includes overall effects for each experimental variable.
These regressions are performed with all the data, just demographic
data, and just geographic data.
Table 3 reports the interaction effect between each privacy and
transparency statement with the two appeals. These regressions
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are performed with all the data, just demographic data, and just
geographic data.

Table 4 reports the regression for each statement for all
collective-good ads. These regressions are performed with all
the data, just demographic data, and just geographic data.

Table 5 reports the regression for each statement for all
individual-good ads. These regressions are performed with all
the data, just demographic data, and just geographic data.

Table 6 reports the regression for each experimental, demo-
graphic, and geographic variable.

Table 7 reports the regressions for age and gender differences
for collective-good ads.

Table 8 reports the regressions for age and gender differences
for individual-good ads.

Table 9 reports the regressions for the privacy and transparency
statements, separated by appeal and gender combinations.

Table 10 reports the regressions for Urban/Rural interactions
with the experimental variables.


https://doi.org/10.7910/DVN/MLUR6D
https://doi.org/10.7910/DVN/MLUR6D
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Table 2: Modeling the five independent variables

Dependent variable:

Clicks
All data Just Demographic  Just Geographic
(1) () ®3)
Individual.Good 0.745 0.730 0.744
(0.727, 0.763) (0.707, 0.752) (0.726, 0.762)
p < 0.001** p < 0.001** p < 0.001**
Privacy.Broad 1.032 1.031 1.034
(0.992,1.074)  (0.980, 1.085) (0.993, 1.076)
p=0121 p=0243 p=0.106
NonTech.Control 1.084 1.112 1.092
(1.042,1.128)  (1.056, 1.172) (1.049, 1.137)
p = 0.0001** p = 0.0001** p = 0.00002**
Technical.Control 0.920 0.890 0.924
(0.883,0.958)  (0.844, 0.938) (0.886, 0.963)
p=0.0001**  p=0.00002"* p = 0.0002**
Data.Transparency 0.981 1.028 0.977
(0.957,1.007)  (0.995, 1.062) (0.953, 1.003)
p=0.147 p =0.100 p = 0.081
Constant 0.005 0.005 0.005
(0.004, 0.005)  (0.005, 0.005) (0.004, 0.005)
p < 0.001** p < 0.001** p < 0.001**
Observations 7,010,271 3,920,232 6,858,820
Log Likelihood —182,372.500 —109,490.000 —178,407.300
Akaike Inf. Crit. 364,756.900 218,992.000 356,826.500

Note:

*p<0.05; **p<0.01
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Table 3: Modeling the interaction of the appeal with the privacy and transparency statements

Dependent variable:

Clicks
All data Just Demographic  Just Geographic
(1) (2) ®3)
Individual.Good 0.880 0.763 0.878
(0.827,0.937) (0703, 0.829) (0.824, 0.935)
p = 0.0001** p < 0.001** p = 0.0001**
Privacy.Broad 1.106 1.073 1.110
(1.048, 1.167) (1.003, 1.147) (1.052, 1.172)
p = 0.0003** p =0.041* p = 0.0002**
NonTech.Control 1.123 1.096 1.131
(1.064, 1.185) (1.026, 1.172) (1.071, 1.195)
p = 0.00003** p = 0.007** p = 0.00001**
Technical.Control 1.203 1.095 1.209
(1.140, 1.269) (1.025, 1.169) (1.146, 1.277)
p < 0.001** p = 0.008** p < 0.001**
Data.Transparency 0.911 0.913 0.904
(0.881, 0.942) (0.875, 0.952) (0.875, 0.935)
p <0.00001**  p =0.00003"* p < 0.001**
Individual. Good:Data Transparency 1.185 1.280 1.194
(1.126,1.248)  (1.197, 1.369) (1.134, 1.258)
p < 0.001** p < 0.001** p < 0.001**
Individual.Good:Privacy.Broad 0.855 0.910 0.851
(0.789, 0.927) (0.820, 1.009) (0.785, 0.923)
p = 0.0002** p =0.075 p = 0.0002**
Individual. Good:NonTech.Control 0.914 1.041 0.914
(0.843, 0.990) (0.934, 1.160) (0.843, 0.991)
p = 0.028* p = 0.469 p = 0.030*
Individual.Good:Technical.Control 0.515 0.581 0.514
(0.473, 0.559) (0.521, 0.648) (0.472, 0.559)
p < 0.001** p < 0.001** p < 0.001**
Constant 0.004 0.005 0.004
(0.004, 0.004) (0.005, 0.005) (0.004, 0.004)
p < 0.001** p < 0.001** p < 0.001**
Observations 7,010,271 3,920,232 6,858,820
Log Likelihood —182,159.100 —109,357.700 —178,196.900
Akaike Inf. Crit. 364,338.100 218,735.300 356,413.700

Note:

*p<0.05; **p<0.01
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Table 4: Modeling the privacy and transparency statements for Collective-Good ads

Dependent variable:

Clicks
All data Just Demographic  Just Geographic
(1) (2) ®3)
Privacy.Broad 1.106 1.073 1.110
(1.048, 1.167) (1.003, 1.147) (1.052, 1.172)
p = 0.0003** p = 0.041* p = 0.0002**
NonTech.Control 1.123 1.096 1.131
(1.064, 1.185) (1.026, 1.172) (1.071, 1.195)
p = 0.00003** p = 0.007** p = 0.00001**
Technical.Control 1.203 1.095 1.209
(1.140, 1.269) (1.025, 1.169) (1.146, 1.277)
p < 0.001** p = 0.008** p < 0.001**
Data. Transparency 0.911 0.913 0.904
(0.881, 0.942) (0.875, 0.952) (0.875, 0.935)
p <0.00001**  p =0.00003"* p < 0.001**
Constant 0.004 0.005 0.004
(0.004, 0.004) (0.005, 0.005) (0.004, 0.004)
p < 0.001** p < 0.001** p < 0.001**
Observations 3,523,339 2,027,887 3,446,697
Log Likelihood —102,945.400 —63,818.110 —100,767.200
Akaike Inf. Crit. 205,900.900 127,646.200 201,544.400

Note:

*p<0.05; **p<0.01
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Table 5: Modeling the privacy and transparency statements for Individual-Good ads

Dependent variable:

Clicks
All data Just Demographic  Just Geographic
(1) () ®3)
Privacy.Broad 0.946 0.976 0.945
(0.891, 1.004) (1.003, 1.147) (0.890, 1.004)
p = 0.070 p = 0.547 p = 0.068
NonTech.Control 1.026 1.141 1.034
(0.967,1.089)  (1.026, 1.172) (0.974, 1.098)
p =039 p = 0.003** p=0.274
Technical.Control 0.619 0.636 0.621
(0581, 0.660)  (1.025, 1.169) (0.582, 0.663)
p < 0.001** p < 0.001** p < 0.001**
Data.Transparency 1.080 1.169 1.080
(1.038,1.123)  (0.875,0.952) (1.038, 1.124)
p = 0.0002** p < 0.001** p = 0.0002**
Constant 0.004 0.004 0.004
(0.004, 0.004)  (0.005, 0.005) (0.004, 0.004)
p < 0.001** p < 0.001** p < 0.001**
Observations 3,486,932 1,892,345 3,412,123
Log Likelihood —79,213.640 —45,539.550 —77,429.660
Akaike Inf. Crit. 158,437.300 91,089.100 154,869.300

Note:

*p<0.05; **p<0.01
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Table 6: Modeling demographics and geographics

Dependent variable:

Clicks
Just Demographic  Just Geographic
@) @
Age25 - 34 0.951
(0.906, 0.998)
p=0.041*
Age35 - 44 0.932
(0.886, 0.980)
p = 0.006**
Aged5 - 54 0.874
(0.825, 0.925)
p = 0.00001**
Age55 - 64 0.909
(0.866, 0.954)
p = 0.0001**
Age65+ 1.134
(1.077, 1.194)
p = 0.00001**
GenderMale 0.794
(0.769, 0.819)
p < 0.001**
DensityRural 1.146
(1.104, 1.189)
p < 0.001**
Individual.Good 0.747 0.744
(0.724, 0.770) (0.726, 0.762)
p < 0.001** p < 0.001**
Privacy.Broad 1.014 1.033
(0.964, 1.068) (0.993, 1.076)
p=0584 p=0.110
NonTech.Control 1.115 1.091
(1.058, 1.175) (1.048, 1.136)
p = 0.00005™* p = 0.00003**
Technical.Control 0.857 0.923
(0.813, 0.903) (0.886, 0.962)
p < 0.001** p = 0.0002**
Data.Transparency 1.034 0.978
(1.001, 1.068) (0.953, 1.003)
p = 0.047* p =0.084
Constant 0.006 0.005
(0.005, 0.006) (0.004, 0.005)
p < 0.001** p < 0.001**
Observations 3,920,232 6,858,820
Log Likelihood —109,314.800 —178,382.400
Akaike Inf. Crit. 218,653.500 356,778.700

Note: *p<0.05; **p<0.01
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Table 7: Modeling the Age and Gender differences for Collective-Good ads

Dependent variable:

Clicks
Collective-Good  Collective-Good Female Collective-Good Male
(1) (2) ®3)
Age25 - 34 0.902 0.967 0.849
(0.849, 0.958) (0.886, 1.055) (0.781, 0.923)
p = 0.001** p = 0.455 p = 0.0002**
Age35 - 44 0.921 1.078 0.791
(0.864, 0.981) (0.985, 1.180) (0.723, 0.866)
p=0012* p=0.103 p < 0.00001**
Aged5 - 54 0.808 0.952 0.695
(0.751, 0.870) (0.856, 1.058) (0.627, 0.771)
p < 0.00001** p = 0.360 p < 0.001**
Age55 - 64 0.798 0.937 0.597
(0.750, 0.850) (0.865, 1.014) (0.533, 0.669)
p < 0.001** p = 0.106 p < 0.001**
Age65+ 0.969 1.016 1.021
(0.906, 1.035) (0.933, 1.105) (0.911, 1.144)
p = 0.344 p=0718 p=0728
GenderMale 0.887
(0.851, 0.924)
p < 0.001**
Constant 0.006 0.005 0.006
(0.006, 0.006) (0.005, 0.006) (0.005, 0.006)
p < 0.001** p < 0.001** p < 0.001**
Observations 2,027,887 1,111,417 916,470
Log Likelihood —63,777.320 —36,412.990 -27,332.210
Akaike Inf. Crit. 127,568.600 72,837.980 54,676.420

Note: *p<0.05; **p<0.01
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Table 8: Modeling the Age and Gender differences for Individual-Good ads

Dependent variable:

Clicks
Individual-Good Individual-Good Female Individual-Good Male
(1) (2) ®3)
Age25 - 34 1.046 1.020 1.073
(0.964, 1.134) (0.906, 1.149) (0.959, 1.199)
p = 0.280 p = 0.740 p=0218
Age35 - 44 0.962 1.016 0.915
(0.886, 1.045) (0.903, 1.144) (0.816, 1.027)
p =0.357 p=0788 p=0133
Aged5 - 54 0.997 1.337 0.760
(0.911, 1.091) (1.175, 1.522) (0.670, 0.863)
p = 0.947 p = 0.00002** p = 0.00003**
Age55 - 64 1.074 1.353 0.795
(0.995, 1.160) (1.218, 1.502) (0.707, 0.894)
p = 0.068 p < 0.00001** p = 0.0002**
Age65+ 1.331 1.580 1.065
(1.227, 1.443) (1.418, 1.760) (0.936, 1.211)
p < 0.001** p < 0.001** p=0342
GenderMale 0.685
(0.653, 0.719)
p < 0.001**
Constant 0.004 0.004 0.003
(0.004, 0.004) (0.003, 0.004) (0.003, 0.004)
p < 0.001** p < 0.001** p < 0.001**
Observations 1,892,345 866,084 1,026,261
Log Likelihood —45,551.090 —24,641.040 —20,858.890
Akaike Inf. Crit. 91,116.180 49,294.090 41,729.780

Note: *p<0.05; **p<0.01
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Table 9: Modeling the statement differences by Appeal and Gender

Dependent variable:

Clicks
Collective-Good Male Collective-Good Female Individual-Good Male Individual-Good Female
(1) () ®3) (4)
Privacy.Broad 1.160 0.993 0.796 1.198
(1.049, 1.283) (0.906, 1.087) (0.707, 0.896) (1.076, 1.335)
p = 0.004** p =0.877 p = 0.0002** p = 0.002**
NonTech.Control 1.110 1.083 1.018 1.333
(1.009, 1.222) (0.986, 1.188) (0.899, 1.152) (1.185, 1.498)
p =0.032* p =0.095 p=0784 p = 0.00001**
Technical.Control 1.236 0.980 0.460 0.827
(1.118, 1.366) (0.897, 1.071) (0.402, 0.526) (0.738, 0.927)
p = 0.00004** p = 0.660 p = 0.000** p = 0.002**
Data.Transparency 0.849 0.961 1.275 1.058
(0.795, 0.907) (0.909, 1.015) (1.178, 1.379) (0.987, 1.134)
p = 0.00001** p = 0.157 p = 0.000** p=0.113
Constant 0.004 0.005 0.003 0.004
(0.004, 0.005) (0.005, 0.006) (0.003, 0.004) (0.004, 0.004)
p = 0.000** p = 0.000** p = 0.000** p = 0.000**
Observations 916,470 1,111,417 1,026,261 866,084
Log Likelihood —27,378.620 —36,413.650 —20,733.730 —24,634.080
Akaike Inf. Crit. 54,767.230 72,837.310 41,477.460 49,278.150

Note: *p<0.05; **p<0.01
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Table 10: Modeling the statement differences with an interaction for Density

Dependent variable:

Clicks
Appeal Privacy: Broad Non-Technical Control Technical Control Data Transparency
&) @ ®3) 4 ©)
DensityRural 1.114 1.132 1.164 1.151 1.158
(1.061,1.170)  (1.082, 1.183) (1.113, 1.217) (1.103, 1.202) (1.103, 1.216)
p = 0.00002**  p < 0.00001** p < 0.0001** p < 0.0001** p < 0.0001**
Individual. Good 0.738
(0.719, 0.757)
p < 0.0001**
DensityRural:Individual.Good 1.067
(0.990, 1.150)
p = 0.090
Privacy.Broad 1.025
(0.997, 1.054)
p = 0.076
DensityRural:Privacy.Broad 1.055
(0.973, 1.143)
p=0.197
NonTech.Control 1.110
(1.080, 1.141)
p < 0.0001**
DensityRural:NonTech.Control 0.959
(0.884, 1.040)
p=0314
Technical.Control 0.875
(0.850, 0.901)
p < 0.0001**
DensityRural: Technical.Control 0.998
(0.917, 1.086)
p = 0.959
Data.Transparency 0.977
(0.952, 1.002)
p =0.075
DensityRural:Data Transparency 0.983
(0.912, 1.060)
p = 0.656
Constant 0.005 0.004 0.004 0.004 0.004
(0.004, 0.005)  (0.004, 0.004) (0.004, 0.004) (0.004, 0.004) (0.004, 0.004)
p <0.0001**  p < 0.0001"* p < 0.0001** p < 0.0001** p < 0.0001**
Observations 6,858,820 6,858,820 6,858,820 6,858,820 6,858,820
Log Likelihood —178,438.100 —178,732.500 —178,707.500 —178,688.200 —178,733.900
Akaike Inf. Crit. 356,884.200 357,473.000 357,423.000 357,384.500 357,475.800

Note: *p<0.05; **p<0.01
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